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We describe a scheme for quantum-error correction that employs feedback and weak measurement rather
than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this
scheme over previous protocdfer example, Ahret al. Phys. Rev. A65, 042301(2001)], is that it requires
little side processing while remaining robust to measurement inefficiency, and is therefore considerably more
practical. We evaluate the performance of our scheme by simulating the correction of bit flips. We also consider
implementation in a solid-state quantum-computation architecture and estimate the maximal error rate that
could be corrected with current technology.
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I. INTRODUCTION unitary gates are not perfectly implementable in any system;
) ~ here we will be concerned with the details of how one would
In the mere space of a decade, quantum-informatiomctyally implement error correction practically on a system
theory has blossomed into a burgeoning field of experimentalhere the physical tools available are necessarily physically
and applied research. The initial push for this rapid developtjmited.
ment was provided by Shor’s discovery of an algorithm that  \ve extend previous worf&] and describe an implemen-
enables quantum computers to find the period of a periodigation of error control that utilizes stabilizer error-correcting
function much more efficiently than angnown) class_,ical codes and employs weak measurement and Hamiltonian
computer algorithnf1]. However, even after Shor's discov- feedback to effectively protect an unknown quantum state.
ery there was much doubt about the practicality of quantumThis scheme has similarities to the one described previously
computing devices due to their fragile nature. The cohereny, [5): however, whereas that protocol uses a full state esti-
cies between systems carrying the quantum information thahation technique that is computationally intensive, this one
are crucial to quantum-computing algorithms are extremely,ses a simple filtering technique that is easily implementable.
vulnerable and easily destroyed by unavoidable interactiongpig protocol is therefore a reasonable one for many of to-
with the surrounding environment. Furthermore, aside fl’OfTUay’S guantum-computing architectures.
this decoherenceanother concern was the accumulation of  This paper is organized as follows. Section Il reviews the
errors introduced by imperfect operations performed on thgey ideas we use: weak measurement, feedback, and stabi-
encoded information. lizer codes. Section Il describes our error control scheme
Both these concerns were largely put to rest by the keynd two specific instances of it. Section IV describes the
de_velopment of quantum-fault tolerance. The error accumusimylations performed to analyze the performance of our
lation was shown to be tolerable as long as the systematigcheme, presents the results, and considers the effect of mea-
error introduced by each operational element was below @,rement inefficiency. Section V examines an actual
critical threshold value[2]. This threshold result relies guantum-computer architecture and how this error control

heavily upon the development of quantum-error correctionyrotocol could be implemented on this architecture. Section
codes. These codes, the first of which were discovered by concludes our paper.

Shor[3] and Stean@4], redundantly encode information in a
manner that allows one to correct errors while preserving
coherencies and thus the encoded information.

The main ingredients in the implementation of these error A. Quantum feedback control

control codes are projective von Neumann measurements In order to describe the behavior of a quantum system

the.‘t discretize the errors into a f_|r_1|te set, and fast controlie ith feedback, we must first examine the description of an
unitary gates that_prowde the ab|I|ty_ to correct any corrupted, quantum system undergoing continuous weak measure-
data. Of course, instantaneous projective measurements a nt: later we will add feedback conditioned on the mea-

surement results. Continuous measurement is modeled by
considering the system of intereSto be weakly coupled to

Il. REVIEW OF CONCEPTS
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says thatk measuresS continuously but quickly forgets, or (SME) with feedbaclkbecomes
dissipates away, the result of the measurement. This allows . —
us to write the unconditional dynamics 8fas the following ~ doc(t)=—i[H,pc(t)Jdt+ kD[c]pc(t)dt + VkH[C]pc(t)dWE)

master equatiof6]. ~iRo(D[F, pe(H]dt, (6)
o m whereRy(t) is some arbitrary function of the entire measure-
p(t) = =i[H,p(t)] + 21 D[, ]p(t). (1) ment historyQ(t), andF is the feedback Hamiltonian. Note
M:

that all we have done is to add a Hamiltonian evolution term
Here, p is the reduced density matrix o, H is the system whose strength is conditioned by a function of the measure-
Hamiltonian,{c,} are the collection of system-reservoir in- ment record.

teractions(in our case, where we are considering these inter- As shown in[6], in the restricted case thB(t) is a linear
actions to be weak measurements, these are the Hermitidanction of the measurement value at tineonly (i.e.,
operators corresponding to the observables is a param-  Rqo(to) =fiineal Q(to)]), we can simplify Eq.(6) further, and
etrization of the coupling strength @of,, andD is the deco- derive a master equation for the unconditional dynamics of

herence superoperator given by the system. This restricted case is often referred tMas
1 kovian feedback, and is considered in connection with
DIATp = AoAT = =(ATAp + pATA 2 quantum-r—;rror coqtrol if9]. However, in general, when t_he
[Alp=Ap 2( p+PAA) @ feedback is conditioned by a current that is some arbitrary

function of the measurement history, it is not possible to treat
the evolution analytically, and numerical simulation is the
. : X " _ only recourse for solving Eq6). An important special case
This equation describes the unconditional dynamics of ¢ (his general feedback is one in which the functit) is

because we are assuming that the measurement records a%e'signed to compute an estimate of the stat® and output

ignored. That is, ignoring the measurement records corre; | appropriate feedback strendtt,11. We will refer to

s:pondmg to the observaplég,} means that the best descrip- this asBayesianfeedback, following Ref[12]. In [5], an
tion Qf S that we have is one where we average over a"almost full state estimation is done en route to error control,
possml_e megsurement records, and hence all posyilale- and here we will consider a simpler and more practical ver-
tum trajectoriesthat the system could have traverdéd]. sion of that scheme that performs only a partial state estima-
If we choose not to ignore the measurement records, we

instead get a conditional evolution equation for the system

for any operatorA. Note that we sefi=1 throughout this
paper, except in Sec. V.

6,7
(6.7 B. Stabilizer codes
m
; In making continuous weak measurements on our system
=- + . ; '
dpe(t) ITH, pe(t)Jdit E’l xuDLe,Jp (Dt we would like to choose the measurements in such a manner

that we gather as much information about the errors as pos-
— sible while disturbing the logical qubits as little as possible.
+ E_ Vi HIC,lpe(DAW,(1), 3) These are exactly the conditions satisfiable by encoding the
pt information using a quantum-error correcting code; and the
where p., is the system density operator conditioned on thepowerful stabilizer formalisni13,14 provides a way to eas-
measurement records &f,}, dW,(t) are Weiner increments ily characterize many of these codes. We will restrict our
[Gaussian-distributed random variables with mean zero andttention to these stabilizer codes and in this section provide
autocorrelation(dW(s)dW(t))= &(s—t)dt] [8], and H is the @ brief description of the main result of the formalism and

superoperator give an example. For more detailed discussions, the reader is
referred to[13,14.
H[A]p = Ap + pAl = p tr{Ap + pAT] (4) We begin by introducing the Pauli group
for any operatoA. The measurement record from the mea- Pr={£1, i} ® {I,XY,Z}*", (7)

surement ot is whereX, Y, andZ denote the Pauli operatoes, oy, ando,,

- t [ respectively. To simplify notation, we will omit the tensor
AQu(D) = reu{Cy + €L+ Vi, AW, (D), ®) product symbol when notating members Bf (e.g., ZZI

where(a).=tr(p.a). In terms of quantum trajectories, this =Z®7Z®1).
equation corresponds to a diffusive unraveling of the mas- Now, if we encodek logical qubits inn physical qubits
ter equation given in Eq). From here onwards, for sim- (n=Kk), then we can think of errors on our physical system as
plicity we will specialize to the case @fi=1in Eq.(1) and  the action of some subs;} C P, [14]. Thus, we would like
(3) (i.e., only onec,). to choose our encoding in a manner that allows us to detect

Given this model, we can now consider adding feedbacland correct the action of those group element$Ep. The
to the system. In general, the feedback will be a function ofmain result from the theory of stabilizer codes tells us about
the entire measurement record history. And, if we use Hamilthe possibility of choosing such an encoding. It says that
tonian feedback, the conditional stochastic master equatioprovided the elements ¢E;} satisfy a certain condition, it is
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TABLE |I. The three-qubit bit-flip code. Note that each error Ill. THE ERROR CORRECTION SCHEME
results in a different sequence of stabilizer generator measurement
results. A. The general scheme
Once information is encoded using a quantum-error-
771 1ZZ Error Correcting unitary correcting code, conventional error control proposals use
projective measurements to measure the stabilizer generators
+1 +1 None None and fast unitary gates to apply the corrections if necessary. In
-1 +1 on qubit 1 Xl such schemes the detection-correction operation, which is
+1 -1 on qubit 3 11X initiated by the projective measurement, occurs at discrete

time intervals, and these intervals are chosen so that the av-
erage number of errors within an interval is correctable. We
will refer to such implementations afiscrete error correc-

. tion schemes because of the discrete nature of the detection-
always possible to choose a codesp@dhat can be used to correction operation.

detect and correct these error elemefiS]. Furthermare, In this section we present a protocol that combines weak
this codespace has some special properties: _ measurements of the stabilizer generators with feedback to
~ (1) There exist a set of operators i, called thestabi- e form continuouserror correction. Because of the encod-
lizer generatorsand denoted by, gy, . .. ,gr, such that ev- -, these measurements will be unobtrusive when the sys-
ery state inC is an eigenstate with eigenvalue +1 of all the yo is in the codespace and will give error specific informa-
stabilizer generators. That igj|)=|y) for all i and for all i when it is not. However, the requirement ofeak
states|y) in C. Moreover, these stabilizer generators are allyeasurements makes the measurement currents described by
mutually commuting. _ _ Eq. (5) noisy, and therefore ineffective for feedback condi-
(2) The stabilizer code error correction procedure in-(oning. In order to use the information from these measure-
volves simultaneously measuring all the stabilizer generatorg,ants to condition the feedback, we must smooth out some
and then inferring what correction to apply from the mea-of the noise in the currents. The smoothing can be easily
surement results. The formalism states that the stabilizegyne using a low-pass filter; however, such a filtering pro-
measurement results indicate a unique correction operation.ess introduces its own complications. Specifically, such fil-
Th|s' result tells us that once we identify a set of one-qu'ttering makes it impossible to derive a master equation de-
errors inP, that we are concerned about, it is possible t0g¢ribing the evolution because the noise in the feedback
choose a stabilizer codespace that can be used to protect g, at timet is not independent of the system state at time
encoded information against such errors. The error detection-"|, essence, our smoothing procedure makes Markovian

correction procedure involves measuring each of the stabksedhack impossible, and leaves the alternative of Bayesian
lizer generators and then applying a correction correspondingsegpack.

to the results obtained from the stabilizer measurements. Now, full state estimation is a computationally expensive

procedure—it most often involves solving an SME in real-
time. In fact, as shown ifi5], the resources needed to apply
a full state estimation feedback procedure to quantum-error
A common error encountered in quantum-computingcontrol scaleexponentiallywith the number of qubits in the
implementations is the bit flip. This type of error has thestabilizer code. Fortunately, we do not need to do a full state
effect of reversing the encoded qubit's value at randomestimation. Instead, the coarse-grained state estimate that the
times. That is,|y) — X|¢) with probability p, and|¢)—|)  stabilizer measurements provide—whether the state is in the
with probability 1 - (where againX= o, and|) is a one- codespace or not, and if not, how to correct back into the
qubit state. codespace—is precisely the information needed for error
One encoding that protects against this type of error is control. That is, instead of estimating(t), we simply need
to reliably identify the stabilizer generator measurement re-
sults(in the presence of noisén order to placep.(t) inside
or outside the codespace. Furthermore, as seen in the ex-
ample of Sec. Il C, this information is contained in the sig-
1), =112 ®) natures of the stabilizer generator measqrem_e\mtnether
L P they are plus or minus ofea quantity that is fairly robust
under the influence of noise. These observations suggest that
where the right-hand side shows the physical encoding ifveak measurement and feedback can be used to continu-
three qubits of the logical qubit value on the left-hand sideously detect and correct errors.
That is, C=sparf|000,|11D)}. The stabilizer generators for  The general form of the error correcting scheme we pro-
this codespace are the operatd@ and|ZZ. The code can pose is similar to discrete error control, but with a few modi-
be used to detect and correct any of the erXiis IXI, and fications to deal with the incomplete information gained
[IX. The correction procedure involves measuring the tworom the weak measurements. The scheme can be stated in
stabilizer generators and then applying the appropriate cofeur steps:
recting unitary according to the rules of Table |, which cor- (1) Encode information in a stabilizer code suited to the
rects for the bit-flip errors. errors of concern.

-1 -1 on qubit 2 IXI

C. Example: Three-qubit bit-flip code

|0).=[000,
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(2) Continuously perform weak measurements of the sta- Z|oy = + 1]0),
bilizer generators, and smooth the measurement currents.
(3) Depending on the signatures of the smoothed mea- Zj1y=-11). (12)

surement currents, form conditioning signals for feedback

operators on each physical qubit. These conditioning currentsowever, we do not have direct access(&),, but rather
will be highly nonlinear functions of the measurement cur-only to the noisy measurement currgifl). Therefore we
rents because the conditional switching based on signaturegust smooth out the noise on it to obtain error information,

is a nonlinear operation. and we will choose the following simple filter to do so:
(4) Apply feedback Hamiltonians to each physical qubit,

where the strength of the Hamiltonians is given by the con- _ (et ,

ditioning signals formed in the previous step. R(t) = /Tth_Te Q). (13)
Givenm stabilizer generators artlerrors possible on our

system, the SME describing the evolution of a system undefhis integral is a convolution in time between the measure-

this error control scheme is ment signal and an exponentially decaying signal. In fre-

quency space, this acts as a low pass filter, and thus the

d m
_ output of this operation is a smoothed version of the mea-
dpc(t)—k% nDIEdpc()dtr I% «DIM]pc(t)dt surement current with high frequency oscillations remaoved.

The filter parameters and T determine the decay rate and
— ) length of the filter, respectively, and/=(2«/r)(1-e")
+VKH[M, Jpe()dWi(t)+ k% ~IGKO[Fy.pc(t) 1dt, serves to normaliz&(t) such that it is centred around +1.
- We will use the signature of this smoothed measurement
9 signal to infer the state of the system and thus to condition
wherey, is the error rate for erroE,, « is the measurement the feedback. Explicitly, the form of the feedback condition-

strength(assumed for simplicity to be the same for all mea-INg current is
surement,), F, is the feedback Hamiltonian correcting for o0 {R(t) if R(t) < 0

d

error E,, andGy is the feedback conditioning signal f&.

EachG, is a conditional function of the signatures of all the

smoothed stabilizer measuremeritd, }. Thus, we describe the behavior of the systeith feedback
Equation(9) has three parts to it: the first sum describesygjng

the effects of the error operators, the second sum describes _

the effects of the weak stabilizer generator measurements,dp.(t)=yD[X]p.(t)dt + kD[ Z]pc(t)dt+ VK H[Z]p(t) dWt)

and the third sum describes the effect of the feedbgilko )

note that we have set the system Hamiltonidrin Eg. (6), ~ING(O[X, pe(t)]dt, (19

to zerp] - . where\ is the maximum feedback strength.
This general scheme is illustrated by the following ex- Clearly this feedback conditioning current is non-

amples. The systems described by these examples are algp i vian(and nonlinear As mentioned above, this makes
the ones simulated in Sec. V. the Markovian simplification impossible, and therefore the
most direct route to evaluating this error correction protocol
B. Example: A toy model is numerical simulation. This is done in Sec. IV.

This first example is somewhat artificial, but serves as a Ve nort]e at this poinrt] that there are several Ofpﬁn param-
good illustration of our protocol. The “codespace” we want€ters in the SME15). These parameters are the following:
to protect is simply the stati®), the errors are random ap- (1) ¥—This is the error rate and is largely out of the

plications ofX, and the protocol gathers information by mea- €XPerimenter’s control. o
suring the stabilizer generat@r Obviously this “code” can- (2) r—The decay rate of the smoothing filter. Large val-

not be used for any information processing, but it is useful'€S Off yield responsive measurement currents, while small
for investigating the behavior of our feedback scheme. ~ values ofr introduce more delay but make the processed
The dynamics of this system before the application ofmeasurement current smoother. We expect there to be some

feedback are described by the following SME: optimal value ofr that achieves a tradeoff between respon-
_ siveness and smoothing ability.is intimately connected to
dp(t) =yD[X]p(t)dt + kD[ Z]p () dt+ \ kH[ Z]p(t) dWL), the other filter parameter appearing in EtP): T, the size of
(10 the filter's memory, which determines how many measure-
ments from the past the filter uses in its calculations. We will
wherey is the error rate and is the measurement rate. The chooseT to be large enough so that the decaying exponential
measurement current has the form

14
0 otherwise. (14

dQ(t) = 2xk(Z)c(t)dt + \r’;dVV(t). (1) This low pass filter is far from ideal. It is possible to design
low-pass filters with much finer frequency selection propergeg.,
Now, the measurement & reveals whether the systems Butterworth filters [15], and we expect schemes using such filters
is in the “codespace” or not because to perform better than this simpler version.
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filter is not truncated prematurely. & that is some large R;(t)<0 and Ry(t)>0, apply XII. (b) If Ry(t)>0 and
enough multiple of the filter’s time constant,rlivould be  R,(t) <0, applylIX. (c) If Ry(t) <0 andR,(t) <0, applyIXI.
ideal. Since these parameters are dependent on each oth@l) If R,(t) >0 andR,(t)>0, do not apply any feedback.

we will only consider one of thenfr) to be free. These conditions translate into the following feedback
(3) A—The maximum strength of the feedback Hamil- conditioning currents:
tonian. The value of this parameter is determined by the )
physical apparatus and the method of feedback. We expect Gy(t) = {Rl(t) if Ry(f) <0 andR,(t) >0 20
the performance of the protocol to improve with because . 0 otherwise,
increasing\ increases the range of feedback strengths avail-
able. - {Rz(t) if Ry(t) > 0 andRy(t) < 0
(4) «—A parametrization of the measurement strength Gs(t) = . (22)
used in measuring the stabilizer generators. The lakgisr 0 otherwise,
the more information we gain from these measurements, )
and thus we expect the performance to improve with in- Gy(t) = {Rl(t) if Ri(f) <0 andR,(t) <0 22
creasingk. 2 0  otherwise.

In summary, we have three parameters to control one filter ) o )
parameter, one feedback parameter, and one measureméjrﬂder this scheme, the SME describing the system dynamics
parameter. We expect there to be a region in this paramet¥fith feedback becomes

space Wher_e 'this error cor_1trp| scheme W'i|| perform opti- dpu(t) =y(D[XI1]+ D[IXI]+ D[IIX])po(H)dt+ x(D[ZZ1]
mally. We will investigate this issue using simulations. _
+ D[1ZZ]) po(t)dt+ V k(H[ZZI]d Wy (1)
C. Example: Bit-flip correction + HIIZZ]AW(1)) po(t)= NGy O[XI1, pelt)] + Gylt)
This example is similar to the toy model above but looks
at a more realistic error control situation. We will describe X[IXIL pe(t) ]+ Ga(O[IIX, pe() ] dt, (23

the dynamics of a continuous error correction scheme dgynere \ is the maximum feedback strength, which is as-
signed to protect against bit flips using the three-qubit bit-flipg,med for simplicity to be the same for all the feedback

The measurement currents and SME of the system before pgain, the non-Markovian feedback signals make numeri-
the application of feedback are cal simulation the most direct method of solution of this
— SME.
dp(t)=v(D[XI1]+ D[IXI] + D[IX t)dt+ k(D[ ZZI
pO=HDIXII] + DLIXI] -~ (X Dpc(vdt «(DL221] Also, it is worth noting that even though we gain error
+ D[1ZZ]) p(t)dt+ \ k(H[ZZI]d W, (t) information from the signatures of the stabilizer generators,

we do not have to wait until the smoothed measurement

+H[IZZ]dW,(1) pc(t) (16 signals, for example, Eq19), fall below zero before turning
_ on feedback. The feedback conditioning sign&gt), can
dQy(t) = 2k(ZZI)(t)dt + \ kdW, (1), (17 be made nonzero as soon as we recognize that the smoothed
measurement signals are changing sign. That is, the feedback
dQu(t) = 2x(1ZZ)(t)dt + \e’;dwz(t), (18) mechanism can be turned on as soon as we see a significant

shift in the stabilizer generator measurements from their er-

wherevy is the error rate for each qubit ands the measure-  ror free value: one. We can state this “significant” shift more
ment strength. We will assume that the errors on differenbrecise|y as a Change of more thanstandard deviations
qubits are independent and occur at the same error rate, af@m the mean value of one, forsufficiently large. Thus the
also that the measurement strength is the same for both stghoice of n depends on the signal-to-noise ratio of the
bilizer generators(The assumption of identical rates is made smoothed measurement currents, and therefore on the param-
for simplicity and can be removed. etersr and «.

Now, as detailed in Table I, the measurementZ 8f and
I1ZZ reveal everything about the errors. However, as in the
toy model, we must smooth the measurement currents in IV. SIMULATION RESULTS
order to gain reliable error information. Therefore, the steps
involved in the error correction scheme are the following:

(1) Smooth the measurement currents using the followin

As a way of evaluating the performance of the general
rror control scheme using weak measurements and feed-
ack, we numerically solved the SMEs described in the two

fiter: examples of Sec. lll. A comparison of the SMEL5) and
_1 rt-t!) , o (23) shows that the one-qubit toy model has all the free pa-
Ri(t)= N € dQ(t), i=1,2. (19 rameters of the full three-qubit code, and therefore is a good
o model on which to explore the parameter space formed by
The definition of this filter is analogous to E¢L3). \, andk. This is useful because the smaller state space of the

(2) Depending on the signatures Bf(t) andR,(t) apply = toy model makes simulating it far more computationally
the appropriate feedback Hamiltonian. That i) If tractable than simulating the bit-flip correction example.
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2 ' ' ' : : ' ‘ ' ‘ sitions back to +1 are due to feedback correction.

i We used this toy model primarily to gain insight into the
choice of parameters that lead to optimal error correction.

o 1 The conclusions drawn from exploring the parameter space
using this one-qubit simulation are the following:

(1) The decay rate of the filter, should be determined
o 1 2z 8 4 5 6 7 8 8 10 by the strength of the feedback, That is, given a strong
feedback Hamiltonian, it is necessary to have a responsive
conditioning current; one with little memory.

(2) As expected, the larger the measurement strergth
the better the protocol performs.

(3) Performance also improves as, the feedback
strength, is increased. This is to be expected becausasas
increased, the range of the strength of the feedback Hamil-

5 6 7 8§ 9 10 tonian increases, leading to a greater degree of control.
lime{secancs) (4) The interplay between the two processes—
measurement and feedback—must be considered. In particu-

back. The top graph just shows the expectation valus, aind the lar, larger values of will yield a better performance only if

bottom graph shows expectation valuezofind the filtered signal _the'se values are not too much larger than the value dhat
R(). is, if the measurement strength is much stronger than the

feedback strength, the measurement process disrupts the
feedback correction process and makes it ineffective. There-
fore, the magnitude of the measurement strength should be

We chose to simulate the dynamics of E5) by way of  less than, or of the same order of magnitude, as the feedback
an associated stochastic Schrédinger equa®&sb for two Hamiltonian strength.
reasons:(i) it is less computationally intensive ar@d) it Given the strong dependence between parameters that
allows us to look at individual trajectories of the system, ifthese one-qubit simulations identify, there are really only
desired. The form of this associated SSE is as follows: three free parameters in the system:\, andy. Since the

last is out of the experimenter’s control, there remain two

<Z>(t) and R(t)
S, 5 o -
g = o O = N

)
[Ny
w
IS

FIG. 1. A sample trajectory of the one-qubit “code” with feed-

A. The toy model

-
dlre(t)) = AN (X|pc() = [#e(D)) + Vi AWN(Z ~(Z) controllable parameters. In practice, neither of these param-
K eters, the measurement strength or the feedback strength, is
X (1) |¢el(t)) = 5(1 ~(D(D2)? (b))t completely configurable. The physical implementation
scheme typically limits the range of these parameters, and in
— ING(H)X |())dt, (24)  Sec. V we shall see whether the practical ranges for one

particular implementation allows for error control via this
feedback scheme.
It is instructive to note that the free parameters of the

wheredN(t) is a point process incremefin the number of
error9 described by

dN(t)2 = dN(t), (25)  protocol are all physical parameters. That is, the optimal op-
erating regime of the protocol is defined by the system’s
E[dN(D)] = ydt (26) physical features rather than the introduced filter. Therefore,

it is possible to design a filter that allows the protocol to
That is,dN is a random variable that is either O or 1 at eachperform optimally for a given set of physical parametéts
time step, and is distributed according to the error ratd  and\).
graph of the processN(t) would be a sequence of Poisson
distributed (with parametery) spikes. In the language of
quantum trajectories, this SSE is simply one possible unrav- B. Three-qubit code simulation

eling of the SME(15). . o ~ Now we move on to the simulation of the three-qubit
_The SSE was solved using Euler numerical integrationyjtfip code. This simulation behaves in much the same way
with time stepsdt=10" When ensemble averages were a5 the one-qubit version, but with one key difference: for the
required—that is, when we were interested in the behavior Of)ne-qubit “code,” a double error event—where an error oc-
pc(t)—600 trajectories were averaged over. To evaluate th@yrs on the qubit before we have corrected the last error—is
performance of the protocol, we used ttedeword fidelity  not too damaging. In this case, the error correcting feedback
F()=(#(0)|p(t)|(0)). Here, |(0)) is the initial state of the mechanism detects a traversal back into the “codespace” and
system, which is taken to 46), unless otherwise specified. thus stops correcting. In the three-qubit code, this situation is
Figure 1 shows a sample trajectory from the one qubita little more complicated. Let us consider the situation in
simulation. The figure shows the expectation value ofZhe which a second error happens while a previous error is being
measurement as a function of time and also the superimeorrected. If this second error happens to be on the same
posed filtered measurement signalt). The transitiongof  qubit as the one being corrected, then in consonance with the
expectation value af) to —1 are due to errors, and the tran- one-qubit “code,” it is not too damaging. However, if the

052324-6



PRACTICAL SCHEME FOR ERROR CONTROL USING FEEDBACK PHYSICAL REVIEW @9, 052324(2004)

second error is on one of the two qubits not being corrected A= G '

an irrecoverably damaging event occurs, because in this cas”®[V .~ oslV M 0o

the stabilizer measurements cease to provide accurate infoi e 08
mation about the error location, and the protocol’'s “correc- oss 1 °° R ¥

tions” actually introduce errors. 0sl 1201 M ] ort1=020E AL

1 2 0 1
time (seconds) time (seconds)
1

0 1
This identifies a key consideration in any continuous, , _tme (seconds)
feedback-based error correction scheme. The finite duratior [\

of the detection and correction window means that we must |V ¥, o8 08
choose our parameters with this finite window small enough o8 oe N
that the probability of an error we cannot corrgot this o7 eoars TN ¥=05Hz ¥=06Hz
case, two errors on different qubjitss negligible. This is  *% 2 " 2
time (seconds) time (seconds) , time (seconds)

analogous to choosing the detection-correction intervals in 1
the discrete error control case to be small enough to avoic08 '

08 08
uncorrectable errors. A\ Y
The SSE that describes the dynamics of the three-qubi ¢s T | 08 e YW 0s
error correction scheme is 0al¥=07Hz oqlY=08Hz ], lr=00te
) 1 2 o 1 2 o 1
time (seconds) time (seconds) time (seconds)

ol o) =AN (D) (X 16(0)) = [1))) + AN AXT | (1)) o | _ |
FIG. 2. Fidelity curves with and without error correction for

= [4())) + dNg(t) (11X | (1)) = [re())+ Ve AW4(t) several error rates. The thick solid curve is the fidelity of the three-
_ r qubit code with error correctionfF3(t) (parameters useddt
X(ZZ1 = (ZZHW)]#he(t)) + Vi dWi(1) =105, k=150 Hz,\=150 Hz,r =20 Hz, T=1500x dts. The dot-
K 5 ted curve is the fidelity of one qubit without error correctiéi(t).

X(1ZZ = 1Z2)(0)) [e(1))— 5(1 —(ZZH(H)ZZ)) And the thin solid curve is the fidelity achievable by discrete quan-
tum error correction when the duration between applicatiorts is
Faq(t).

Xyt =5 (1= 1Z2)O1Z2) el0)elt !

the scheme become worse than the unprotected qubit's per-

~INGLOXI (D) dt NG OIXI|g(D)dt formance. This poor performance results from the feedback

—iING3() 11X (1)) dt. (27) “corrections” being so inaccurate that the feedback mecha-
nism effectively increases the error rate.
This SSE is of course an unraveling of SME3), and all The third line in the plots of Fig. 2 is of the average
parameters are defined as for that equation. fidelity achievable by discrete quantum error correction—

As in the one qubit case, we solved this differential equa-using the same three qubit code—when the time between the
tion using an Euler method with timestegs=10"%. Again,  detection-correction operationstisThe value of this fidelity
ensemble averages were done over 600 trajectories whéhsq(t)] as a function of time was analytically calculated in
needed. The initial state used wag0, and the performance [5],
was measured using the codeword fidelitf;(t)
=(000p(1)|000. A true fidelity measure of the protocol per-
formance would average over all possible input states; how-
ever, becausf00 is most susceptible to bit flip errors, the
fidelity we use can be considered a worst case performano® comparison betweef;(t) and F54(t) highlights the rela-
analysis. tive merits of the two schemes. The fact that the two curves

The performance of the error correction scheme using thigross each other for largeéndicates that if the time between
code is summarized by Fig. 2. This figure shows the fidelityapplications of discrete error correction is sufficiently large,
versus time curveld=;(t)] for several values of error ratg).  then a continuous protocol will preserve fidelity better than a
Each plot also shows the fidelity cur{E,(t)] for one qubit  corresponding discrete scheme. In fact, this comparison sug-
in the absence of error correction. A comparison of these twgests that a hybrid scheme, where discrete error correction is
curves shows that the fidelity is preserved for a longer periogherformed relatively infrequently on a system continuously
of time by the error correction scheme for small enough erroprotected by a feedback protocol, might be a viable approach
rates. Furthermore, for small error rates<0.3) the F5(t)  to error control.
curve shows a vast improvement over the exponential decay All the F3(t) curves show an exponential decay at very
in the absence of error correction. However, we see that pastrly times,t=0 to t=0.1. This is an artifact of the finite
a certain threshold error rate, the fidelity decay even in thdilter length and our specific implementation of the protocol.
presence of error correction behaves exponentially, and thie particular, our simulation does not smooth the measure-
two curves look very similar; past the threshold, the errorment signal until enough time has passed to get a full buffer
correcting scheme becomes unable to handle the errors and measurements; that is, filtering and feedback only start at
becomes ineffective. In fact, although not completely evident=T. Of course, this can be remedied by a more complicated
from the figure, well above the threshold the performance ocheme that smoothes the measurement signal and applies

1
Fag= 2(2 + 37N — g "), (28)
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the ill effects of the inefficient measurements. Also, as in the
full state estimation protocol of5], because the feedback
conditioning current is a function of a measurement record
history—as opposed to just the current measurement—errors
induced by inefficient measurement tend not to be so dam-
aging. Here we see the true strength of this error correction
scheme: it combines the robustness of a state estimation
based feedback protocol with the practicality of a Markovian
feedback protocol.

V. LINKS TO EXPERIMENT

0 In this section we study the possibility of applying this
0.45 | 1 error correction technique to a particular quantum computing
‘ . ‘ . ‘ . . ‘ architecture.

0.4
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1-1 Solid-state quantum computing with RF-SET readout

FIG. 3. Average fidelity after a fixed amount of time as a func-  S€veral schemes for solid-state quantum computing have

tion of 1-efficiency for several error rateparameters usedit ~ P€en propose(ﬂﬁ—lq. These use the charge or spin (_jegree
=10%s, k=50 Hz,\=50 Hz,r=10 Hz, T=1500X dt S). of freedom of single particles to represent logical qubits, and

measurement involves probing this degree of freedom

Here we examine the weak measurement of one such pro-
posal that uses coherently coupled quantum go@Ds and
an electron that tunnels between the d@@]. The dots are
o formed by two P donors in Si, separated by a distance of

C. Inefficient measurement about 50 nm. Surface gates are used to remove one electron

We have modeled all our measurement processes as beiff@m the double donor system leaving a single electron on
perfect. In reality, detectors will be inefficient and thus yield the P-P system. This system can be regarded as a double
imperfect measurement results. This ineffiency is typicallywell potential. Surface gates can then be used to control the
represented by a parametgrthat can range from 0 to 1, barrier between the wells as well as the relative depth of the
where 1 denotes a perfect detector. How is this feedbackvo wells. Using surface gates, the wells can be biased so
protocol affected by nonunit efficiency detection? that the electron can be well localized on either the|lefior

To examine this question, we simulated the three-qubithe right|R) of the barrier. Theséalmos) orthogonal local-
code with inefficient detection. The evolution SME and theized states are taken as the logical basis for the qiMit,
measurement currents in the presence of inefficient detectiorlL),|1)=|R). It is possible to design the double well system

Fidelity after a fixed time period

feedback even when it has access to fewer théadt mea-
surements.

are as follows: so that, when the well depths are equal, there are only two
energy eigenstates below the barrier. These states are the
dp(t)=¥(DIXI1] + D[IXI]+ DX ])pc(t)dt+ (D[ Z2Z] symmetric ground state+) and the antisymmetric first ex-

cited state|-). A state localized on the leftright) of the

+DUZZDpo()dts Vin(HIZZTIdWA(D barrier is then well approximated as a linear superposition of

+ H[1ZZ]dW5 (1)) p(t) = IN(G1 (D[ X, pg(t) ] these two states,
+ G,(D)[IXI, pe(t) ]+ Ga(O[ 11X, pe(t) D dt, (29) L = \'_l§(|+>+|_>)’ (32)
dQy(1) = 26\ HZZ (D) dt + Vkd W4 (D), (30)
1
dQu(t) = 26V 1Z2) (1)t + Vred W (1), (31) R =7+ =1=). (33)

where 0< =<1 is the measurement efficiency,
guantities are the same as in E¢5) and (23).
The results of these simulations are summarized by Fig. 3, energy eigenstates below the barrier.
T_he decay of fidelity with decreasmgmdmates that ineffi- The Pauli matrix,Z=|L)L|-|RXR|, is diagonal in this
cient measurements have a negative effect on the perfor— . . .
ocalized state basis. The Hamiltonian for the system can be
mance of the protocol as expected. However, the slope of the .
. . ; well approximated by
decay is very small—in particular, the graph does not expo-
nentially decay as do Markovian feedback protocols—and o(t) A(t)
this suggests that this protocol has a certain tolerance to in- H=#—="2+ ==X (34)
efficiencies in measurement. This is reasonable because the
filtering process in the protocol has the effect of improvingwhere X=|L)(R|+|R){L|. Surface gates control the relative

the quality of the measurements and thus negating some @fell depthZiw(t) (a bias gate contrpland the tunneling rate

and all other o initial state localized in one well will then tunnel to the
other well at the frequenci=(e,—€_)/# wheree, are the
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A(t) (a barrier gate contrplwhich are therefore time depen- rameters ardi) the measurement timg, and (ii) the effi-
dent. For nonzero bias the energy gap between the grourmency 7(ty). An additional parameter that is often quoted is
state and the first excited statefit) =7 \w(t)?+ A ()2 Fur-  the minimum charge sensitivity per root her® Giventy,, S
ther details on the validity of this Hamiltonian and how determines a minimum change in the charie, that can be
well it can be realized in the PRn Si system can be seen by the RF-SET at a given bias condition.[25], a
found in[21]. measurement time @f,=6x 10°® s was found for a signal of

A number of authors have discussed the sources of decorq=0.2 and an efficiency of 16. We now need to relate
herence in a charge qubit system such as this[@0e23.  this measurement time to the measurement decoherence rate

For appropriate donor separation, phonons can be ”eg|eCt%rameterK, of our ideal feedback model.
as a source of decoherence. The dominant sources of deco- |t the measurement were truly quantum limitedat is to

herence then arise from fluctuations in voltages on the surgay, the signal-to-noise ratio is determined only by the deco-

face gates controlling the Hamiltonian and electrons movinq1erenCe rates), the inverse measurement time would be of
in and out of trap states in the vicinity of the dot. This Iatterthe same ordér of magnitude as the decoherence(sate

source of decoherence is expected to occur on a longer tim[fiG]) The measurement described in Buetdeal. [25] wil

scale and is largely responsible forflroise in these sys- ; i

tems. In any case both sources of decoherence can be moE?J.rnOSt certainly not be quantum limited. Howgevgr, here we

eled using the well-known spin-boson mod28]. The key will assume the measurement to be quantum limited, so as to
element of this model for the discussion here is that the inoPtain @ lower limit to the measurement decoherence rate.

. . . — —1
teraction energy between the qubit and the reservoir is aNus we takex=1C°s J _
function of Z. We next need to estimate typical values for the feedback

If the tunneling term proportional t&(t)X in Eq. (34)  Strength. From Eq(15 we see that the feedback Hamil-
were not present, decoherence of this kind would lead tdonian is proportional to aiX operator. In the charge qubit
pure dephasing. However, in a general single-qubit gate ogxample, this corresponds to changing the tunneling rate for
eration, both dephasing and bit-flip errors can arise in th&ach of the double dot systems that comprise each qubit. The
spin-boson model. We can thus use the decoherence rate chiggest tunneling rated) occurs when the bias of the double
culated for this model as the bit-flip error rate in our feed-wells makes it symmetric. 1fi21], the maximum tunneling
back error correction model. We will use the result from therate is about 10s™, for a donor separation of 40 nm. A large
detailed model of Hollenbergt al. [20] for a device operat- tunneling rate makes for a fast gate, and thus a fast correction
ing at 10 K, and set the error rate=1.4x 10° s™%, This rate  operation. Thus the maximum value »fcan be taken to be
could be made a factor of 10 smaller by operating at lowel 0’ s™™.

temperatures and improving the electronics controlling the To summarize, in the PFbased charge qubit, with RF-
gates. SET readout, we have~ k=10 s, andA=10°s ™.,

We now turn to estimating the measurement rafer the The fact that the measurement strength and the error rate
PP system. In order to read out the qubit in the logical basigare of the same order of magnitude for this architecture is a
we need to distinguish a single electron in the left or the righforoblem for our error correction scheme. This means that the

well quickly and with high probability of succesgffi-  rate at which we gain information is about the same as the
ciency. The technique of choice is currently based on radioate at which errors happen, and it is difficult to operate a
frequency single electron transistgRF-SET) [24]. We will feedback correction protocol in such a regime. Although it is
use the twin SET implementation of Buehketral. [25]. unlikely that the measurement rate could be made signifi-

In an RE-SET the Ohmic load in a tuned tank circuit cantly larger in the near future, as mentioned above it is
comprises a single electron transistor with the qubit acting aBossible that the error rate could be made smaller by im-
a gate bias. The two different charge states of the qubit praProvements in the controlling electronics. Thus it is interest-
vide two different bias conditions for the SET, producing twoing to consider how low the error rate would have to be
different resistive loads, and thus two levels of power transPushed before our error control scheme becomes effective.
mitted through the tank circuit. The electronic signal carriesT0O answer this question we ran the three qubit bit flip code
a number of noise components: for example, the Johnsorsimulation using the parameters stated above and lowered
Nyquist noise of the circuit, random changes in the SET biaghe error rate until the error control performance was accept-
conditions due to fluctuating trap states in the SET, etc. Th@ble. We found that the fidelity after 1 ms could be kept
measurement must be operated in such a way that the chargove 0.8 on average if the error ratg,is below 16s™

state of the qubit can be quickly discerned as a departure ¢With x<=10°s™, and\=10"s"). So we see that a differ-
the signal from some fiducial setting, despite the noise€nce in order of magnitude of four between the measurement
Clearly it takes some minimum time intervig| to discrimi-  and feedback strengths, and the error rate, is about what this
nate a qubit sighal change from a random noisy fluctuationprotocol (using the three-qubit cogleequires for reasonable
We need to keep the measurement time as short as possibRerformance. That is, we require

However if the measurement time is too short, one may mis-

take a large fluctuation, due to a nonqubit-based change in K _ A ~ 10 (35)

bias conditions, for the real signal. In other words, one may Yy v '

mistale a 1 for a 0, and vice versa. The probability of this

happening is the efficiency of the measuremefty,), which  Of course, depending on the performance requirements this

depends on the measurement time. The key performance peatio may be larger or smaller. Also, a full optimization of
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the filter used in the scheme is likely to drive this ratio downthat allows for practicalefficient state estimate feedback
by up to an order of magnitude. control.

We can compare the requirements of the three-qubit code The possibility of using continuous error correction in
with the one-qubit version. Given the same measurement ancbmbination with its discrete counterpart is an interesting
feedback parameterx=10°s1, A\=10"s1), the one-qubit possibility. Such a scheme has the potential to significantly
“code” can keep the fidelity above 0.8 after 1 ms whenimprove the stability of quantum memories, and the implica-
xly=N\Ily=10. That is, only one order of magnitude differ- tions of such a combination scheme for fault tolerance would
ence is required between the error rate and the measuremdsg worth investigating.
and feedback rates. This suggests that a key issue with feed- We also studied a solid-state quantum computing architec-
back based error correction schemesdalability. The ratio  ture with RF-SET readout and the feasibility of implement-
between measurement and feedback rates and error rate hiag this error correction protocol on it. Although the mea-
to increase along with the error correcting code gimequ-  surement and feedback rates currently possible on this
bits). architecture do not allow for error correction via this feed-

back scheme with the intrinsic error rate, it is foreseeable
VI. DISCUSSION AND CONCLUSION that as the controlling technology improves, this error control
) ) ) ~ scheme will become possible on this architecture. From nu-

We have described a practical scheme for implementingnerical simulations, we found the approximate parameter re-
error correction using continuous measurement and Hamllgime where the three qubit code using this scheme becomes
tonian feedback. We have demonstrated the validity of thffective—that is, exactly how much improvement is neces-
scheme by simulating it for a simple error correction sce-ary pefore the scheme becomes feasible. It would be inter-
narto. . . . esting to investigate this further and explore more rigorously

As the simulations show, this error control scheme can by values ofx/y and\/y dictate protocol performance as
made very effective if the operational paramet@reasure- gl as the exact dependency of these parameter ratios on the
ment strength, feedback strength, filter paramgtars well  code size. Such an investigation will be crucial in addressing

matched to the error rate of a given system. At the samgye jssue of scalability of this error control scheme.
time, the scheme uses relatively modest resources and thus is

easy to implement, as well as being robust in the face of ACKNOWLEDGMENTS
measurement inefficiencies.
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