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The Grover walk, which is related to Grover’s search algorithm on a quantum computer, is one of the typical
discrete time quantum walks. However, a localization of the two-dimensional Grover walk starting from a fixed
point is strikingly different from other types of quantum walks. The present paper explains the reason why the
walker who moves according to the degree-four Grover operator can remain at the starting point with a high
probability. It is shown that the key factor for the localization is due to the degeneration of eigenvalues of the
time evolution operator. In fact, the global time evolution of the quantum walk on a large lattice is mainly
determined by the degree of degeneration. The dependence of the localization on the initial state is also
considered by calculating the wave function analytically.
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I. INTRODUCTION

The quantum walks are roughly classified into discrete
time quantum walks[1–6] and continuous time quantum
walks [7,8]. We focus on the discrete time quantum walks on
a square lattice. The study of the discrete time quantum
walks was begun by Aharonovet al. [1] in the early 1990s,
then it has been investigated by a number of groups. The
discrete time quantum walk evolves by repeating simple
quantum operations, and it is expected to be realized in a
quantum computer. Grover’s search algorithm[9], which is
one of the most famous quantum algorithms, is especially
related to a discrete quantum walk[10,11]. Recently Shenvi
et al. [12] actually proved that a discrete, coined quantum
walk can equal Grover’s algorithm. For an introduction of
the implementation by a quantum computer, see Travaglione
and Milburn [13], for example.

The recent concentrated studies make clear mathematical
properties of the one-dimensional quantum walks. In particu-
lar, the one-dimensional Hadamard walk is studied in detail
[14–19]. In contrast with one-dimensional quantum walks,
little about high-dimensional quantum walks is known
[20–24]. Thus the purpose of this study is to investigate a
two-dimensional quantum walk called “Grover walk.” A pio-
neering work for the Grover walk was done by Mackayet al.
[20]. Very recently Tregennaet al. [22] showed numerically
that the quantum walker who is controlled by Grover’s op-
erator is observed at an initial location with a high probabil-
ity. In this paper, this phenomenon is referred to as “local-
ization.” They showed also that the quantum walker starting
from a special initial state spreads out numerically.

The first question we have to ask here is whether the
localization remains even after a sufficiently large time. Un-
fortunately numerical simulations cannot give us the exact

answer on this problem. Hence it follows that we have to
calculate the wave function rigorously. Second we ask why
the localization is observed only in the Grover walk. There
are many different quantum walks, however, the localization
is not observed except the Grover walk in our knowledge.
Third we would like to know the dependence of the localiza-
tion on the initial state. We will answer these questions in the
following sections.

The paper is organized as follows. After defining the
Grover walk in Sec. II, we calculate eigenvalues and eigen-
vectors of the time evolution operator to obtain the wave
function in Sec. III. Section IV treats the wave function at
the origin and the time-averaged probability. Using the re-
sults we show that localization remains even if the system
size is infinity. In Sec. V, we concentrate our attention to the
localization on an infinite lattice and explain the reason why
the Grover walk is special. Furthermore we consider the de-
pendence of the localization on the initial state and show that
the localization disappears at a certain initial state.

II. DEFINITION OF THE TWO-DIMENSIONAL
QUANTUM WALKS

Time evolution of the two-dimensional quantum walks

The Grover walk considered here is a kind of discrete
time quantum walks. Thus we begin with defining the two-
dimensional quantum walk on the square latticeZN=hsx,yd
PZ2u −sN−1d /2øxø sN−1d /2 , −sN−1d /2øyø sN−1d /2j
with periodic boundary condition. In this paper we assume
that the system sizeN is odd. There are four quantum states
at each site:“R,” “ L,” “ U,” and “D” corresponding to right,
left, up, and down, respectively. Thus the dimension of the
Hilbert space is 4N2. The value of wave function for one of
these statesSP hR,L ,U ,Dj at the positionsx,yd and timet is
written by uS,x,y,tl. The time evolution ofuS,x,y,tl is de-
termined as follows:

uR,x,y,t + 1l = a11uR,x − 1,y,tl + a12uL,x − 1,y,tl

+ a13uU,x − 1,y,tl + a14uD,x − 1,y,tl,
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uL,x,y,t + 1l = a21uR,x + 1,y,tl + a22uL,x + 1,y,tl

+ a23uU,x + 1,y,tl + a24uD,x + 1,y,tl,

uU,x,y,t + 1l = a31uR,x,y − 1,tl + a32uL,x,y − 1,tl

+ a33uU,x,y − 1,tl + a34uD,x,y − 1,tl,

uD,x,y,t + 1l = a41uR,x,y + 1,tl + a42uL,x,y + 1,tl

+ a43uU,x,y + 1,tl + a44uD,x,y + 1,tl. s1d

This evolution is characterized by the next matrix

A = 3
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

4 . s2d

The matrix corresponding to the Grover walk is defined by

A0 = 3
−

1

2

1

2

1

2

1

2

1

2
−

1

2

1

2

1

2

1

2

1

2
−

1

2

1

2

1

2

1

2

1

2
−

1

2

4 . s3d

We introduce here other two-dimensional quantum walks to
compare with the Grover walk by setting following matrices:

A1 = 3
0 0 −

1
Î2

1
Î2

0 0
1
Î2

1
Î2

1
Î2

−
1
Î2

0 0

1
Î2

1
Î2

0 0

4 , s4d

A2 = 3
−

1
Î3

0
1
Î3

1
Î3

0 −
1
Î3

−
1
Î3

1
Î3

1
Î3

−
1
Î3

1
Î3

0

1
Î3

1
Î3

0
1
Î3

4 . s5d

We define the wave function of the total state at timet by

cstd = „c0,0std,c1,0std,c2,0std, . . . ,cN−1,0std,c0,1std,c1,1std,c2,1std, . . . ,cx,ystd, . . . ,cN−1,N−1std…T, s6d

whereT means the transposed operator and

cx,ystd = suR,x,y,tl,uL,x,y,tl,uU,x,y,tl,uD,x,y,tldT. s7d

If the initial statecs0d is given, then the wave functioncstd
is calculated by the iterations1d. The iteration can be ex-
pressed more compactly by introducing a 4N234N2 unitary
matrix M satisfyingcst+1d=Mcstd.

The probability of observing the quantum walker at a
given pointsx,yd and timet starting from an initial statecs0d
is defined by

P„x,y,t;cs0d… = o
SPhR,L,U,Dj

kS,x,y,tuS,x,y,tl. s8d

Figure 1 shows the probability distribution P
; P(x,y,t ;cs0d) corresponding to matricessad A0 sGrover
walkd, sbd A1, andscd A2 at t=30 on the lattice withN=51
starting from an initial statecs0d=s1,0, . . . ,0dT. In con-
trast withsbd andscd cases, a localization at the origin can
be seen only in the Grover walk casesad.
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III. EIGENVALUES AND EIGENVECTORS OF THE
MATRIX M

A. Eigenvalues

To express the wave function as a function oft explicitly
we consider the eigenvalues and eigenvectors of the matrix
M. These are easily obtained by using the Fourier transform.
According to the previous studies[8], the eigenvalues of the
matrix M are given by a set of eigenvalues of the following
matrix:

Hn,msAd = 3
v−n 0 0 0

0 vn 0 0

0 0 v−m 0

0 0 0 vm
43

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

4 ,

s9d

wherev=e2pi/N. The integersn andm are quantum numbers
in a wave-number space and they take values between 0 and
N−1. Since there are four components inHn,m,sAd, the num-
ber of eigenvalues iss4Nd2, if not consider the degeneration
of eigenvalues, and each eigenvalue is labeled byn,m
P h0,1, . . . ,N−1j and kP h1,2,3,4j. As a result, whenn
Þm, the eigenvalues of the matrixM corresponding to the
Grover walker,ln,m,k, are given by

ln,m,1 = − 1, s10d

ln,m,2 = 1, s11d

ln,m,3 =
− cosjm − cosjn − Î− 4 + scosjm + cosjnd2

2
,

s12d

ln,m,4 =
− cosjm − cosjn + Î− 4 + scosjm + cosjnd2

2
,

s13d

wherej j =2jp /N. Whenn=m, the eigenvalues are written as

ln,n,1 = − 1, s14d

ln,n,2 = 1, s15d

ln,n,3 = − vn, s16d

ln,n,4 = − v−n. s17d

B. Eigenvectors

We write the eigenvectors corresponding to the eigenval-
uesln,m,k as fn,m,k and we letfi,n,m,k be theith element of
fn,m,k. If −sN−1d /2øx, yø sN−1d /2, and 1ø j ø4, we find
integersx,y, and j satisfying an equation 4Ny+4x+ j +2N2

−2=i for a given natural numberi. Using thesex, y, and j ,
the ith element offn,m,k, which generates an orthonormal
basis is given by

fi,n,m,k =
v j ,n,m,kv

nx+my

NÎo
j=1

4

uv j ,n,m,ku2

, s18d

wherev j ,n,m,k is the j th element of the eigenvector ofHn,m,k.
We show a set of eigenvectors of vn,m,k
;sv1,n,m,k, . . . ,v4,n,m,kdT in the following.

FIG. 1. Snapshots of probability distributionP(x,y,t ;Cs0d) at
time t=30 on a square lattice with system sizeN=51 with Cs0d
=s1,0, . . . ,0dT. Each of the evolutions is determined by the matri-
cesA0 (Grover walk), A1, andA2 defined in Eqs.(3) and(4) corre-
sponding to(a), (b), and (c). The central peak in(a) shows the
localization of the Grover walk.
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Case 1. m=0, n.0, andk=1,

vn,0,1= 3
1

− 1

0

0
4 . s19d

Case 2. m=0, n.0, andk.1,

vn,0,k = 3
ln,0,k + bn

ln,0,k + bn

bnln,0,k + bn

2ln,0,k
2 + bnln,0,k − bn

4 . s20d

Case 3. n=m,

huvn,n,ku1 ø k ø 4j

=53
− an

1

− an

1
4, 3

an

1

an

1
4, 3

0

− 1

0

1
4, 3

− 1

0

1

0
46 .

s21d

Case 4. n+m=N,

huvn,N−n,ku1 ø k ø 4j

=53
1

− 1/an

− 1/an

1
4, 3

1

1/an

1/an

1
4, 3

0

− 1

1

0
4, 3

− 1

0

0

1
46 .

s22d

Case 5.Otherwise,

vn,m,k =3
an

2ln,m,k
2 + san + an

2bmdln,m,k + anbm

ln,m,k
2 + san + bmdln,m,k + anbm

anbmln,m,k
2 + sbm + an

2bmdln,m,k + anbm

2anln,m,k
3 + s1 + an

2 + anbmdln,m,k
2 − anbm

4 ,

s23d

wherean=v−n andbm=v−m.

IV. WAVE FUNCTION OF THE GROVER WALK

Expansion of wave function in terms of eigenvalues

Since we have obtained the complete eigenvalues and
normalized orthogonal eigenvectors, we can express the
wave function as a function of time. Before we present the
wave function, we number the statesR, L, U, andD from 1
to 4, respectively. LetlsSd be the number of the stateS. In
addition we use expediently a suffixi defined by 4Ny+4x
+ lsSd+2N2−2 to number each computational basis from 1 to
4N2. For example, a combination of the coordinationx=y
=sN−1d /2 and a stateS=R is labeled byi =1. Then we have
the wave functionuS,x,y,tl,

uS,x,y,tl = o
j=1

4N2

o
n=0

N−1

o
m=0

N−1

o
k=1

4

fi,n,m,kf j ,n,m,k
* c js0dln,m,k

t , s24d

wherei =4Ny+4x+ lsSd+2N2−2 andc js0d is the j th element
of the initial vectorcs0d.

As shown in Eq. (13), the eigenvalues degenerate
strongly. Thus we try to expand the wave function by distinct
eigenvalues. The eigenvalueln,m,1=−1 always exists for any
combinationn andm. Furthermoreln,m,3 andln,m,4 become
−1 for n=m=0. If n.0 and m.0, then the eigenvalues
ln,m,k are distinct for fixedn andm. Therefore the condition
ln,m,k=ln8,m8,k is equivalent to the following condition:

cosjm + cosjn = cosjm8 + cosjn8. s25d

A set of a pairsn8 ,m8d belonging to the same eigenvalue
ln,m,k for k.2 andn.0 is given by

Vsn,md =5
hsn,0d,s0,nd,sN − n,0d,s0,N − ndj for m= 0,

hsn,nd,sn,N − ndj for n = m

hsn,md,sn,N − md,sN − n,md,sN − n,N − md,j
hsm,nd,sm,N − nd,sN − m,nd,sN − m,N − ndj

otherwise.
6

To express the wave function compactly using the set
Vsn,md we define the following functions:

ci,j ,0,0,k =
vi,0,0,kv j ,0,0,k

* c js0d

Îo
i=1

4

uvi,0,0,ku2Îo
j=1

4

uv j ,0,0,ku2

, s26d

ci,j ,n,m,k = o
n8,m8PVsn,md

vi,n8,m8,kv j ,n8,m8,k
* c js0d

Îo
i=1

4

uvi,n8,m8,ku2Îo
j=1

4

uv j ,n8,m8,ku2

for n . 0 andm. 0.

s27d

We note here the reason why the system size is restricted
to odd in this paper. In the case of odd, the degree of degen-
eration of eigenvalues is eight at the most except for the
eigenvalues −1 and 1. On the other hand, the eigenvalues
with large degree of degeneration exist in addition to 1 and
−1 in the case of even. This fact does not lead us to fatal
difficulty, but the calculation becomes more complicated
than that in the odd case.

We now have another expression of wave function,
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uS,x,y,tl =
1

N2o
j=1

4N2FCi,j ,1 + Ci,j ,−1s− 1dt

+ o
n=1

sN−1d/2

o
k=3

4

ci,j ,n,0,kln,0,k
t + o

n=1

N−1

o
k=3

4

ci,j ,n,n,kln,n,k
t

+ o
n=1

sN−3d/2

o
m=n+1

sN−1d/2

o
k=3

4

ci,j ,n,m,kln,m,k
t G , s28d

where

Ci,j ,1 = ci,j ,0,0,2+ o
n=1

sN−1d/2

ci,j ,n,0,2+ o
n=1

N−1

ci,j ,n,n,2

+ o
n=1

sN−3d/2

o
m=n+1

sN−1d/2

ci,j ,n,m,2, s29d

Ci,j ,−1 = ci,j ,0,0,1+ ci,j ,0,0,3+ ci,j ,0,0,4+ o
n=1

sN−1d/2

ci,j ,n,0,1

+ o
n=1

N−1

ci,j ,n,n,1 + o
n=1

sN−3d/2

o
m=n+1

sN−1d/2

ci,j ,n,m,1, s30d

andi =4Ny+4x+ lsSd+2N2−2. In the formulas28d, Ci,j ,1 and
Ci,j ,−1s−1dt give the contribution of the eigenvalues 1 and −1
to the wave function. The remaining terms are corresponding
to the eigenvalues fork=3 and 4.

We move on more specific cases. In order to show the
localization we calculateuR,0 ,0 ,tl for the Grover walk start-
ing from one of the computational basisuR,0 ,0 ,0l=1. We
refer this special initial state asfR. The values in Eqs.(26),
(27), (29), and(30) can be obtained after some algebra by

C1,1,1=
N2

4
, Ci,1,−1=

1

2
+

N2

4
, s31d

c1,1,n,0,k = 1 for ∀ k, s32d

c1,1,n,n,1 = c1,1,n,n,2 = 1
2, c1,1,n,n,3 = 0, c1,1,n,n,4 = 1,

s33d

c1,1,n,m,k = 2 for n Þ m and∀ k. s34d

V. TIME-AVERAGED PROBABILITY

A. Definition of time-averaged probability

We begin with considering the probabilityPsS,t ;f0,Nd
that a walker in the stateS at the origin on a square lattice
with sizeN starting from an initial statef0. The probability
PsS,t ;f0,Nd is calculated from the relation

PsS,t;f0,Nd ; kS,0,0,tuS,0,0,tl. s35d

The probabilityPsS,t ;f0,Nd does not converge to a fixed
value in the limit t→` in contrast with classical random

walks. Thus we introduce time-averaged probability

P̄sS;f0,Nd defined by

P̄sS;f0,Nd ; lim
T→`

1

To
t=0

T−1

PsS,t;f0,Nd. s36d

Let us calculateP̄sS;fR,Nd, which is the time-averaged
probability starting a statefR. Submitting the wave function
with coefficientss31d–s34d into the definitions35d, we find
the cross terms in the formln,m,kln8,m8,k8. If the eigenvalue
ln,m,k is different from ln8,m8,k8, the time-averaged value
limT→`ot=0

T−1sln,m,kdtsln8,m8,k8
* dt /T vanishes. Thus we have

P̄sS;f0,Nd =
1

N4FUo
j=1

4N2

Ci,j ,1U2

+ Uo
j=1

4N2

Ci,j ,−1U2

+ o
n=1

sN−1d/2

o
k=3

4 Uo
j=1

4N2

ci,j ,n,0,kU2

+ o
n=1

N−1

o
k=3

4 Uo
j=1

4N2

ci,j ,n,n,kU2

+ o
n=1

sN−3d/2

o
m=n+1

sN−1d/2

o
k=3

4 Uo
j=1

4N2

ci,j ,n,m,kU2G . s37d

Plugging Eqs.s31d–s34d into Eq. s37d, the time-averaged

probability P̄sR;fR,Nd is given by

P̄sR;fR,Nd =
1

8
+

5

4N2 −
2

N3 +
5

4N4 . s38d

The time-averaged probabilityP̄sR;fR,Nd is a monoto-
nously decreasing function inN and it converges to 1/8 in the

limit N→`. ThusP̄sR;fR,Nd is larger than 1/8 for any odd
N. It means that the quantum walker centralizes at the origin.

We must pay attention to the dependence of the wave
function on the parity of time. The value of wave function at
odd time is small in comparison with the value at even time.
It is similar to the fact that the probability of return to the
origin at odd time is zero in a classical random walk on an

infinite square lattice. LetP̄esS;fR,Nd and P̄osS;fR,Nd be
the time-averaged probabilities over even time and odd time,
respectively. Then we have

P̄esR;fR,Nd =
1

4
+

3

2N2 −
2

N3 +
5

4N4 , s39d

P̄osR;fR,Nd =
1

N2 −
2

N3 +
5

4N4 . s40d

The probability averaged over odd timeP̄osR;fR,Nd con-
verges to zero in the limitN→`. Thus there is a relation

P̄esR;fR,Nd=2P̄sR;fR,Nd in the limit N→`.
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We clearly find that the time-averaged probability

P̄sS;fS,Nd= P̄sR;fR,Nd for anySP hR,L ,U ,Dj. The calcu-

lation of P̄sS;fS8ÞS,Nd is more elaborate and therefore not
treated there, but subsequently in the large-size limit.

B. The time-averaged probability in the limit N\`

We now proceed to the probabilityPsS,t ;fR,Nd in the
limit N→`. The only first and second terms in Eq.(37)
remain in the limit ofN→`. Thus its calculation becomes
easy as shown below:

P̄`sS;fRd ; lim
N→`

P̄sS;fR,Nd, s41d

= lim
N→`

1

N4suCi,0,1u2 + uCi,0,−1u2d. s42d

Furthermore the constant and the single summation inCi,j ,1

andCi,j ,−1 do not contribute toP̄`sS;fRd. Consequently, the

probability P̄`sS;fRd is given by

P̄`sS;fRd = S lim
N→`

1

N2 o
n=1

sN−3d/2

o
m=n+1

sN−1d/2

ci,0,n,m,1D2

+ S lim
N→`

1

N2 o
n=1

sN−3d/2

o
m=n+1

sN−1d/2

ci,0,n,m,2D2

. s43d

Let us consider time-averaged probabilities inN→` for all
possible states at the origin. The values ofci,0,n,m,1 and
ci,0,n,m,2 as a function ofn andm are given by

c2,0,n,m,1 =
2scosjm + cosjn − 2 cosjm cosjnd

− 2 + cosjm + cosjn
, s44d

c2,0,n,m,2 =
2scosjm + cosjn + 2 cosjm cosjnd

2 + cosjm + cosjn
, s45d

ci,0,n,m,1 =
8 sin2sjm/2dsin2sjn/2d

2 − cosjm − cosjn
for i = 3,4, s46d

ci,0,n,m,2 =
8 cos2sjm/2dcos2sjn/2d

2 + cosjm + cosjn
for i = 3,4. s47d

The double summations in Eq.s43d in the limit N→` are
calculated by replacing the summations into the following
integrals:

lim
N→`

1

N2 o
n=1

sN−3d/2

o
m=n+1

sN−1d/2

c2,0,n,m,1

=
1

8p2E
0

p

dxE
0

p

dy
2scosx + cosy − 2 cosx cosyd

− 2 + cosx + cosy
,

=
1

4
−

1

p
, s48d

lim
N→`

1

N2 o
n=1

sN−3d/2

o
m=n+1

sN−1d/2

c3,0,n,m,1

=
1

2p2E
0

p/2

dxE
0

p/2

dy
8 sin2 x sin2 y

2 − cos 2x − cos 2y
,

=
1

4
−

1

2p
. s49d

Similarly we can calculate the summation forc2,0,n,m,2 and
c3,0,n,m,2, and we have the same values1/4−1/p and 1/4
−1/2p. Finally the time-averaged probabilities are given by

P̄`sR;fRd =
1

8
, s50d

P̄`sL;fRd =
1

8
+

2

p2 −
1

p
, s51d

P̄`sU;fRd =
1

8
+

1

2p2 −
1

2p
, s52d

P̄`sD;fRd =
1

8
+

1

2p2 −
1

2p
. s53d

Summing P̄`sS;fRd over all possible states, the time-
averaged probability that a quantum walker exists at the ori-
gin is

P̄`sfRd = P̄`sR;fRd + P̄`sL;fRd + P̄`sU;fRd + P̄`sD;fRd

=
1

2
+

3

p2 −
2

p
. s54d

C. Dependence of the time-averaged probability
on an initial state

If the Grover walk starts from the fixed computational
basis, then the localization of the quantum walker at the ori-
gin was shown in the preceding section. The numerical re-
sults obtained by Tregennaet al. [22], however, suggest that
the time-averaged probability at the origin of the Grover
walk starting a certain superposition of basis states becomes
zero. To confirm this observation we consider the wave func-
tion at the origin starting the next superposition of basis
states,

fsa,bd = auR,0,0,0l + buL,0,0,0l, s55d

where uau2+ ubu2=1. In the formula in Eq.s28d the coeffi-
cients corresponding toj .2 are zero and the coefficients
corresponding toj =1 are already computed in Eq.s34d. Thus
we consider the only coefficients corresponding toj =2. Sup-
pose thatcs0d=fL=s0,1,0, . . . ,0dT. Then we obtain

C1,2,1= −
7

4
+

3N

2
− o

n=1

sN−1d/2
8

3 + cosjn

+ o
n=1

sN−3d/2

o
m=n+1

sN−1d/2
2scosjm + cosjn + 2 cosjm cosjnd

2 + cosjm + cosjn
,

s56d
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C1,2,−1=
3

4
−

N

2

+ o
n=1

sN−3d/2

o
m=n+1

sN−1d/2
2scosjm + cosjn − 2 cosjm cosjnd

− 2 + cosjm + cosjn
,

s57d

c1,2,n,0,3= c1,2,n,0,4= − 1 +
4

3 + cosjn
, s58d

c1,2,n,n,3 = c1,2,n,n,4 = 0, s59d

c1,2,n,m,3 = c1,2,n,m,4

=
4scosjm − cosjnd2

6 − coss2jmd − coss2jnd − 4 cosjn cosjm

for m. n.

s60d

We now can calculate the time-averaged probability

P̄(R;fsa ,bd ,N) for any odd system sizeN by combining
Eqs. (31)–(34) with Eqs. (56)–(60). However, it is rather
complicated. Thus we show only the result in the limit of

N→`. The time-averaged probabilityP̄`(R;fsa ,bd) is ob-
tained by replacing the summations to the integrals in the
same way described in the preceding section, and it becomes

P̄`„R;fsa,bd… =
1

8
Ua + S1 −

4

p
DbU2

. s61d

Similarly we have the time-averaged probability correspond-
ing to theL state,

P̄`„L;fsa,bd… =
1

8
Ub + S1 −

4

p
DaU2

. s62d

Figure 2 showsP̄Rsad; P̄`(R;fsa ,Î1−a2d) and P̄Lsad
; P̄`(L ;fsa ,Î1−a2d) for aP f−1,1g. The time-averaged

probability P̄Rsad becomes zero atamin given by

amin =Î1 −
p2

16 − 8p + 2p2 , s63d

and it takes the maximum value atamax given by

amax=
p

Î16 − 8p + 2p2
. s64d

Since the valuesa=1 anda=−1 indicate one of the compu-
tational basis, it is found that the time-averaged probability

P̄Rsad takes the maximum at the superposition of basis
states. As shown in the numerical calculationf22g, the quan-
tum walk starting from a certain initial state spreads out.

Although the time-averaged probabilityP̄Rsad becomes zero
at a=amin, the quantum walker remains at the origin. Put it
another way, the component of the time-averaged probability
corresponding to theR state converges to zero, but the other
component remains positive. Therefore we can say that the
quantum walker in the stateR perfectly converts into other
state in the limitt→` at a=amin.

Let us consider the time-averaged probability for more
general initial states defined by

fsa,b,g,zd = auR,0,0,0l + buL,0,0,0l + guU,0,0,0l

+ zuD,0,0,0l, s65d

where uau2+ ubu2+ ugu2+ uzu2=1. Repeating the procedure de-
scribed above yields the time-averaged probability for this
initial state,

P̄`sR;fsa,b,g,zdd = U a

2Î2
−Î1

8
+

2

p2 −
1

p
b

+Î1

8
+

1

2p2 −
1

2p
sg + zdU2

.

s66d

Taking symmetry into account, the other components are
given by

P̄`„L;fsa,b,g,zd… = P̄`„R;fsb,a,g,zd…, s67d

P̄`„U;fsa,b,g,zd… = P̄`„R;fsg,z,a,bd…, s68d

P̄`„D;fsa,b,g,zd… = P̄`„R;fsz,g,a,bd…. s69d

The condition for which all components in Eqs.(66)–(69)
become zero is obtained by

a = eiu/2, b = a, g = − a, z = − a. s70d

Settingu=0, we confirm the numerical results given by Tre-
genna et al. [22], which claim that the probability of

P̄`(S;fsa ,b ,g ,zd) becomes zero for any stateS by setting
a=b=−g=−z=1/2. Figure 3 shows a snapshot after 30
steps on a square lattice withN=51 starting from an initial
state withu=1/3 in Eq. (70). One definitely finds that the
localization disappears. On the other hand, the summation of

FIG. 2. The solid line denotes the time-averaged probability

P̄Rsad and the dashed line denotesP̄Lsad. The value ofP̄Rsad at

a=1 and 1 is 1/8, andP̄Rsad takes zero atamin=0.263 57. . ..
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P̄`(S;fsa ,b ,g ,zd) over all possible states takes a maximum
values2+8/p2−8/p=0.264 09. . . ata=b=g=z=1/2.Thus
the time-averaged probability over even time is larger than
1/2.

D. Conditions of the localization

An essential condition that determines whether the quan-
tum walk shows localization or not is dependence of the
degree of degeneration for eigenvalues on the system size.
Before we state the condition of localization, we consider the
quantum walks introduced in Sec. II again. We saw that a
spike exists at the origin in the Grover walk, but the two-
dimensional quantum walkers governed by the matricesA1
and A2 spread out. The significant difference between the
Grover walk and other quantum walks is the degree of ei-
genvalues. For example, the eigenvalues ofHn,m with A1 are
given by

3
ln,m,1

ln,m,2

ln,m,3

ln,m,4

4 = 3
Îi cosjn cosjm + fn,m,

− Îi cosjn cosjm + fn,m,

Îi cosjn cosjm − fn,m,

− Îi cosjn cosjm − fn,m,
4 , s71d

where

fn,m = Îsin2 jm + cos2 jn cos2 jm. s72d

We find no common eigenvalues to all values ofn and m
such as −1 and 1 inln,m,k of the Grover walk. There are 4N2

quantum states in these quantum walk on the square lattice
including N2 sites. Therefore the number of eigenvalues and
eigenvectors of the time evolution operator is also 4N2. Since
the wave function at timet is expressed by a linear combi-
nation of thetth power of the eigenvalue in which the coef-
ficients are given by the product of component of eigenvec-

tors. Each component of the eigenvector decreases in inverse
ratio to the system size and the coefficients decrease in pro-
portion toN−2. Thus, if the quantum walk exists initially at a
fixed point and all eigenvalues are distinct, then the probabil-
ity of observing the quantum walk at the fixed point goes to
zero by taking the system size as infinity. For this reason, the
degeneration of eigenvalues is necessary for the localization.
In the case of quantum walks on a circle including odd sites,
the eigenvalues are distinct except for trivial casesf8g. Thus
the localization is not observed.

If a quantum walker exists only at the origin initially, the
coefficientci,j ,n,m,k in Eq. (37) takes nonzero value for only
one j . Therefore the summation overj in Eq. (37) does not
depend on the system size and the summation overn andk
increases with the system size. Accordingly, the order of the
third and the fourth term in Eq.(37) is OsN−3d. Similarly the
order of the fifth term in Eq.(37) is OsN−2d. As a result, these
terms vanish in the limitN→`. As shown in Eqs.(29) and
(30), sinceCi,j ,1 and Ci,j ,−1 contain double summations, the
order of them isOsN2d. This large contribution to the time-
averaged probability comes from the fact that the eigenval-
ues −1 and 1 exist for anyn andm in common.

The eigenvalues of the Grover walk include −1 and 1, and
the degree of the degeneration of them areN2+2 andN2,
respectively. As mentioned above, each coefficient itself de-
creases in the formN−2, but the degree of the degeneration is
proportional toN2. As a consequence, the eigenvalues −1
and 1 can positively contribute to the probability even ifN
→` except for the case that both coefficients of −1 and 1
become zero. If we choose such initial states as both coeffi-
cients of −1 and 1 corresponding to the wave function at the
origin are zero for all states, then the quantum walker
spreads from the origin.

We here summarize shortly the conditions that the local-
ization exists in the quantum walk starting from a local po-
sition.

FIG. 4. The probabilityPsx,y,t ;fRd of the quantum walk
whose wave function is determined by the matrixA4 with p=1/3
andq=2/3. A sharp distribution at the origin is observed similarly
as in the case of the Grover walk.

FIG. 3. The probability P(x,y,t ;Cs0d) of the Grover
walk at t=30 starting a superposition of basis statesCs0d
=sei/3,ei/3,−ei/3,−ei/3,0 , . . . ,0dT/2 with N=51. The central local-
ization in Fig. 1(a) disappears.
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(1) There exist eigenvalues in the time evolution matrix
whose degrees of degeneration increase with the same order
of the dimension of the Hibert space as the system size in-
creases.

(2) At least one coefficient corresponding to the above
eigenvalue is not zero.

From the above consideration one conjectures that there is
another two-dimensional quantum walk in which the walker
centralize at the origin. We can show indeed a new matrixA4
such thatHn,msA4d contains eigenvalues −1 and 1 indepen-
dently on the valuesn andm. Suppose that the matrixA4 is
real symmetric matrix. Then a possible matrix is given by

A4 = 3
− p q Îpq Îpq

q − p Îpq Îpq

Îpq Îpq − q p

Îpq Îpq p − q
4 , s73d

where q=1−p. The Grover walk is corresponding top
=1/2. As anexample we show the probabilityPsx,y,t ;fRd
of a quantum walk which is characterized by the matrixA4

with p=1/3 andq=2/3 in Fig. 4. We clearly recognize the
existence of a spike at the origin.

VI. SUMMARY

We have shown analytically that the localization of the
Grover walk at the initial position can be surely measured for
any odd system size. On the other hand, we have also shown
that we can choose special initial states with which the quan-
tum walk disappears at the initial position inN→`. As
pointed out by Tregennaet al. [22], this different behavior
can be used to control the Grover’s search.

As pointed out in Sec. V D, the degeneracy in the eigen-
values of the time evolution matrix is a necessary criterion
for localization in the large-size limit, but it is not a sufficient
criterion for localization. However, we easily expect that
there are many different quantum walks which show the lo-
calization in higher spatial dimensions.
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