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We introduce a Gaussian version of the entanglement of formation adapted to bipartite Gaussian states by
considering decompositions into pure Gaussian states only. We show that this quantity is an entanglement
monotone under Gaussian operations and provide a simplified computation for states of arbitrary many modes.
For the case of one mode per site the remaining variational problem can be solved analytically. If the consid-
ered state is in addition symmetric with respect to interchanging the two modes, we prove additivity of the
considered entanglement measure. Moreover, in this case and considering only a single copy, our entanglement
measure coincides with the true entanglement of formation.
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I. INTRODUCTION ensembles interacting with ligiit1]. For this and other rea-

. . . . sons they play a more and more important role in quantum
One of the main novelties of quantum information theoryinformatignpthﬁory[ﬂ] P g

is to consider entanglement no longer merely as an apparent rheoretically, despite the underlying infinite dimensional

paradoxical feature of correlated quantum systems, but rathgfjihert space, they are completely characterized by finitely
as a resource for quantum information processing purposegany quantities—the first and second moments of cononical
This new point of view naturally raises the question regardperators. Moreover, they stand out due to several extremal
ing the quantification of this resource. How much entangleyoperties: In fact, the calculation o for symmetric two-
ment is contained in a given state? For pure bipartite statggqde Gaussian states depends crucially on the fact that for
there is, uno!er reaspnable assumptions, a simple and unigy&en “EPR correlationsT9] two-mode squeezed Gaussian
answer to this question, namely, the von Neumann entropy Qiates are the cheapest regarding entanglement. This implies
the reduced statgl-3|. For mixed states there are severalhay in this particular case there is a decomposition in terms
entanglement measurg4], which can be distinguished due ¢ pure Gaussian states, which is optimal By in Eq. (1).
to their operational meaning and mathematical properties. o the one hand, this raises the question, whether this is
Such a measure should be nonincreasing under mixing &ssnerally true for all Gaussian states. On the other hand, one
well as under local operations and classical communlcatlo?nay' motivated by the operational interpretationEf re-
(LOCC), and it should return the right value for pure states.gyict Eq.(1) to decompositions into Gaussian states from the
The largest measure fulfilling these requirements is the Very beginning. After all, Gaussian states arise naturally,
tanglement of formatiorkr [S]. Operationally, it quantifies \yhereas the experimental difficulties of preparing an arbi-
the minimal amount of entanglement, which is needed inyary pure continuous variable state are by no means simply
order to prepare the state by mixing pure entangled states. tharacterized by the amount of its entanglement. For these
is therefore defined as an infimum reasons we will in the following investigate the Gaussian
. entanglement of formatiokg to quantify the entanglement
Er(p) = mf{ > PBEWY ‘ p=2 pk|q’k><q’k|} D of bipgrtite Gaussian statesG by tcgiking ft¥1e infimum%n €.
K g only over decompositions into pure Gaussian states.
over all (possibly continuousconvex decompositions of the This article is organized as follows. In Sec. Il we recall
state into pure states with respective entanglentgnlt) basic notions concerning Gaussian states. Section Il defines
=S(trg[|¥)W¥[]), whereS(X)=-tr[X log X] is the von Neu- the Gaussian entanglement of formation and provides a ma-
mann entropy. By its definition calculatingg is a highly jor simplification conce_rning its evaluation for bipartite
nontrivial optimization problem, which becomes numeri- Gaussian states of arbitrary many modes. In Sec. IV we
cally intractable very rapidly if we increase the dimen-Prove thatEg is indeed a(Gaussian entanglement mono-
sions of the Hilbert spaces. Remarkably, there exist analone, in the sense that it is nonincreasing under Gaussian
lytical expressions for two-qubit systerf&] as well as for local operations and classical communicati@hOCO). The
highly symmetric statef7,8]. case _of general two-mode Gaussian states is s_olved ana_\lytl-
Recently, E- was calculated for continuous variable cally in Sec. V. The special case of symmetric Gaussian
states, namely, for symmetric Gaussian states of two modeates, for which it was proven in Ref9] that Eg=E is
[9]. In general, Gaussian states are distinguished among
other continuous variable states due to several reasons. Ex!For example, Gaussian states have maximal entropy among all
perimentally, they are relatively easy to create and arise natistates with given first and second moments of the canonical observ-
rally as states of the light field of a lasgtQ] or in atomic  ables.
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discussed in detail in Sec. VI, where we give an alternative

calculation ofEg, which is in turn utilized in Sec. VII in Piyd) = fﬂ(devdD)P(yp,D)}' (6)
order to prove additivity ofeg for this particular case. Fi-

nally, Sec. VIII applies the measure to some examples whichvhere the infimum is taken over all probability measures
arise when a two-mode squeezed state is sent through opticettaracterizing convex decompositions mffy,d) into pure
fibers. The Appendix proves a lemma about decompositionSaussian statgs(y,,D), andE(p(,, p)) is the von Neumann

of classical Gaussian probability distributions. entropy of the reduced state. For pur& n mode Gaussian
states this quantity can be readily expressed in terms of the
Il. GAUSSIAN STATES symplectic eigenvalues of the reduced CM. Denote these ei-

genvalues bya,,k=1,... n. We havea,=1 and definer,
Consider a bosonic system nfmodes, where each mode =0 by a,=coshr,. Then
is characterized by a pa®,, P, of canonical(position and

momentuny operators. If we seR=(Q;,Py, ...,Q,, P, the E(p(ya) = 2 H(ry), (7)
canonical commutation relations are governed by the sym- K
plectic matrix where
n ( 0 1) @ H(r) = cosH(r)log,(costt r) — sintf(r)log,(sink? r). (8)
o=
k=1\=1 0 To obtain this expression note that any puargn Gaussian

) . . , .. . state is locally equivaler(via unitary GLOCG to the tensor
via [R,R/]=ioy. A state is called a Gaussian state if it is product ofn two-mode squeezed states with squeezing pa-
completely characterized by the first and second moments QEmetersrk [13]. For each tensor factor the entanglement is
the canonical operatof in the sense that the corresponding given by the above formula. Since the symplectic spectrum
Wigner function is a Gaussian. Utilizing Weyl displacementof the reduced CM is invariant under local unitary GLOCC
operatorsW;=€¢ %, the first momentsd,=tr{pR,] can be ther, can be computed directly from, as described above.
changed arbitrarily by local unitaries. Hence, all the infor-  The integrals in Eqg5) and(6) are taken over the space
mation about the entanglement of the state is contained iR" of displacements and over the set of admissible pure state
the covariance matrixCM) covariance matrices. The following proposition tells us that it

is sufficient to only consider the measurgswhich vanish
Y = tp{Re— d1,R — di1}.], (3)  for all but one covariance matrix.

. _ Proposition 1.The Gaussian entanglement of formation
where{---,---}, denotes the anticommutator. By definition for the bipartite Gaussian stage, is given by
the matrixvy is real and symmetric, and due to Heisenberg’s '

uncertainty relation it has to satisfy=ic. For pure Gauss- Ec(p(ya) = INH{E(p(y,_o) =7} (9)
ian states we have deb=1 or, equivalently(oy)?=-1. " :

In the following we denote the density operator corre-where the infimum is taken over pure Gaussian states with

sponding to the Gaussian state with covariance mataxd  cMm o

displacement vectod by p(,q. If the latter is a bipartite Proof. The proof can be divided into three steps.
state, its tensor product structure corresponds to a partition of (i) The problem can be reformulated in terms of classical
the n modes into two subsets. Gaussian distributions, by considering Wigner functions in-
An important decomposition g, into pure Gaussian stead of density operators. This is formally achieved by tak-
states is given by ing the trace of the decomposition in E&) with the space
displaced parity operathgzwg?V\/; [14]. Then
Pl f % piy 0-g€ VT (@) [ Pep(y,d)] = exd - (0i+ )Ty Yot + d)] (10

) ) ) . is up to a normalization factor equal to the Wigner function
where y, < is tlhe covanan(f:ehm?tnx of a pure G;”‘USSI""mof P(yd) Which in turn completely determines the state.
state. $|nce displacements of the 0o P(y.q) Ar€ l0Ca (i) All the statesp(,,q, contributing to Eqs(5) and (6)
operations, Eq(4) tells us that starting withp,, 5, we can must have smaller covariance matricgs< , i.e.,
obtain every Gaussian state with Civ=+v' by means of

LOCC operations. MH{(yp, D) C X, (= yp)x) < 0}] = 0. (11
The idea of the proof is that the tails of a Gaussian with CM
ll. GAUSSIAN ENTANGLEMENT OF FORMATION that is too large would give rise to an increasing and in the

end overflowing contribution if we only move far enough
away from the center. This is mathematically formalized in
Lemma 3 stated and proven in the Appendix. To apply
Lemma 3 via Eq(10) to Eqg.(5) we need in addition, that the

Eq( )= inf{f (dy, dD)E( )|, (5) inverﬁe is operator mN()r!otone on positive matri¢e§0.
G (ra w K, P, (i) Assume thatu is a measure corresponding to an

We define the Gaussian entanglement of formakgrior
a bipartite Gaussian statg, 4 by
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optimal decomposition ob,, 4 giving rise to the infimum in
Eqg. (5). Then

Eslpiya) = J i 7u(dyy, dD)E(p(y ) (12
sy

=in{{E(p(, 0)|7p =< ¥} (13
Y

However, by using a Gaussian decomposition of the form i

Eq. (4) we know that equality in Eq13) can be achieved for
a measurex which is Gaussian iD and a delta function
with respect toy,, |

Proposition 1 considerably simplifies the calculation of
Eg, since the optimization is reduced from the set of all
possible decompositions to the set of pure states satisfying

o . n
the matrix inequalityy,= y. Before we proceed to calculate

Eg analytically for the two-mode case, we will show tH&g

is indeed a proper entanglement monotone. To confine th

argument to CM's(rather than density matricesve make
use of Proposition 1.

IV. MONOTONICITY UNDER GAUSSIAN OPERATIONS

n
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G, mapping pure states onto pure states, and the addition of
classical Gaussian noise. This decomposition can easily be
shown using the above mentioned ordering of the Schur
complements for ordered matrices. The decomposition then
readsG(y,) =Gp(y,) +P, where the noise is characterized by
some positive matrix P=0, which is usually state-
dependent. Therefore we ha¥&y)=G(y,) =Gy(y, and
since the latter CM corresponds to a pure state, which can be
obtained fronmy, by a local Gaussian operation, its entangle-
ment is certainly smaller than that ¢f [18]. It follows that

Eg cannot increase under GLOCC.

V. THE GENERAL TWO-MODE CASE

Now that we have assured thBg is a good measure of
tanglement in a Gaussian setting, we set to compute it for
the case of two Gaussian modes in an arbitrary mixed state.
The CM y of any two-mode Gaussian state can be brought to
the normal form[19,20

Na @) (na kp>
= ® =C,o C,,

Y (kq N, ko Ny @
with k= [k| by local unitary Gaussian operations. The block

(16)

For Eg to serve as a good Gaussian entanglement measug&ucture corresponds to a direct sum of position and momen-
it should not increase under GLOCC. More precisely, if atum space, i.e., we have reordef@d (Q,Q;,P1 Py).

GLOCC operation maps an initial Gaussian statento a

Since the normal form in Eq.16) is unique the param-

statep; with probability p;, thenEg should not increase on eters(n,,ny,Kq,K,) provide a complete set of local invari-

average, i.e.,

Ec(p) = E PiEc(pi)- (14

ants.

The first step towards calculatirigy;, for these states is to
show that there is always a pure statg which is optimal
for EqQ. (9) and has the same block structurejas Eq. (16).

tion of Gaussian operations given in R€ft5,16]. In fact, in

pure state CM’s, which accounts for the direct sum with

the Gaussian case monotonicity holds even for probabilisti€€SPect to configuration and momentum space.

operations. That isEg(p) =Eg(p;) is satisfied for every
single term in Eq(14).
It was shown in Refg15,1§ that the change of the CM

of a Gaussian state undgrobabilistio Gaussian operations

takes the form of a Schur complement

~ o~ 1 ~ ~
y—>G(y) =1 -Tp—T,=ST+0@1y). (15
2ty

e ( ry rlz)
FIZ FZ
is the /h X n CM of the state characterizing the operati@n

andT'=0 is the CM of the partially transposed state.
For positive matrices\=B implies S(A) = S(B) (see Ref.

Here

[17]). Consequently, ify=y,, then the transposed CM ful-

fills G(y)=G(yp).
Every GLOCC can be decomposed intgpare GLOCC

partial transposition of amXxXn Gaussian density matrix with
CM vy yielding a Gaussian operator with CM= A yA, where A
=1, ®diag1,-1,...,1,-1.

Lemma 1A real symmetric matrixy, is the covariance
matrix of a pure Gaussian stateromodes iff there exist real
symmetricn X n matricesX andY with X>0 such that

X XY
- , 17
% (YX YXY+X’1) S

where the block structure corresponds to a direct sum of
configuration and momentum space.

Proof. A covariance matrixy, corresponds to a pure
Gaussian state ify,0)?=-1. If we write

(x c
’)/p_ CT D ’

with X,D >0, then this is equivalent to

XD=1+C?, (18)
DC=(DC)T, (19
CX=(CX)T. (20)

Equation(20) implies thatY: =X"C=(X"1C)"=Y" is indeed
symmetric. Moreover, Eq(18) leads to D=X"%(1+C?
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=X"1+YXY. Hence, every covariance matrix of a pure C
Gaussian state is of the form in Ed.7). ~ 4
Conversely, every such matrig, with X>0 is positive
definite and has symplectic eigenvalues equal to one since
the spectrum of G'ypa')z is the symplectic spectrum squared
of y,. Thus every matrixy, is an admissible covariance ma-
trix corresponding to a pure Gaussian state. |
The covariance matrix in the normal form of E(L6)
only contains terms which are quadratic in the momenta but
has no linear contributions. This implies that the state re-
mains invariant under momentum reverBak—P and since
this can be interpreted as complex conjugation, the respec-
tive density operator is regin position representation
Equation (17) gives the covariance matrix of a pure
Gaussian state with respective wave function

P(x) = |7TX|'1’4exp[— 1 T(xt- iY)x], (21) v
2 C 1
which in turn becomes real i¥=0. The following lemma p
shows that for two-mode states we can, in fact, restrict to
these real pure states in the calculatiorEgfy). FIG. 1. For any two-mode Gaussian state with GMC,& C,,

Lemma 2Let y=Cy® C, be the covariance matrix of a the Gaussian entanglement of formation is given by the entangle-
two-mode Gaussian state. Then there exists a pure state withent of the least entangled pure state with Gy X® X~ which
covariance matrix of the same block structure which mini-is such thaC;l< X< Cgy. Moreover, the optimaX can be shown to
mizesEg for v. lie on the rim of the intersection of the forward and backward cones

Proof. We will show that for everyy,(X,Y)=<1y of the  of C,' andC,, respectively.
form in Eq. (17) the covariance matrix,(X,0) leads to an
improvement forEg. First note that the block structure ¢f  satisfying an inequality as, e.gG,—X=0, form a cone,

implies thaty= y,(X, £Y) and thus which is equivalent to thébackward light cone of C, in
1 Minkowski space: if we expand a Hermitian<2 matrix in
terms of Pauli matricegand the identity, the expansion co-
= —[y,(X,Y) + y,(X=Y 22 - 7 .
4 Z[Yp( )+ ] (22 efficients play the role of the space-time coordinates and the

Minkowski norm is simply given by the determinant of the
=y,(X,00+ 0@ (YXY) (23) ~ matrix. Hence, by Eq(27) X has to lie in the backward cone
of Cy and in the forward cone c(t;l (see Fig. 1
=5 (X,0) (24) Instea_d of mini_mizing the entropy of t_he_ reduced state
pRam under this constraint, we may as well minimize the determi-
Thereforey,(X, 0) is an admissible covariance matrix for the nant of one of the local covariance matrices
Eg optimization problem.

In order to show thaty,(X,0) is less entangled than m(X) =1+ Xl -14 (X1, (29)
p(X,Y) we make explicit use of the assumption that we deal detX de(X™)
with two-mode states. In this case the entanglement is a mo-
notonous function of the determinant of the reduced covari- =X1,(X 1, (29)
ance matrix. The difference of the respective determinants
can be calculated straightforward and it is given by since, as already stated, this is a monotonically increasing

function of entanglement. Thus we have to find
def 5" (X, V)] - def " (X,0)] (25)
min{m(X)|C,' < X < Cg} (30
=Y7, defX] =0, (26) X

over the real, symmetric’2 2 matricesX.
In fact, for the optimalX both inequalities have to be
saturated, i.e.,

which completes the proof.

According to Lemma 2 the remaining task for calculating
Eg is to find the CM,,=X & X~ which has minimal entangle-
ment under the constraint that detC, - X) = de(X - C;l) 0. 31)

-1
Cp = X<Cq. (27) In order to see this assume we are given a maxrixith

_l .
This inequality has a simple graphical depiction stemmingCp =X= Cq. Then we can decrease the valuengk) with a
from the fact that the set of positive semidefinite matri¥es matrix X: =X+¢l by increasinge>0 until C;—X is of rank
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1. However, by Eq.(28) the same argument holds for lent CM 3’ which is obtained fromy by squeezinﬁbothQA
X1<c, andQg by N=[(n+k,)/(n—kg) ] Clearly the CMy' has the

To depict it geometrically again, the optimélhas to lie  sameEg as y. It is straightforward to check that the pure
on the rim given by the intersection of the backward andiwo-mode squeezed state with two-mode squeezing param-
forward cones ofC, and Cal, respectively. Hence, we have eterry and corresponding CM(rg) is indeed smaller than
reduced the number of free parameters in the calculation of,
Ec(y) to one angle, which parametrizes the ellipse of this That there can be no pure statgwith less entanglement
intersection. satisfyingy,= vy’ follows from the monotonic dependence of

For every explicitly given CMy minimizing m(X) on this  pure state entanglement on the two-mode squeezing param-
ellipse is now straightforward. Writing down the resulting eter: any pure two-mode Gaussian state is locally equivalent
value for Eg in terms of the general parametersto a two-mode squeezed stayér) and its entanglement is
(Na, Ny, Ky, kp) of Eq. (16) leads, however, to quite cumber- given byH(r). An important entanglement-related character-
some formulas involving the roots of a forth order polyno-istic of these CM's are thesymplectic eigenvaluesf the
mial. Since not much insight is coming out of these exprespartially transposed CNR2], in particular those smaller than
sions we refrain from writing them down explicitly and one. They are invariant under local unitary Gaussian opera-
continue with discussing the special cagg-n, for which  tions and for the two-mode squeezed state giver*byFor

we obtain a simple formula foEg. the symmetric CMy they are \(n¥kg)(nxk,). Thus the
Nevertheless, for an arbitrary but explicitly giventhe  smallest symplectic eigenvalues pfand y(r) coincide.
remaining variation under the constraint in E®1) is a For positive matrice\=B implies a, = by, whereay(by)

Simple exercise which can be solved analytica”y with thedenote the ordered Symp]ectic eigenva|uesAQB) [18]
help of any computer algebra program. For some examplesince the orderind =B is preserved under the partial trans-
see Sec. VIII. position, all pure states with less entanglement thén)
cannot possibly satisfy= y,, hencer, is optimal. |
VI. SYMMETRIC STATES Thus fpr symmetric stateg the optimal pure statey, is
characterized by the fact that the smallest symplectic eigen-
Symmetric two-mode Gaussian states with CM of thevaluess;(y) ands,(%,) of the two partially transposed CM's
form in Eq.(16) with n,=n,=n arise naturally when the two are identical. According to Ref22] this implies that the
beams of a two-mode squeezed state are sent through iddngarithmic negativity,EN(y)=—§In[sl(3/)] of both states is
tical lossy fiberd21] (see also Sec. VIJI The entanglement the same, i.e., in the optimal decomposition pure Gaussian
of formationEr of these states was calculated in R8f.and  states are mixed such that “no negativity is lost” in the mix-
it was proven that a decomposition into Gaussian states givaag process. For nonsymmetric states this is no longer pos-
rise to the optimal value. Together with the obvious fact thasible ands, () is strictly larger thans,(y,), i.e., more en-
Eg is an upper bound foEg this implies thatEg=Er in this  tanglement is needed to formy than required by its
case. Since the calculation Bt is however quite technical negativity.
and in order to make the present article more self-contained,
we provide in the following a simpler way to obtakfy.
In principle we could utilize the general results of the VII. ADDITIVITY
previous section, which simplify greatly for the symmetric ) )
case. However, we give an alternative proof and reduce the One longstanding question about the entanglement of for-
result to the fact that the optimaj, in Eq. (9) has the same mation is if it is additive, that is, whetheEg(p;® p;)
logarithmic negativity[22] as y. A similar argument is used =Er(p1)+Er(p2) or whether one may get an “entanglement
in Sec. VIl to prove additivity ofEg. discount” when generating several states at a time. Here we
Proposition 2.(Eg for symmetric statgs For symmetric ~ show that for symmetric Gaussian states the Gaussian en-
1x 1 Gaussian states, i.e., states whose ¢M character- tanglement of formatiolkg is additive. Since for these states
ized by local invariant§n,n,k,,k;), the Gaussian entangle- Eg was shown[9] to equalEr this may hint at additivity of
ment of formation is given by even the latter quantity for Gaussian states.
Proposition 3(Eg is additive for symmetric stateslet
v1,1=1, ... N describe symmetric Gaussian states with local
invariants(n, ny, kg, K,) and letl=a, y describe the ten-

. . . .. sor product of these states, then
where the minimum two-mode squeezing required is given

by Ee(I) = 2 Eg(). (34)
|

Es(y) =H(ro), (32)

fo= Eln[(n —k)(n+ko)] (33) Proof. Let the logarithmic negativity of thkth state be,

) ] . 3“Squeezing they” describes the local unitary operation that
andH(r) is defined in Eq(8). the Heisenberg pictuye multiplies (divides the operators
Proof. First, instead ofy we consider the locally equiva- Qag(Pag) by A.
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2.
1.
0.
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
FIG. 2. Gaussian entanglement of formati@m units of ebit3 FIG. 3. Gaussian entanglement of formati@gm units of ebit$

for a TMSS withr=1 after transmission through a lossy optical for a TMSS withr=1 after transmission through a lossy optical
fiber at temperature=0. The plot show&g(p) versus transmission fiber at temperature=1. The plot show&g(p) versus transmission
length /1, for the symmetric and asymmetric settigdptted and  lengthl/l, for the symmetric and asymmetric settitdptted and

solid line, respectively solid line, respectively
and assume,,;<r,. To show, additivity, we use again that c 0 -s O
A=B>0 implies a,=b, for the ordered symplectic eigen-
0O ¢c 0 s

values ofA(B). y= : (395

Let I',<TI" be pureNXxN-mode CM. Consider the par- -s 0 0
tially transposed CM'. We have 0 s 0 c

1:21:')’ c=cosh 2, s=sinh %,

which is to be distributed between two parties by means of a
which impliess,=s,, where{s,,k=1, ... N} denote thdde-  lossy optical fiber. There are two external settings for the

same forl for the distributed entanglement: The source could be placed
p:

L . . either at one party’s sit€'asymmetric settingj’ or halfway
All pure bipartite Gaussian states are locally equivalent thetvveen both partie§'symmetric settingj. In the former
a tensor product of two-mode squeezed stfi&$ with (or- P y 9

dered two-mode squeezing parametégsFor the following case, one mode is transmitted through the whole length of

L the fiber while the other one is retained unaffected, in the
we only need to look at thsl smallest symplectic eigenval- .
latter both modes are transmitted through half the length of
ues. For these we have

the fiber each. It turns out that depending on thermal noise
and transmission length, one or the other setting yields more

sc=ew forTy entanglement for the distributed state from a given squeezing
of the initial state.
and According, to Ref[23] the Gaussian state after transmis-
sion through the fiber has a CM
sc=e'k forT.
cgc 0 - 0
Hencel' =T, impliest,=r,, i.e., the optimal joint decompo- ) 0 ¢ 0 ¢
sition is the tensor product of the optimal decompositions for Y= ¢ 0 ¢ ol (36)
the individual copies. Thugg is additive. | i ;
For the nonsymmetric case the optimal individual decom- 0 s 0 ¢

position dqes no longer allowzrk_, ie., more entanglement with Ci’:CTi2+(2Nth+1)(1_Ti2) for i=1,2 ands'=sT,T,.
thand rgquweddby thfh Iogfanthmr:c negz_atlvny must bed X Here T,,T, are the transmission coefficients of the fiber
Egtn h(ce)l dt(;rf)c:()thléc,aﬁes':iac:i %rfeé; diisaevgui:r;g;?:gt egesl‘or the respective modes and the fiber is in a thermal state
for general ¢ 1 G?iussian States y ® P with mean number of photonsy,, which is in turn relatgd
' to a “temperature”r by Ny,=[exp(1/7)-1]"%. Note that in
gquantum optical settings using optical frequencies we
VIIl. EXAMPLES have 7=0.
Depending on the setting, the transmission coefficients
In this section we will apply the Gaussian entanglementake on the value3;=e"'A, T,=1 (asymmetric settingor
of formation to a simple practical example. Consider a two-T,;=T,=¢e"(?A) (symmetric settingwherel/l, denotes the
mode squeezed sta€EMSS) with CM total lengthl of the fiber in units of the absorption length
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APPENDIX: PROOF OF LEMMA 3

The following lemma about decompositions of classical
R multivariate Gaussian distributions is used in the proof of
Proposition 1.
Lemma 3Let

G(Aa,x): =| A|1’2(2 77_)—n/2e<—1/2)(x - a)TA(x—a), X, aeR"
(AL)

be a Gaussian probability distribution with symmetiic- 0
and consider an arbitrary convex decompositioGo4, 0,x)

FIG. 4. Gaussian entanglement of formati@m units of ebit3 into other Gaussian distributions of this form:
for a TMSS with initial squeezing after symmetric transmission

through a lossy optical fiber at zero temperatulifé, is the trans-
mission length in units of the absorption length. G(A,0x) = | w(dB,db)G(B,b,x). (A2)

As an example, we compare the two settings for a TMS
with r=1. While for temperature=0 (Fig. 2) the asymmet-
ric setting always yields a higher entanglement for the fina

Srhen all the distributions contributing to this decomposition
pave to satisfilB=A in the sense that

state, at finite temperatute= 1 (Fig. 3) the symmetric setting u[{(B,b)| Ox:x"(A-B)x > 0}] = 0. (A3)
is to be preferred for longer ranges.
Figure 4 showsg as a function of the initial squeezimg Proof. Let us first define a set
and the transmission lengthfor the symmetric setting at
zero temperature. As already indicated in R¢#4,25 in- S(x,€): ={(B,b)|[x"Ax~ €x[* = x"Bx}. (A4)

creasing the squeezing over a certain threshold has only a .
negligible effect on the transmitted entanglement already afl_ntegratmg Eq(A2) only overS(x, e) leads then to a lower

ter a small fraction of the absorption length. bound onG(A, 0,x):

IX. CONCLUSION G(A,0,%) = J w(dB,db)G(B,b,x). (A5)
We introduced a Gaussian version of the entanglement of s(x.e)
formation by taking into account only decompositions intolnserting G(A,0,x) and G(B,b,x) we can symmetrize in-

pure Gaussian states. _On Gaus&aq gtates_thls is a prOpfgruaIity(AS) with respect tax——x, which leads to
entanglement measure in the sense it is nonincreasing unde

GLOCC operations. Moreover, it is an upper bound for the
full entanglement of formation which is tight and additive at 112(-1/12x"A
) ; . |A|M<€ x = n(dB,db)
least for symmetric two-mode Gaussian states. However, it S(x.€)
remains an open question whether this is true for all Gauss- T T
ian states. ><|B|lIZCOS|1XTBb)e(_l/2)(X Bx+b Bb).
We have shown how to analytically calculdtg for all (A6)
two-mode Gaussian states and given a simple formula for the o
symmetric case. For multimode bipartite states,(theneri-  Utilizing cosh=1 and the defining property of the set
cal) computation ofEg becomes rapidly more difficult: Al-  S(X,€) we have
though Proposition 1 still allows us to replace the minimiza-

tion over all possible decomposition into pure Gaussian L2 V212578
states by the minimization over th@or the nxn case Tl ZJ w(dB,db)[B| "€ - (A7)
2n(2n+1) parameter set of puren2znode covariance matri- Sxe)

ces the further simplifications used in the<1 case are N0 Note that the right-hand side of EGA7) does no longer
longer available and the minimization is no longer easy. Tajepend on the norm of but merely on its angular compo-
computeEg for interesting multimode states such as twopents. Taking the limifix| — o implies then thaS(x, €) is of

copies on nonsymmetric X1 states or bound entangled measure zero for everg>0. Moreover, every countable

states[26] new methods need to be developed. union of such sets is of measure zero. In particular,
ACKNOWLEDGMENTS
G.G. and M.M.W. thank Pranaw Rungta for interesting U u s(xl) (A8)
discussion during the ESF QIT conference in Gdansk. Fund- xe" MeN m

052320-7



WOLF et al. PHYSICAL REVIEW A 69, 052320(2004)

_ n.y T _
:{(B,b)‘ xeQ", OmeN:x'A, = x'B, + %||x||2} (A9) ={(B,b)|IxeR"X (A~ B)x> O}, (ALD)

={(B,b)|Oxe)™:x"Ax > x"Bx} (A10)  where we have, of course, used th#tis dense inR". W
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