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We study the stability of entanglement in a quantum computer implementing an efficient quantum algorithm,
which simulates a quantum chaotic dynamics. For this purpose, we perform a forward-backward evolution of
an initial state in which two qubits are in a maximally entangled Bell state. If the dynamics is reversed after an
evolution timet,, there is an echo of the entanglement between these two qubits &t ti2te Perturbations
attenuate the pairwise entanglement echo and generate entanglement between these two qubits and the other
qubits of the quantum computer.
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The development of new techniques which could enhancérst two qubits are no longer in a Bell state, and therefore
the reliability of quantum computation is intrinsically con- their pairwiseentanglement echis reduced. Conversely, this
nected with the study of its stability. Every physical imple- pair of qubits becomes entangled with the other qubits, thus
mentation of a quantum computer will have to deal withgenerating multipartite entanglement. In this paper, we study
errors, due to the coupling with the environment or to annumerically the attenuation of the pairwise entanglement
imperfect control of the computer hardware. Therefore arecho in a quantum computer implementing an efficient quan-
accurate study of the stability of a quantum computer, whildum algorithm which simulates quantum chaotic dynamics.
it is running quantum algorithms, is demandédg. We point out that the entanglement echo simulations dis-

Entanglement is arguably the most peculiar feature otussed in the following are close in spirit to the spin-echo
guantum systems, with no analog in classical mechanicexperiments in many-body quantum systems in the presence
Furthermore, it is an important physical resource, which is abf perturbationg6].
the basis of many quantum information protocols, including We study the entanglement echo for the quantum algo-
quantum cryptography3] and teleportation[4]. For any rithm simulating the sawtooth map dynami@&. The saw-
quantum algorithm operating on pure states, the presence tdoth map is a periodically driven dynamical system, de-
multipartite (many-qubij entanglement is necessary to scribed by the Hamiltonian
achieve an exponential speedup over classical computation
[5]. Therefore the ability to control entangled states is one of n> k(- m)?
the basic requirements for constructing quantum computers. H(6,n,7) = 2"

In this paper, we introduce a suitable method to charac-
terize the stability of pairwise entanglement in quantumwhere (n,6) are conjugated action-angle variabld®
computation, by considering the echo of an initially maxi- < < 24). The time evolutionr— 7+T of this system is
mally entangled pair of qubits; namely, we assume that ougjassically described by the map
quantum computer is initially in the statgp)=|dg) ® |x).

Here, the first two qubits are prepared in a maximally en- n=n+k(6-m), 6=60+Tn, 2)
tangled Bell staté|®g)), while the othem,—2 qubits are set

in a pure state|y)), and they are completely disentangled where thg bars denote the variables after one map itera}ion.
from the Bell pair(n, denotes the total number of qubits in BY rescalingn— p=Tn, one can see that classical dynamics
the quantum computerThe statey) first evolves according depends only on the paramete~kT. The classical motion

to the given quantum algorithm, described by the unitarylS Stable for —4&<K<0 and completely chaotic foK <-4

evolution operatot/. Then we invert the sequence of quan- and K_>0' The quar_1tum evolutLon In one map literation Is

tum gates that implement this algorithm, that is, we aﬁiﬂly described by the unitary operatox

In the ideal case we would reconstruct the initial state, since

UTU| o) =| o). However, due to noise and imperfections, the

initial state |¢) is not exactly recovered. In particular, the where Ai=-ig/d0 (we set#i=1). The classical limit is ob-
tained by takingk— o> andT— 0, keepingK=KT const. We
study map(3) on the torus 6 <2, —7r<p<a. With an

P L N c
j=—o0

) = 0|y = T2 k(0 - 12|y )
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able n ranges from N/2 to N/2-1 (corresponding to = l ' ' | ' - ]
<p<m). The effective Planck’s constant of the quantum o8l _
system isfigs~ 1/N and the classical limit corresponds to ]
ng— *(he— 0) [2]. We focus on the cas&=5, which s oor ]
corresponds to the chaotic regime. Mot t t -

It is convenient to simulate mafB) by means of the 02 \L / ]
forward-backward Fourier transform betweeandn repre- ‘ # -
sentations. While the classical fast Fourier transform requires 09 : 2'0 — 4'0 — "6'0 S

t

O(N log, N) operations, an efficient quantum algorithm has
been found[2], which uses the quantum Fourier transform 2VV‘\/"‘*”\/\/“V\4'W
and simulates Eq3) in O(néz(logz N)?) elementary quan- Ls % YW » "v WA AT
tum gates per map iteration. Therefore this quantum algo- R
rithm is exponentially efficient with respect to any known % 1

classical algorithm. Moreover, afl; qubits are used in an

optimal way, that is, no extra work space qubits are required. 0.5 : .
In this way interesting physical phenomena, such as dynami- I . | . ; . | . il
cal localization[7], cantori localization, and anomalous dif- % 20 40 60 80
fusion could be simulated already with less than ten qubits. t

Therefore the quantum sawtooth map represents an interest-
ing testing ground for quantum computation, and it is impor-
tant to understand the limits to the quantum computation OLg it ng=5 qubits(dashed ling and n =8 qubits(solid line),

this model due to noise and imperfections. _and perturbation strengié1072. We start from the initial states),
To compute the entanglement echo, we start from the INland, fromt=0 to t,=20 a forward evolution of the sawtooth map is

tial state applied. After that time, we invert the dynamics. The echo occurs at
time tg=2t,=40. Top: entanglement of qubits 1 and 2. Bottom: en-

1 .
o) = | D) ® |x) = T§(|00> +]12) ® 00... 0 (4) tanglement between these two qubits and the other ones.
V

FIG. 1. Entanglement echo in a noisy quantum computer imple-
%nenting the sawtooth map algorithm in the chaotic regimé at

_ p12)=Trs n [|g())y(t)[]. Note that, in general, qubits 1
and we perform a forward evolution of the quantum saw-anq 2 are no longer disentangled from the other qubits of the
tooth map(3) up to timet=t,, that is,./=U" (the discrete quantum computer, and therefopg, is a mixed state. We
time t=7/T denotes the number of map iteratipnShen we  evaluate the entanglement of formati&ft) of the statep,,
compute the time-reversal evolution up to theho time ¢ following Ref.[8]. First of all we compute the concurrence,
=2t, [namely, /"= (U")]. Our algorithm can be decomposed defined asC=maxA;—-\,-\3—\4,0), where \j's are the
into single-qubit Hadamard gates and two-qubit controlled-square roots of the eigenvalues of the ma®ip;;p1,, in
phase-shift gatel]. In particular, the Hadamard gate can be decreasing order. Hei@, is the spin-flipped matrix opy,,
written as A, o, where A,=(1/12,0,142) and ¢ and itis defined bip,,=(0y,® 0y)p;(0y @ 0y) (note that the
=(oy,0y,07), oi's being the Pauli matrices. Due to the complex conjugate is taken in the computational basis
imperfect control of the quantum system during the quani|00),/01),[10,|11)}). Once the concurrence has been com-
tum computation, the initial state is not perfectly recov-puted, entanglement is obtained &sh[(1+y1-C?/2],
ered. In this paper, we only deal with unitary errors, mod-whereh is the binary entropy functioin(x)=-x log, x—(1
eled by noisy gates. Such noise results, for example, fromx)log,(1-x). We also compute the Von Neumann entropy
fluctuations in the duration of the pulses that implement ag(t)=-Tr{p;,(t)log, p;1,(t)] of the reduced density matrix
sequence of quantum gates. These fluctuations add a stg;, This quantity measures the entanglement between the
chastic perturbation to the Hamiltonian that describes thgubits 1 and 2 and the othey,—2 qubits of the quantum
evolution of the quantum computer. Unitary errors accu-computer. In particular, we compute the entanglement echo
mulate during the implementation of a quantum algorithm,E(t.) and the Von Neumann entroggft,) at the echo time..
which requires a sequence of many elementary quantum A typical numerical simulation of the entanglement echo
gates, and affect the performance of a quantum computefs shown in Fig. 1. The upper part shows the behavior of the
We assume that errors tilt the rotation akigby an angle  pairwise entanglement of the two qubits initially prepared in
randomly fluctuating in the intervdl-e, €]. In the noisy 3 Bell state; in the lower part we plot the Von Neumann
controlled-phase-shift gates, random phases of amplitudgntropy of this two-qubit subsystem. The dynamics com-
inside the interval-e¢, €] are added. We assume that the pletely destroys the initial pairwise entanglement, which is
errors affecting two consecutive quantum gates are compartially recovered only at the echo time[9]. Instead, the
pletely uncorrelated. Von Neumann entropy quickly reaches the saturation value.

Since we consider unitary errors, the stafét)) of the  These results can be understood as follows: in few map it-
guantum computer at any timeis still a pure state. By erations(t~ 1), the chaotic dynamics transforms the initial
tracing |¢(t)) over all the qubits, except those initially pre- state|«,) into an ergodic state. We can expand the iat8)
pared in a Bell state, we obtain the reduced density matriat time t over the computational basis:|¢(t))
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=2a,..a Caperonr, (t)|a1......anq>, where ;=0,1 for i 1

=1,... ,nq? Since q|zp(t)> is ergodic, the coefficients

Cay....a, () have random phases and amplitudes ., | 038
q q

~1/\N (to assure wave-function normalizatioriFor an er- 0.6

godic system, the reduced density matrix of a two-qubit sub- -~

system is essentially diagonal. Indeed, the diagonal matrix sl oal

9|ement5 are given byplZ)al,az;al,a2:2a3,...,an |Cal,...,an |21 ’

and their value is=1/4, since they are givenqby the sum of
N/4 positive terms, whose value is1/N. The off-diagonal

matrix elements ofp;,(t) are instead given by the sum of
N/4 terms of amplitude M and random phases. Hence their 0y ' 200 460 600

value isO(1/VN). For such a nearly diagonal density matrix e

paall), the entanglement of _format!on can be analytlcglly FIG. 2. Attenuation of the entanglement echo of a Bell pair in
computed and we find th&=0. This means that chaotic =~ +0 map, @ =5, n,=7, and, from right to lefte=7.5
dynamlcs quickly destroys t_he _entanglement of any two-, 103,102, 1.2x 102 1.5x1072 2x10°2 3x 1072 4X10°2.
qubit subsystem, as shown in Fig. 1. Under the hypothesige e and in the following figures data are averaged over 400 runs

that the wave function is ergodic, it is also possible to com+it giferent noise realizations. Inset: semilogarithmic plot of the
pute analytically the Von Neumann entrofyf the qubits 1 ggme curves.

and 2. After averaging over noise realizations, one 8as
EZTB/(N In 2) [.10’113’ n good agreement W'th our nu- =|a; - a, ) of the computational basis, except for the two
merical data. This value is close to the maximum possible Mg . o

entropy of the two-qubit subsyster§,,,,=2. Therefore the ft%tgg mvolv(vjad |n_ 1”;8 |n|t|ak W?]ve VeCtOW&I (|".Ar>]
chaotic dynamics mimics a decoherence process for a sul?_-| th -0 atn |tcr:B>_| (I))t s the quzTntu(rjn algorit mt .
system of the quantum computer, say for qubits 1 and glor the sawtooth map simulales a complex dynamics, 1t 1
Indeed the density matrig;, becomes essentially diagonal, feasonable to assume that the coefficienthave random
and the reduced Von Neumann entrdiy,,) is maximized. signs and amplitudes of the order d(l—e‘RfZ”g‘e)/(N—Z)

It is interesting to note that, in the presence of noise, it ifto assure thal/(t)) has unit nornf. Given ansatz(5) for
possible to invert the quantum dynamics after long timeshe echo wave function, the entanglement eEkiQ) can be
(much longer than the times for relaxation to statistical equicomputed analytically. It turns out that the concurre@¢g)
librium) and recover the initial out of equilibrium state. This jg

is a clear demonstration of the stability of the quantum mo-

:Ir?c?tilc?n?znZ]t.raSt to the high instability of the classical chaotic Clty) = ma{%(?.e Rengte 1)’0]_ (6)

' We now focus on the stability of the entanglement echo aJ:or Re2n.t.<1, we obtain
time t.. The numerically computed entanglement echo an ge

Von Neumann entropy at the echo timgare shown, for
different noise strengths in Figs. 2 and 3, respectively. Figure

2 shows that noisy gates attenuate the entanglement echo,
and, if the timet, is long enough, completely destroy it. This @nd
can be explained by noticing that unitary errors transform the
echo state into a state which becomes closer to an ergodic
state ag. increases. As we have seen above, an ergodic state
of the whole quantum computer implies a pairwise entangle-
mentE=0 [13].

The decay of the entanglement echo can be understood by
considering that each noisy gate transfers a probability of
order € from the ideal state to all other states. Since there
are no correlations between consecutive noisy gates, the
population of the initial state decays exponentially, and we
can write the echo state as follows:

0.2

Clty) = 1 - 3ReNgt, (7)

S(t,)

|¢(te)> = e—Rezngte/2| ¢0> + E a (te)|a>v (5) 0 : L L :
atanay 0 200 400 600
whereR is a constant to be determined numericafiyt, is FIG. 3. Von Neumann entropy of the two initially entangled

the_tOta| numbezr of gates required to perform the echo exqubits as a function of the echo tintg with the same parameter
periment (ng=3n3+n, being the number of gates per map values as in the previous figure. Inset: approach to the saturation
iteration, and the sum runs over all the statéa) value S, for the same curves.
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— computer. We can compute analytically the approach to equi-
In librium from Eq. (5), that gives, forRe’ngte>1,

S(@—&z_
S, 41n2

exp(— 2Re’ngt,). (12)

! This theoretical prediction is borne out by our numerical data
shown in Figs. 3 and 4. The inset of Fig. 3 shows that the
approach to the asymptotic value is exponential. Indeed, we
n haveS,.—S(t,) xe e, In Fig. 4 (insed we plot the ratd" for
different number of qubits and perturbation strengths. We
see thaf o« &2n?.
0 It is interesting to compare the entanglement echo decay
log(e’n,*) with the decay of the fidelity, which is the usual tool used to
characterize the stability of quantum computati@t®]. The

FIG. 4. Time scald;, for the decay of the entanglement echo in fidelity f at timet, is defined adf(te) =|(y(te)|ip)|?, and Eq.
the sawtooth map aK=5, for different strengths and number of (5) implies that

ubits,n,=4 (empty circle, 5 (filled circles), 6 (empty squares7
?filled sqquare(; Sp()e);npty tr?ang(le;; 9 (filledgtrian(gles;), )::mc? 10(2ia— f(te) = exp(- RezngtP). (12
mondy. Straight line: t,=A/n%e?, with the fiting constantA  This is in agreement with our numerical dafaot shown
~6.04x 1072 Inset: ratel’ of the approach to equilibrium of the herd. Therefore the decay of the fidelity, the decay of the
Von Neumann two-qubit reduced entropy. The straight line givesynianglement echo, and the approach to equilibrium for the
T'=Beng, with B~2.34. Logarithms are decimal. reduced Von Neumann entropy take placeghe same time
scalex1/(eny) [14].

In summary, we have proposed a suitable method, the
entanglement echo, to study the stability of entanglement
under perturbations. We have shown that noise destroys the
Therefore the entanglement echo is stable up to time scalegntanglement of a pair of qubits and produces entanglement

2 between these two qubits and the other qubits of the quantum
te 1/(62n9) * 1/(62nq)' ©) computer. We pointqout that, since the gntanglemen('él can be

This theoretical estimate is confirmed by Fig. 4, in which wemeasured experimentally in an efficient wip|, entangle-
plot the characteristic time scalg for the decay of the en- ment echo experiments analogous to the numerical simula-
tanglement echo, defined by the Conditiﬁﬁ;):c (we take tions discussed m_thls paper could be |mple_mented in quan-
c=0.9. It is clearly seen that,«n %2 Therefore noisy tUm processors with a small number of quli#s-10 and a
gates degrade the entanglement echo after a numipefr few hundreds of gates. These experiments are close to

qubits our understanding of the limits to quantum computation due

to decoherence and imperfections.

3
E(t) ~1- mRéthe. (8)

Ne = Nty > €72, (10) , ,
This work was supported in part by the EC Contract Nos.
The Von Neumann entrop§(te) of the reduced two-qubit |ST-FET EDIQIP and RTN QTRANS, the NSA and ARDA
subsystem at the echo time is shown in Fig. 3. It saturategyynder ARO Contract No. DAAD19-02-1-0086, and the PRIN
for sufficiently long echo times, to the valu§, =2 2002 “Fault Tolerance, Control and Stability in Quantum In-
—-8/(N In 2), as expected for an ergodic state of the quantunformation Processing.”

[1] Previous investigations were mainly focused on the analysis of [6] H. M. Pastawski, P. R. Levstein, and G. Usaj, Phys. Rev. Lett.

the fidelity of quantum computatigisee, e.g., C. Miquel, J. P. 75, 4310(1995; P. R. Levstein, G. Usaj, and H. M. Pastawski,

Paz, and W. H. Zurek, Phys. Rev. Left8, 3971(1997) and J. Chem. Phys108 2718(1998.

Ref. [2]]. [7] G. Benenti, G. Casati, S. Montangero, and D. L. Shepelyansky,
[2] G. Benenti, G. Casati, S. Montangero, and D. L. Shepelyansky, = Phys. Rev. A67, 052312(2003.

Phys. Rev. Lett.87, 227901(2001). [8] W. K. Wootters, Phys. Rev. Let80, 2245(1998.

[3] A. Ekert, Phys. Rev. Lett67, 661 (1991). [9] We note that the evolution of entanglement in quantum algo-
[4] C. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and rithms simulating quantum chaos has been recently investi-
W. K. Wootters, Phys. Rev. Letf70, 1895(1993. gated by S. Bettelli and D. L. Shepelyansky, Phys. ReGA
[5] R. Jozsa and N. Linden, Proc. R. Soc. London, Se#39, 054303(2003; and by A. J. Scott and C. M. Caves, J. Phys. A

2011(2003. 36, 9553(2003.

052317-4



ENTANGLEMENT ECHOES IN QUANTUM COMPUTATION PHYSICAL REVIEW A69, 052317(2004

[10] D. N. Page, Phys. Rev. Let?1, 1291(1993; S. K. Foong and librium (inset of Fig. 4. We getR=0.28, 0.26, and 0.39, re-
S. Kanno,ibid. 72, 1148(1993; S. Sen,bid. 77, 1 (1996. spectively. The rather good agreement between these values is

[11] J. N. Bandyopadhyay and A. Lakshminarayan, Phys. Rev. Lett.  a further confirmation of the validity of our theoretical analy-
89, 060402(2002. sis.

[12] G. Casalti, B. V. Chirikov, I. Guarneri, and D. L. Shepelyansky, [15] P. Horodecki and A. Ekert, Phys. Rev. Let89, 127902
Phys. Rev. Lett.56, 2437(1986. (2002.

[13] Note that in an echo simulation we ha#&=0 after a finite  [16] Y. S. Weinstein, S. Lloyd, J. Emerson, and D. G. Cory, Phys.
time, since the set of separable two-qubit mixed states pos- Rev. Lett. 89, 157902(2002.
sesses a nonzero volurjsee K.Zyczkowski, P. Horodecki, A.  [17] L.M.K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M.
Sanpera, and M. Lewenstein, Phys. Rev58, 883 (1998], H. Sherwood, and I. L. Chuang, Natu¢eondon 414, 883
and p,, enters this volume in a finite time. (200YD.

[14] The value of the constarR that appears in Eq5) can be [18] S. Gulde, M. Riebe, G.P.T. Lancaster, C. Becher, J. Eschner,
determined from our numerical data for the fidelity decay, the H. Haffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, Na-
entanglement echo decélyig. 4), and the relaxation to equi- ture (London 421, 48 (2003.

052317-5



