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We introduce a Gaussian version of the entanglement of formation adapted to bipartite Gaussian states by
considering decompositions into pure Gaussian states only. We show that this quantity is an entanglement
monotone under Gaussian operations and provide a simplified computation for states of arbitrary many modes.
For the case of one mode per site the remaining variational problem can be solved analytically. If the consid-
ered state is in addition symmetric with respect to interchanging the two modes, we prove additivity of the
considered entanglement measure. Moreover, in this case and considering only a single copy, our entanglement
measure coincides with the true entanglement of formation.
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I. INTRODUCTION

One of the main novelties of quantum information theory
is to consider entanglement no longer merely as an apparent
paradoxical feature of correlated quantum systems, but rather
as a resource for quantum information processing purposes.
This new point of view naturally raises the question regard-
ing the quantification of this resource. How much entangle-
ment is contained in a given state? For pure bipartite states
there is, under reasonable assumptions, a simple and unique
answer to this question, namely, the von Neumann entropy of
the reduced state[1–3]. For mixed states there are several
entanglement measures[4], which can be distinguished due
to their operational meaning and mathematical properties.
Such a measure should be nonincreasing under mixing as
well as under local operations and classical communication
(LOCC), and it should return the right value for pure states.
The largest measure fulfilling these requirements is the en-
tanglement of formationEF [5]. Operationally, it quantifies
the minimal amount of entanglement, which is needed in
order to prepare the state by mixing pure entangled states. It
is therefore defined as an infimum

EFsrd = infHUo
k

pkEsCkdUr = o
k

pkuCklkCkuJ s1d

over all spossibly continuousd convex decompositions of the
state into pure states with respective entanglementEsCd
=SstrBfuClkCugd, whereSsXd=−trfX log Xg is the von Neu-
mann entropy. By its definition calculatingEF is a highly
nontrivial optimization problem, which becomes numeri-
cally intractable very rapidly if we increase the dimen-
sions of the Hilbert spaces. Remarkably, there exist ana-
lytical expressions for two-qubit systemsf6g as well as for
highly symmetric statesf7,8g.

Recently, EF was calculated for continuous variable
states, namely, for symmetric Gaussian states of two modes
[9]. In general, Gaussian states are distinguished among
other continuous variable states due to several reasons. Ex-
perimentally, they are relatively easy to create and arise natu-
rally as states of the light field of a laser[10] or in atomic

ensembles interacting with light[11]. For this and other rea-
sons they play a more and more important role in quantum
information theory[12].

Theoretically, despite the underlying infinite dimensional
Hilbert space, they are completely characterized by finitely
many quantities—the first and second moments of cononical
operators. Moreover, they stand out due to several extremal
properties.1 In fact, the calculation ofEF for symmetric two-
mode Gaussian states depends crucially on the fact that for
given “EPR correlations”[9] two-mode squeezed Gaussian
states are the cheapest regarding entanglement. This implies
that in this particular case there is a decomposition in terms
of pure Gaussian states, which is optimal forEF in Eq. (1).

On the one hand, this raises the question, whether this is
generally true for all Gaussian states. On the other hand, one
may, motivated by the operational interpretation ofEF, re-
strict Eq.(1) to decompositions into Gaussian states from the
very beginning. After all, Gaussian states arise naturally,
whereas the experimental difficulties of preparing an arbi-
trary pure continuous variable state are by no means simply
characterized by the amount of its entanglement. For these
reasons we will in the following investigate the Gaussian
entanglement of formationEG to quantify the entanglement
of bipartite Gaussian states by taking the infimum in Eq.(1)
only over decompositions into pure Gaussian states.

This article is organized as follows. In Sec. II we recall
basic notions concerning Gaussian states. Section III defines
the Gaussian entanglement of formation and provides a ma-
jor simplification concerning its evaluation for bipartite
Gaussian states of arbitrary many modes. In Sec. IV we
prove thatEG is indeed a(Gaussian) entanglement mono-
tone, in the sense that it is nonincreasing under Gaussian
local operations and classical communication(GLOCC). The
case of general two-mode Gaussian states is solved analyti-
cally in Sec. V. The special case of symmetric Gaussian
states, for which it was proven in Ref.[9] that EG=EF is

1For example, Gaussian states have maximal entropy among all
states with given first and second moments of the canonical observ-
ables.
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discussed in detail in Sec. VI, where we give an alternative
calculation ofEG, which is in turn utilized in Sec. VII in
order to prove additivity ofEG for this particular case. Fi-
nally, Sec. VIII applies the measure to some examples which
arise when a two-mode squeezed state is sent through optical
fibers. The Appendix proves a lemma about decompositions
of classical Gaussian probability distributions.

II. GAUSSIAN STATES

Consider a bosonic system ofn modes, where each mode
is characterized by a pairQk,Pk of canonical(position and
momentum) operators. If we setR=sQ1,P1, . . . ,Qn,Pnd the
canonical commutation relations are governed by the sym-
plectic matrix

s ; %
k=1

n S 0 1

− 1 0
D s2d

via fRk,Rlg= iskl. A state is called a Gaussian state if it is
completely characterized by the first and second moments of
the canonical operatorsRk in the sense that the corresponding
Wigner function is a Gaussian. Utilizing Weyl displacement
operatorsWj;eijTsR, the first momentsdk; trfrRkg can be
changed arbitrarily by local unitaries. Hence, all the infor-
mation about the entanglement of the state is contained in
the covariance matrixsCMd

gkl ; trfrhRk − dk1,Rl − dl1j+g, s3d

where h¯ ,¯j+ denotes the anticommutator. By definition
the matrixg is real and symmetric, and due to Heisenberg’s
uncertainty relation it has to satisfygù is. For pure Gauss-
ian states we have detsgd=1 or, equivalently,ssgd2=−1.

In the following we denote the density operator corre-
sponding to the Gaussian state with covariance matrixg and
displacement vectord by rsg,dd. If the latter is a bipartite
state, its tensor product structure corresponds to a partition of
the n modes into two subsets.

An important decomposition ofrsg,0d into pure Gaussian
states is given by

rsg,dd ~E d2nj rsgr,d−jde
s−1/4djT sg − gpd−1j, s4d

where gpøg is the covariance matrix of a pure Gaussian
state. Since displacements of the formrsg,0d°rsg,dd are local
operations, Eq.s4d tells us that starting withrsg8,0d we can
obtain every Gaussian state with CMgùg8 by means of
LOCC operations.

III. GAUSSIAN ENTANGLEMENT OF FORMATION

We define the Gaussian entanglement of formationEG for
a bipartite Gaussian statersg,dd by

EGsrsg,ddd ; inf
m
HE msdgp,dDdEsrsgp,DddU , s5d

rsg,dd = HE msdgp,dDdrsgp,DdJ , s6d

where the infimum is taken over all probability measuresm
characterizing convex decompositions ofrsg ,dd into pure
Gaussian statesrsgp,Dd, andEsrsgp,Ddd is the von Neumann
entropy of the reduced state. For puren3n mode Gaussian
states this quantity can be readily expressed in terms of the
symplectic eigenvalues of the reduced CM. Denote these ei-
genvalues byak,k=1, . . . ,n. We haveakù1 and definerk
ù0 by ak=coshrk. Then

Esrsg,ddd = o
k

Hsrkd, s7d

where

Hsrd = cosh2srdlog2scosh2 rd − sinh2srdlog2ssinh2 rd. s8d

To obtain this expression note that any puren3n Gaussian
state is locally equivalentsvia unitary GLOCCd to the tensor
product ofn two-mode squeezed states with squeezing pa-
rametersrk f13g. For each tensor factor the entanglement is
given by the above formula. Since the symplectic spectrum
of the reduced CM is invariant under local unitary GLOCC
the rk can be computed directly fromgp as described above.

The integrals in Eqs.(5) and(6) are taken over the space
Rn of displacements and over the set of admissible pure state
covariance matrices. The following proposition tells us that it
is sufficient to only consider the measuresm, which vanish
for all but one covariance matrix.

Proposition 1.The Gaussian entanglement of formation
for the bipartite Gaussian statersg,dd is given by

EGsrsg,ddd = inf
gp

hEsrsgp,0ddugpøgj, s9d

where the infimum is taken over pure Gaussian states with
CM gp.

Proof. The proof can be divided into three steps.
(i) The problem can be reformulated in terms of classical

Gaussian distributions, by considering Wigner functions in-
stead of density operators. This is formally achieved by tak-
ing the trace of the decomposition in Eq.(6) with the space
displaced parity operatorPj=WjPWj

* [14]. Then

trfPjrsg,ddg = ugu−1/2expf− ssj + ddTg−1ssj + ddg s10d

is up to a normalization factor equal to the Wigner function
of rsg,dd, which in turn completely determines the state.

(ii ) All the statesrsgp,dd contributing to Eqs.(5) and (6)
must have smaller covariance matricesgpøg, i.e.,

mfhsgp,Ddu∃x:kx,sg − gpdxl , 0jg = 0. s11d

The idea of the proof is that the tails of a Gaussian with CM
that is too large would give rise to an increasing and in the
end overflowing contribution if we only move far enough
away from the center. This is mathematically formalized in
Lemma 3 stated and proven in the Appendix. To apply
Lemma 3 via Eq.s10d to Eq.s5d we need in addition, that the
inverse is operator monotone on positive matricesg.0.

(iii ) Assume thatm̃ is a measure corresponding to an
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optimal decomposition ofrsg,dd giving rise to the infimum in
Eq. (5). Then

EGsrsg,ddd =E
gpøg

m̃sdgp,dDdEsrsgp,Ddd s12d

ù inf
gp

hEsrsgp,0ddugp ø gj. s13d

However, by using a Gaussian decomposition of the form in
Eq. s4d we know that equality in Eq.s13d can be achieved for
a measurem̃ which is Gaussian inD and a delta function
with respect togp. j

Proposition 1 considerably simplifies the calculation of
EG, since the optimization is reduced from the set of all
possible decompositions to the set of pure states satisfying
the matrix inequalitygpøg. Before we proceed to calculate
EG analytically for the two-mode case, we will show thatEG
is indeed a proper entanglement monotone. To confine the
argument to CM’s(rather than density matrices) we make
use of Proposition 1.

IV. MONOTONICITY UNDER GAUSSIAN OPERATIONS

For EG to serve as a good Gaussian entanglement measure
it should not increase under GLOCC. More precisely, if a
GLOCC operation maps an initial Gaussian stater onto a
stateri with probability pi, thenEG should not increase on
average, i.e.,

EGsrd ù o
i

piEGsrid. s14d

That this is the case is quickly seen using the characteriza-
tion of Gaussian operations given in Refs.f15,16g. In fact, in
the Gaussian case monotonicity holds even for probabilistic
operations. That is,EGsrdùEGsrid is satisfied for every
single term in Eq.s14d.

It was shown in Refs.[15,16] that the change of the CMg
of a Gaussian state under(probabilistic) Gaussian operations
takes the form of a Schur complement

g ° Gsgd = G̃1 − G̃12
1

G̃2 + g
G̃12

T ; SsG̃ + 0 % gd. s15d

Here

G = S G1 G12

G12
T G2

D
is the 4n3n CM of the state characterizing the operationG

and G̃ù0 is the CM of the partially transposed state.2

For positive matricesAùB implies SsAdùSsBd (see Ref.
[17]). Consequently, ifgùgp, then the transposed CM ful-
fills GsgdùGsgpd.

Every GLOCC can be decomposed into apure GLOCC

Gp mapping pure states onto pure states, and the addition of
classical Gaussian noise. This decomposition can easily be
shown using the above mentioned ordering of the Schur
complements for ordered matrices. The decomposition then
readsGsgpd=Gpsgpd+P, where the noise is characterized by
some positive matrix Pù0, which is usually state-
dependent. Therefore we haveGsgdùGsgpdùGpsgpd and
since the latter CM corresponds to a pure state, which can be
obtained fromgp by a local Gaussian operation, its entangle-
ment is certainly smaller than that ofgp [18]. It follows that
EG cannot increase under GLOCC.

V. THE GENERAL TWO-MODE CASE

Now that we have assured thatEG is a good measure of
entanglement in a Gaussian setting, we set to compute it for
the case of two Gaussian modes in an arbitrary mixed state.
The CMg of any two-mode Gaussian state can be brought to
the normal form[19,20]

g = Sna kq

kq nb
D % Sna kp

kp nb
D ; Cq % Cp, s16d

with kqù ukpu by local unitary Gaussian operations. The block
structure corresponds to a direct sum of position and momen-
tum space, i.e., we have reorderedR=sQ1,Q2,P1,P2d.

Since the normal form in Eq.(16) is unique the param-
eters sna,nb,kq,kpd provide a complete set of local invari-
ants.

The first step towards calculatingEG for these states is to
show that there is always a pure stategp, which is optimal
for Eq. (9) and has the same block structure asg in Eq. (16).
To this end we will first provide a general parametrization for
pure state CM’s, which accounts for the direct sum with
respect to configuration and momentum space.

Lemma 1.A real symmetric matrixgp is the covariance
matrix of a pure Gaussian state ofn modes iff there exist real
symmetricn3n matricesX andY with X.0 such that

gp = S X XY

YX YXY+ X−1D , s17d

where the block structure corresponds to a direct sum of
configuration and momentum space.

Proof. A covariance matrixgp corresponds to a pure
Gaussian state ifsgpsd2=−1. If we write

gp = S X C

CT D
D ,

with X,D.0, then this is equivalent to

XD = 1 +C2, s18d

DC = sDCdT, s19d

CX= sCXdT. s20d

Equations20d implies thatY: =X−1C=sX−1CdT=YT is indeed
symmetric. Moreover, Eq.s18d leads to D=X−1s1+C2d

2Partial transposition of ann3n Gaussian density matrix with
CM g yielding a Gaussian operator with CMg̃;LgL, whereL
=12n % diags1,−1, . . . ,1 ,−1d.
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=X−1+YXY. Hence, every covariance matrix of a pure
Gaussian state is of the form in Eq.s17d.

Conversely, every such matrixgp with X.0 is positive
definite and has symplectic eigenvalues equal to one since
the spectrum of −sgpsd2 is the symplectic spectrum squared
of gp. Thus every matrixgp is an admissible covariance ma-
trix corresponding to a pure Gaussian state. j

The covariance matrix in the normal form of Eq.(16)
only contains terms which are quadratic in the momenta but
has no linear contributions. This implies that the state re-
mains invariant under momentum reversalP°−P and since
this can be interpreted as complex conjugation, the respec-
tive density operator is real(in position representation).

Equation (17) gives the covariance matrix of a pure
Gaussian state with respective wave function

Csxd = upXu−1/4expF−
1

2
xTsX−1 − iYdxG , s21d

which in turn becomes real ifY=0. The following lemma
shows that for two-mode states we can, in fact, restrict to
these real pure states in the calculation ofEGsgd.

Lemma 2.Let g=Cq % Cp be the covariance matrix of a
two-mode Gaussian state. Then there exists a pure state with
covariance matrix of the same block structure which mini-
mizesEG for g.

Proof. We will show that for everygpsX,Ydøg of the
form in Eq. (17) the covariance matrixgpsX,0d leads to an
improvement forEG. First note that the block structure ofg
implies thatgùgpsX, ±Yd and thus

g ù
1

2
fgpsX,Yd + gpsX − Ydg s22d

=gpsX,0d + 0 % sYXYd s23d

ùgpsX,0d. s24d

ThereforegpsX,0d is an admissible covariance matrix for the
EG optimization problem.

In order to show thatgpsX,0d is less entangled than
gpsX,Yd we make explicit use of the assumption that we deal
with two-mode states. In this case the entanglement is a mo-
notonous function of the determinant of the reduced covari-
ance matrix. The difference of the respective determinants
can be calculated straightforward and it is given by

detfgp
sAdsX,Ydg − detfgp

sAdsX,0dg s25d

=Y12
2 detfXg ù 0, s26d

which completes the proof. j
According to Lemma 2 the remaining task for calculating

EG is to find the CMgp=X% X−1 which has minimal entangle-
ment under the constraint that

Cp
−1 ø X ø Cq. s27d

This inequality has a simple graphical depiction stemming
from the fact that the set of positive semidefinite matricesX

satisfying an inequality as, e.g.,Cq−Xù0, form a cone,
which is equivalent to thesbackwardd light cone of Cq in
Minkowski space: if we expand a Hermitian 232 matrix in
terms of Pauli matricessand the identityd, the expansion co-
efficients play the role of the space-time coordinates and the
Minkowski norm is simply given by the determinant of the
matrix. Hence, by Eq.s27d X has to lie in the backward cone
of Cq and in the forward cone ofCp

−1 ssee Fig. 1d.
Instead of minimizing the entropy of the reduced state

under this constraint, we may as well minimize the determi-
nant of one of the local covariance matrices

msXd ; 1 +
X12

2

det X
= 1 +

sX−1d12
2

detsX−1d
s28d

=X11sX−1d11, s29d

since, as already stated, this is a monotonically increasing
function of entanglement. Thus we have to find

min
x

hmsXduCp
−1 ø X ø Cqj s30d

over the real, symmetric 232 matricesX.
In fact, for the optimalX both inequalities have to be

saturated, i.e.,

detsCq − Xd = detsX − Cp
−1d = 0. s31d

In order to see this assume we are given a matrixX with
Cp

−1øXøCq. Then we can decrease the value ofmsXd with a

matrix X̂: =X+e1 by increasinge.0 until Cq−X̂ is of rank

FIG. 1. For any two-mode Gaussian state with CMg=Cq % Cp

the Gaussian entanglement of formation is given by the entangle-
ment of the least entangled pure state with CMgp=X% X−1 which
is such thatCp

−1øXøCq. Moreover, the optimalX can be shown to
lie on the rim of the intersection of the forward and backward cones
of Cp

−1 andCq, respectively.
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1. However, by Eq.(28) the same argument holds for
X−1,Cp.

To depict it geometrically again, the optimalX has to lie
on the rim given by the intersection of the backward and
forward cones ofCq andCq

−1, respectively. Hence, we have
reduced the number of free parameters in the calculation of
EGsgd to one angle, which parametrizes the ellipse of this
intersection.

For every explicitly given CMg minimizing msXd on this
ellipse is now straightforward. Writing down the resulting
value for EG in terms of the general parameters
sna,nb,kq,kpd of Eq. (16) leads, however, to quite cumber-
some formulas involving the roots of a forth order polyno-
mial. Since not much insight is coming out of these expres-
sions we refrain from writing them down explicitly and
continue with discussing the special casena=nb for which
we obtain a simple formula forEG.

Nevertheless, for an arbitrary but explicitly giveng the
remaining variation under the constraint in Eq.(31) is a
simple exercise which can be solved analytically with the
help of any computer algebra program. For some examples,
see Sec. VIII.

VI. SYMMETRIC STATES

Symmetric two-mode Gaussian states with CM of the
form in Eq.(16) with na=nb;n arise naturally when the two
beams of a two-mode squeezed state are sent through iden-
tical lossy fibers[21] (see also Sec. VIII). The entanglement
of formationEF of these states was calculated in Ref.[9] and
it was proven that a decomposition into Gaussian states gives
rise to the optimal value. Together with the obvious fact that
EG is an upper bound forEF this implies thatEG=EF in this
case. Since the calculation ofEF is however quite technical
and in order to make the present article more self-contained,
we provide in the following a simpler way to obtainEG.

In principle we could utilize the general results of the
previous section, which simplify greatly for the symmetric
case. However, we give an alternative proof and reduce the
result to the fact that the optimalgp in Eq. (9) has the same
logarithmic negativity[22] asg. A similar argument is used
in Sec. VII to prove additivity ofEG.

Proposition 2.(EG for symmetric states). For symmetric
131 Gaussian states, i.e., states whose CMg is character-
ized by local invariantssn,n,kq,kpd, the Gaussian entangle-
ment of formation is given by

EGsgd = Hsr0d, s32d

where the minimum two-mode squeezing required is given
by

r0 =
1

2
lnfsn − kqdsn + kpdg s33d

andHsrd is defined in Eq.s8d.
Proof. First, instead ofg we consider the locally equiva-

lent CM g8 which is obtained fromg by squeezing3 bothQA
andQB by l=fsn+kpd / sn−kqdg1/4. Clearly the CMg8 has the
sameEG as g. It is straightforward to check that the pure
two-mode squeezed state with two-mode squeezing param-
eter r0 and corresponding CMgsr0d is indeed smaller than
g8.

That there can be no pure stategp with less entanglement
satisfyinggpøg8 follows from the monotonic dependence of
pure state entanglement on the two-mode squeezing param-
eter: any pure two-mode Gaussian state is locally equivalent
to a two-mode squeezed stategsrd and its entanglement is
given byHsrd. An important entanglement-related character-
istic of these CM’s are thesymplectic eigenvaluesof the
partially transposed CM[22], in particular those smaller than
one. They are invariant under local unitary Gaussian opera-
tions and for the two-mode squeezed state given bye±r. For
the symmetric CMg they areÎsn7kqdsn±kpd. Thus the
smallest symplectic eigenvalues ofg andgsr0d coincide.

For positive matricesAùB implies akùbk, whereaksbkd
denote the ordered symplectic eigenvalues ofAsBd [18].
Since the orderingAùB is preserved under the partial trans-
position, all pure states with less entanglement thangsr0d
cannot possibly satisfygùgp, hencer0 is optimal. j

Thus for symmetric statesg the optimal pure stategp is
characterized by the fact that the smallest symplectic eigen-
valuess1sg̃d ands1sg̃pd of the two partially transposed CM’s
are identical. According to Ref.[22] this implies that the
logarithmic negativity,ENsgd=−1

2lnfs1sg̃dg of both states is
the same, i.e., in the optimal decomposition pure Gaussian
states are mixed such that “no negativity is lost” in the mix-
ing process. For nonsymmetric states this is no longer pos-
sible ands1sg̃d is strictly larger thans1sg̃pd, i.e., more en-
tanglement is needed to formg than required by its
negativity.

VII. ADDITIVITY

One longstanding question about the entanglement of for-
mation is if it is additive, that is, whetherEFsr1 ^ r2d
=EFsr1d+EFsr2d or whether one may get an “entanglement
discount” when generating several states at a time. Here we
show that for symmetric Gaussian states the Gaussian en-
tanglement of formationEG is additive. Since for these states
EG was shown[9] to equalEF this may hint at additivity of
even the latter quantity for Gaussian states.

Proposition 3(EG is additive for symmetric states). Let
g1, l =1, . . . ,N describe symmetric Gaussian states with local
invariantssnl ,nl ,kq,l ,kp,ld and letG= % l=1

N gl describe the ten-
sor product of these states, then

EGsGd = o
l

EGsgld. s34d

Proof.Let the logarithmic negativity of thekth state berk,

3“Squeezing theg” describes the local unitary operation that(in
the Heisenberg picture) multiplies (divides) the operators
QA,BsPA,Bd by l.
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and assumerk+1ø rk. To show, additivity, we use again that
AùB.0 implies akùbk for the ordered symplectic eigen-
values ofAsBd.

Let GpøG be pureN3N-mode CM. Consider the par-

tially transposed CMG̃. We have

G̃ ù G̃p,

which impliesskùsk8, wherehsk,k=1, . . . ,Nj denote thesde-

scendingly orderedd symplectic eigenvalues ofG̃, andsk8 the

same forG̃p.
All pure bipartite Gaussian states are locally equivalent to

a tensor product of two-mode squeezed states[13] with (or-
dered) two-mode squeezing parameterstk. For the following
we only need to look at theN smallest symplectic eigenval-
ues. For these we have

sk8 = e−tk for Gp

and

sk = e−rk for G.

HenceGùGp implies tkù rk, i.e., the optimal joint decompo-
sition is the tensor product of the optimal decompositions for
the individual copies. ThusEG is additive. j

For the nonsymmetric case the optimal individual decom-
position does no longer allowtk=rk, i.e., more entanglement
than required by the logarithmic negativity must be ex-
pended to producer. Therefore, the previous argument does
not hold and the question of additivity ofEG remains open
for general 131 Gaussian states.

VIII. EXAMPLES

In this section we will apply the Gaussian entanglement
of formation to a simple practical example. Consider a two-
mode squeezed state(TMSS) with CM

g =1
c 0 − s 0

0 c 0 s

− s 0 c 0

0 s 0 c
2 , s35d

c = cosh 2r, s= sinh 2r ,

which is to be distributed between two parties by means of a
lossy optical fiber. There are two external settings for the
transmission of the state which may lead to different values
for the distributed entanglement: The source could be placed
either at one party’s site(“asymmetric setting”) or halfway
between both parties(“symmetric setting”). In the former
case, one mode is transmitted through the whole length of
the fiber while the other one is retained unaffected, in the
latter both modes are transmitted through half the length of
the fiber each. It turns out that depending on thermal noise
and transmission length, one or the other setting yields more
entanglement for the distributed state from a given squeezing
of the initial state.

According, to Ref.[23] the Gaussian state after transmis-
sion through the fiber has a CM

g8 =1
c18 0 − s8 0

0 c18 0 s8

− s8 0 c28 0

0 s8 0 c28
2 , s36d

with ci8=cTi
2+s2Nth+1ds1−Ti

2d for i =1,2 and s8=sT1T2.
Here T1,T2 are the transmission coefficients of the fiber
for the respective modes and the fiber is in a thermal state
with mean number of photonsNth, which is in turn related
to a “temperature”t by Nth=fexps1/td−1g−1. Note that in
quantum optical settings using optical frequencies we
havet=0.

Depending on the setting, the transmission coefficients
take on the valuesT1=e−l/lA ,T2=1 (asymmetric setting) or
T1=T2=e−l/s2lAd (symmetric setting) where l / lA denotes the
total lengthl of the fiber in units of the absorption lengthlA.

FIG. 2. Gaussian entanglement of formation(in units of ebits)
for a TMSS with r =1 after transmission through a lossy optical
fiber at temperaturet=0. The plot showsEGsrd versus transmission
length l / lA for the symmetric and asymmetric setting(dotted and
solid line, respectively).

FIG. 3. Gaussian entanglement of formation(in units of ebits)
for a TMSS with r =1 after transmission through a lossy optical
fiber at temperaturet=1. The plot showsEGsrd versus transmission
length l / lA for the symmetric and asymmetric setting(dotted and
solid line, respectively).
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As an example, we compare the two settings for a TMSS
with r =1. While for temperaturet=0 (Fig. 2) the asymmet-
ric setting always yields a higher entanglement for the final
state, at finite temperaturet=1 (Fig. 3) the symmetric setting
is to be preferred for longer ranges.

Figure 4 showsEG as a function of the initial squeezingr
and the transmission lengthl for the symmetric setting at
zero temperature. As already indicated in Refs.[24,25] in-
creasing the squeezing over a certain threshold has only a
negligible effect on the transmitted entanglement already af-
ter a small fraction of the absorption length.

IX. CONCLUSION

We introduced a Gaussian version of the entanglement of
formation by taking into account only decompositions into
pure Gaussian states. On Gaussian states this is a proper
entanglement measure in the sense it is nonincreasing under
GLOCC operations. Moreover, it is an upper bound for the
full entanglement of formation which is tight and additive at
least for symmetric two-mode Gaussian states. However, it
remains an open question whether this is true for all Gauss-
ian states.

We have shown how to analytically calculateEG for all
two-mode Gaussian states and given a simple formula for the
symmetric case. For multimode bipartite states, the(numeri-
cal) computation ofEG becomes rapidly more difficult: Al-
though Proposition 1 still allows us to replace the minimiza-
tion over all possible decomposition into pure Gaussian
states by the minimization over the(for the n3n case)
2ns2n+1d parameter set of pure 2n-mode covariance matri-
ces the further simplifications used in the 131 case are no
longer available and the minimization is no longer easy. To
computeEG for interesting multimode states such as two
copies on nonsymmetric 131 states or bound entangled
states[26] new methods need to be developed.
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APPENDIX: PROOF OF LEMMA 3

The following lemma about decompositions of classical
multivariate Gaussian distributions is used in the proof of
Proposition 1.

Lemma 3.Let

GsA,a,xd: = uAu1/2s2pd−n/2es−1/2dsx − adTAsx−ad, x,aeRn

sA1d

be a Gaussian probability distribution with symmetricA.0
and consider an arbitrary convex decomposition ofGsA,0 ,xd
into other Gaussian distributions of this form:

GsA,0,xd =E msdB,dbdGsB,b,xd. sA2d

Then all the distributions contributing to this decomposition
have to satisfyBùA in the sense that

mfhsB,bdu ∃ x:xTsA − Bdx . 0jg = 0. sA3d

Proof. Let us first define a set

Ssx,ed: = hsB,bduxTAx− eixi2 ù xTBxj. sA4d

Integrating Eq.sA2d only overSsx,ed leads then to a lower
bound onGsA,0 ,xd:

GsA,0,xd ù E
ssx,ed

msdB,dbdGsB,b,xd. sA5d

Inserting GsA,0 ,xd and GsB,b,xd we can symmetrize in-
equality sA5d with respect tox°−x, which leads to

uAu1/2es−1/2dxTAx ù E
Ssx,ed

msdB,dbd

3uBu1/2coshsxTBbdes−1/2dsxTBx+bTBbd.

sA6d

Utilizing coshù1 and the defining property of the set
Ssx,ed we have

uAu1/2ese/2dixi2 ù E
Ssx,ed

msdB,dbduBu1/2es1/2dbTBb. sA7d

Note that the right-hand side of Eq.sA7d does no longer
depend on the norm ofx but merely on its angular compo-
nents. Taking the limitixi→` implies then thatSsx,ed is of
measure zero for everye.0. Moreover, every countable
union of such sets is of measure zero. In particular,

ø
xeQn

ø
meN

SSx,
1

m
D sA8d

FIG. 4. Gaussian entanglement of formation(in units of ebits)
for a TMSS with initial squeezingr after symmetric transmission
through a lossy optical fiber at zero temperature.l / lA is the trans-
mission length in units of the absorption length.
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=HsB,bdU∃xPQn, ∃ mPN:xTAx ù xTBx +
1

m
ixi2J sA9d

=hsB,bdu∃xeQn:xTAx. xTBxj sA10d

=hsB,bdu∃xeRn:xTsA − Bdx . 0j, sA11d

where we have, of course, used thatQn is dense inRn. j
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