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than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this
scheme over previous protocols[for example, Ahnet al. Phys. Rev. A65, 042301(2001)], is that it requires
little side processing while remaining robust to measurement inefficiency, and is therefore considerably more
practical. We evaluate the performance of our scheme by simulating the correction of bit flips. We also consider
implementation in a solid-state quantum-computation architecture and estimate the maximal error rate that
could be corrected with current technology.
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I. INTRODUCTION

In the mere space of a decade, quantum-information
theory has blossomed into a burgeoning field of experimental
and applied research. The initial push for this rapid develop-
ment was provided by Shor’s discovery of an algorithm that
enables quantum computers to find the period of a periodic
function much more efficiently than any(known) classical
computer algorithm[1]. However, even after Shor’s discov-
ery there was much doubt about the practicality of quantum-
computing devices due to their fragile nature. The coheren-
cies between systems carrying the quantum information that
are crucial to quantum-computing algorithms are extremely
vulnerable and easily destroyed by unavoidable interactions
with the surrounding environment. Furthermore, aside from
this decoherence,another concern was the accumulation of
errors introduced by imperfect operations performed on the
encoded information.

Both these concerns were largely put to rest by the key
development of quantum-fault tolerance. The error accumu-
lation was shown to be tolerable as long as the systematic
error introduced by each operational element was below a
critical threshold value[2]. This threshold result relies
heavily upon the development of quantum-error correction
codes. These codes, the first of which were discovered by
Shor[3] and Steane[4], redundantly encode information in a
manner that allows one to correct errors while preserving
coherencies and thus the encoded information.

The main ingredients in the implementation of these error
control codes are projective von Neumann measurements
that discretize the errors into a finite set, and fast controlled
unitary gates that provide the ability to correct any corrupted
data. Of course, instantaneous projective measurements and

unitary gates are not perfectly implementable in any system;
here we will be concerned with the details of how one would
actually implement error correction practically on a system
where the physical tools available are necessarily physically
limited.

We extend previous work[5] and describe an implemen-
tation of error control that utilizes stabilizer error-correcting
codes and employs weak measurement and Hamiltonian
feedback to effectively protect an unknown quantum state.
This scheme has similarities to the one described previously
in [5]; however, whereas that protocol uses a full state esti-
mation technique that is computationally intensive, this one
uses a simple filtering technique that is easily implementable.
This protocol is therefore a reasonable one for many of to-
day’s quantum-computing architectures.

This paper is organized as follows. Section II reviews the
key ideas we use: weak measurement, feedback, and stabi-
lizer codes. Section III describes our error control scheme
and two specific instances of it. Section IV describes the
simulations performed to analyze the performance of our
scheme, presents the results, and considers the effect of mea-
surement inefficiency. Section V examines an actual
quantum-computer architecture and how this error control
protocol could be implemented on this architecture. Section
VI concludes our paper.

II. REVIEW OF CONCEPTS

A. Quantum feedback control

In order to describe the behavior of a quantum system
with feedback, we must first examine the description of an
open quantum system undergoing continuous weak measure-
ment; later we will add feedback conditioned on the mea-
surement results. Continuous measurement is modeled by
considering the system of interestS to be weakly coupled to
a reservoirR. In order to utilize the Born-Markov approxi-
mation, we assume that the self-correlation time of the res-
ervoir is small compared to the time scales of the system-
reservoir coupling and the system dynamics. This essentially
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says thatR measuresS continuously but quickly forgets, or
dissipates away, the result of the measurement. This allows
us to write the unconditional dynamics ofS as the following
master equation[6].

ṙstd = − ifH,rstdg + o
m=1

m

kuDfcmgrstd. s1d

Here,r is the reduced density matrix ofS, H is the system
Hamiltonian,hcmj are the collection of system-reservoir in-
teractionssin our case, where we are considering these inter-
actions to be weak measurements, these are the Hermitian
operators corresponding to the observablesd, km is a param-
etrization of the coupling strength ofcm, andD is the deco-
herence superoperator given by

DfAgr = ArA† −
1

2
sA†Ar + rA†Ad s2d

for any operatorA. Note that we set"=1 throughout this
paper, except in Sec. V.

This equation describes the unconditional dynamics ofS
because we are assuming that the measurement records are
ignored. That is, ignoring the measurement records corre-
sponding to the observableshcmj means that the best descrip-
tion of S that we have is one where we average over all
possible measurement records, and hence all possiblequan-
tum trajectoriesthat the system could have traversed[6,7].

If we choose not to ignore the measurement records, we
instead get a conditional evolution equation for the system
[6,7]:

drcstd = − ifH,rcstdgdt + o
m=1

m

kmDfcmgrcstddt

+ o
m=1

m

ÎkmHfcmgrcstddWmstd, s3d

whererc is the system density operator conditioned on the
measurement records ofhcmj, dWmstd areWeiner increments
fGaussian-distributed random variables with mean zero and
autocorrelationkdWssddWstdl=dss− tddtg f8g, and H is the
superoperator

HfAgr = Ar + rA† − r trfAr + rA†g s4d

for any operatorA. The measurement record from the mea-
surement ofcm is

dQmstd = kmkcm + cm
†lcdt + ÎkmdWmstd, s5d

where kalc=trsrcad. In terms of quantum trajectories, this
equation corresponds to a diffusive unraveling of the mas-
ter equation given in Eq.s1d. From here onwards, for sim-
plicity we will specialize to the case ofm=1 in Eq.s1d and
s3d si.e., only onecmd.

Given this model, we can now consider adding feedback
to the system. In general, the feedback will be a function of
the entire measurement record history. And, if we use Hamil-
tonian feedback, the conditional stochastic master equation

(SME) with feedbackbecomes

drcstd=− ifH,rcstdgdt+ kDfcgrcstddt + ÎkHfcgrcstddWstd

− iRQstdfF,rcstdgdt, s6d

whereRQstd is some arbitrary function of the entire measure-
ment historyQstd, andF is the feedback Hamiltonian. Note
that all we have done is to add a Hamiltonian evolution term
whose strength is conditioned by a function of the measure-
ment record.

As shown in[6], in the restricted case thatRQstd is a linear
function of the measurement value at timet only (i.e.,
RQst0d= f linearfQst0dg), we can simplify Eq.(6) further, and
derive a master equation for the unconditional dynamics of
the system. This restricted case is often referred to asMar-
kovian feedback, and is considered in connection with
quantum-error control in[9]. However, in general, when the
feedback is conditioned by a current that is some arbitrary
function of the measurement history, it is not possible to treat
the evolution analytically, and numerical simulation is the
only recourse for solving Eq.(6). An important special case
of this general feedback is one in which the functionRQstd is
designed to compute an estimate of the statercstd and output
an appropriate feedback strength[10,11]. We will refer to
this asBayesianfeedback, following Ref.[12]. In [5], an
almost full state estimation is done en route to error control,
and here we will consider a simpler and more practical ver-
sion of that scheme that performs only a partial state estima-
tion.

B. Stabilizer codes

In making continuous weak measurements on our system,
we would like to choose the measurements in such a manner
that we gather as much information about the errors as pos-
sible while disturbing the logical qubits as little as possible.
These are exactly the conditions satisfiable by encoding the
information using a quantum-error correcting code; and the
powerful stabilizer formalism[13,14] provides a way to eas-
ily characterize many of these codes. We will restrict our
attention to these stabilizer codes and in this section provide
a brief description of the main result of the formalism and
give an example. For more detailed discussions, the reader is
referred to[13,14].

We begin by introducing the Pauli group

Pn = h±1, ± ij ^ hI,X,Y,Zj^n, s7d

whereX, Y, andZ denote the Pauli operatorssx, sy, andsz,
respectively. To simplify notation, we will omit the tensor
product symbol when notating members ofPn se.g., ZZI
;Z^ Z^ Id.

Now, if we encodek logical qubits inn physical qubits
snùkd, then we can think of errors on our physical system as
the action of some subsethEjj, Pn [14]. Thus, we would like
to choose our encoding in a manner that allows us to detect
and correct the action of those group elements inhEjj. The
main result from the theory of stabilizer codes tells us about
the possibility of choosing such an encoding. It says that
provided the elements ofhEjj satisfy a certain condition, it is
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always possible to choose a codespaceC that can be used to
detect and correct these error elements[13]. Furthermore,
this codespace has some special properties:

(1) There exist a set of operators inPn, called thestabi-
lizer generatorsand denoted byg1,g2, . . . ,gr, such that ev-
ery state inC is an eigenstate with eigenvalue +1 of all the
stabilizer generators. That is,giucl= ucl for all i and for all
statesucl in C. Moreover, these stabilizer generators are all
mutually commuting.

(2) The stabilizer code error correction procedure in-
volves simultaneously measuring all the stabilizer generators
and then inferring what correction to apply from the mea-
surement results. The formalism states that the stabilizer
measurement results indicate a unique correction operation.

This result tells us that once we identify a set of one-qubit
errors in P1 that we are concerned about, it is possible to
choose a stabilizer codespace that can be used to protect the
encoded information against such errors. The error detection-
correction procedure involves measuring each of the stabi-
lizer generators and then applying a correction corresponding
to the results obtained from the stabilizer measurements.

C. Example: Three-qubit bit-flip code

A common error encountered in quantum-computing
implementations is the bit flip. This type of error has the
effect of reversing the encoded qubit’s value at random
times. That is,ucl→Xucl with probability p, and ucl→ ucl
with probability 1−p (where again,X;sx, anducl is a one-
qubit state).

One encoding that protects against this type of error is

u0lL;u000lP,

u1lL;u111lP, s8d

where the right-hand side shows the physical encoding in
three qubits of the logical qubit value on the left-hand side.
That is, C=spanhu000l , u111lj. The stabilizer generators for
this codespace are the operatorsZZI and IZZ. The code can
be used to detect and correct any of the errorsXII, IXI, and
IIX. The correction procedure involves measuring the two
stabilizer generators and then applying the appropriate cor-
recting unitary according to the rules of Table I, which cor-
rects for the bit-flip errors.

III. THE ERROR CORRECTION SCHEME

A. The general scheme

Once information is encoded using a quantum-error-
correcting code, conventional error control proposals use
projective measurements to measure the stabilizer generators
and fast unitary gates to apply the corrections if necessary. In
such schemes the detection-correction operation, which is
initiated by the projective measurement, occurs at discrete
time intervals, and these intervals are chosen so that the av-
erage number of errors within an interval is correctable. We
will refer to such implementations asdiscrete error correc-
tion schemes because of the discrete nature of the detection-
correction operation.

In this section we present a protocol that combines weak
measurements of the stabilizer generators with feedback to
perform continuouserror correction. Because of the encod-
ing, these measurements will be unobtrusive when the sys-
tem is in the codespace and will give error specific informa-
tion when it is not. However, the requirement ofweak
measurements makes the measurement currents described by
Eq. (5) noisy, and therefore ineffective for feedback condi-
tioning. In order to use the information from these measure-
ments to condition the feedback, we must smooth out some
of the noise in the currents. The smoothing can be easily
done using a low-pass filter; however, such a filtering pro-
cess introduces its own complications. Specifically, such fil-
tering makes it impossible to derive a master equation de-
scribing the evolution because the noise in the feedback
signal at timet is not independent of the system state at time
t. In essence, our smoothing procedure makes Markovian
feedback impossible, and leaves the alternative of Bayesian
feedback.

Now, full state estimation is a computationally expensive
procedure—it most often involves solving an SME in real-
time. In fact, as shown in[5], the resources needed to apply
a full state estimation feedback procedure to quantum-error
control scaleexponentiallywith the number of qubits in the
stabilizer code. Fortunately, we do not need to do a full state
estimation. Instead, the coarse-grained state estimate that the
stabilizer measurements provide—whether the state is in the
codespace or not, and if not, how to correct back into the
codespace—is precisely the information needed for error
control. That is, instead of estimatingrcstd, we simply need
to reliably identify the stabilizer generator measurement re-
sults (in the presence of noise) in order to placercstd inside
or outside the codespace. Furthermore, as seen in the ex-
ample of Sec. II C, this information is contained in the sig-
natures of the stabilizer generator measurements(whether
they are plus or minus one), a quantity that is fairly robust
under the influence of noise. These observations suggest that
weak measurement and feedback can be used to continu-
ously detect and correct errors.

The general form of the error correcting scheme we pro-
pose is similar to discrete error control, but with a few modi-
fications to deal with the incomplete information gained
from the weak measurements. The scheme can be stated in
four steps:

(1) Encode information in a stabilizer code suited to the
errors of concern.

TABLE I. The three-qubit bit-flip code. Note that each error
results in a different sequence of stabilizer generator measurement
results.

ZZI IZZ Error Correcting unitary

+1 +1 None None

−1 +1 on qubit 1 XII

+1 −1 on qubit 3 IIX

−1 −1 on qubit 2 IXI
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(2) Continuously perform weak measurements of the sta-
bilizer generators, and smooth the measurement currents.

(3) Depending on the signatures of the smoothed mea-
surement currents, form conditioning signals for feedback
operators on each physical qubit. These conditioning currents
will be highly nonlinear functions of the measurement cur-
rents because the conditional switching based on signatures
is a nonlinear operation.

(4) Apply feedback Hamiltonians to each physical qubit,
where the strength of the Hamiltonians is given by the con-
ditioning signals formed in the previous step.

Givenm stabilizer generators andd errors possible on our
system, the SME describing the evolution of a system under
this error control scheme is

drcstd=o
k=1

d

gkDfEkgrcstddt+ o
l=1

m

kDfMlgrcstddt

+ ÎkHfMlgrcstddWlstd+ o
k=1

d

− iGkstdfFk,rcstdgdt,

s9d

wheregk is the error rate for errorEk, k is the measurement
strengthsassumed for simplicity to be the same for all mea-
surementsMld, Fk is the feedback Hamiltonian correcting for
error Ek, andGk is the feedback conditioning signal forFk.
EachGk is a conditional function of the signatures of all the
smoothed stabilizer measurements,hMlj.

Equation(9) has three parts to it: the first sum describes
the effects of the error operators, the second sum describes
the effects of the weak stabilizer generator measurements,
and the third sum describes the effect of the feedback.[Also
note that we have set the system Hamiltonian,H in Eq. (6),
to zero.]

This general scheme is illustrated by the following ex-
amples. The systems described by these examples are also
the ones simulated in Sec. IV.

B. Example: A toy model

This first example is somewhat artificial, but serves as a
good illustration of our protocol. The “codespace” we want
to protect is simply the stateu0l, the errors are random ap-
plications ofX, and the protocol gathers information by mea-
suring the stabilizer generatorZ. Obviously this “code” can-
not be used for any information processing, but it is useful
for investigating the behavior of our feedback scheme.

The dynamics of this system before the application of
feedback are described by the following SME:

drcstd=gDfXgrcstddt + kDfZgrcstddt+ ÎkHfZgrcstddWstd,

s10d

whereg is the error rate andk is the measurement rate. The
measurement current has the form

dQstd = 2kkZlcstddt + ÎkdWstd. s11d

Now, the measurement ofZ reveals whether the systems
is in the “codespace” or not because

Zu0l = + 1u0l,

Zu1l = − 1u1l. s12d

However, we do not have direct access tokZlc, but rather
only to the noisy measurement current(11). Therefore we
must smooth out the noise on it to obtain error information,
and we will choose the following simple filter to do so:

Rstd =
1

NEt−T

t

e−rst−t8ddQst8d. s13d

This integral is a convolution in time between the measure-
ment signal and an exponentially decaying signal. In fre-
quency space, this acts as a low pass filter, and thus the
output of this operation is a smoothed version of the mea-
surement current with high frequency oscillations removed.1

The filter parametersr and T determine the decay rate and
length of the filter, respectively, andN=s2k / rds1−e−rTd
serves to normalizeRstd such that it is centred around ±1.

We will use the signature of this smoothed measurement
signal to infer the state of the system and thus to condition
the feedback. Explicitly, the form of the feedback condition-
ing current is

Gstd = HRstd if Rstd , 0

0 otherwise.
s14d

Thus, we describe the behavior of the systemwith feedback
using

drcstd=gDfXgrcstddt + kDfZgrcstddt+ ÎkHfZgrcstddWstd

− ilGstdfX,rcstdgdt, s15d

wherel is the maximum feedback strength.
Clearly this feedback conditioning current is non-

Markovian(and nonlinear). As mentioned above, this makes
the Markovian simplification impossible, and therefore the
most direct route to evaluating this error correction protocol
is numerical simulation. This is done in Sec. IV.

We note at this point that there are several open param-
eters in the SME(15). These parameters are the following:

(1) g—This is the error rate and is largely out of the
experimenter’s control.

(2) r—The decay rate of the smoothing filter. Large val-
ues ofr yield responsive measurement currents, while small
values of r introduce more delay but make the processed
measurement current smoother. We expect there to be some
optimal value ofr that achieves a tradeoff between respon-
siveness and smoothing ability.r is intimately connected to
the other filter parameter appearing in Eq.(13): T, the size of
the filter’s memory, which determines how many measure-
ments from the past the filter uses in its calculations. We will
chooseT to be large enough so that the decaying exponential

1This low pass filter is far from ideal. It is possible to design
low-pass filters with much finer frequency selection properties(e.g.,
Butterworth filters) [15], and we expect schemes using such filters
to perform better than this simpler version.
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filter is not truncated prematurely. AT that is some large
enough multiple of the filter’s time constant, 1 /r, would be
ideal. Since these parameters are dependent on each other,
we will only consider one of them(r) to be free.

(3) l—The maximum strength of the feedback Hamil-
tonian. The value of this parameter is determined by the
physical apparatus and the method of feedback. We expect
the performance of the protocol to improve withl, because
increasingl increases the range of feedback strengths avail-
able.

(4) k—A parametrization of the measurement strength
used in measuring the stabilizer generators. The largerk is
the more information we gain from these measurements,
and thus we expect the performance to improve with in-
creasingk.

In summary, we have three parameters to control one filter
parameter, one feedback parameter, and one measurement
parameter. We expect there to be a region in this parameter
space where this error control scheme will perform opti-
mally. We will investigate this issue using simulations.

C. Example: Bit-flip correction

This example is similar to the toy model above but looks
at a more realistic error control situation. We will describe
the dynamics of a continuous error correction scheme de-
signed to protect against bit flips using the three-qubit bit-flip
code of Sec. II C.

The measurement currents and SME of the system before
the application of feedback are

drcstd=gsDfXIIg + DfIXIg + DfIIXgdrcstddt+ ksDfZZIg

+ DfIZZgdrcstddt+ Îk„HfZZIgdW1std

+ HfIZZgdW2std…rcstd, s16d

dQ1std = 2kkZZIlcstddt + ÎkdW1std, s17d

dQ2std = 2kkIZZlcstddt + ÎkdW2std, s18d

whereg is the error rate for each qubit andk is the measure-
ment strength. We will assume that the errors on different
qubits are independent and occur at the same error rate, and
also that the measurement strength is the same for both sta-
bilizer generators.sThe assumption of identical rates is made
for simplicity and can be removed.d

Now, as detailed in Table I, the measurements ofZZI and
IZZ reveal everything about the errors. However, as in the
toy model, we must smooth the measurement currents in
order to gain reliable error information. Therefore, the steps
involved in the error correction scheme are the following:

(1) Smooth the measurement currents using the following
filter:

Ristd =
1

NEt−T

t

e−rst−t8ddQist8d, i = 1,2. s19d

The definition of this filter is analogous to Eq.s13d.
(2) Depending on the signatures ofR1std andR2std apply

the appropriate feedback Hamiltonian. That is,(a) If

R1std,0 and R2std.0, apply XII. (b) If R1std.0 and
R2std,0, applyIIX. (c) If R1std,0 andR2std,0, applyIXI.
(d) If R1std.0 andR2std.0, do not apply any feedback.

These conditions translate into the following feedback
conditioning currents:

G1std = HR1std if R1std , 0 andR2std . 0

0 otherwise,
s20d

G3std = HR2std if R1std . 0 andR2std , 0

0 otherwise,
s21d

G2std = HR1std if R1std , 0 andR2std , 0

0 otherwise.
s22d

Under this scheme, the SME describing the system dynamics
with feedback becomes

drcstd=gsDfXIIg + DfIXIg + DfIIXgdrcstddt+ ksDfZZIg

+ DfIZZgdrcstddt+ Îk„HfZZIgdW1std

+ HfIZZgdW2std…rcstd− il„G1stdfXII,rcstdg + G2std

3fIXI,rcstdg+ G3stdfIIX,rcstdg…dt, s23d

where l is the maximum feedback strength, which is as-
sumed for simplicity to be the same for all the feedback
Hamiltonians.

Again, the non-Markovian feedback signals make numeri-
cal simulation the most direct method of solution of this
SME.

Also, it is worth noting that even though we gain error
information from the signatures of the stabilizer generators,
we do not have to wait until the smoothed measurement
signals, for example, Eq.(19), fall below zero before turning
on feedback. The feedback conditioning signals,Gistd, can
be made nonzero as soon as we recognize that the smoothed
measurement signals are changing sign. That is, the feedback
mechanism can be turned on as soon as we see a significant
shift in the stabilizer generator measurements from their er-
ror free value: one. We can state this “significant” shift more
precisely as a change of more thann standard deviations
from the mean value of one, forn sufficiently large. Thus the
choice of n depends on the signal-to-noise ratio of the
smoothed measurement currents, and therefore on the param-
etersr andk.

IV. SIMULATION RESULTS

As a way of evaluating the performance of the general
error control scheme using weak measurements and feed-
back, we numerically solved the SMEs described in the two
examples of Sec. III. A comparison of the SMEs(15) and
(23) shows that the one-qubit toy model has all the free pa-
rameters of the full three-qubit code, and therefore is a good
model on which to explore the parameter space formed byr,
l, andk. This is useful because the smaller state space of the
toy model makes simulating it far more computationally
tractable than simulating the bit-flip correction example.
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A. The toy model

We chose to simulate the dynamics of Eq.(15) by way of
an associated stochastic Schrödinger equation(SSE) for two
reasons:(i) it is less computationally intensive and(ii ) it
allows us to look at individual trajectories of the system, if
desired. The form of this associated SSE is as follows:

duccstdl = dNstd„Xuccstdl − uccstdl… + Îk dWstd„Z − kZl

3std… uccstdl −
k

2
„1 − kZlstdZ…2 uccstdldt

− ilGstdX uccstdldt, s24d

wheredNstd is a point process incrementsin the number of
errorsd described by

dNstd2 = dNstd, s25d

EfdNstdg = gdt. s26d

That is,dN is a random variable that is either 0 or 1 at each
time step, and is distributed according to the error rateg. A
graph of the processdNstd would be a sequence of Poisson
distributed swith parametergd spikes. In the language of
quantum trajectories, this SSE is simply one possible unrav-
eling of the SMEs15d.

The SSE was solved using Euler numerical integration
with time stepsdt=10−4. When ensemble averages were
required—that is, when we were interested in the behavior of
rcstd—600 trajectories were averaged over. To evaluate the
performance of the protocol, we used thecodeword fidelity:
Fstd=kcs0durstducs0dl. Here,ucs0dl is the initial state of the
system, which is taken to beu0l, unless otherwise specified.

Figure 1 shows a sample trajectory from the one qubit
simulation. The figure shows the expectation value of theZ
measurement as a function of time and also the superim-
posed filtered measurement signal,Rstd. The transitions(of
expectation value ofZ) to −1 are due to errors, and the tran-

sitions back to +1 are due to feedback correction.
We used this toy model primarily to gain insight into the

choice of parameters that lead to optimal error correction.
The conclusions drawn from exploring the parameter space
using this one-qubit simulation are the following:

(1) The decay rate of the filter,r, should be determined
by the strength of the feedback,l. That is, given a strong
feedback Hamiltonian, it is necessary to have a responsive
conditioning current; one with little memory.

(2) As expected, the larger the measurement strengthk,
the better the protocol performs.

(3) Performance also improves asl, the feedback
strength, is increased. This is to be expected because asl is
increased, the range of the strength of the feedback Hamil-
tonian increases, leading to a greater degree of control.

(4) The interplay between the two processes—
measurement and feedback—must be considered. In particu-
lar, larger values ofk will yield a better performance only if
these values are not too much larger than the value ofl. That
is, if the measurement strength is much stronger than the
feedback strength, the measurement process disrupts the
feedback correction process and makes it ineffective. There-
fore, the magnitude of the measurement strength should be
less than, or of the same order of magnitude, as the feedback
Hamiltonian strength.

Given the strong dependence between parameters that
these one-qubit simulations identify, there are really only
three free parameters in the system:k, l, and g. Since the
last is out of the experimenter’s control, there remain two
controllable parameters. In practice, neither of these param-
eters, the measurement strength or the feedback strength, is
completely configurable. The physical implementation
scheme typically limits the range of these parameters, and in
Sec. V we shall see whether the practical ranges for one
particular implementation allows for error control via this
feedback scheme.

It is instructive to note that the free parameters of the
protocol are all physical parameters. That is, the optimal op-
erating regime of the protocol is defined by the system’s
physical features rather than the introduced filter. Therefore,
it is possible to design a filter that allows the protocol to
perform optimally for a given set of physical parameters(k
andl).

B. Three-qubit code simulation

Now we move on to the simulation of the three-qubit
bit-flip code. This simulation behaves in much the same way
as the one-qubit version, but with one key difference: for the
one-qubit “code,” a double error event—where an error oc-
curs on the qubit before we have corrected the last error—is
not too damaging. In this case, the error correcting feedback
mechanism detects a traversal back into the “codespace” and
thus stops correcting. In the three-qubit code, this situation is
a little more complicated. Let us consider the situation in
which a second error happens while a previous error is being
corrected. If this second error happens to be on the same
qubit as the one being corrected, then in consonance with the
one-qubit “code,” it is not too damaging. However, if the

FIG. 1. A sample trajectory of the one-qubit “code” with feed-
back. The top graph just shows the expectation value ofZ, and the
bottom graph shows expectation value ofZ and the filtered signal
Rstd.
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second error is on one of the two qubits not being corrected,
an irrecoverably damaging event occurs, because in this case
the stabilizer measurements cease to provide accurate infor-
mation about the error location, and the protocol’s “correc-
tions” actually introduce errors.

This identifies a key consideration in any continuous,
feedback-based error correction scheme. The finite duration
of the detection and correction window means that we must
choose our parameters with this finite window small enough
that the probability of an error we cannot correct(in this
case, two errors on different qubits) is negligible. This is
analogous to choosing the detection-correction intervals in
the discrete error control case to be small enough to avoid
uncorrectable errors.

The SSE that describes the dynamics of the three-qubit
error correction scheme is

duccstdl=dN1std„XII uccstdl − uccstdl… + dN2std„IXI uccstdl

− uccstdl… + dN3std„IIX uccstdl − uccstdl…+ Îk dW1std

3„ZZI − kZZIlstd…uccstdl + Îk dW2std

3„IZZ − kIZZlstd…uccstdl−
k

2
„1 − kZZIlstdZZI…2

3uccstdldt −
k

2
„1 − kIZZlstdIZZ…2uccstdldt

− ilG1stdXII uccstdldt − ilG2stdIXI uccstdldt

− ilG3stdIIX uccstdldt. s27d

This SSE is of course an unraveling of SMEs23d, and all
parameters are defined as for that equation.

As in the one qubit case, we solved this differential equa-
tion using an Euler method with timestepsdt=10−4. Again,
ensemble averages were done over 600 trajectories when
needed. The initial state used wasu000l, and the performance
was measured using the codeword fidelityF3std
=k000urstdu000l. A true fidelity measure of the protocol per-
formance would average over all possible input states; how-
ever, becauseu000l is most susceptible to bit flip errors, the
fidelity we use can be considered a worst case performance
analysis.

The performance of the error correction scheme using this
code is summarized by Fig. 2. This figure shows the fidelity
versus time curvesfF3stdg for several values of error rate(g).
Each plot also shows the fidelity curvefF1stdg for one qubit
in the absence of error correction. A comparison of these two
curves shows that the fidelity is preserved for a longer period
of time by the error correction scheme for small enough error
rates. Furthermore, for small error rates(g,0.3) the F3std
curve shows a vast improvement over the exponential decay
in the absence of error correction. However, we see that past
a certain threshold error rate, the fidelity decay even in the
presence of error correction behaves exponentially, and the
two curves look very similar; past the threshold, the error
correcting scheme becomes unable to handle the errors and
becomes ineffective. In fact, although not completely evident
from the figure, well above the threshold the performance of

the scheme become worse than the unprotected qubit’s per-
formance. This poor performance results from the feedback
“corrections” being so inaccurate that the feedback mecha-
nism effectively increases the error rate.

The third line in the plots of Fig. 2 is of the average
fidelity achievable by discrete quantum error correction—
using the same three qubit code—when the time between the
detection-correction operations ist. The value of this fidelity
fF3dstdg as a function of time was analytically calculated in
[5],

F3d =
1

4
s2 + 3e−2gt − e−6gtd. s28d

A comparison betweenF3std and F3dstd highlights the rela-
tive merits of the two schemes. The fact that the two curves
cross each other for larget indicates that if the time between
applications of discrete error correction is sufficiently large,
then a continuous protocol will preserve fidelity better than a
corresponding discrete scheme. In fact, this comparison sug-
gests that a hybrid scheme, where discrete error correction is
performed relatively infrequently on a system continuously
protected by a feedback protocol, might be a viable approach
to error control.

All the F3std curves show an exponential decay at very
early times,t<0 to t<0.1. This is an artifact of the finite
filter length and our specific implementation of the protocol.
In particular, our simulation does not smooth the measure-
ment signal until enough time has passed to get a full buffer
of measurements; that is, filtering and feedback only start at
t=T. Of course, this can be remedied by a more complicated
scheme that smoothes the measurement signal and applies

FIG. 2. Fidelity curves with and without error correction for
several error rates. The thick solid curve is the fidelity of the three-
qubit code with error correction,F3std (parameters used:dt
=10−4 s, k=150 Hz,l=150 Hz,r =20 Hz,T=15003dt s. The dot-
ted curve is the fidelity of one qubit without error correction,F1std.
And the thin solid curve is the fidelity achievable by discrete quan-
tum error correction when the duration between applications ist,
F3dstd.
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feedback even when it has access to fewer thanT/dt mea-
surements.

C. Inefficient measurement

We have modeled all our measurement processes as being
perfect. In reality, detectors will be inefficient and thus yield
imperfect measurement results. This ineffiency is typically
represented by a parameterh that can range from 0 to 1,
where 1 denotes a perfect detector. How is this feedback
protocol affected by nonunit efficiency detection?

To examine this question, we simulated the three-qubit
code with inefficient detection. The evolution SME and the
measurement currents in the presence of inefficient detection
are as follows:

drcstd=gsDfXIIg + DfIXIg + DfIIXgdrcstddt+ ksDfZZIg

+ DfIZZgdrcstddt+ Îkh„HfZZIgdW1std

+ HfIZZgdW2std…rcstd− il„G1stdfXII,rcstdg

+ G2stdfIXI,rcstdg+ G3stdfIIX,rcstdg…dt, s29d

dQ1std = 2kÎhkZZIlcstddt + ÎkdW1std, s30d

dQ2std = 2kÎhkIZZlcstddt + ÎkdW2std, s31d

where 0,hø1 is the measurement efficiency, and all other
quantities are the same as in Eqs.s16d and s23d.

The results of these simulations are summarized by Fig. 3.
The decay of fidelity with decreasingh indicates that ineffi-
cient measurements have a negative effect on the perfor-
mance of the protocol as expected. However, the slope of the
decay is very small—in particular, the graph does not expo-
nentially decay as do Markovian feedback protocols—and
this suggests that this protocol has a certain tolerance to in-
efficiencies in measurement. This is reasonable because the
filtering process in the protocol has the effect of improving
the quality of the measurements and thus negating some of

the ill effects of the inefficient measurements. Also, as in the
full state estimation protocol of[5], because the feedback
conditioning current is a function of a measurement record
history—as opposed to just the current measurement—errors
induced by inefficient measurement tend not to be so dam-
aging. Here we see the true strength of this error correction
scheme: it combines the robustness of a state estimation
based feedback protocol with the practicality of a Markovian
feedback protocol.

V. LINKS TO EXPERIMENT

In this section we study the possibility of applying this
error correction technique to a particular quantum computing
architecture.

Solid-state quantum computing with RF-SET readout

Several schemes for solid-state quantum computing have
been proposed[16–19]. These use the charge or spin degree
of freedom of single particles to represent logical qubits, and
measurement involves probing this degree of freedom

Here we examine the weak measurement of one such pro-
posal that uses coherently coupled quantum dots(CQDs) and
an electron that tunnels between the dots[20]. The dots are
formed by two P donors in Si, separated by a distance of
about 50 nm. Surface gates are used to remove one electron
from the double donor system leaving a single electron on
the P-P+ system. This system can be regarded as a double
well potential. Surface gates can then be used to control the
barrier between the wells as well as the relative depth of the
two wells. Using surface gates, the wells can be biased so
that the electron can be well localized on either the leftuLl or
the right uRl of the barrier. These(almost) orthogonal local-
ized states are taken as the logical basis for the qubit,u0l
= uLl,u1l= uRl. It is possible to design the double well system
so that, when the well depths are equal, there are only two
energy eigenstates below the barrier. These states are the
symmetric ground stateu+l and the antisymmetric first ex-
cited stateu−l. A state localized on the left(right) of the
barrier is then well approximated as a linear superposition of
these two states,

uLl =
1
Î2

su + l + u− ld, s32d

uRl =
1
Î2

su + l − u− ld. s33d

An initial state localized in one well will then tunnel to the
other well at the frequencyD=se+−e−d /" wheree± are the
two energy eigenstates below the barrier.

The Pauli matrix,Z= uLlkLu− uRlkRu, is diagonal in this
localized state basis. The Hamiltonian for the system can be
well approximated by

H = "
vstd

2
Z + "

Dstd
2

X, s34d

where X= uLlkRu+ uRlkLu. Surface gates control the relative
well depth"vstd sa bias gate controld and the tunneling rate

FIG. 3. Average fidelity after a fixed amount of time as a func-
tion of 1-efficiency for several error rates(parameters used:dt
=10−4 s, k=50 Hz,l=50 Hz, r =10 Hz,T=15003dt sd.
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Dstd sa barrier gate controld, which are therefore time depen-
dent. For nonzero bias the energy gap between the ground
state and the first excited state isEstd= "Îvstd2+ D std2. Fur-
ther details on the validity of this Hamiltonian and how
well it can be realized in the PP+ in Si system can be
found in f21g.

A number of authors have discussed the sources of deco-
herence in a charge qubit system such as this one[20–22].
For appropriate donor separation, phonons can be neglected
as a source of decoherence. The dominant sources of deco-
herence then arise from fluctuations in voltages on the sur-
face gates controlling the Hamiltonian and electrons moving
in and out of trap states in the vicinity of the dot. This latter
source of decoherence is expected to occur on a longer time
scale and is largely responsible for 1/f noise in these sys-
tems. In any case both sources of decoherence can be mod-
eled using the well-known spin-boson model[23]. The key
element of this model for the discussion here is that the in-
teraction energy between the qubit and the reservoir is a
function of Z.

If the tunneling term proportional toDstdX in Eq. (34)
were not present, decoherence of this kind would lead to
pure dephasing. However, in a general single-qubit gate op-
eration, both dephasing and bit-flip errors can arise in the
spin-boson model. We can thus use the decoherence rate cal-
culated for this model as the bit-flip error rate in our feed-
back error correction model. We will use the result from the
detailed model of Hollenberget al. [20] for a device operat-
ing at 10 K, and set the error rateg=1.43106 s−1. This rate
could be made a factor of 10 smaller by operating at lower
temperatures and improving the electronics controlling the
gates.

We now turn to estimating the measurement ratek for the
PP+ system. In order to read out the qubit in the logical basis
we need to distinguish a single electron in the left or the right
well quickly and with high probability of success(effi-
ciency). The technique of choice is currently based on radio
frequency single electron transistors(RF-SET) [24]. We will
use the twin SET implementation of Buehleret al. [25].

In an RF-SET the Ohmic load in a tuned tank circuit
comprises a single electron transistor with the qubit acting as
a gate bias. The two different charge states of the qubit pro-
vide two different bias conditions for the SET, producing two
different resistive loads, and thus two levels of power trans-
mitted through the tank circuit. The electronic signal carries
a number of noise components: for example, the Johnson-
Nyquist noise of the circuit, random changes in the SET bias
conditions due to fluctuating trap states in the SET, etc. The
measurement must be operated in such a way that the charge
state of the qubit can be quickly discerned as a departure of
the signal from some fiducial setting, despite the noise.
Clearly it takes some minimum time intervaltM to discrimi-
nate a qubit signal change from a random noisy fluctuation.
We need to keep the measurement time as short as possible.
However if the measurement time is too short, one may mis-
take a large fluctuation, due to a nonqubit-based change in
bias conditions, for the real signal. In other words, one may
mistake a 1 for a 0, and vice versa. The probability of this
happening is the efficiency of the measurement,hstMd, which
depends on the measurement time. The key performance pa-

rameters are(i) the measurement timetM and (ii ) the effi-
ciencyhstMd. An additional parameter that is often quoted is
the minimum charge sensitivity per root hertz,S. GiventM, S
determines a minimum change in the charge,Dq, that can be
seen by the RF-SET at a given bias condition. In[25], a
measurement time oftM =6310−6 s was found for a signal of
Dq=0.2e and an efficiency of 10−6. We now need to relate
this measurement time to the measurement decoherence rate
parameterk, of our ideal feedback model.

If the measurement were truly quantum limited(that is to
say, the signal-to-noise ratio is determined only by the deco-
herence ratekd, the inverse measurement time would be of
the same order of magnitude as the decoherence rate(see
[26]). The measurement described in Buehleret al. [25] will
almost certainly not be quantum limited. However, here we
will assume the measurement to be quantum limited, so as to
obtain a lower limit to the measurement decoherence rate.
Thus we takek=106 s−1.

We next need to estimate typical values for the feedback
strength. From Eq.(15) we see that the feedback Hamil-
tonian is proportional to anX operator. In the charge qubit
example, this corresponds to changing the tunneling rate for
each of the double dot systems that comprise each qubit. The
biggest tunneling rate(D) occurs when the bias of the double
wells makes it symmetric. In[21], the maximum tunneling
rate is about 109 s−1, for a donor separation of 40 nm. A large
tunneling rate makes for a fast gate, and thus a fast correction
operation. Thus the maximum value ofl can be taken to be
109 s−1.

To summarize, in the PP+-based charge qubit, with RF-
SET readout, we haveg<k<106 s−1, andl<109 s−1.

The fact that the measurement strength and the error rate
are of the same order of magnitude for this architecture is a
problem for our error correction scheme. This means that the
rate at which we gain information is about the same as the
rate at which errors happen, and it is difficult to operate a
feedback correction protocol in such a regime. Although it is
unlikely that the measurement rate could be made signifi-
cantly larger in the near future, as mentioned above it is
possible that the error rate could be made smaller by im-
provements in the controlling electronics. Thus it is interest-
ing to consider how low the error rate would have to be
pushed before our error control scheme becomes effective.
To answer this question we ran the three qubit bit flip code
simulation using the parameters stated above and lowered
the error rate until the error control performance was accept-
able. We found that the fidelity after 1 ms could be kept
above 0.8 on average if the error rate,g, is below 102 s−1

(with k=106 s−1, and l<107 s−1). So we see that a differ-
ence in order of magnitude of four between the measurement
and feedback strengths, and the error rate, is about what this
protocol (using the three-qubit code) requires for reasonable
performance. That is, we require

k

g
<

l

g
< 104. s35d

Of course, depending on the performance requirements this
ratio may be larger or smaller. Also, a full optimization of
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the filter used in the scheme is likely to drive this ratio down
by up to an order of magnitude.

We can compare the requirements of the three-qubit code
with the one-qubit version. Given the same measurement and
feedback parameters(k=106 s−1, l=107 s−1), the one-qubit
“code” can keep the fidelity above 0.8 after 1 ms when
k /g<l /g<10. That is, only one order of magnitude differ-
ence is required between the error rate and the measurement
and feedback rates. This suggests that a key issue with feed-
back based error correction schemes isscalability.The ratio
between measurement and feedback rates and error rate has
to increase along with the error correcting code size(in qu-
bits).

VI. DISCUSSION AND CONCLUSION

We have described a practical scheme for implementing
error correction using continuous measurement and Hamil-
tonian feedback. We have demonstrated the validity of the
scheme by simulating it for a simple error correction sce-
nario.

As the simulations show, this error control scheme can be
made very effective if the operational parameters(measure-
ment strength, feedback strength, filter parameters) are well
matched to the error rate of a given system. At the same
time, the scheme uses relatively modest resources and thus is
easy to implement, as well as being robust in the face of
measurement inefficiencies.

From a quantum control perspective, an interesting fea-
ture of this protocol is the encoding. That is, despite using
state estimate feedback, the protocol requires little side pro-
cessing due to the fact that instead of a full state estimate, it
uses a coarse-grained state estimate naturally suggested by
the encoding. In control theory terms, this simplification is a
result of the specific choice of control state space(what to
observe and control); a choice dictated by the stabilizer en-
coding and measurements. It would be interesting to examine
the general conditions under which an encoding is available

that allows for practical,efficient state estimate feedback
control.

The possibility of using continuous error correction in
combination with its discrete counterpart is an interesting
possibility. Such a scheme has the potential to significantly
improve the stability of quantum memories, and the implica-
tions of such a combination scheme for fault tolerance would
be worth investigating.

We also studied a solid-state quantum computing architec-
ture with RF-SET readout and the feasibility of implement-
ing this error correction protocol on it. Although the mea-
surement and feedback rates currently possible on this
architecture do not allow for error correction via this feed-
back scheme with the intrinsic error rate, it is foreseeable
that as the controlling technology improves, this error control
scheme will become possible on this architecture. From nu-
merical simulations, we found the approximate parameter re-
gime where the three qubit code using this scheme becomes
effective—that is, exactly how much improvement is neces-
sary before the scheme becomes feasible. It would be inter-
esting to investigate this further and explore more rigorously
how values ofk /g andl /g dictate protocol performance as
well as the exact dependency of these parameter ratios on the
code size. Such an investigation will be crucial in addressing
the issue of scalability of this error control scheme.
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