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The Grover walk, which is related to Grover’s search algorithm on a quantum computer, is one of the typical
discrete time quantum walks. However, a localization of the two-dimensional Grover walk starting from a fixed
point is strikingly different from other types of quantum walks. The present paper explains the reason why the
walker who moves according to the degree-four Grover operator can remain at the starting point with a high
probability. It is shown that the key factor for the localization is due to the degeneration of eigenvalues of the
time evolution operator. In fact, the global time evolution of the quantum walk on a large lattice is mainly
determined by the degree of degeneration. The dependence of the localization on the initial state is also
considered by calculating the wave function analytically.
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I. INTRODUCTION answer on this problem. Hence it follows that we have to
calculate the wave function rigorously. Second we ask why
The quantum walks are roughly classified into discretethe |ocalization is observed only in the Grover walk. There
time quantum walkg1-6] and continuous time quantum are many different quantum walks, however, the localization
walks[7,8]. We focus on the discrete time quantum walks onis not observed except the Grover walk in our knowledge.
a square lattice. The study of the discrete time quantunThird we would like to know the dependence of the localiza-
walks was begun by Aharonaet al. [1] in the early 1990s, tion on the initial state. We will answer these questions in the
then it has been investigated by a number of groups. Th&llowing sections.
discrete time quantum walk evolves by repeating simple The paper is organized as follows. After defining the
quantum operations, and it is expected to be realized in &rover walk in Sec. Il, we calculate eigenvalues and eigen-
quantum computer. Grover's search algoritf@h, which is  vectors of the time evolution operator to obtain the wave
one of the most famous quantum algoritth, is especia”&UnCtiOH in Sec. lll. Section |V treats the wave function at
related to a discrete quantum wdtk0,11). Recently Shenvi the origin and the time-averaged probability. Using the re-
et al. [12] actually proved that a discrete, coined quantumsults we show that localization remains even if the system
walk can equa' Grover’s a|gorithm_ For an introduction of Size iS |nf|n|ty In Sec. V, we concentrate our attention to the
the implementation by a quantum computer, see Travagliontcalization on an infinite lattice and explain the reason why
and Milburn[13], for example. the Grover walk is special. Furthermore we consider the de-
The recent concentrated studies make clear mathematicaﬁndence of the localization on the initial state and show that
properties of the one-dimensional quantum walks. In particuthe localization disappears at a certain initial state.
lar, the one-dimensional Hadamard walk is studied in detail
[14-19. In contrast with one-dimensional quantum walks,
little about high-dimensional quantum walks is known
[20—24. Thus the purpose of this study is to investigate a  Time evolution of the two-dimensional quantum walks
two-dimensional quantum walk called “Grover walk.” Apio-  The Grover walk considered here is a kind of discrete
neering work for the Grover walk was done by Mackeal.  time quantum walks. Thus we begin with defining the two-
[20]. Very recently Tregennat al. [22] showed numerically  gimensional quantum walk on the square latt&g={(x,y)
that the quantum walker who is controlled by Grover's op- . 72 -(N-1)/2<x<(N-1)/2, -(N-1)/2<y<(N-1)/2}
erator is observed at an initial location with a high probabil- ;. periodic boundary condition. In this paper we assume

ity. In this paper, this phenomenon is referred to as “localyht the system siz is odd. There are four quantum states
ization.” They showed also that the quantum walker startingy; a5ch siteR” “L” “U” and “D” corresponding to right

from a special initial state spreads out numerically. left, up, and down, respectively. Thus the dimension of the

The first question we have to ask here is whether thgyjpert space is M2 The value of wave function for one of

localization remains even after a sufficiently large time. Un-aqe stateSe {R,L,U,D} at the positior(x,y) and timet is

fortunately numerical simulations cannot give us the exach ien by|S,x,y,t). The time evolution ofS,x,y,t) is de-
termined as follows:

II. DEFINITION OF THE TWO-DIMENSIONAL
QUANTUM WALKS

IRX,Y,t+ 1) =ay|Rx—1y,t) + a9
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IL,X,y,t+ 1) = ayy|R, X+ 1,y,t) + ay,|L,x + 1,y,t) 11 01 1
+aygU,x+ 1y,t) +ay|D,x+1,y,t), 2 2 2 2
1 1 1
2 2 2 2
Ao= 1 1 1 1 ©
U, x,y,t+ 1) =ag|Rxy - 1,t) +ag|L,x,y - 1,t) 5 2 "5 5
+aglU,x,y— 1,t) + ag|D,x,y - 1,1y, 1 1 1 1
I 2 2 2 _E_

We introduce here other two-dimensional quantum walks to
compare with the Grover walk by setting following matrices:

ID.xyt+1)=auRxy+1t)+aglxy+11) 11
+agUxy+ 1h+agDxy+ 1. (1) 0 0 "F %
o o —~ L
2 \2
This evolution is characterized by the next matrix A= 1 1 : (4)
=-= 0 0
\'E VE
1 5 5
Q1 A2 A3 g 2 2
Ay, Ay, Ay a - -
A= 21 22 23 24 (2) 1 . .
831 832 833 834 -= 0 —= =
A1 Ay B3 Ay V3 V3 V3
, 111
A= \3'5 \3’5 \E 5)
The matrix corresponding to the Grover walk is defined by 2 1 1 1
- —-——F&== &= 0
V3 v3 3
O |
V3 \E \E

We define the wave function of the total state at tiniy

(t) = (Yo,o0), ¥r1,o(8), 2,00, -+ -1, 00), P0.2(8), 1 1(0), b2 1), - Why(O), - e n-a (D) (6)
[
whereT means the transposed operator and Py L0)= > (SXY, 1S XY,1). (8)
Yy = (RXY,D, L XY, 0, Uy 0, DXy, ). (7) SeiRbOD)

If the initial statey(0) is given, then the wave functios(t)

is calculated by the iteratiofil). The iteration can be ex- Figure 1 shows the probability distribution P

pressed more compactly by introducing %4 4N? unitary ~ =P(x,y,t;#(0)) corresponding to matrice®) A, (Grover

matrix M satisfying ¢(t+1) =Myt). walk), (b) A;, and(c) A, att=30 on the lattice witiN=51
The probability of observing the quantum walker at astarting from an initial statex(0)=(1,0,...,0". In con-

given point(x,y) and timet starting from an initial state{(0) trast with(b) and(c) cases, a localization at the origin can

is defined by be seen only in the Grover walk ca&a.
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" 0 0 0 |[ay ap a3 ay

H, (A) = 0 o 0 O Q1 Ay A3 Ay
' 0 0 o™ 0 ||as ap ass ag |

0 0 0 o"|lan a ay3 as

9)

wherew=€?"N, The integersr andm are quantum numbers

in a wave-number space and they take values between 0 and
N-1. Since there are four componentsHp, (A), the num-

ber of eigenvalues i&4N)?, if not consider the degeneration

of eigenvalues, and each eigenvalue is labelednbm
€{0,1,...N-1} andke{1,2,3,4. As a result, whem

#m, the eigenvalues of the matriM corresponding to the
Grover walker\p, ,\, are given by

)\n,m,l: -1, (10)

)\n,m,Z: 11 (11)

- COSé&m— COSE, — V- 4 +(COS &y + COS &2
)\n,m,3 = 2 !

(12)

~ COS &= COSE,+ \— 4 +(COS &+ COS E,)2
2 L
(13

7\n,m,4 =

whereg;=2jm/N. Whenn=m, the eigenvalues are written as

Ann2=-1, (14)
Apn2=1, (15)
Mnz=—o", (16)
Mna=—o". (17

B. Eigenvectors
FIG. 1. Snapshots of probability distributid®(x,y,t;¥(0)) at ) . . .
time t=30 on a square lattice with system siXe51 with ¥(0) We write the eigenvectors correspondm_g to the eigenval-
=(1,0,...,0". Each of the evolutions is determined by the matri- U8SAnmk &S ¢nmk and we letg; m be theith element of
cesA, (Grover walk, A;, andA, defined in Eqs(3) and(4) corre- ~ Pnmyk If =(N=1)/2<x, y<(N-1)/2, and I=j=<4, we find
sponding to(a), (b), and (c). The central peak irfa) shows the integersx,y, andj satisfying an equationMy+4x+j+2N?

localization of the Grover walk. —2=i for a given natural number Using thesex, y, andj,
the ith element ofé, n, which generates an orthonormal
Ill. EIGENVALUES AND EIGENVECTORS OF THE basis is given by
MATRIX M
B vj’n’m‘kwnx+my
A. Eigenvalues Dinmk= : : (18)
To express the wave function as a functiort e@plicitly N A /2 107 nmil?
we consider the eigenvalues and eigenvectors of the matrix =1 b

M. These are easily obtained by using the Fourier transform.

According to the previous studi¢8], the eigenvalues of the wherev; , i is thejth element of the eigenvector of, .
matrix M are given by a set of eigenvalues of the followingWe show a set of eigenvectors of v,
matrix: =(V1nmks -+ Vanmi | in the following.

052323-3



INUI, KONISHI, AND KONNO PHYSICAL REVIEW A 69, 052323(2004)

Case 1. 0, n>0, andk=1, ANZN-1N-1 4
1 |SX,y,t> = 2 2 2 E d’i,n,m,kd’j,n,m,kl/lj(o)kg,m,k’ (24)
j=1 n=0 m=0 k=1
-1
Unoi=| o |- (19
wherei =4Ny+4x+(S) +2N?-2 andy;(0) is thejth element
0 of the initial vectory«(0).

As shown in Eg. (13), the eigenvalues degenerate

Case 2. =m0, n>0, andk>1, . -
strongly. Thus we try to expand the wave function by distinct

Mok ¥ Bn eigenvalues. The eigenvaldg, ;=—1 always exists for any
Moo+ combinationn andm. Furthermore\,, ,,3 and\,, ,,» become
n,0k IBn T T
Unok=1| , (200 -1 for n=m=0. If n>0 and m>0, then the eigenvalues
Brknok+ Bn Mnmk are distinct for fixech andm. Therefore the condition
ZAﬁVO’k+ Banok— Bn Nnmk=Mn v k IS €quivalent to the following condition:
Case 3. =m,
{onndl=k=4) COS&m+ COSE, = COSE,y + COSE,y. (25)
- ay o 0 -1

A set of a pair(n’,m’) belonging to the same eigenvalue

= ! , 1 , -1 , 0 . Anmk for k>2 andn>0 is given by
- ap ap 0 1
1 1 1 0 (
21 {(n,0),(0,n),(N-n,0),(0,N-n)} for m=0,
21 {(n,n),(n,N-n)} forn=m
Case 4. mm=N, Q(n,m) =14 {(nm), (N - m),(N=nm),(N-n,N-m),
{ Un,N—n,k|1 = k = 4} (m,n),(m,N - n)l(N - m!n)!(N - mvN - n)}
1 1 0 -1 L otherwise.
)| - VYa, /ey, -1 0
| -a, | Ua, | 1| 0 ' To express the wave function compactly using the set
Q(n,m) we define the following functions:
1 1 0 1
(22 .
. Vi 0 okl (0
Case 5.0therwise, Ciook= 4 0,0k J,0,0kwf ) | 26
2y 2 2
an)\g,m,k +(an+ aan))\n,m,k"' anPm 2 |Ui,0,0k|2 2 |Uj,0,0k|2
_ Aomkt (an + Br)Npmk+ @nBm i=1 j=1
Unmk = 2 2 ,
By mk (Bm* apBm)Nmk + @nBm
2an)\g,m,k +(1+ a’ﬁ + anIBm))\ﬁ,m,k ~ anfPm x 0
23 vi,n’,m’,kvj,nr,mr,klﬂj( )
(23 Cijnmk= > 7 7
Wherean:w_n andﬁm:w_m. o eamnm 2 ‘Ui,n',m’,k2 2 |Uj,n"mr,k2
i=1 =1

IV. WAVE FUNCTION OF THE GROVER WALK
forn>0 andm> 0.

Since we have obtained the complete eigenvalues and (27
normalized orthogonal eigenvectors, we can express the \We note here the reason why the system size is restricted
wave function as a function of time. Before we present theg odd in this paper. In the case of odd, the degree of degen-
wave function, we number the stat®sL, U, andD from 1 eration of eigenvalues is eight at the most except for the
to 4, respectively. Let(S) be the number of the stat® In  ejgenvalues -1 and 1. On the other hand, the eigenvalues
addition we use expediently a suffixdefined by Ny+4x  with large degree of degeneration exist in addition to 1 and
+1(S)+2N?-2 to number each computational basis from 1 to-1 in the case of even. This fact does not lead us to fatal
4N?. For example, a combination of the coordinationy  difficulty, but the calculation becomes more complicated
=(N-1)/2 and a stat&=R is labeled byi=1. Then we have than that in the odd case.
the wave functior|S,x,y, t), We now have another expression of wave function,

Expansion of wave function in terms of eigenvalues
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1 PING
— t
IS x,y,t) = @2 Cij1*Cij-a(-1)
=1
(N-D/2 4 N-1 4
+ 2 Ecljnok)\nOk"' E Ecunnk)\nnk
n=1 k=3 n=1 k=3
(N-3)/2 (N-1)/2 4
t
+ 2 2 2 Ci,j,n,m,k)\n,m,k ’ (28)
n=1 m=n+1 k=3
where
(N-1)/2 N-1
Cij1=Cijo0.2%t > Gijno2t > Gijnn2
n=1 n=1
(N-3)/2 (N-1)/2
+ > > Cijnm2s (29
n=1 m=n+1
(N-1)/2
Cij-1=Cij001%Cijoo3tCijooat > Gijno,1
n=1
N-1 (N=3)/2 (N-1)/2
+2C|Jnn1+ 2 2 Cl]nml: (30)
n=1 m=n+1

andi=4Ny+4x+1(S)+2N?-2. In the formula(28), C;; ; and
Cij-1(-1)" give the contribution of the eigenvalues 1 and -1
to the wave function. The remaining terms are correspondin
to the eigenvalues fdt=3 and 4.

PHYSICAL REVIEW A 69, 052323(2004

walks. Thus we introduce time-averaged probability
P(S; ¢9,N) defined by

T1

P(S; ¢o.N) = lim < 2 P(St; ¢po,N). (36)

Let us calculateP(S; ¢r,N), which is the time-averaged
probability starting a stateég. Submitting the wave function
with coefficients(31)—(34) into the definition(35), we find
the cross terms in the formy, m i\ v k- If the eigenvalue
Nnmk IS d|ﬁerent from N v, the time-averaged value
limy_..=] ()\nmk)t()\n, . )T vanishes. Thus we have

4N?
E Cij-1
=1

2

- 4N2
P(S;doN) = g > Cija
j=1

aN?

ECIJI‘IOK

(N-D/2 4

+ 2 X

n=1 k=3

aN?

Ecunmk

(N-3)/2 (N-1)/2 4

> X

m=n+1 k=3

+ . (37)

g

n=1

We move on more specific cases. In order to show thé’lugging Egs.(31)—(34) into Eq. (37), the time-averaged

localization we calculatfR, 0,0 t) for the Grover walk start-
ing from one of the computational bagR,0,0,0=1. We
refer this special initial state agg. The values in Eq926),
(27), (29), and(30) can be obtained after some algebra by

N? 1 N
Ci11™ R Ci1-1= > + R (31
Ciinok=1 for 0Kk, (32
Cl,ln,n,l = Cl,ln,n,z = %1 Cl,ln,n,3 = 0, Cl,ln,n,4 = 1,
(33
Ciipmk=2 forn=#manddKk. (39

V. TIME-AVERAGED PROBABILITY
A. Definition of time-averaged probability

We begin with considering the probabilify(S,t; ¢y, N)
that a walker in the stat8 at the origin on a square lattice
with size N starting from an initial stateb,. The probability
P(S,t; ¢9,N) is calculated from the relation

P(St; ¢0,N) =(S,0,04/S,0,00).

The probability P(S,t; ¢y,N) does not converge to a fixed
value in the limitt—o in contrast with classical random

(39)

probability P(R; ¢g,N) is given by

1 5
84N2

2
N3+

5

NG (38

P(R; dr,N) =

The time-averaged probabilitP(R; ¢g,N) is a monoto-
nously decreasing function M and it converges to 1/8 in the
limit N— . ThusP(R; ¢g,N) is larger than 1/8 for any odd
N. It means that the quantum walker centralizes at the origin.
We must pay attention to the dependence of the wave
function on the parity of time. The value of wave function at
odd time is small in comparison with the value at even time.
It is similar to the fact that the probability of return to the
origin at odd time is zero in a classical random walk on an

infinite square lattice. LeP, «(S; $r,N) and P o(S; dr,N) be

the time-averaged probabilities over even time and odd time,
respectively. Then we have

— 1 3 2 5
PRGN e e e 9
— 1 2 5
Po(RidrN) =2~ 5+ g (40)

The probability averaged over odd tinfTQ)(R;gbR,N) con-
verges to zero in the limiN— . Thus there is a relation

Po(R; ¢r,N)=2P(R; ég,N) in the limit N— ce.
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__ We clearly find that the time-averaged probability (N-3)72 (N-1)/2
P(S; s, N) =P(R: ¢, N) for any Se {R,L,U, D}. The calcu- im 5 2 2 Caonma
— N—o0 n=1 men+l

lation of P(S; ¢g.5,N) is more elaborate and therefore not

treated there, but subsequently in the large-size limit.

B. The time-averaged probability in the limit N— o«

We now proceed to the probabilitf(S,t; ¢gr,N) in the
limit N—o. The only first and second terms in E7)

remain in the limit ofN— . Thus its calculation becomes

easy as shown below:

P.(S;¢p) = Nlimf(s; BN, (41)

1
=1lim =(|Ci04*+[Cio-1)- (42)
N*}OON
Furthermore the constant and the single summatio@; jn
andC;; -, do not contribute tdP..(S; ¢r). Consequently, the
probability P..(S; ¢g) is given by

(N-3)/2 (N-1)/2 ) 2

2 E Ci,O,n,m,l

n=1

P..(Si¢g) = ( lim 5

m=n+1

(N-3)/2 (N-1)/2

1 2
+ < lim N2 2 2 Ci,O,n,m,Z) . (43)

N—oe n=1 m=n+l

Let us consider time-averaged probabilitiesNn- oo for all
possible states at the origin. The values ®§,,, and
Ci.onm2 @s a function oh andm are given by

_ 2(coséy + cosé, — 2 Coséy, COS &)

C2.0nm1= -2+ C0Séy+ COSE, - (49
_ 2(cosép+ Ccosé, + 2 C0Sé, COS &)
C2.0nm2= 2 +coSé,+ oS, (49
S 8 Sirf(£n/2)sin(£4/2) fori=a4. (46

R 2 —Cco0sé,,— cosé,
Cionm2= 8 c0S(£y/2)c0s'(4/2) fori=3,4. (47

2 +Cc0osé,,+ cosé,

The double summations in E43) in the limit N—« are

1 (™ (™ 8 Sirf X sirf y
=— | dx| dy ,
272 ), 0 2 -cos X-Cos ¥
1 1

= : 49

4 2 49
Similarly we can calculate the summation fosg, . and
C30nm2 and we have the same valugs4d—-1/7 and 1/4
—1/2m. Finally the time-averaged probabilities are given by

— 1
P.(R; ¢r) = g’ (50
— 1 2 1
POO(L;¢R)Z§+?_7_T1 (51)
— 1 1 1
Pm(U;¢R):§+§—ZT, (52
— 1 1 1
Poo(D;d)R):é"'Z_ﬂ_z_ZT- (53

Summing EM(S; ¢r) over all possible states, the time-
averaged probability that a quantum walker exists at the ori-
gin is - - - -

Poc(¢R) = Poo(Ru ¢R) + Poo(l—1 ¢R) + Poc(U ; ¢R) + Poo(Du ¢R)

1 3 2
_+___
2

™ o

(54)

C. Dependence of the time-averaged probability
on an initial state

If the Grover walk starts from the fixed computational
basis, then the localization of the quantum walker at the ori-
gin was shown in the preceding section. The numerical re-
sults obtained by Tregenre al. [22], however, suggest that
the time-averaged probability at the origin of the Grover
walk starting a certain superposition of basis states becomes
zero. To confirm this observation we consider the wave func-
tion at the origin starting the next superposition of basis
states,

$(a,)=a|R,0,0,0 +4]L,0,0,0, (55

where |af>+|8?=1. In the formula in Eq.(28) the coeffi-
cients corresponding tp>2 are zero and the coefficients

calculated by replacing the summations into the fOHOWi”gcorresponding tg=1 are already computed in EG4). Thus

integrals:
(N-3)/2 (N-1)/2
lim N2 2 E C2.0nm1
N—eN" 121 e
1 (™ T 2(cosx+ cosy— 2 cosSx cos
_ 1 J dx f dy ( y y) ,
8m2)y Jo - 2 + cosx + cosy
1 1
=—-—, 48
4 (48)

we consider the only coefficients corresponding+®. Sup-
pose that/{(0)=¢, =(0,1,0,...,0". Then we obtain

(N-1)/2

7 3N 8

Cio1==—7+— - 2 s
4 2 =1 3+C0sé,
(N-3)/2 (N-1)/2

S 2(cos &, +cosé, + 2 cosé,,cosé,)
2+ Cc0Sé,,+ Cosé,

n=1 m=n+l

(56)
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FIG. 2. The solid line denotes the time-averaged probablllty—

PR(a) and the dashed line denot@(a) The value ofPg(a) at
a=1and 1is 1/8, ancﬂ’R(a) takes zero aty,;,=0.263 57..

3 N
Ci2-1= Z - E
N (N§ ? (Ni & 2(cos &, + cosé&, — 2 cosé, cosé,)
n=1 m=n+l —2+cos§y + cosé,
(57)
4
C1,20n,03=C12pn04="1+ 3+ ot (58)
n
C1,20n3=C12nn4=0, (59

C12nm3=C12nm4
B 4(cos &y, — COS&p)?
" 6 - Cco$2&,) — CO42¢,) — 4 COSE, COSép,

for m>n.
(60)

PHYSICAL REVIEW A 69, 052323(2004

amin= N =716 -+ 272
and it takes the maximum value af,,, given by
a
®max= (64)

V16 - 8+ 272

Since the valuesa=1 anda=-1 indicate one of the compu-
tational basis, it is found that the time-averaged probability

Pr(a) takes the maximum at the superposition of basis
states. As shown in the numerical calculatj@g], the quan-
tum walk starting from a certain initial state spreads out.

Although the time-averaged probabiliBg(«) becomes zero
at a=ap,, the quantum walker remains at the origin. Put it
another way, the component of the time-averaged probability
corresponding to th®& state converges to zero, but the other
component remains positive. Therefore we can say that the
quantum walker in the stat® perfectly converts into other
state in the limitt— o at a= .

Let us consider the time-averaged probability for more
general initial states defined by

$la,B,7.0) =R 0,0,0 +5|L,0,0,0 +U,0,0,0

+{|D,0,0,0, (65)

where|a|?+|8/>+|v|?+|Z]?>=1. Repeating the procedure de-
scribed above yields the time-averaged probability for this

initial state,
@ 12 1
22 V8 #?
1
V§ — (7 0
(66)

P..(R; ¢, B,7,0) =

:]

We now can calculate the time-averaged probability

E(R;d;(a,ﬁ),N) for any odd system siz&l by combining
Egs. (31)«34) with Egs. (56)«60). However, it is rather

complicated. Thus we show only the result in the limit of

N—oco. The time-averaged probabili@w(R; ¢(a,B)) is ob-

Taking symmetry into account, the other components are
given by

tained by replacing the summations to the integrals in the

same way described in the preceding section, and it becomes

2
(61)

-

— 1
Pw(R; (b(a!ﬁ)) = é a+t

Similarly we have the time-averaged probability correspon

ing to thelL state,

2
(62

— 1 4
PW(L1¢(QIB)):§‘B+(1_7_T)C(

Figure 2 showsPg(a)=P..(R; ¢(a,V1-a?)) and P (a)
EPw(L;(ﬁ(aﬂ’l—az)) for ae[-1,1]. The time-averaged
probability Pg(a) becomes zero at,,, given by

P.(L; (.8, 7%,0) = P(R;p(B,a,1,0),  (67)
P.(U;$(c,8,%,0) = P(R;p(v, L, B),  (68)
P..(D; (e, 8,1,0) = P(R;p(L, v, B). (69

The condition for which all components in Eq66)—<69)

d_become zero is obtained by

a=€%2, B=a, (=-«a (70

Setting#=0, we confirm the numerical results given by Tre-

Y=o

gennaet al. [22], which claim that the probability of

P.(S; ¢(a,B,v,{)) becomes zero for any stafby setting
a=B=—-y=-¢=1/2. Figure 3 shows a snapshot after 30
steps on a square lattice with=51 starting from an initial
state with#=1/3 in Eq.(70). One definitely finds that the
localization disappears. On the other hand, the summation of
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FIG. 3. The probability P(x,y,t;¥(0)) of the Grover
walk at t=30 starting a superposition of basis statég0)
=(&/3,63, -3, —€”3,0,...,07/2 with N=51. The central local-
ization in Fig. 1a) disappears.

EOC(S; d(a,B,7y,0) over all possible states takes a maximum
values2+8/m%-8/7=0.264 09... atv=8=y={=1/2.Thus

1/2.

D. Conditions of the localization

the time-averaged probability over even time is larger tharﬁ

PHYSICAL REVIEW A 69, 052323(2004)

FIG. 4. The probabilityP(x,y,t;¢g) of the quantum walk
whose wave function is determined by the matixwith p=1/3
andq=2/3. Asharp distribution at the origin is observed similarly
as in the case of the Grover walk.

tors. Each component of the eigenvector decreases in inverse
ratio to the system size and the coefficients decrease in pro-
ortion toN2. Thus, if the quantum walk exists initially at a
xed point and all eigenvalues are distinct, then the probabil-
ity of observing the quantum walk at the fixed point goes to
zero by taking the system size as infinity. For this reason, the
degeneration of eigenvalues is necessary for the localization.

An essential condition that determines whether the quantn the case of quantum walks on a circle including odd sites,
tum walk shows localization or not is dependence of thethe eigenvalues are distinct except for trivial cass Thus
degree of degeneration for eigenvalues on the system siz&1€ localization is not observed.

Before we state the condition of localization, we consider the

If a quantum walker exists only at the origin initially, the

quantum walks introduced in Sec. Il again. We saw that &oefficientc;; ,mk in Eq. (37) takes nonzero value for only

spike exists at the origin in the Grover walk, but the two-
dimensional quantum walkers governed by the matrisgs

onej. Therefore the summation ov¢rin Eq. (37) does not
depend on the system size and the summation o\aerd k

and A, spread out. The significant difference between thencreases with the system size. Accordingly, the order of the
Grover walk and other quantum walks is the degree of eithird and the fourth term in Eq37) is O(N™%). Similarly the

genvalues. For example, the eigenvaluesigf, with A, are
given by

Mnmi Vi cos &, cosény+ i m,
Nnm2 - \I €0S &, CoS &+ iy m, | 1)
Am3 Vi cos &, cosén—fom,
Anma —\i cos&,cosémn— fom,
where
fom= VSI? &, + cog &, cos &, (72)

We find no common eigenvalues to all valuesrofind m
such as -1 and 1 iN, ,c of the Grover walk. There areN#

order of the fifth term in Eq(37) is O(N™?). As a result, these
terms vanish in the limitN—o. As shown in Egs(29) and
(30), sinceC;; ; andC;; _, contain double summations, the
order of them iSO(N?). This large contribution to the time-
averaged probability comes from the fact that the eigenval-
ues —1 and 1 exist for any andm in common.

The eigenvalues of the Grover walk include -1 and 1, and
the degree of the degeneration of them hfe-2 andN?,
respectively. As mentioned above, each coefficient itself de-
creases in the for™2, but the degree of the degeneration is
proportional toN2. As a consequence, the eigenvalues -1
and 1 can positively contribute to the probability evermNif
—oo except for the case that both coefficients of -1 and 1
become zero. If we choose such initial states as both coeffi-

gquantum states in these quantum walk on the square lattiagents of =1 and 1 corresponding to the wave function at the
including N? sites. Therefore the number of eigenvalues ancbrigin are zero for all states, then the quantum walker

eigenvectors of the time evolution operator is ald.4Since
the wave function at timé is expressed by a linear combi-
nation of thetth power of the eigenvalue in which the coef-

spreads from the origin.
We here summarize shortly the conditions that the local-
ization exists in the quantum walk starting from a local po-

ficients are given by the product of component of eigenvecsition.
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(1) There exist eigenvalues in the time evolution matrixwith p=1/3 andq=2/3 in Fig. 4. We clearly recognize the
whose degrees of degeneration increase with the same ordexistence of a spike at the origin.
of the dimension of the Hibert space as the system size in-

creases. o . VI. SUMMARY
(2) At least one coefficient corresponding to the above . o
eigenvalue is not zero. We have shown analytically that the localization of the

From the above consideration one conjectures that there fgrover walk at the initial position can be surely measured for
another two-dimensional quantum walk in which the walkerany odd system size. On the other hand, we have also shown
centralize at the origin. We can show indeed a new ma{yix that we can choose special initial states with which the quan-
such thatH, ,(A,) contains eigenvalues -1 and 1 indepen-tum walk disappears at the initial position M—c. As
dently on the values andm. Suppose that the matri¥, is pointed out by Tregennat al. [22], this different behavior

real symmetric matrix. Then a possible matrix is given by €an be used to control the Grover’s search. _
As pointed out in Sec. V D, the degeneracy in the eigen-

-p q \Jﬁ \Hq values of the time evolution matrix is a necessary criterion
q -p \aq \E] for localization in the large-size limit, but it is not a sufficient
A=l — — , (73)  criterion for localization. However, we easily expect that
Vpg Vpg -9 P there are many different quantum walks which show the lo-
\E \El P —q calization in higher spatial dimensions.
where q=1-p. The Grover walk is corresponding tp
=1/2. As anexample we show the probabili§(x,y,t; ¢r) ACKNOWLEDGMENT
of a quantum walk which is characterized by the ma#ix The authors wish to thank Hiroshi Araki for simulations.
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