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We show that superselection rules do not enhance the information-theoretic security of quantum crypto-
graphic protocols. Our analysis employs two quite different methods. The first method uses the concept of a
reference system—in a world subject to a superselection rule, unrestricted operations can be simulated by
parties who share access to a reference system with suitable properties. By this method, we prove that if an
n-party protocol is secure in a world subject to a superselection rule, then the security is maintained even if the
superselection rule is relaxed. However, the proof applies only to a limited class of superselection rules, those
in which the superselection sectors are labeled by unitary irreducible representations of a compact symmetry
group. The second method uses the concept of theformatof a message sent between parties—by verifying the
format, the recipient of a message can check whether the message could have been sent by a party who
performed charge-conserving operations. By this method, we prove that protocols subject to general superse-
lection rules(including those pertaining to non-Abelian anyons in two dimensions) are no more secure than
protocols in the unrestricted world. However, the proof applies only to two-party protocols. Our results show
in particular that, if no assumptions are made about the computational power of the cheater, then secure
quantum bit commitment and strong quantum coin flipping with arbitrarily small bias are impossible in a world
subject to superselection rules.
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I. INTRODUCTION

The central aim of modern cryptography is to formulate
protocols that achieve cryptographic tasks withcomputa-
tional security, meaning that a dishonest party would need to
perform a prohibitively difficult computation to break the
protocol. A major goal of quantum cryptography is to formu-
late protocols, involving the exchange of quantum states, that
achieveinformation-theoretic security, meaning that even an
adversary with unlimited computational power would be un-
able to defeat the protocol[1]. Information-theoretic security
(sometimes called “unconditional security”) has been estab-
lished for quantum key distribution protocols[2–7] but it has
also been shown that, even in the quantum world,
information-theoretic security is not attainable for certain
tasks. For example, unconditionally secure quantum bit com-
mitment is impossible[8,9], as is(strong) quantum coin flip-
ping with arbitrarily small bias[10,11].

Superselection rules are limitations on the physically re-
alizable quantum operations that can be carried out by a local
agent. For example, it is impossible to create or destroy an
isolated particle that carries locally conserved charges, such
as an electrically charged particle, a fermion, or(in a two-
dimensional medium) an anyon. Recently, Popescu[12] has
suggested that superselection rules might have interesting
implications for the security of quantum cryptographic pro-
tocols. The intuitive idea behind this suggestion is that su-
perselection rules could place inviolable limits on the cheat-
ing strategies available to the dishonest parties, thus
enhancing security. Might, say, unconditionally secure bit
commitment be possible in worlds(perhaps including the
physical world that we inhabit) governed by suitable super-
selection rules? An affirmative answer could shake the foun-
dations of cryptography.

The purpose of this paper is to answer Popescu’s intrigu-
ing question. Sadly, our conclusion is that superselection
rules can never foil a cheater who has unlimited quantum-
computational power.

In the case of quantum bit commitment, and other two-
party protocols, our argument hinges on a quite simple ob-
servation. In a two-party protocol, one participant(Alice) has
control of a local systemA, and the other participant(Bob)
has control of another local systemB. In addition, there is a
message systemM that they pass back and forth. In each step
of the protocol, one party performs a joint quantum operation
on her/his local system and the message system, and then
sends the message system to the other party. Suppose that in
each step, any part of the full systemABM that is beyond
Alice’s control is under Bob’s control and vice versa—no
part of the full system is inaccessible or in the possession of
a third party. Suppose further that the full systemABM has
trivial total charge(belongs to the trivial superselection sec-
tor). Then at any stage of the protocol, the algebra of opera-
tions that Alice can perform is thecommutantof the algebra
of operations that Bob can perform; that is, Alice’s algebra
containsall operations that commute with Bob’s algebra.
Likewise, Bob’s algebra is the commutant of Alice’s. By a
minor extension of the standard argument, it then follows
that unconditionally secure quantum bit commitment is im-
possibleif the total charge shared by the parties is trivial.

Now, if the total charge innontrivial, then Alice’s algebra
is surely a subalgebra of the commutant of Bob’s, but it may
be a proper subalgebra; similarly, Bob’s algebra may be a
proper subalgebra of Alice’s. This unusual property of the
local operations seems to open new possibilities for the de-
sign of quantum protocols. Regrettably, though, there is no
way for an honest party to ensure that the total charge is
really nontrivial when the other party is dishonest. Though
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the honest protocol may call for the parties to start out with
nontrivial charges, we may always imagine that there are
actually compensating charges beyond the grasp of Alice and
Bob, so that the total charge of the world is really trivial.
Furthermore, a cheater might seize control of the compensat-
ing charge, while for an honest party it makes no difference
whether the compensating charge is present or not. It follows
that a protocol that calls for the total charge to be nontrivial
can be no more secure than one in which the total charge is
actually trivial; we conclude again that unconditionally se-
cure quantum bit commitment is impossible, irrespective of
the value of the total charge shared by the parties in the
honest protocol.

Aside from quantum bit commitment, we will also study
the impact of superselection rules on the information-
theoretic security of a broad class of other quantum proto-
cols, using two different methods. We analyze in detail the
important special case in which the superselection sectors
can be identified with the unitary irreducible representations
of a compact symmetry group. In that case, we argue that it
is possible in principle to prepare areference statethat es-
tablishes a preferred orientation in the symmetry group. A
party with access to the reference state can use it to perform
operations that are ostensibly forbidden by the superselection
rule. In particular, consider ann-party quantum protocol
where up tok,n of the parties are dishonest, and suppose
that in a world with no superselection rules the dishonest
parties have a cheating strategy that breaks the protocol.
Then, even in a world with superselection rules, the dishon-
est parties, by sharing a suitable reference state, can simulate
this cheating strategy faithfully. We conclude that if a quan-
tum protocol is information-theoretically secure in a world
with a superselection rule, the security will be maintained
even if the superselection rule is relaxed, at least in the case
where the superselection rule arises from a compact symme-
try group.

Superselection rules arising from compact symmetry
groups are not the most general possible ones. In particular,
an especially rich variety of superselection rules are poten-
tially realizable in two-dimensional systems such as those
that admit non-Abelian anyons. However, even superselec-
tion rules of this more general kind cannot foil a cheater. We
find that for any two-party protocol that is secure in a world
subject to a superselection rule, the security is maintained
when the superselection rule is relaxed.

Our analysis of these more general superselection rules
does not rely on the concept of a reference system; rather it is
founded on a completely different idea, the concept of the
format of a message. A superselection rule can always be
characterized by saying that there are charges that must be
conserved by all local operations, and when we relax the
superselection rule, in effect we are permitting a cheater to
violate these conservation laws. For the purpose of assessing
the security of a two-party protocol, we are interested in how
the actions of the cheating party(Alice) affect the outcomes
of measurements performed by the honest party(Bob). Po-
tentially, if Alice is granted the power to violate conservation
of “charge,” her ability to influence Bob’s measurements will
be strengthened.

However, if the total charge shared by Alice and Bob is
trivial (as we are entitled to assume in an analysis of secu-

rity), then if charge is conserved, Alice and Bob hold conju-
gate charges at each stage of the protocol. Therefore, Bob
always knows what charge Alice is supposed to have, which
constrains the type of message that Alice can send to Bob if
she is honest. When Bob receives a message he can verify its
format, checking whether the message could have been sent
by a party who performed a charge-conserving operation,
and he can abort the protocol if the verification fails. There-
fore, if the protocol ends normally, Alice has been forced to
respect charge conservation—her power to flout the superse-
lection rule does not enhance her ability to fool Bob. This
reasoning shows that superselection rules cannot thwart
cheating, but because the argument relies on the property that
Alice and Bob hold perfectly correlated charges, it works
only for two-party protocols.

For cryptographic protocols with more than two parties,
and for general superselection rules, new subtleties arise. In
two spatial dimensions, general charges are not merely lo-
cally conserved, they may also have nontrivialbraiding
properties—the exchange of two charges may induce a non-
trivial transformation on their joint Hilbert space. This means
that the effect of sending a message from one party to an-
other can depend on the path along which the message trav-
els. It is an interesting problem to specify appropriate defi-
nitions of security for protocols in this setting, but we will
not attempt to address this issue here. For the special case of
charges labeled by unitary representations of compact
groups, the braiding properties are trivial; therefore in that
case we can analyze multiparty protocols without confront-
ing such questions.

Verstraete and Cirac[13] recently discussed a data-hiding
protocol whose security is premised on a superselection rule.
However, as the authors recognized, the protocol is not un-
conditionally secure; it can be broken if the parties establish
a suitable shared reference state via quantum communica-
tion. The notion that the naive implications of a superselec-
tion rule can be evaded through the use of a suitable refer-
ence system was emphasized long ago by Aharonov and
Susskind[14]; see[15] for a recent discussion. A special case
of our main result was reported earlier in[16].

The rest of this paper is organized as follows: We develop
the concept of a reference system in Sec. II, first for Abelian,
then for non-Abelian symmetries, and we explain how a ref-
erence system can be used to simulate unrestricted operations
in a world subject to superselection rules arising from a sym-
metry group; this observation is applied in Sec. III to the
analysis of the security of quantum protocols. In Sec. IV we
explore the distinction between anitinerant reference system
that is passed from party to party as needed during a proto-
col, and adistributedreference system that can be prepared
and passed out to the parties before the protocol begins. Su-
perselection rules arising from non-Abelian symmetries are
further characterized in Sec. V, and we comment in Sec. VI
on the data-hiding protocol of Verstraete and Cirac. Our
analysis of the impact of superselection rules on the security
of quantum bit commitment is in Sec. VII; we also show
there that for the analysis of security of ann-party protocol,
it suffices to consider the case in which the total charge held
by the parties is trivial. Two-party protocols subject to
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general superselection rules are investigated in Sec. VIII, and
Sec. IX contains some concluding comments.

II. SUPERSELECTION RULES AND REFERENCE
SYSTEMS

A superselection rule is a decomposition of Hilbert space
into sectors that are preserved by local operations. The dif-
ferent sectors can be distinguished by attaching to each sec-
tor a label, which we refer to as the sector’s “charge.” There-
fore, an equivalent way to characterize a superselection rule
is to say that the charge is locally conserved. In the context
of a cryptographic protocol, this means that when one of the
parties(Alice, say) performs an operation, the charge in Al-
ice’s laboratory is preserved.

An important special case arises if the Hilbert spaceH
transforms as a unitary representation of a compact groupG,
and the sectors are labeled by the irreducible representations
of G. An equivalent way to describe the superselection rule
in that case is to say that the allowed operations must com-
mute with the action ofG onH. In fact, it has been shown by
Doplicher and Roberts[17] that such superselection rules are
almost the most general ones allowed under rather weak con-
ditions that apply in particular to quantum field theories
(without gravity) in three or more spatial dimensions. We say
“almost” because there is an additional freedom to assign to
a localized state an even or odd fermion number. This fer-
mion number is more than just a conserved charge, because
of the property that the wave function changes sign when
two fermions are exchanged.

In two spatial dimensions, there is a richer classification
of superselection rules, reflecting the exotic quantum num-
bers carried by pointlike non-Abelian anyons that occur in
topological quantum field theories[18–20]. We will post-
pone further discussion of non-Abelian anyons until Sec.
VIII, concentrating for now on the superselection rules asso-
ciated with compact symmetry groups(and ignoring fermi-
ons).

An important example is the group Us1d associated with
conservation of the electric chargeQ. An agent acting locally
can create or annihilate pairs of particles that carry equal and
opposite charges, but cannot change the total charge in her
vicinity. In particular, this agent is unable to transform any
eigenstate ofQ into a coherent superposition of states with
different charges, as emphasized by Wick, Wightman, and
Wigner [21,22].

While we might readily accept that local creation of elec-
tric charge is physically impossible, other conservation laws
impose superselection rules that do more violence to our
intuition. Suppose, for example(in nonrelativistic quantum
mechanics), that our agent’s actions are required to conserve

the angular momentumJW locally. Are we to conclude that if
the agent is presented with a spin-1

2 object polarized spin-up
along thez axis, it is impossible for him to transform it to a
coherent superposition of the spin-up and spin-down states?
How are we to describe what happens when a magnetic field
is turned on pointing in thex direction and the spin begins to
precess? A partial resolution of this puzzle is attained by
noting that the angular momentum of a classical magnet has

an uncertainty large compared to", so that conservation of
angular momentum need not prevent the magnet from coher-
ently exchangingJz=" with the spin. But this explanation
does not fully address how the existence of the classical
magnet is itself compatible with the superselection rule.

Such issues were cogently discussed many years ago by
Aharonov and Susskind[14]. They emphasized that even if
the total angular momentum has a definite value(like zero),
we can still speak sensibly of therelative orientation of two
subsystems. Whenever an experimentalist observes the pre-
cession of a spin, it is implicit that a reference state has been
established that in effect breaks the rotational symmetry, and
that the precession is measured relative to this reference stan-
dard. Furthermore, Aharonov and Susskind[14] emphasized
that just as conservation of angular momentum need not pre-
vent us from measuring the relative angular orientation of
two objects, so the charge superselection rule need not pre-
vent us from measuring relative phases in superpositions of
states of different charge.

A. Abelian case

Before we discuss the more general case in which the
symmetry may be non-Abelian, it will be useful to consider
the symmetry groupG=Us1d. Then the charge operatorQ
(the generator ofG) has eigenvaluesqPZ, and we denote
the corresponding orthonormal eigenstates byuql. Formal
states of definite phase(with continuum normalization) can
be constructed as

uul =
1

Î2p
o

q=−`

`

e−iquuql s0 ø u , 2pd, s1d

where

ku8uul =
1

2p
o

q=−`

`

e−iqsu−u8d = dsu8 − ud s2d

and

uql =
1

Î2p
E

0

2p

du eiquuul. s3d

The phase stateuul is the improper eigenstate with eigen-
valueeiu of the unitary operator

U+ = o
q=−`

`

uq + 1lkqu s4d

that increments the value of the charge by one unit. While
the phaseu is physically unobservable due to the charge
superselection rule, the relative phase ofu8−u of the two
statesuu8l and uul commutes with the charge operatorQ and
so is measurable in principle. Indeed, the state

E
0

2p

du9uu8 + u9l ^ uu + u9l= o
q=−`

`

e−iqsu−u8du− ql ^ uql s5d

has a definite value of the relative phaseu8−u and total
charge zero. That is, it is an(unnormalizable) eigenstate with
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eigenvalueeisu−u8d of the charge-conserving operatorU−
^ U+, whereU−=U+

†.
Similarly, the phasesfq appearing in the expansion of the

stateuclA of a systemA,

uclA = o
q

cqe
−iqfquqlA s6d

(where thecq’s are real and positive), are themselves unob-
servable, but they can be meaningfully compared to the
phases appearing in the stateuulR of a charge reservoirR. For
example, by projectinguulR^ uclA onto the sector with total
charge zero, we obtain the state

uclRA=
1

Î2p
E du8uu + u8lR ^ e−iQu8uclA

=o
q

cqe
−iqsfq−udu− qlR ^ uqlA s7d

which has measurable relative phases. A state likeuulR of a
charge reservoirR that provides a phase standard with which
other states can be compared will be called a “reference
state” or a “condensate.”

In the stateuclRA, the charge of the systemA is compen-
sated(“screened”) by the charge of the reservoirR. There-
fore, the system and reservoir are entangled, and tracing out
the reservoir destroys the coherence of the superposition of
charge states for the system. While formally correct, this
statement can be misleading if the reservoir remains acces-
sible and is allowed to interact with the system during sub-
sequent operations. For example, the operatorsU+dA that in-
creases the charge of the system by one unit is disallowed by
the superselection rule, but it can be accurately simulated by
the allowed charge-conserving operatorsU−dR^ sU+dA acting
on uclRA—this operator increases the charge ofA by borrow-
ing a unit of charge fromR. If the reservoir remains acces-
sible at all times, then an arbitrary(not necessarily charge-
conserving) operation acting onA can be perfectly simulated
by a charge-conserving operation acting onRA. Thus, at least
as a matter of principle, the charge superselection rule places
no inescapable restrictions on the allowed operations. This is
the main point stressed by Aharonov and Susskind[14].

The phase reference state can be interpreted physically as
a static piece of superconducting material with a definite
value of the superconducting phase. While the phase itself is
not gauge-invariant, the relative phase of the system and res-
ervoir has observable consequences(like the Josephson ef-
fect) when the two are brought into contact. Similar issues,
discussed in[23–27], arise when considering the physical
content of relative phases in optical systems.

B. Non-Abelian case

Our discussion of the Abelian case has suggested that su-
perselection rules are nullified if suitable reference systems
are available. Now we consider the more general case, where
the symmetry group isG, which may be either a finite group
or a compact Lie group. The superselection rule dictates that
allowed local operations must commute withG. But we may
anticipate that if a condensate is accessible that completely

breaks theG symmetry, then in effect there is no operative
symmetry at all, and the superselection rules place no restric-
tions on the allowed operations.

Formally, if the symmetry is completely broken, then the
possible orientations of the condensate are in one-to-one cor-
respondence with the elements of the symmetry groupG. In
a particular “fixed gauge,” the states of the condensate are
denotedufl, wherefPG, and these states transform as the
left regular representation ofG. That is, a symmetry trans-
formation gPG acting on the condensate is represented by
the unitaryUsgd where

Usgdufl → ugfl. s8d

These states can be expanded in the basis of irreducible rep-
resentations ofG as

ufl = o
q,i,a

Înq

nG
Dia

q sfduq,i,al, s9d

wherenq denotes the dimension of the irreducible represen-
tation Dqsfd andnG is the order ofG. Inverting the Fourier
transform we obtain

uq,i,al = o
fPG

Înq

nG
Dia

q*sfdufl. s10d

Note that in Eqs.(9) and (10) we have used notation appro-
priate for a finite group; in the case of a compact Lie group,
the sum overfPG would be replaced by an integral with
respect to an invariant measure on the group. The states
uq, i ,al transform underG as

Usgduq,i,al = o
j

uq, j ,alDji
qsgd. s11d

In keeping with standard physics terminology, we will
refer to the indexi =1,2, . . . ,nq in uq, i ,al as the “color in-
dex,” and to the action Eq.(11) of Usgd on this index as a
“gauge transformation.” The indexa=1,2, . . . ,nq, distin-
guishing thenq copies of the representationDq that occur in
the decomposition of the regular representation, will be
called the “flavor” index. The physical “G-invariant” opera-
tions are those that commute with all gauge
transformations—these preserveq and act nontrivially only
on the flavor, not the color. Therefore, by including the color
we have chosen a redundant description of the physical Hil-
bert space. This redundancy, while not absolutely necessary,
is quite convenient, and in particular will be useful for our
discussion in Sec. III of the security of quantum protocols.

In addition to theG gauge symmetry, there is also a group
G of “global” transformations that commute withUsgd, un-
der which the statesufl transform as the right regular repre-
sentation ofG; the elementh of the global group is repre-
sented byVshd, where

Vshdufl = ufh−1l s12d

and
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Vshduq,i,al = o
b

uq,i,blDba
q*shd. s13d

Thus the global transformations act on the flavor indexa of
the states in thehuq, i ,alj basis—unlike the gauge transfor-
mations, they act nontrivially on the physical states.

In more geometric terms, a condensate may be interpreted
as an asymmetric classical rigid body that can be rotated
either “actively” or “passively.” What we have called the
color (gauge) rotation is a passive rotation that acts on the
space-fixed axes—it does not change the actual orientation
of the body but only changes our mathematical description of
the orientation. In contrast, what we have called the flavor
(global) rotation is an active rotation that acts on the body-
fixed axes and alters the physical orientation. A flavor rota-
tion is G-invariant in the sense that it commutes with color
rotations, and so is a physical operation, allowed by the su-
perselection rule.

In contrast to the flavor orientation, the color orientation
of an isolated systemA has no invariant meaning, as it is
modified by a color rotation. However, the orientation ofA
relative to the condensate Rdoes have meaning, and an op-
erator that rotates the relative orientation admits an invariant
description. Suppose, for example, that systemA is itself a
condensate in the statefA, while the state ofR is fR. The
relative orientation

fR̄A ; fR
−1fA s14d

is invariant if a common color rotation

UshdRA:fA → hfA, fR → hfR s15d

is applied to both objects. The transformationUsgdRA
inv that

changes the relative orientation according to

UsgdRA
inv:fR̄A → gfR̄A s16d

has an invariant meaning and commutes with the color rota-
tion UshdRA. We may interpret the invariant rotation as one
that rotatesA while R is “held fixed,” acting as

UsgdRA
invsufRl ^ ufAld = ufRl ^ ufRgfR

−1fAl, s17d

or equivalently

UsgdRA
inv = o

fPG

suflkfudR ^ Usfgf−1dA. s18d

If systemA is not a reference system but rather an object
transforming as the irreducible representationq of G, then
Usfgf−1d can be expanded as

UsgdRA
inv = o

fPG

suflkfudR

^ S o
i,j ,a,b

uq,ilDia
q sfdDab

q sgdDbj
q sf−1dkq, j uD

A

.

s19d

More generally, any transformation

MA:uq,ilA → o
j

uq, jlAMji s20d

acting on the color degree of freedom can be simulated by
the invariant operation

MRA
inv = o

fPG

suflkfudR^ S o
i,j ,a,b

uq,ilDia
q sfdMabDbj

q sf−1dkq, j uD
A

.

s21d

MRA
inv has an invariant meaning because it transforms the color

of A relative to the color of the reference systemR; in effect,
the color rotation is simulated by converting the color index
into a flavor index(depending onf), on whichM may act
with impunity. For fixedf, the simulation is achieved via the
isomorphism

uq,alA → uq,f,alRA; uflR ^ o
j

uq, jlADja
q sfd, s22d

such that

MRA
invuq,f,alRA= o

b

uq,f,blRAMba. s23d

Furthermore, this isomorphism can be extended to operators
M that change the value ofq as well as rotating the color for
fixed q; the operator

MA:uq,ilA → o
q8,j

uq8, jlAMji
q8q s24d

is simulated by

MRA
invuq,f,alRA= o

q8,b

uq8,f,blRAMba
q8q, s25d

which generalizes the result

MRA
invsuulR ^ e−iquuqlAd = uulR ^ o

q8

e−iq8uuq8lMq8q s26d

that we found in the case ofG=Us1d.

C. Properties of the simulation

We will refer to the world in which all operations are
required to commute with the action of the symmetry group
G as the “invariant world” or “I world,” and we refer to the
world in which arbitrary operations are allowed as the “un-
restricted world” or “U world.” What we have observed in
Eqs.(22) and (25) is that the physics of theU world can be
faithfully reproduced in theI world, as long as a suitable
reference system is at our disposal.

Let us restate the main conclusion in a more succinct
notation: SupposeA is an arbitrary system that transforms as
some representation of the groupG, and letR be a “reference
system” that transforms as the left regular representation of
G. Let M be an arbitrary transformation acting onA. Then
there is a corresponding transformationM inv acting onR and
A defined as

M inv = o
fPG

suflkfudR ^ fUsfdMUsfd−1gA. s27d
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M inv is an invariant operator whose action onRA simulates
the action ofM on A.

That is, the operatorsM inv have the following easily veri-
fied properties:

(i) M inv is G-invariant. Proof: From the transformation
properties ofR andA we have

fUsgd ^ UsgdgM invfUsgd−1
^ Usgd−1g

= o
fPG

sugflkgfud ^ fUsgfdMUsgfd−1g=M inv,

s28d

where in the last step we have reparametrized the sum by
replacingf→g−1f.

(ii ) Invariant operators on RA provide a representation of
operators on A. Proof: We have

M1
invM2

inv = o
f1,f2PG

suf1lkf1uf2lkf2ud

^ fUsf1dM1Usf1
−1dUsf2dM2Usf2

−1dg

= o
fPG

suflkfud ^ fUsfdM1M2Usfd−1g

=sM1M2dinv. s29d

(iii ) If M is G-invariant, then Minv= IR^ MA. Proof: If
Usfd commutes withM for eachf, then

M inv = o
fPG

suflkfud ^ M = I ^ M . s30d

(iv) If r is invariant andtrsrRd=1, then

tr M invsrR ^ rd = tr Mr. s31d

Proof: If Usfd commutes withr for eachf, then

tr M invsrR ^ rd= o
fPG

kfurRufltrfM Usfd−1rUsfdg

=trsrRdtrsMrd = trsMrd. s32d

The properties(i) and(iv) mean that as long as the stater
of A is G-invariant, then by making use of a reference sys-
tem, measurements in theU world can be faithfully simu-
lated by measurements in theI world. That is, given an ar-
bitrary measurement performed onA (with operation
elements that are not necessarilyG-invariant), there is an
invariant measurement performed onRA (with G-invariant
operation elements) that has the same probability distribution
of outcomes. Furthermore, it follows from property(ii ) that
the physics of theU world can be faithfully reproduced in
the I world even if the measurement is preceded by a series
of unitary transformations—applyingVinv in the I world has
the same effect as applyingV in the U world. Property(iii )
tells us that, as expected, the reference systemR is superflu-
ous if the U-world transformation acting onA is already
G-invariant.

To derive these properties, we require that the reference
system transform as the regular representation ofG, but no
condition is needed on thestaterR of the reference system.

Loosely speaking, the reference system is needed so that
when a noninvariant operation acts onA, the change in the
charge ofA can be balanced by a compensating change in the
charge ofR. But if the stater of A is invariant, then only the
charge-conserving part ofM contributes to the expectation
value trsMrd anyway. In the simulation of this charge-
conserving part ofM, the reference system is superfluous
and its state irrelevant.

Note that if G is a Lie group rather than a finite group,
then the regular representation is infinite-dimensional, and
our formal arguments requireR to be an infinite-dimensional
system. How is the fidelity of the simulation affected ifR is
truncated to a finite-dimensional system? In fact, the fidelity
will still be perfect if the charge remains bounded in the
process to be simulated. Consider, for example, the caseG
=Us1d, for which Eq.(27) becomes, e.g.,

suq − rlkqudinv = o
q8

suq8 + rlkq8udR ^ suq − rlkqudA; s33d

in the I world, a process in whichr units of charge are
removed fromA is simulated by adding ther units to R.
Suppose we are assured that the total charge added to or
removed fromA will never exceedr units. Then we may
choose the initial state ofR to carry charge zero, and we can
limit R to the s2r +1d-dimensional space spanned by the
states uqRl , qR=−r ,−r +1, . . . ,r −1,r. This truncated refer-
ence system suffices because states withuqRu. r will never
be accessed in the simulation anyway. A similar remark ap-
plies if G is an arbitrary compact Lie group.

III. REFERENCE SYSTEMS AND QUANTUM PROTOCOLS

We have concluded that in the presence of a suitable ref-
erence system, superselection rules place no inescapable re-
strictions on the allowed operations. We may anticipate,
therefore, that a cryptographic protocol is secure in the in-
variant “I world9 (governed by the superselection rule) if and
only if it is secure in the unrestricted “U world.” If we faith-
fully adhere to the usual stringent principles of quantum
cryptology and place no restrictions on the resources avail-
able to our adversaries, then we must admit the possibility
that the dishonest parties could share access to a reference
system during the execution of the protocol. For the case of
superselection rules arising from compact symmetry groups,
this observation suffices to answer Popescu’s question about
the impact of superselection rules on the security of quantum
protocols.

Let us now discuss this point in greater detail. To be ex-
plicit, consider at first a protocol involving two parties, Alice
and Bob. Alice holds a private local systemA that is beyond
Bob’s control, and Bob holds a private local systemB that is
beyond Alice’s control. In addition, there is a message sys-
temM that they can pass back and forth. At the beginning of
the protocol, they share a product staterA ^ rB ^ rM. In each
round of the protocol, one of the parties performs a joint
quantum operation on her/his local system and the message,
and then sends the message system to the other party. Finally,
after all quantum communication is completed, both parties
perform local measurements.(See Fig. 1.)
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For example, the goal of the protocol might be to flip an
unbiased coin. In that case, the final measurement performed
by each party has two possible outcomes, 0 or 1. If both
parties follow the protocol, then both obtain the same out-
come. Furthermore, the two outcomes are equiprobable. A
coin-flipping protocol issecureif neither party, by departing
from the protocol, can bias significantly the outcome of the
other party’s measurement.

We say that astrong coin-flipping protocol has bias« if
neither party by cheating can forceeither outcome to occur
with probability greater than12 +e. In a weak coin-flipping
protocol, Alice wins if the outcome is 0 and Bob wins if the
outcome is 1, and we say that the bias is« if neither can
force awin with probability greater than12 +e. (Thus, in a
weak protocol with bias«, a cheater might be able toloseon
purpose with a probability exceeding12 +e.) Note that the
protocol might abort if cheating is detected; by “the probabil-
ity of outcome 0” we mean the joint probability that the
protocol does not abort and the outcome is 0. Kitaev[10,11]
has shown that, if no superselection rules are imposed, then
strong quantum coin flipping is impossible with bias
e, s1/Î2d− 1

2 =0.207. Ambainis[28] has shown that a weak
coin-flipping protocol with bias « requires at least
Vflog logs1/«dg rounds of communication.

We are interested in whether these conclusions about
coin-flipping in theU world remain valid in theI world. For
a coin-flipping protocol in theI world, we may assume that
the initial state shared by Alice and Bob is a tensor product
of invariant statesrA ^ rB ^ rM. In the honest protocol, Alice
and Bob take turns applyingG-invariant operations to the
system that they share, then measure invariant observables.
In fact, without loss of generality, we may assume[8] that
each operation applied by Alice or Bob is an invariant uni-
tary transformation, and that the final measurement is an in-
variant projective measurement.

If Alice and Bob play the game honestly, then the prob-
ability PBsbd that Bob’s measurement yields the particular
outcomeb can be expressed as

PBsbd = trfEB,b VsrA ^ rB ^ rMdV†g, s34d

where

V = VBn
VAn

¯ VB2
VA2

VB1
VA1

. s35d

Here theVAj
are unitary transformations applied toAM (we

have assumed that Alice makes the first move in the game),
the VBj

are unitary transformations applied toBM, and the
EB,b are the projectors defining Bob’s final measurement.
Furthermore, in theI-world protocol,VAj

, VBj
, andEB,b are

G-invariant. In effect, then, Bob measures the invariant op-
erator

FB,b = V†EB,bV s36d

in the invariant staterA ^ rB ^ rM.
Of course, a protocol in theI world can be regarded as a

special case of a protocol in theU world, where the initial
state is a product state, and Kitaev’s result applies to this
U-world protocol. Therefore, one of the parties(Alice, say)
can force one of the outcomes(0, say) with probability at
least 1/Î2. However, Alice’s cheating strategy that achieves
this result might employ operations that are notG-invariant.
To show that Kitaev’s result also applies to the original
I-world protocol, we must show that Alice’s cheating strat-
egy in theU world can be faithfully simulated in theI world
by making use of a suitable reference system. For this pur-
pose, we apply the properties of the invariant operatorM inv

that were discussed in Sec. II C.
When Alice cheats in theU world, she replaces the op-

eratorVAj
called for in the honest protocol with an arbitrary

operatorVAj
8 applied to AM, where VAj

8 is not necessarily
G-invariant. Then Bob’s measurement yields the outcomeb
with probability

PB8sbd = trfFB,b8 srA ^ rB ^ rMdg, s37d

where

FB,b8 = V8†EB,bV8 s38d

and

V8 = VBn
VAn

8 ¯ VB2
VA2

8 VB1
VA1

8 . s39d

This cheating strategy in theU world can be simulated in
the I world if Alice has a reference systemR—instead of
applying the noninvariant operatorVAj

8 to the systemAM, she
applies the invariant operatorVAj

8inv to RAM. Note that since
Bob follows the honest protocol, which requiresVBj

to be
G-invariant, applyingVBj

to BM is equivalent to applying
VBj

inv to RBM, by property(iii ) in Sec. II C. Therefore, when
Alice adopts theI-world strategy, Bob obtains outcomeb
with probability

P̃B8sbd = trfF̃B,b8 srR ^ rA ^ rB ^ rMdg, s40d

where

F̃B,b8 = Ṽ8†EB,bṼ8 s41d

and

Ṽ8 = VBn

invVAn
8inv

¯ VB2

invVA2
8invVB1

invVA1
8inv. s42d

But since the invariant operators provide a representation

[property(ii )], we may writeṼ8=V8inv, and sinceEB,b=EB,b
inv

as well, we have

FIG. 1. A two-player quantum game. Alice and Bob have pri-
vate systems, and a message system that they pass back and forth.
At the end of the game, Alice and Bob measure their private
systems.
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F̃B,b8 = FB,b8inv. s43d

Finally, the initial staterA ^ rB ^ rM shared by Alice and Bob
is G-invariant; therefore, by property(iv),

P̃B8sbd = PB8sbd; s44d

the measurement outcomeb in the I-world protocol occurs
with the same probability as the outcomeb in the U-world
protocol.

Therefore, Alice’s simulated cheating strategy in theI
world perfectly reproduces the probability distribution for
Bob’s measurement outcome that is achieved by her cheating
strategy in theU world. The same is true if Bob makes the
first move in the game instead of Alice. Similarly, if Bob is
the cheater, Bob has a strategy in theI world that simulates
his U world cheating strategy. We conclude that if Alice(or
Bob) can cheat in theU world, then she(he) can cheat just as
successfully in theI world. Thus, Kitaev’s proof of the im-
possibility of strong coin flipping with biase, s1/Î2d− 1

2,
originally formulated in theU world, also applies to theI
world. Similarly, Ambainis’s lower bound on the number of
rounds of communication needed for weak coin flipping also
applies to theI world.

This conclusion that cheating in theU world can be suc-
cessfully simulated in theI world applies not just to coin
flipping protocols, but to any two-party protocol in which the
goal of a cheating Alice is to bias the outcome of a measure-
ment performed by an honest Bob. Furthermore, it is
straightforward to generalize the argument to ann-party pro-
tocol, in whichk cheating parties wish to bias the outcomes
of measurements performed by then−k honest parties. For
such a protocol in theI world, where the initial state is a
product of invariant states, any cheating strategy that can be
executed in theU world can be simulated perfectly in theI
world if the k cheating parties share access to a reference
system. Therefore, the protocol can be no more secure in the
I world than in theU world.

To summarize, let us refer to ann-party quantum game as
an I-world game if the initial state is a product of invariant
states, and if in the honest protocol all operations performed
by the parties are invariant operations. Ifk,n parties are
cheaters, we say that their cheating strategy is anI-world
cheating strategy if the cheaters are required to perform in-
variant operations, and we say that their cheating strategy is
a U-world cheating strategy if the operations performed by
the cheaters are unrestricted. Let us say that anI-world
cheating strategy isequivalentto aU-world cheating strategy
if both strategies produce the same probability distributions
for the outcomes of the measurements performed by then
−k honest parties. We have proved the following.

Theorem 1. Suppose that in theI world all quantum op-
erations are required to beG-invariant, whereG is a compact
Lie group, and that in theU world quantum operations are
unrestricted. Consider ann-party I-world quantum game, and
a U-world cheating strategyA8 in which k,n parties cheat.

Then there is anI-world cheating strategyÃ8 that is equiva-
lent to A8.

As we observed in Sec. II C, the reference system re-
quired by the cheaters in theI world can be finite-
dimensional, as long as the cheaters in theU world apply
operations that change the “charge” by a bounded amount.

IV. DISTRIBUTED REFERENCE SYSTEMS

The key ingredient in our discussion ofI-world quantum
protocols is the observation thatG-noninvariant operations
can be faithfully simulated through the use of a reference
system. Suppose, for example, that Alice and Bob take turns
acting on a systemC that they pass back and forth. Then
Alice and Bob in theI-world can simulate an arbitrary
U-world protocol in which the initial state ofC is
G-invariant. They carry out the simulation by passing the
reference systemR back and forth along withC, each taking
turns applying invariant operations toRC. Similarly, in our
analysis of cheating in Sec. III, we allowed thek cheaters to
pass the reference systemR among themselves as needed
during the execution of the protocol. A reference system that
travels from place to place might be calleditinerant.

Here we will briefly discuss an alternative scenario, in
which the parties share adistributedreference system—each
party holds a fixed portion of this system throughout the
execution of the protocol. This discussion is not actually
needed for our analysis of security, but it is helpful nonethe-
less for understanding the physics of superselection rules.
Indeed, in many physical situations in which reference sys-
tems are used(e.g., in optical physics), the system is distrib-
uted rather than itinerant.

Let A denote Alice’s part of the reference system,B de-
note Bob’s part, and suppose that at the start of the protocol
AB is prepared in the state

u0lAB =
1

ÎnG
o

fPG

uflA ^ uflB. s45d

This state has trivial total charge; indeed, when expressed in
the Fourier-transformed charge-eigenstate basis, it is

u0lAB =
1

ÎnG
o
q,i,a

uq̄,i,alA ^ uq,i,alB. s46d

Thus, in principle Alice(say) could prepareu0lAB in her lab
and then ship half of it to Bob.(The stateu0lAB is unnormal-
izable and unphysical ifG is a Lie group. For now we will
suppose thatG is a finite group, but we will comment on the
case of a Lie group below.)

In the stateu0lAB, Alice’s condensate and Bob’s, have val-
ues that are distributed uniformly over the groupG, but these
values are locked together. Therefore, ifuclC is any pure
state ofC, thenMAC

inv andMBC
inv act onu0lAB^ uclC in the same

way,

MAC
invsu0lAB ^ uclCd = MBC

invsu0lAB ^ uclCd

=
1

ÎnG
o

fPG

uflA ^ uflB

^ fUsfdMUsfd−1guclC. s47d
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FurthermoreMAC
inv andMBC

inv act identically on any state of the
form

uClABC=
1

ÎnG
o

fPG

uflA ^ uflB ^ ucflC, s48d

whereucflC might depend onf, a form that is maintained as
successive invariant operations are applied toAC and toBC.
Therefore, the outcome of the protocol would be the same if
each invariant operationMBC

inv applied toBC were replaced
by the corresponding invariant operationMAC

inv applied toAC.
We conclude that the simulation in which the distributed ref-
erence systemAB is prepared in the initial stateu0lAB is
equivalent to a simulation that uses an itinerant reference
systemA. Since this latter simulation has all of the properties
listed in Sec. II C, we find that a bipartiteI-world protocol
using the distributed reference system can faithfully simulate
an arbitraryU-world protocol.

Note that the distributed state can serve the same purpose
if there is a fixed offset of Bob’s condensate relative to Al-
ice’s, as long as the offset is known. That is, if Alice and Bob
share the state

u0,f̃lAB =
1

ÎnG
o

fPG

uflA ^ uff̃lB

=
1

ÎnG
o
q,a,b

Dab
q sf̃d

3So
i

uq̄,i,alA ^ uq,i,blBD , s49d

then the invariant operationsMBC
inv andfUsf̃dMUsf̃d−1gAC

inv act

in the same way. If Bob knowsf̃, then he can participate
successfully in the simulation by “twisting” his operations
appropriately.

Similarly, in a protocol withk parties, the distributed ref-
erence state

u0lk parties=
1

ÎnG
o

fPG

uflR1
^ uflR2

¯ ^ uflRk
s50d

provides a common “phase standard” for all the participants,
allowing them to simulate aU-world protocol in the I
world—the,th party simulates the noninvariant operationM
by applyingM inv to the target system and her partR, of the
reference system. Again, the parties can twist their local op-
erations to compensate for known relative offsets of their
condensates, if necessary.

In the stateu0lAB, there is a quantum correlation between
Alice’s condensate and Bob’s. A common reference standard
can be provided instead by a classically correlated state such
as

rAB =
1

nG
o

fPG

suflkfudA ^ suflkfudB. s51d

If Alice and Bob are equipped with the staterAB, then again
MAC

inv and MBC
inv act in the same way, hence they can use this

distributed reference state to simulate aU-world protocol in

the I world. The state isG-invariant, but unlikeu0lAB it is not
a charge eigenstate; rather it is a mixture of(invariant) states
with various charges. For example, in the caseG=Us1d,
u0lAB is the (unnormalizable) state

u0lAB =E
0

2p

uulA ^ uulB = o
q=−`

`

u− qlA ^ uqlB; s52d

Alice’s charge and Bob’s charge are perfectly anticorrelated.
In contrast,rAB is

rAB ~E du suulkuudA ^ suulkuudB

~ o
qA,qB,q

uqA,qBlkqA − q,qB + qu. s53d

Formally, this state appears to be separable, as it is a mixture
of the product statesuul ^ uul, but this is deceptive, because
uul ^ uul is notG-invariant and is therefore incompatible with
the superselection rule. On the other hand, in the charge-
eigenstate basis,rAB can be expressed as a mixture of
G-invariant pure states, each with a definite total charge;
however, these pure states are highly entangled, with an in-
definite value of Alice’s(and Bob’s) local charge. The state
rAB is not a mixture of invariant product states, and therefore
cannot be prepared without quantum communication be-
tween Alice and Bob. Classical communication alone is in-
sufficient for Alice and Bob to establish their common phase
standard.

Now let us return to the question we postponed earlier:
what if G is a Lie group, so that the statesu0lAB andrAB are
unnormalizable? To be specific, consider again the caseG
=Us1d, and suppose that Alice and Bob are instructed to
perform this protocol: Alice is presented with a charge-zero
stateu0l. She is instructed to rotate this state to the superpo-
sition of charge eigenstatessu0l+ u1ld /Î2 and to send the
resulting state to Bob. Bob is to perform an orthogonal mea-
surement in the basissu0l± u1ld /Î2 and so verify that Alice
prepared the correct state. To make sense of this procedure,
Alice and Bob must share a common reference state that
serves to lock together their phase conventions; for example,
this state could be a shared pure stateuclAB with definite total
charge. Alice’s coherent operation on systemC acts as

uclAB ^ u0lC → 1
Î2

fuclAB ^ u0lC + sU−dAuclAB ^ u1lCg;

s54d

that is, Alice simulates the charge-nonconserving operator
sU+dC by applying the invariant operatorsU−dA ^ sU+dC to
AC. When Bob receives systemC, he performs his measure-
ment by first simulating the transformation

u0lC → 1
Î2

su0lC + u1lCd,

s55d

SUPERSELECTION RULES AND QUANTUM PROTOCOLS PHYSICAL REVIEW A69, 052326(2004)

052326-9



u1lC → 1
Î2

su0lC − u1lCd,

and then measuring the charge ofC. After Bob’s first step,
the state ofABC has become

1

2
fIA ^ IB + sU−dA ^ sU+dBguclAB ^ u0lC

+
1

2
fIA ^ sU−dB − sU−dA ^ IBguclAB ^ u1lC. s56d

When Bob measures the charge, the probability that he ob-
tains the outcomeu1lC and fails to verify Alice’s state is

P1 =
1

2
f1 − Re ABkcusU−dA ^ sU+dBuclABg. s57d

If, for example, the shared reference state is

uclAB =
1

ÎN
So

q=0

N−1

u− qlA ^ uqlBD , s58d

a normalizable approximation to the stateu0lAB, our expres-
sion for P1 becomes

P1 =
1

2N
. s59d

Thus, for finiteN, the state received by Bob does not match
perfectly with the state prepared by Alice—the superposition
of charge eigenstates decoheres slightly. But this decoher-
ence becomes negligible in the limitN→`, where the
“charge fluctuations” of the shared condensate are large.

The lesson we learn from this example generalizes to non-
Abelian compact Lie groups. We can replace the unnormal-
izable state

u0lAB =
1

ÎnG
o
q,i,a

uq̄,i,alA ^ uq,i,alB s60d

by a normalizable state with a truncated sum over the charge
q. If Alice and Bob use this truncated distributed reference
state to simulate aU-world protocol, their simulation will not
have perfect fidelity. But as long as all operations applied by
Alice and Bob change the charge by a bounded amount, the
fidelity can be arbitrarily close to 1 if the reference state is
chosen appropriately. If Alice and Bob are permitted to use a
truncateditinerant reference system rather than a distributed
one, then perfect fidelity can be achieved, as observed in Sec.
II C.

V. INVARIANT OPERATIONS AND COMMUTANTS

Our observations in Sec. II B emphasized the similarities
between Abelian and non-Abelian superselection rules, en-
abling us to formulate a security analysis in Sec. III that
applies to both Abelian and non-Abelian symmetry groups.
But in several respects the arguments in Sec. III are still not
adequate. For one thing, so far we have treated only the
special case of superselection sectors labeled by unitary irre-

ducible representations of compact groups. For another,
while it is possible to formulate a security analysis of quan-
tum bit commitment within the framework of our argument
in Sec. III, it is more natural to structure the argument dif-
ferently, following more closely the standard analysis of
quantum bit commitment.

In this section, we will emphasize the essential differences
between superselection rules arising from non-Abelian sym-
metry groups and those arising from Abelian groups. The
discussion will pave the way for our analysis of quantum bit
commitment in Sec. VII and of general two-party protocols
in Sec. VIII.

A crucial difference between Abelian and non-Abelian
charges is that non-Abelian charges are nonadditive: the
charges of two subsystemsA andB do not necessarily deter-
mine the charge of the composite systemAB. This feature
can be restated as a property of the algebra of observables of
the bipartite system. LetA denote the algebra of local op-
erators(an associative algebra, closed under Hermitian con-
jugation, that commutes with all locally conserved charges)
acting on subsystemA, and letB denote the algebra of local
operators acting onB. The commutant ofA, denotedA8, is
the algebra of operators acting on the composite systemAB
that commute with everything inA, and similarly forB8.
Now, if all superselection rules are Abelian, thenA8=B and
B8=A. But if the superselection rules are non-Abelian, the
theory has sectors with nontrivial total charge in which this
relation does not hold. This unusual structure of the local
observables has potential implications for the security of
quantum protocols.

To be more explicit, suppose that the superselection rules
arise from a non-Abelian symmetry groupG, and the opera-
tions that Alice(or Bob) can perform must commute withG.
A stateucl in Alice’s (or Bob’s) Hilbert space can be decom-
posed into irreducible representations ofG, as

ucl = o
q,i,a

ci,a
q uq,i,al; s61d

hereq labels the irreducible representation(or “charge”), i is
the “color” index acted upon by the representation ofG, and
a is the “flavor” index that distinguishes among the various
copies of the irreducible representationq appearing in the
decomposition. Note that since we are no longer assuming
that Alice’s system transforms as the regular representation
of G, there need be no connection between the number of
flavors and the number of colors associated withq. The ac-
tion of a color gauge rotation representinggPG on ucl is

Usgducl = o
q,i,j ,a

ci,a
q uq, j ,alDji

qsgd. s62d

An operatorM allowed by the superselection rule, which
must commute with eachDqsgd, preserves the chargeq and
acts only on the flavor index according to

Mucl = o
q,i,a,b

ci,a
q uq,i,blMba

q . s63d

Since allowed operations act nontrivially only on the flavor
index, it is convenient to use a notation that suppresses the
color indexi. We denote byHq the invariant Hilbert space in
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the charge-q sector, spanned by statesuq,al that are labeled
only by the flavora within the sector. The corresponding
operator algebra respecting the superselection rule isLsHqd,
spanned by linear operators acting on this invariant space.
Thus Alice’s invariant Hilbert space is

HA = %
q
HA,q s64d

and Alice’s local operator algebra is

A = %
q
LsHA,qd. s65d

Similarly, Bob’s operator algebra is

B = %
q
LsHB,qd. s66d

Now consider the composite systemAB. Its invariant Hil-
bert space too can be expressed as a direct sum over charge
sectors

H = %
q
Hq, s67d

while the full operator algebra is%qLsHqd. But we should
consider howHq is related to the invariant Hilbert spaces of
the subsystems. The charge-q Hilbert space of the joint sys-
tem can be expressed as

Hq = %
qA,qB

HA,qA
^ HB,qB

^ Vq
qA,qB, s68d

whereVq
qA,qB denotes the space of invariant linear maps from

the irreducible representationq to the tensor product of irre-
ducible representationsqA ^ qB. This space can be nontrivial
(of dimension greater than 1) if the tensor product contains
the representationq more than once.

When expressed in terms of a particular color basis for the
irreducible representationsq, qA, andqB, the components of
Vq

qA,qB are the Clebsch-Gordon coefficients(3j symbols), of
the groupG. Let huqA, ilj denote an orthonormal basis for the
representationqA, huqB, jlj a basis forqB, and huqsad ,klj a
basis forqsad, where the indexa labels the various copies of
the representationq that may be contained inqA ^ qB. Then
the components ofVq

qA,qB are

fVq
qA,qBsadgk

ij = skqA,i u ^ kqB, j uduqsad,kl. s69d

These components comprise aG-invariant tensor with the
property

fVq
qA,qBsadgk

ij = o
i8,j8,k8

Dii8
qAsgdDjj 8

qBsgdfVq
qA,qBsadgk8

i8 j8Dk8k
q sgd.

s70d

Invariant operations act not on the color indices of
fVq

qA,qBsadgk
ij , but rather on the indexa that distinguishes the

flavors ofq contained inqA ^ qB. Furthermore, the invariant
operations can also alter the chargesqA andqB appearing in
Eq. (68), while preserving the total chargeq.

The notation of Eq.(68) and its implications may be clari-
fied by discussing specific examples. The trivial representa-
tion sq=1d is contained only in the tensor product ofqA with

its conjugate representationq̄A, and it occurs only once in
this product. Therefore, in the case where the total charge is
q=1, Eq.(68) reduces to

H1 = %
q
HA,q ^ HB,q̄; s71d

in this case, the factorVq
qA,qB is superfluous. Now, the joint

operator algebra contains operations that cannot be executed
by Alice and Bob locally—these operations change Alice’s
charge and Bob’s while preserving the total charge(of
course, this can happen even ifG is Abelian). But any op-
eration that commutes with Alice’s algebraA must preserve
Alice’s chargeq, and act trivially in each of Alice’s charge
sectors; such operations preserve Bob’s chargeq̄ as well, and
thus are in Bob’s algebraB. Therefore,A andB are commu-
tants of one another.

However, if the total charge is nontrivial, thenB need not
be the commutant ofA. To illustrate this phenomenon, con-
sider the caseG=SUs2d, where the irreducible representation
is labeled by the spinj . For SUs2d, Vj

jA,jB is always one-(or
zero-) dimensional, and Eq.(68) reduces to

H j = %
jA,jB

HA,jA
^ HB,jB

, s72d

where it is implicit that each product of representations ap-
pearing on the right-hand side transforms as spinj . To be
concrete, suppose that Alice’s system has spin1

2, Bob’s con-
tains both a spin-0 and a spin-1 component, and the total spin
is 1

2; then

H1/2 = HA,1/2 ^ sHB,0 % HB,1d. s73d

Note that in this case, contrary to the case in which the total
charge is trivial, a single value ofjA can be combined with
either of two different values ofjB to obtain the same total
chargej . Therefore, there are invariant operations acting on
the joint system that preserve Alice’s charge and the total
charge, but change Bob’s charge. These operations are in the
commutant ofA but not inB; henceA8ÞB.

We arrive at another way of looking at this property of
H1/2 if we imagine that there is a third party Charlie who
holds a compensating charge, so that the total charge is
trivial. Now

H0 = HA,1/2 ^ sHB,0 ^ HC,1/2 % HB,1 ^ HC,1/2d; s74d

an operation inA8 can be performed by Bob and Charlie
acting together, but not by Bob alone.

In order thatA8ÞB, it is not necessary for one of the
parties to possess a state with indefinite charge. For example,
in the caseG=SUs3d, the tensor product of the irreducible
octet representation 8 with itself contains two copies of 8,
one symmetric and one antisymmetric under interchange of
the factors,

8A ^ 8B $ 8sym % 8anti. s75d

Thus, in the decomposition
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H8 = HA,8 ^ HB,8 ^ V8
8,8, s76d

the joint invariant Hilbert space is two-dimensional, while
Alice and Bob both have one-dimensional Hilbert spaces and
trivial invariant operator algebras. ThenA8 is the full opera-
tor algebra, clearly different fromB, and similarlyB8 is dif-
ferent fromA. Again, an alternative description of the invari-
ant space is to note that Charlie could hold a compensating 8
charge, in which case the total charge is trivial and

H1 = sHA,8 ^ HB,8 ^ HC,8d ^ V1
8,8,8 s77d

is two-dimensional.
For the purpose of describingG-invariant operations, it is

always legitimate to introduce a compensating charge with-
out incurring any loss of generality. To see this, first note that
if E is a G-invariant quantum operation, then

EfUsgdrUsgd−1g = UsgdEsrdUsgd−1 s78d

for any gPG and any stater. In particular, then,

EfGsrdg = GfEsrdg, s79d

whereG is the map

Gsrd =
1

nG
o
gPG

UsgdrUsgd−1, s80d

which induces decoherence of a superposition of distinct ir-
reducible representations ofG,

Gsuq,i,alkq8, j ,bud = d qq8di jS 1

nq
o

l

uq,l,alkq,l,buD . s81d

Equation(79) means[26] that the state

ucl = o
i,a

ci,a
q uq,i,al s82d

cannot be distinguished by anyG-invariant operation from
the state

Gsuclkcud = o
q,a,b,i

ci,a
q ci,b

q*S 1

nq
o

j

uq, j ,alkq, j ,buD . s83d

Now, consider a systemA whose charge is screened by a
systemC, so that the state of the joint system has trivial total
charge,

uclAC = o
q,a,i

ca
q uq,i,alA ^ uq̄,ilC. s84d

Tracing over systemC produces the state

trCsuclkcudAC = o
q,a,b

ca
qcb

q*S 1

nq
o

j

uq, j ,alkq, j ,buD . s85d

But the state Eq.(83) is just a convex combination of states
of the form Eq.(85). Therefore, if onlyG-invariant opera-
tions are to be considered, it is always harmless to replace
systemA by half of a bipartite state that carries trivial total
charge.

Up until now, we have explicitly discussed only the case
of superselection sectors arising from a compact symmetry
group, but much of the formalism we have outlined in this
section can be extended to a more general setting. Whatever
the origin of the superselection rule, the allowed operations
act on a suitable invariant space. Sectors can still be classi-
fied by conserved charges, but in the general case, the space
Vq

qA,qB is defined more abstractly, rather than in terms of
group representations. One important property that continues
to hold in the general setting(which will play a central role
in our analysis of quantum bit commitment in Sec. VII and
of general two-party games in Sec. VIII) is that for each
value q of the charge, there is a unique conjugate chargeq̄
such that the fusion of the charges contains the trivial charge
sector.

VI. DATA HIDING

Verstraete and Cirac[13] described a data-hiding protocol
whose security is founded on the charge superselection rule
for G=Us1d. Suppose that a trusted third party Charlie pre-
pares one of the two orthogonal states,

u ± l =
1
Î2

su01l ± u10ld, s86d

where u0l and u1l denote states of charge 0 and 1, respec-
tively, and distributes half to Alice and half to Bob. If Alice
and Bob could each measure the Pauli operatorX that inter-
changesu0l and u1l, they could distinguishthe statesu+l and
u−l by performing these measurements and comparing their
outcomes. However,X does not commute with the electric
chargeQ; if Alice and Bob are permitted only to perform
local charge-conserving operations and to communicate clas-
sically, then they will be powerless to distinguish the two
possible states.

On the other hand, if Alice and Bob share access to a
common phase reference state, their activities will be unre-
stricted and nothing will prevent them from performing theX
measurements that unlock the classical bit stored in the state
prepared by Charlie[aside from the small loss of fidelity that
arises if the reference state has large but finite charge fluc-
tuations, as in Eq.(58)]. In Bloch sphere language, Alice and
Bob have noa priori means of orienting their measurement
axes in thex-y plane, but a shared phase standard enables
them to lock their axes together and compare their measure-
ments. Since the state prepared by Charlie is invariant under
rotations about thez axis, the overall orientation in thex-y
plane is irrelevant; only the relative orientation needs to be
fixed to identify Charlie’s state.

To be more explicit, whileX does not commute with the
charge,

XAA8
inv = sU−dA ^ sA8

+ + sU+dA ^ sA8
− s87d

commutes withQ, as doesXBB8
inv . If Alice and Bob share a

distributed reference stateuclAB that is an eigenstate of
sU−dA ^ sU+dB with eigenvalue 1, then
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uclAB ^ u ± lA8B8 s88d

is an eigenstate of

XAA8
inv

^ XBB8
inv s89d

with eigenvalue ±1. Therefore, Alice and Bob can unlock the
hidden bit by each measuringXinv and comparing their re-
sults. The same holds, of course, if the shared reference state
rAB is a mixture of eigenstates ofsU−dA ^ sU+dB, each with
eigenvalue 1, as in Eq.(53). As Verstraete and Cirac ob-
served[13], quantum communication is needed to establish
this shared phase standard.

In the absence of a shared phase standard, neither Alice
nor Bob can detect the bit encoded in the stateu± l of Eq.
(86); however, either Alice or Bob can manipulate the bit.
Each can measure the chargeq, and either can apply a phase
to the state conditioned on the charge, flippingu+l↔ u−l. But
the property thatB8ÞA indicates that the situation can be
more subtle in the non-Abelian case(with nontrivial total
charge). Suppose, for example, thatG=SUs2d with total
chargej = 1

2 as in Eq.(73). Two states with the same value of
the total charge and of Alice’s charge, but different values of
Bob’s charge, areu j = 1

2 , jA= 1
2 , jB=0l and u j = 1

2 , jA= 1
2 , jB=1l.

Charlie might prepare either of the linear combinations

u ± l =
1
Î2

SU j =
1

2
, jA =

1

2
, jB = 0L ± U j =

1

2
, jA =

1

2
, jB = 1LD ,

s90d

and then distribute theAB system to Alice and Bob. Again,
neither Alice nor Bob can detect the hidden bit, but now
there is a notable asymmetry between Alice’s power and
Bob’s. Since Bob has a superposition of two different charge
states, he can tamper with the hidden bit by applying a phase
controlled by the charge. Alice, on the other hand, has a
trivial invariant operator algebra, and has no control over the
shared state.

We may take this observation a step further. Suppose, for
example, thatG=SUs3d with total chargeq=8 as in Eq.(76).
Charlie might prepare either of the linear combinations

u ± l =
1
Î2

suq = 8sym,qA = 8,qB = 8l ± uq = 8anti,qA = 8,qB = 8ld,

s91d

and then distribute theAB system to Alice and Bob. Again,
neither Alice nor Bob can detect the hidden bit, but further-
more, neither one can tamper with the bit’s value.

However, in the non-Abelian case as in the Abelian case,
the hidden bit can be opened via local operations and classi-
cal communication between Alice and Bob if they are pro-
vided with correlated reference systems that effectively re-
move the restrictions imposed by the superselection rule.

VII. QUANTUM BIT COMMITMENT
AND SUPERSELECTION RULES

During the commitment stage of quantum bit commit-
ment, Alice encodes a classical bit by preparing one of two

distinguishable quantum states with density operatorsr0 or
r1, and then she sends half of the state to Bob. In the unveil-
ing stage, Alice sends the other half of the state to Bob, so
that he can verify whether the state isr0 or r1. The protocol
is binding if, after commitment, Alice is unable to change the
value of the bit. The protocol is concealing if, after commit-
ment and before unveiling, Bob is unable to discern the value
of the bit. The protocol is secure if it is both binding and
concealing.

In the absence of superselection rules, unconditionally se-
cure quantum bit commitment is impossible[8,9]. If we
imagine that the statesr0 and r1 are pure states shared by
Alice and Bob, then if the protocol is concealing, Bob’s den-
sity operator(obtained by tracing over Alice’s system) must
be the same in both cases:r0,B=r1,B. But then by the HJW
theorem[29] Alice can apply a unitary transformation to her
half of the state that transformsr0 to r1, so that the protocol
is not binding.

A. Bit commitment with mixed states

We reached this conclusion under the assumption thatr0
andr1 are pure states, but we can extend the argument to the
case were the states are mixed by appealing to the concept of
a purification of a mixed state. We will describe this exten-
sion in detail, as we will follow very similar reasoning in our
discussion in Sec. VII C of bit commitment with nontrivial
total charge.

Suppose that at the start of the bit commitment protocol,
Alice and Bob share a product staterA ^ rB, where the states
rA andrB are mixed. An equivalent way to describe Alice’s
initial state is to introduce the ancilla systemC and a pure
stateuclAC (a purification ofrA), such that the density opera-
tor rA is obtained fromuclAC by tracing over systemC:

rA = trCsuclkcudAC. s92d

Similarly, to describerB we can introduce the ancillaD and
a stateuwlBD that purifiesrB. Without loss of generality, we
may assume that in each step of the protocol, Alice or Bob
applies a unitary transformation, so that the state of the full
systemABCD remains pure.(A general quantum operation
performed by Alice, say, can be realized as a unitary trans-
formation applied jointly to Alice’s system and to an appro-
priate ancilla; therefore, the operation is unitary provided
that we include this ancilla as part of the system.) In particu-
lar, after the bit is committed, the state of the full system is
one of the two pure statesuc0lABCD or uc1lABCD.

If both parties are honest, the ancillasC and D are off
limits—Alice can manipulate onlyA and Bob can manipu-
late onlyB—and in that case the mixed state protocol and its
purification are completely equivalent. Furthermore, if one
party cheats, whether the other party starts out with a mixed
state or its purification has no impact on the effectiveness of
the cheating strategy, because the honest party never touches
the purifying ancilla anyway.

Now let us see that in any quantum bit commitment pro-
tocol, one of the players can cheat successfully. First suppose
that Bob cheats. Though the honest protocol calls for Bob to
start our with the mixed staterB, a cheating Bob can throw
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this state away, and replace it with the purificationuwlBD,
whereD is now an ancilla system that Bob controls. There-
fore, if the protocol is perfectly concealing(even when Bob
cheats), then

r0,BD ; trACsuc0lkc0udABCD= r1,BD ; trACsuc1lkc1udABCD;

s93d

Bob is unable to collect any information about the committed
bit through any joint measurement onBD.

Similarly, a cheating Alice could throw away her initial
state and replace it by its purification; then Alice could con-
trol both A and the ancillaC. Applying the HJW theorem as
before, we conclude that ifr0,BD=r1,BD, then Alice can apply
a unitary transformation toAC that transformsuc0lABCD to
uc1lABCD. We conclude that if the protocol is concealing, then
it is not binding. Unconditionally secure quantum bit com-
mitment is impossible, even with mixed states. That quantum
bit commitment is impossible even when mixed strategies
are used was proved in[8] using a slightly different ap-
proach.

B. Trivial total charge

The argument in Sec. VII A shows that for an analysis of
the security of quantum bit commitment, we may assume
that Alice and Bob share a pure state. But how is the security
affected if superselection rules constrain Alice’s and Bob’s
operations? We will first consider the special case in which
the total charge that Alice and Bob share is trivial. After
commitment, then, Alice and Bob share one of the two pure
statesuc0l or uc1l, each with trivial total charge. Choosing
the Schmidt basis in each charge sector, the stateuc0l can be
expanded as

uc0lAB = o
q

Îpqo
b

Îlq,b uq̄,blA ^ uq,blB, s94d

where Bob’s density operator is

r0,B = trAsuc0lkc0ud = o
q

pqr0,B,q s95d

and

r0,B,q = o
b

lq,b uq,blkq,bu. s96d

Bob can measure the probabilitypq that his charge isq;
therefore if the protocol is concealing, then the distribution
hpqj must be the same foruc1l as for uc0l. Furthermore,
Bob’s density operator in the charge-q sector must not de-
pend on whether the state isuc0l or uc1l; thereforeuc1l can
be expanded as

uc1lAB = o
q

Îpq o
b

Îlq,b uq̄,b̃lA ^ uq,blB, s97d

where huq̄,b̃lAj is another basis for Alice’s charge-q̄ sector.
But now Alice can apply a unitary transformation condi-
tioned on the charge that rotates one basis to the other:

Uq̄:uq̄,bl → uq̄,b̃l, s98d

which transformsuc0l to uc1l. Therefore, the protocol is not
binding.

Obviously, the same argument applies, in the Abelian
case, even if the total charge is nontrivial[16]. The key prop-
erty of the states that is used in the argument is that Alice’s
charge is perfectly correlated with Bob’s, so thatB8=A.

C. Nontrivial total charge

The property thatB8ÞA in the non-Abelian case(with
nontrivial total charge) encourages one to hope that a bit
commitment protocol can be formulated whose security is
founded on a non-Abelian superselection rule. Indeed, con-
sider again the caseG=SUs2d with total chargej = 1

2 as in
Eq. (73). When Alice has control of the fullAB system, she
can prepare either of the statesu± lAB shown in Eq.(90), and
then she can send theB system to Bob. Now Bob is unable to
distinguish the two states, because he cannot measure the
relative phase in a superposition of two states of different
charge. Furthermore there is no invariant operation Alice can
apply that changesu+l to u−l or vice versa. It seems, then,
that the protocol is both concealing and binding. At any rate,
quantum bit commitment in a world with non-Abelian super-
selection rules seems fundamentally different from quantum
bit commitment in a world in which all superselection rules
are Abelian.

But, as always in a discussion of information-theoretic
security, we must be sure to consider the most general pos-
sible cheating strategies. And in fact, we can argue that for
the security analysis, there is no loss of generality if we
assume that the charge shared by the parties is trivial, the
case we have already dealt with in Sec. VII B. This reduction
to the case of trivial total charge follows closely our discus-
sion in Sec. VII A, where we showed that it suffices to as-
sume that the parties share a pure state.

Consider a general two-party quantum bit commitment
protocol in which the initial state shared by Alice and Bob is
a tensor productrA ^ rB of invariant states. The staterA can
be purified if we introduce an ancillaC; furthermore, the
pure state ofAC can be chosen to have trivial total charge.
Similar, we can purifyrB using the ancillaD, in such a way
that the pure state ofBD has trivial total charge.(See Fig. 2.)
Each operation performed by Alice or Bob can be taken to be
a charge-conserving unitary transformation; therefore, at
each stage of the protocol, the state of the full systemABCD
is a pure state with trivial total charge.

FIG. 2. “Purification” of a two-party game with nontrivial total
charge. At the beginning of the game, the charge ofC (hidden
behind a brick wall) compensates for Alice’s chargeqA, and the
charge ofD (also hidden) compensates for Bob’s chargeqB. Honest
players never touch the compensating charges, but a cheating Alice
might manipulateC and a cheating Bob might manipulateD.
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In the honest protocol, the ancillasC andD are inacces-
sible. But if Bob cheats, he can throw away the initial invari-
ant staterA called for in the protocol, and replace it by a
trivially charged pure state ofBD, whereD is now an ancilla
that Bob controls. Therefore, if the bit commitment protocol
is concealing, thenr0,BD=r1,BD—Bob cannot learn anything
about the committed bit from any invariant joint measure-
ment onBD. Since the state of the full systemABCD is a
pure state with trivial charge, the argument of Sec. VII B
suffices to show that Alice can transformuc0l to uc1l with an
invariant local operation applied toAC. Hence, the protocol
is not binding. We have proved, then, that, even when the
protocol calls for a nontrivial total charge, if Bob is unable to
cheat then Alice can cheat—unconditionally secure quantum
bit commitment is impossible. We have the following.

Theorem 2. Consider a quantum bit commitment protocol
in the I world, where at the beginning of the protocol Alice
and Bob share a product of invariant states. Then if the pro-
tocol is concealing, it is not binding.

Our proof, which reduces the case of nontrivial total
charge to the case of trivial total charge, is really just a minor
variant of the argument in Sec. VII A that reduces the case of
a protocol where Alice and Bob share a mixed state to the
case where they share a pure state.

In the case of our bit commitment protocol in which the
total charge ofAB is j = 1

2, if Alice is unable to access the
compensating charge inC, then she cannot cheat success-
fully. But if Alice controls the wholeAC system, then Alice’s
chargejAC=0,1 is perfectly correlated with Bob’s, and she
can rotate the relative phase of thejAC=0 and jAC=1 com-
ponents of her state, transformingu+l to u−l.

This reduction of a protocol with nontrivial total charge to
a protocol with trivial total charge can be generalized. In the
I world, consider ann-party protocol in which up tok,n of
the parties might cheat, where the initial state is the product
of invariant stateŝ i=1

n ri, and where all operations performed
by the parties are required to conserve the local charge. Then
we may imagine that each party is issued a compensating
charge at the beginning of the protocol, so that each party
actually starts out with trivial charge. The honest parties will
never touch their compensating charges, but a cheating party
cannot be prevented from performing arbitrary joint opera-
tions on her system and her compensating charge. This strat-
egy is realizable because the cheater might throw away the
invariant state she holds at the beginning of the protocol, and
replace it by a charge-zero state that she controls fully. Fur-
thermore, if an attack by the cheaters is successful in the
protocol where the honest players start out with trivial
charge, then it will also be successful if the honest players
start out with a product of charged invariant states; since
honest players never make use of the compensating charges,
their presence can have no impact on the effectiveness of the
attack. Therefore, we have the following.

Theorem 3. Let P be ann-party quantum protocol in theI
world that securely realizes a taskP, where the initial state
in P is a product ofn invariant states. Then there is an
I-world protocolP8 that also securely realizesP, where the
initial state in P8 is a product ofn pure states, each with
trivial charge.

In other words, in a security analysis, we may assume
without any loss of generality that each party holds a pure

state with trivial charge at the start of the protocol.
Note that for the proofs of Theorems 2 and 3, our obser-

vations from Secs. II and III on the use of reference systems
are not needed. Rather, to prove Theorems 2 and 3, we use
only two properties of theI-world superselection sectors:
first, that for each charge sectorHq there is a unique conju-
gate charge sectorHq̄ such that the trivial sectorH1 is con-
tained inHq ^ Hq̄, and second, that any invariant state has a
purification with trivial total charge. These properties hold
not just for the case of superselection rules arising from a
symmetry groupG, but also for the more general superselec-
tion rules considered in Sec. VIII. Therefore, Theorems 2
and 3 apply in this more general setting.

VIII. TWO-PARTY PROTOCOLS IN GENERAL

A. Overview

We will now analyze the impact of superselection rules on
the security of general two-party protocols. We will show
that for any protocolP in the invariant world(I world) sub-
ject to the superselection rule, there is a corresponding pro-

tocol P̃ in the unrestricted world(U world), whereP̃ simu-
lates P in the following sense: First, when performed

honestly,P̃ andP accomplish the same task. And second, for
any cheating strategy that can be adopted by a dishonest

party in P̃, there is a corresponding cheating strategy inP

that is just as effective. In particular then, ifP̃ is insecure,
then so isP. We conclude, therefore, that superselection
rules cannot enhance the(information-theoretic) security of
two-party protocols. The methods we will use to establish
this result are quite different from those used in Sec. III to
treat the case of superselection rules arising from a symmetry
group.

Before going into detail, we will briefly describe the main
ideas used in our argument. First of all, we will restrict out
attention to a protocol in which the total charge shared by the
two parties is trivial(belongs to the trivial superselection
sector). We know from Theorem 3 in Sec. VII C that it suf-
fices to treat this special case in an analysis of security. A
protocol with trivial total charge has this useful property: if
Alice knows that she holds chargeq after sending a message
to Bob, then Alice also knows that Bob will hold the conju-
gate chargeq̄ upon receiving the message. Similarly, Bob
knows what Alice’s charge will be after she receives a mes-
sage sent by Bob. Our analysis of security relies on the prop-
erty that Bob has a definite charge if Alice does, and there-
fore it applies only to two-party protocols.

In theI world, charge is conserved, so that the total charge
shared by Alice and Bob is trivial at each stage of the pro-
tocol; furthermore, local operations performed by Alice or
Bob must preserve the conserved charge. In theU world,

charge need not be conserved, but the protocolP̃ that simu-
lates theI-world protocolP can be chosen to respect conser-
vation of a fictitious “charge” that behaves like the actual
conserved charge of theI world. However, a dishonest party

who is not bound to follow the protocolP̃ can perform op-
erations that violate “charge” conservation. Our task is to
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ensure that the greater freedom enjoyed by a dishonest party
in theU world does not enhance her ability to cheat success-
fully.

For this purpose, our argument relies on the concept of the
formatof a message exchanged between the parties. In theU
world, the format is simply the Hilbert space containing the

message. In the protocolP̃, the recipient of a message always
checks that the format of the message is valid, and aborts the
protocol if the message is invalid. A valid message corre-
sponds to one that could have been sent in theI world, while
a message is invalid only if the sender violated the local
conservation of “charge” before sending it. Thus, a message
that upon receipt is found to be in the proper format could
have been sent by a party who performed a charge-
conserving local operation—in effect the sender is unable to
play a charge-nonconserving strategy without being detected.
Since effective charge conservation is enforced by halting
the protocol when a charge nonconservation is detected, it
will be essential for our argument to consider games that can
be aborted at any stage by either party. A cheating strategy
for the I-world protocol P and the corresponding cheating

strategy for itsU-world counterpartP̃ will cause the game to
halt prematurely with the same probability, as well as pro-
duce the same probability distribution of outcomes in the
event that the game ends normally, without being aborted.

B. Superselection rules and charges

Before proceeding to our proof, we should recall the prop-
erties of superselection rules and charges that will be in-
voked in the argument. These properties have been explored
already in Sec. V, for the special case of super-selection sec-
tors labeled by irreducible unitary representations of compact
groups. Here we wish to emphasize that some of the same
ideas can be extended to a more general setting, and we will
indicate how a two-party protocol in which conserved
charges are exchanged can be simulated using ordinary qu-
bits.

In general, a superselection rule is a decomposition of
Hilbert space into a direct sum of sectors such that each
sector is preserved by the allowed operations. The chargeq
is a label that distinguishes the distinct sectors, and we may
say that the operations allowed by the superselection rule
conserve the charge. Thus, the Hilbert space is expressed as

H = %
q
Hq, s99d

and the allowed operations belong to the algebra

%
q
LsHqd, s100d

whereLsHqd denotes linear operators acting onHq.
Depending on the particular form of the superselection

rule, there are specific rules governing how the charge be-
haves when a system splits into two subsystems, or when
two systems fuse to become a single system. These rules can
be encoded in vector spacesVc

a,b defined by

Hc = %
a,b

Ha ^ Hb ^ Vc
a,b. s101d

The spaceVc
a,b is n-dimensional if there aren distinguishable

ways that a chargec object can arise when objects with
chargesa andb fuse. Consistency of Eq.(101) with associa-
tivity of the tensor product requires theVc

a,b’s to obey certain
identities, but we will not discuss these further as they will
not be needed for our proof.

There is a trivial-charge sector, denotedH1, that behaves
as the identity under fusion,

Hc ^ H1 = Hc. s102d

Furthermore, there is a unique chargeq̄, the conjugate ofq,
that can fuse withq to yield the identity

H1 = %
q
Hq ^ Hq̄. s103d

Now, in theI world, consider a bipartite system shared by
Alice and Bob. The Hilbert space decomposes as

H = %
q
Hq,

Hq = %
qA,qB

HA,qA
^ HB,qB

^ Vq
qA,qB, s104d

whereq is the total charge,qA is the charge of Alice’s sys-
tem, andqB is the charge of Bob’s system. The physical
operations, allowed by the superselection rule, conserve the
total charge, and hence belong to the algebra

O = %
q
LsHqd. s105d

The operations Alice can perform, which conserve Alice’s
charge and act trivially on Bob’s system, belong to

A = %
q,qA,qB

LsHA,qA
d ^ IB,q

qA,qB, s106d

where IB,q
qA,qB denotes the identity acting onHB,qB

^ Vq
qA,qB.

Similarly, the algebra of operations that Bob can perform is

B = %
q,qA,qB

IA,q
qA,qB ^ LsHB,qB

d, s107d

whereIA,q
qA,qB denotes the identity acting onHA,qA

^ Vq
qA,qB. In

contrast, the commutantB8 of B, which conserves the total
charge and Bob’s charge but need not conserve Alice’s, is

B8 = %
q,qB

LS%
qA

HA,qA
^ Vq

qA,qBD ^ IB,qB
, s108d

whereIB,qB
is the identity onHB,qB

, and similarly

A8 = %
q,qA

IA,qA
^ LS%

qB

HB,qB
^ Vq

qA,qBD . s109d

ThusA8=B andB8=A if and only if the chargesqA andqB
are perfectly correlated(there is a uniqueqB corresponding
to eachqA and vice versa). This condition holds, in particu-
lar, if the total charge is trivial, in which case our formulas
simplify to
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H = H1 = %
q
HA,q ^ HB,q̄,

A = B8 = %
q
LsHA,qd ^ IB,q̄,

B = A8 = %
q

IA,q ^ LsHB,q̄d. s110d

C. Simulating charge exchange

A novelty of a two-party protocol in theI world is that
when Alice (for example) sends a message to Bob, she may
choose to split the charge she possesses into two parts—the
charge she retains and the charge of the message that she
sends. If the total charge is trivial, then the full Hilbert space
comprising Alice’s systemA, Bob’s systemB, and the mes-
sage systemM can be expressed as

H1 = %
qA,qB,qM

HA,qA
^ HB,qB

^ HM,qM
^ V1

qA,qB,qM .

s111d

The isomorphisms

V1
qA,qB,qM > Vq̄B

qA,qM > Vq̄A

qB,qM s112d

invite us to interpret Eq.(111) in complementary ways—
namely, the chargeq̄B of AM is conjugate to the chargeqB of
B, and the chargeq̄A of BM is conjugate to the chargeqA of
A. Thus, Eq.(111) describes the splitting of Alice’s initial
chargeq̄B into the chargeqA that she retains and the charge
qM of the message, as well as the fusion of the chargeqM of
the message with Bob’s initial chargeqB to yield Bob’s final
chargeq̄A. Furthermore, ifV1

qA,qB,qM is of dimension greater
than 1, then a vector inV1

qA,qB,qM describes the particular
manner in which Alice performs the splitting, which in turn
determines the result of Bob’s fusion.

While the information encoded inV1
qA,qB,qM is an intrinsic

property in theI world, if we are to simulate the process of
charge exchange in theU world, then this information must
be carried by ordinary qubits. In such a simulation, the Hil-
bert space of Alice’s system, Bob’s system, and the message
is expanded to

H̃ = %
q1,q2,qA,qB,qM

HA,q1
^ HB,q2

^ HM,qM
^ V1

qA,qB,qM ,

s113d

but where nowV1
qA,qB,qM is to be regarded as an explicit part

of the message. If the conditionsq1=qA and q2=qB were
imposed, then the “format” of this message would coincide
perfectly with the information content of a message sent in
the I world. But while in theI world these conditions arise
from the intrinsic physics of the superselection rule, in theU
world they must be imposed by hand through proper design
of the protocol.

Thus, in the U-world protocol P̃ that simulates the
I-world protocolP, we will require the recipient of a mes-
sage to verify its format—Alice checks thatq1=qA and Bob
checks thatq2=qB. Of course, at a given stage of the protocol

P, Alice or Bob might hold a coherent superposition of dif-
ferent charges, even though the total charge is always guar-

anteed to be trivial. Therefore, the verification step inP̃ must
be performed coherently; Alice, for example, checks thatq1
andqA match without learning the value ofq1 or qA. If veri-
fication fails, then the message recipient has detected cheat-
ing by the other party and aborts the protocol. If verification
succeeds, then the message has been projected onto the valid
format, and as far as the recipient is concerned, it is just as
though the message had been sent in the right format to
begin with.

Whenever Alice cheats in theU-world protocol P̃ by
modifying her charge, she risks detection, and if her cheating
is undetected, then her operation is equivalent to a charge-
conserving one. Therefore, Alice has an equivalent strategy
in the I-world protocolP, in which she either halts the game
herself with some probability before sending her message, or
if the game does not halt, performs an operation allowed by
the superselection rule. This observation suffices to establish

that P̃ simulatesP, and thus that the superselection rule can-
not thwart cheating.

To summarize, for the purpose of characterizing Alice’s
ability to cheat, we are only interested in how Alice’s activi-
ties will affect Bob’s measurements. Although in theU world
Alice has the power to violate conservation of “charge,” she
is unable to fool Bob into accepting a message that is not
isomorphic to one that could have been created in theI
world. Therefore, Alice’s elevated power in theU world
gives her no advantage.

D. Definitions

Having explained the main ideas, we will now present a
more formal proof of our result. To begin, we must define the
general notions of “protocol” and “simulation” in accord
with our goals. The definitions are quite natural, but there are
some technicalities that are necessary for the proof to work.

We consider quantum games between two parties, Alice
and Bob. We assume that Alice sends the first message and
the players alternate. Theprotocol of a game specifies the
total number of messages, their format, the strategies for
honest players, and a way to determine the game outcome.
By “format” in the U world we mean the Hilbert spaceHM
of a given message. In theI world, we specify the space
HM,qM

for each value of the message chargeqM.
To define an honest strategy in theI world, we specify for

each value of Alice’s chargeqA her corresponding space
HA,qA

; likewise, we specify Bob’s spaceHB,qB
for eachqB.

The game starts with a pure state

ujAl ^ ujBl P HA,1 ^ HB,1, s114d

where 1 stands for the trivial charge. If one of the players
(say, Alice) cheats, she may use a different set of private
spacesHA,qA

8 , but the initial state still must be of the form
ujA8l ^ ujBl, whereujA8lPHA,18 .

Alice’s and Bob’s actions in thekth step are described by
operatorsWAk

,WBk
. The final outcome is determined by a pair

of measurements that are performed independently on Al-
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ice’s and Bob’s subsystems at the end of the game. We are
interested in the joint probability distribution of the measure-
ment results. However, if one of the players cheats, only the
honest player’s subsystem is measured.

For the reasons explained in Sec. VIII A, we will assume
that the game can be aborted by either player. If the game is
aborted, we will not need to keep track of who ends the game
or when it ends—we will only be interested in whether the
game ends normally and if so what is the outcome. For this
purpose, the quantum state can be characterized by a vector
ucl such thatkc ucl is the probability that the game has not
been aborted. Operations performed by each player may then
be described by contracting maps, i.e., operatorsW such that
W†Wø I. We assume that the game is never aborted if both
players are honest, so that the probabilities of different out-
comes add up to 1 in the honest game. If one of the players
cheats, the total probability of all outcomes is generally less
than 1.

Now we define what it means for one protocol tosimulate
another(see Fig. 3).

Definition. A protocol P̃ simulatesthe protocolP if the
following conditions are fulfilled:

(i) The honest strategies inP andP̃ give rise to the same
probability distribution of the outcomes.

(ii ) For any cheating strategyÃ8 by Alice compatible

with the protocolP̃, there exists an equivalent strategyA8 for
the protocolP. (“Equivalent” means that Bob’s measurement
result has the same probability distribution in both cases.)

(iii ) For any cheating strategyB̃8 by Bob compatible with

the protocolP̃ there is an equivalent strategyB8 for the pro-
tocol P.

Note that when we say that the two cheating strategies are
equivalent, we mean in particular that the probability that the
game ends normally is the same for both strategies.

To better understand our concept of simulation, it is very
helpful to consider this simple example: Suppose that the

message spaceHM of P is embedded in a larger spaceH̃M of

P̃. Honest players follow the same strategies inP̃ as inP, so
that condition(i) is obviously satisfied. However, the players

in P̃ must be prepared to receive messages that do not obey

the format ofP, i.e., do not fit into the subspaceHM. In P̃
such messages are rejected, and the game is aborted. This
rule prevents a dishonest player from gaining any advantage

(relative to simply quitting the game) by sending an invalid
message. More formally, suppose that Alice cheats using

some strategyÃ8. In the corresponding strategyA8, Alice

projects her message systemH̃M onto the subspaceHM, be-

fore sending each message. Thus if the strategyÃ8 calls for

Alice to apply the operatorW̃Ak
8 in the kth round, then in the

strategyA8 Alice applies the contracting mapWAk
8 =PW̃Ak

8 ,
whereP is the orthogonal projector ontoHM. The strategies

Ã8 andA8 are equivalent: whenever a message sent accord-

ing to Ã8 causes Bob to abort the game, the strategyA8
requires Alice to abort the game herself. Similarly, given any

cheating strategyB̃8 for Bob in the gameP̃, there is an
equivalent cheating strategyB8 in P. Thus, conditions(ii )
and (iii ) are satisfied, andP̃ simulatesP.

Our analysis of superselection rules in Sec. VIII E will be
based on a closely related method of simulation.

We also remark that Theorem 1 proved in Sec. III can be
restated: for a multiparty protocolP in the G-invariant

world, there is aU-world protocolP̃ that simulatesP. In that
case, we implicitly adopt a redundant description of the
physical states appearing inP, admitting fictitious color de-

grees of freedom. ThenP̃ is exactly the same protocol asP,
but with the color now reinterpreted as a physical variable.
Similarly, Theorem 3 in Sec. VII C can be stated: anyn-party
I-world protocol in which the initial state is a product ofn
invariant states can be simulated by anI-world protocol in
which the initial state is a product ofn pure states, each with
trivial charge.

E. Proof

Our goal is to prove the following.
Theorem 4. Let P be a two-party game in theI world,

such that both parties hold trivial charges at the beginning of

the game. Then there is aU-world gameP̃ that simulatesP.

In the proof, we construct theU-world protocol P̃ that
simulates theI-world protocolP, and explain how the cheat-

ing strategyA8 that is equivalent toÃ8 is formulated. We
achieve this by applying the procedure for simulating charge
exchange in theU world that was described in Sec. VIII C.

Consider theI-world protocol P. If the total charge is
trivial, then the full Hilbert space including Alice’s systemA,
Bob’s systemB, and the messageM is

H = %
qA,qB,qM

HA,qA
^ HB,qB

^ HM,qM
^ V1

qA,qB,qM .

s115d

Without loss of generality, we assume that the spacesHA,qA
,

HB,qB
, HM,qM

are the same in each step of the protocol. We
may also assume that the message is present at the beginning
and at the end of the game and that the initial state has the
form ujAl ^ ujBl ^ u0l, whereu0lPHM,1.

Each time Alice receives one message and sends another,
she applies an operator toAM that preserves Bob’s charge
qB; this is a contracting map belonging to the algebra

FIG. 3. TheU-world protocolP̃ simulatesthe I-world protocol
P if the honest protocols realize the same task, and if for any cheat-

ing strategy inP̃ there is an equivalent cheating strategy inP.
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%
qB

Ls %
qA,qM

HA,qA
^ HM,qM

^ V1
qA,qB,qMd . s116d

Alice’s honest strategy consists of a sequence of such
operators—in thekth step she applies an operatorWAk

. Simi-
larly, Bob’s honest strategy is defined by operatorsWBk

.

Now consider theU-world protocol P̃ that simulatesP.

The Hilbert space ofP̃ is

H̃ = H̃A ^ H̃B ^ H̃M , s117d

where

H̃A = %
q1

HA,q1
, H̃B = %

q2

HB,q2
,

H̃M = %
qA,qB,qM

HM,qM
^ V1

qA,qB,qM . s118d

Thus the spaceH of the protocolP can be embedded inH̃
by requiringq1=qA and q2=qB. In P̃, these constraints are
enforced by checks performed by both parties. A dishonest
player’s attempt to break the constraints will be detected im-
mediately by the other party, in which case the game will
halt.

Let us describe Alice’s honest strategy inP̃. When Alice

receives a message, she gains control of the spaceH̃A

^ H̃M. First she verifies thatq1=qA (without determining the
value ofq1 or qA); if verification fails, she aborts the game.
Thus Alice effectively projects her input state onto the sub-
space

HAM = %
qA,qB,qM

HA,qA
^ HM,qM

^ V1
qA,qB,qM # H̃A ^ H̃M .

s119d

Then she applies the operatorWAk
(from the protocolP),

which acts onHAM and preservesqB. Thus Alice’s strategy is
defined by the contracting maps

W̃Ak
= FWAk

F†, s120d

where F denotes the embeddingHAM→H̃A ^ H̃M. Bob’s
honest strategy is defined similarly.

If both players play the gameP̃ honestly, then the verifi-
cation always succeeds and the conditionsq1=qA and q2
=qB are maintained throughout the game. Thus the honest

strategies forP̃ andP are clearly equivalent. Note that inP̃
some information is encoded redundantly—for example, Al-
ice can access the value ofqA by examining either the charge
label of HA,qA

or one of the slots of the tensorV1
qA,qB,qM;

similarly qM is encoded both inHM,qM
and in V1

qA,qB,qM.
However, this redundancy has no deleterious effect on the
fidelity of the simulation.

Now suppose that Alice cheats in the gameP̃. Then she

may use an arbitrary Hilbert spaceH̃A8 and operatorsW̃Ak
8

acting on

H̃AM8 = H̃A8 ^ H̃M=H̃A8 ^ s %
qA,qB,qM

HM,qM
^ V1

qA,qB,qMd.

s121d

In particular, when Alice cheats, her action on the message
need not respect the conditionqB=q2. To prove the theorem,
we are to define an equivalent cheating strategy for the game
P.

When Alice cheats inP, she uses an arbitrary Hilbert
spaceHA,qA

8 for each value of her chargeqA, and she applies
operatorsWAk

8 that conserve Bob’s chargeqB to the space

HAM8 = %
qA,qB,qM

HA,qA
8 ^ HM,qM

^ V1
qA,qB,qM . s122d

The spacesH̃AM8 andHAM8 seem to be distinct—inHAM8 the
charge label carried byHA,qA

8 matches the label in one of the

slots ofV1
qA,qB,qM, while in H̃AM8 there is no such correlation.

However, in theU world the variableqA would be encoded
redundantly if it appeared in bothHA,qA

8 andV1
qA,qB,qM, and it

is not necessary to adopt this redundant encoding in order to
emulate the physics of theI world. Instead, let us specify

HA,qA
8 =H̃A8 for eachqA—thenHAM8 andH̃AM8 are of the same

form, but where it is understood in Eq.(121) that the infor-
mation about the chargeqA is carried only byV1

qA,qB,qM. With

this choice Alice’s operatorW̃Ak
8 in P̃ and her operatorWAk

8 in
P act on isomorphic spaces; however,WAk

8 must conserve

Bob’s chargeqB, while W̃Ak
8 need not conserve charge.

Therefore, we define the corresponding cheating strategy
in P by specifying

WAk
8 = o

qB

PqB
W̃Ak

8 PqB
, s123d

wherePqB
is the projector onto the subspace with the given

value ofqB. That is,PqB
projectsH̃M onto the space in which

V1
qA,qB,qM has the valueqB in the appropriate slot. The con-

tracting mapWAk
8 preservesqB and therefore is admissible in

the protocolP. Applying this WAk
8 causesAlice to abort the

gameP in the case whereqB would change in the gameP̃.
But in that case the new value ofqB would not match Bob’s
variableq2; therefore,Bobwould reject Alice’s message and

abort the gameP̃. Hence the two gamesP andP̃ are aborted
with the same probability; furthermore, the final state that

Bob measures inP̃, if P̃ does not abort, is identical to the
final state that Bob measures inP, if P does not abort. There-
fore, when Alice cheats, Bob’s measurement outcome has the

same probability distribution inP̃ as in P. The same is true

for Alice’s measurement when Bob cheats. Therefore,P̃
simulatesP, which completes the proof of Theorem 4.

IX. CONCLUSIONS

Recent progress in the theory of quantum computation
and quantum cryptography highlights the importance of
adopting a computational model compatible with fundamen-
tal physics—tasks that would be impossible in a classical
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world may be physically realizable because Nature is
quantum-mechanical. Further refinements of the model could
lead to further insights regarding what information-
processing tasks are achievable. Therefore, as Popescu[12]
emphasized, the impact of superselection rules on the secu-
rity of quantum protocols is of considerable potential inter-
est. However, our disappointing conclusion is that superse-
lection rules cannot foil a cheater who has unlimited
quantum-computational power.

Contemplating this issue has led us to consider how phys-
ics in the invariant world can simulate physics in the unre-
stricted world, and vice versa. We feel that the simulation
schemes we have devised offer fruitful insights into the
physical meaning of superselection rules.

Our results do not address whether the security of proto-
cols with more than two parties can be enhanced by super-
selection rules that do not arise from compact symmetry
groups. New issues arise in this setting, because of the non-
trivial braiding properties of non-Abelian anyons. For ex-
ample, in the case of three parties(Alice, Bob, and Charlie),
Alice can split her charge into two parts, and send one part
on a voyage that circles Bob’s lab and then returns to Alice’s
lab. This action can induce a change in the charge held by

Alice, accompanied by a compensating change in the total
charge held by Bob and Charlie, even though the local
charge in Bob’s lab, and in Charlie’s, is unaltered. Though
strictly speaking Alice’s operation is not “local,” she can
carry it out surreptitiously, without any cooperation from
Bob and Charlie. Such new possibilities enhance the poten-
tial power of cheaters, but may also provide the honest par-
ties with new methods for detecting cheating. Addressing the
security of multiparty quantum protocols subject to general
superselection rules will require different methods from
those we have used in this paper, and might provide further
enlightenment concerning the physics of non-Abelian
anyons.
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