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We study the stability of entanglement in a quantum computer implementing an efficient quantum algorithm,
which simulates a quantum chaotic dynamics. For this purpose, we perform a forward-backward evolution of
an initial state in which two qubits are in a maximally entangled Bell state. If the dynamics is reversed after an
evolution timetr, there is an echo of the entanglement between these two qubits at timete=2tr. Perturbations
attenuate the pairwise entanglement echo and generate entanglement between these two qubits and the other
qubits of the quantum computer.
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The development of new techniques which could enhance
the reliability of quantum computation is intrinsically con-
nected with the study of its stability. Every physical imple-
mentation of a quantum computer will have to deal with
errors, due to the coupling with the environment or to an
imperfect control of the computer hardware. Therefore an
accurate study of the stability of a quantum computer, while
it is running quantum algorithms, is demanded[1].

Entanglement is arguably the most peculiar feature of
quantum systems, with no analog in classical mechanics.
Furthermore, it is an important physical resource, which is at
the basis of many quantum information protocols, including
quantum cryptography[3] and teleportation[4]. For any
quantum algorithm operating on pure states, the presence of
multipartite (many-qubit) entanglement is necessary to
achieve an exponential speedup over classical computation
[5]. Therefore the ability to control entangled states is one of
the basic requirements for constructing quantum computers.

In this paper, we introduce a suitable method to charac-
terize the stability of pairwise entanglement in quantum
computation, by considering the echo of an initially maxi-
mally entangled pair of qubits; namely, we assume that our
quantum computer is initially in the stateuc0l= uFBl ^ uxl.
Here, the first two qubits are prepared in a maximally en-
tangled Bell statesuFBld, while the othernq−2 qubits are set
in a pure statesuxld, and they are completely disentangled
from the Bell pair(nq denotes the total number of qubits in
the quantum computer). The stateuc0l first evolves according
to the given quantum algorithm, described by the unitary

evolution operatorÛ. Then we invert the sequence of quan-

tum gates that implement this algorithm, that is, we applyÛ†.
In the ideal case we would reconstruct the initial state, since

Û†Ûuc0l= uc0l. However, due to noise and imperfections, the
initial state uc0l is not exactly recovered. In particular, the

first two qubits are no longer in a Bell state, and therefore
their pairwiseentanglement echois reduced. Conversely, this
pair of qubits becomes entangled with the other qubits, thus
generating multipartite entanglement. In this paper, we study
numerically the attenuation of the pairwise entanglement
echo in a quantum computer implementing an efficient quan-
tum algorithm which simulates quantum chaotic dynamics.
We point out that the entanglement echo simulations dis-
cussed in the following are close in spirit to the spin-echo
experiments in many-body quantum systems in the presence
of perturbations[6].

We study the entanglement echo for the quantum algo-
rithm simulating the sawtooth map dynamics[2]. The saw-
tooth map is a periodically driven dynamical system, de-
scribed by the Hamiltonian

Hsu,n,td =
n2

2
−

ksu − pd2

2 o
j=−`

+`

dst − jTd, s1d

where sn,ud are conjugated action-angle variabless0
øu,2pd. The time evolutiont→t+T of this system is
classically described by the map

n̄ = n + ksu − pd, ū = u + Tn̄, s2d

where the bars denote the variables after one map iteration.
By rescalingn→p=Tn, one can see that classical dynamics
depends only on the parameterK=kT. The classical motion
is stable for −4øKø0 and completely chaotic forK,−4
and K.0. The quantum evolution in one map iteration is

described by the unitary operatorÛ:

uc̄l = Ûucl = e−iTn̂2/2 eiksû − pd2/2ucl, s3d

where n̂=−i ] /]u swe set"=1d. The classical limit is ob-
tained by takingk→` andT→0, keepingK=kT const. We
study maps3d on the torus 0øu,2p, −pøp,p. With an
nq qubit quantum computer, we can simulate the quantum
dynamics of the sawtooth map withN=2nq levels, and we set
T=2p /N. Hence the angle variableu takes onlyN equidis-
tant values in the interval 0øu,2p, while the action vari-
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able n ranges from −N/2 to N/2−1 scorresponding to −p
øp,pd. The effective Planck’s constant of the quantum
system is"eff,1/N and the classical limit corresponds to
nq→`s"eff→0d f2g. We focus on the caseK=5, which
corresponds to the chaotic regime.

It is convenient to simulate map(3) by means of the
forward-backward Fourier transform betweenu andn repre-
sentations. While the classical fast Fourier transform requires
OsN log2 Nd operations, an efficient quantum algorithm has
been found[2], which uses the quantum Fourier transform
and simulates Eq.(3) in O(nq

2=slog2 Nd2) elementary quan-
tum gates per map iteration. Therefore this quantum algo-
rithm is exponentially efficient with respect to any known
classical algorithm. Moreover, allnq qubits are used in an
optimal way, that is, no extra work space qubits are required.
In this way interesting physical phenomena, such as dynami-
cal localization[7], cantori localization, and anomalous dif-
fusion could be simulated already with less than ten qubits.
Therefore the quantum sawtooth map represents an interest-
ing testing ground for quantum computation, and it is impor-
tant to understand the limits to the quantum computation of
this model due to noise and imperfections.

To compute the entanglement echo, we start from the ini-
tial state

uc0l = uFBl ^ uxl =
1
Î2

su00l + u11ld ^ u00 . . . 0l s4d

and we perform a forward evolution of the quantum saw-

tooth maps3d up to time t= tr, that is, Û=Ûtr sthe discrete
time t=t /T denotes the number of map iterationsd. Then we
compute the time-reversal evolution up to theecho time te
=2tr fnamely,Û†=sÛ†dtrg. Our algorithm can be decomposed
into single-qubit Hadamard gates and two-qubit controlled-
phase-shift gatesf2g. In particular, the Hadamard gate can be
written as n̂H ·s, where n̂H=s1/Î2,0,1/Î2d and s
=ssx,sy,szd, si’s being the Pauli matrices. Due to the
imperfect control of the quantum system during the quan-
tum computation, the initial state is not perfectly recov-
ered. In this paper, we only deal with unitary errors, mod-
eled by noisy gates. Such noise results, for example, from
fluctuations in the duration of the pulses that implement a
sequence of quantum gates. These fluctuations add a sto-
chastic perturbation to the Hamiltonian that describes the
evolution of the quantum computer. Unitary errors accu-
mulate during the implementation of a quantum algorithm,
which requires a sequence of many elementary quantum
gates, and affect the performance of a quantum computer.
We assume that errors tilt the rotation axisn̂H by an angle
randomly fluctuating in the intervalf−e ,eg. In the noisy
controlled-phase-shift gates, random phases of amplitude
inside the intervalf−e ,eg are added. We assume that the
errors affecting two consecutive quantum gates are com-
pletely uncorrelated.

Since we consider unitary errors, the stateucstdl of the
quantum computer at any timet is still a pure state. By
tracing ucstdl over all the qubits, except those initially pre-
pared in a Bell state, we obtain the reduced density matrix

r12std=Tr3,. . .,nq
fucstdlkcstdug. Note that, in general, qubits 1

and 2 are no longer disentangled from the other qubits of the
quantum computer, and thereforer12 is a mixed state. We
evaluate the entanglement of formationEstd of the stater12

following Ref. [8]. First of all we compute the concurrence,
defined asC=maxsl1−l2−l3−l4,0d, where li’s are the
square roots of the eigenvalues of the matrixR=r12r̃12, in
decreasing order. Herer̃12 is the spin-flipped matrix ofr12,
and it is defined byr̃12=ssy ^ sydr12

* ssy ^ syd (note that the
complex conjugate is taken in the computational basis
hu00l , u01l , u10l , u11lj). Once the concurrence has been com-
puted, entanglement is obtained asE=hfs1+Î1−C2d /2g,
whereh is the binary entropy functionhsxd=−x log2 x−s1
−xdlog2s1−xd. We also compute the Von Neumann entropy
Sstd=−Trfr12stdlog2 r12stdg of the reduced density matrix
r12. This quantity measures the entanglement between the
qubits 1 and 2 and the othernq−2 qubits of the quantum
computer. In particular, we compute the entanglement echo
Ested and the Von Neumann entropySsted at the echo timete.

A typical numerical simulation of the entanglement echo
is shown in Fig. 1. The upper part shows the behavior of the
pairwise entanglement of the two qubits initially prepared in
a Bell state; in the lower part we plot the Von Neumann
entropy of this two-qubit subsystem. The dynamics com-
pletely destroys the initial pairwise entanglement, which is
partially recovered only at the echo timete [9]. Instead, the
Von Neumann entropy quickly reaches the saturation value.
These results can be understood as follows: in few map it-
erationsst,1d, the chaotic dynamics transforms the initial
stateuc0l into an ergodic state. We can expand the stateucstdl
at time t over the computational basis:ucstdl

FIG. 1. Entanglement echo in a noisy quantum computer imple-
menting the sawtooth map algorithm in the chaotic regime atK
=5, with nq=5 qubits (dashed line) and nq=8 qubits (solid line),
and perturbation strengthe=10−2. We start from the initial state(4),
and, fromt=0 to tr =20 a forward evolution of the sawtooth map is
applied. After that time, we invert the dynamics. The echo occurs at
time te=2tr =40. Top: entanglement of qubits 1 and 2. Bottom: en-
tanglement between these two qubits and the other ones.
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=oa1. . ....anq
ca1,. . ....,anq

stdua1. . ....anq
l, where ai =0,1 for i

=1, . . . ,nq. Since ucstdl is ergodic, the coefficients
ca1,. . .,anq

std have random phases and amplitudesuca1,. . .,anq
u

,1/ÎN (to assure wave-function normalization). For an er-
godic system, the reduced density matrix of a two-qubit sub-
system is essentially diagonal. Indeed, the diagonal matrix
elements are given bysr12da1,a2;a1,a2

=oa3,. . .,anq
uca1,. . .,anq

u2,
and their value is<1/4, since they are given by the sum of
N/4 positive terms, whose value is,1/N. The off-diagonal
matrix elements ofr12std are instead given by the sum of
N/4 terms of amplitude 1/N and random phases. Hence their
value isOs1/ÎNd. For such a nearly diagonal density matrix
r12std, the entanglement of formation can be analytically
computed and we find thatE=0. This means that chaotic
dynamics quickly destroys the entanglement of any two-
qubit subsystem, as shown in Fig. 1. Under the hypothesis
that the wave function is ergodic, it is also possible to com-
pute analytically the Von Neumann entropyS of the qubits 1
and 2. After averaging over noise realizations, one hasS
<2−8/sN ln 2d [10,11], in good agreement with our nu-
merical data. This value is close to the maximum possible
entropy of the two-qubit subsystem,Smax=2. Therefore the
chaotic dynamics mimics a decoherence process for a sub-
system of the quantum computer, say for qubits 1 and 2.
Indeed the density matrixr12 becomes essentially diagonal,
and the reduced Von Neumann entropySsr12d is maximized.
It is interesting to note that, in the presence of noise, it is
possible to invert the quantum dynamics after long times
(much longer than the times for relaxation to statistical equi-
librium) and recover the initial out of equilibrium state. This
is a clear demonstration of the stability of the quantum mo-
tion in contrast to the high instability of the classical chaotic
motion [12].

We now focus on the stability of the entanglement echo at
time te. The numerically computed entanglement echo and
Von Neumann entropy at the echo timete are shown, for
different noise strengths in Figs. 2 and 3, respectively. Figure
2 shows that noisy gates attenuate the entanglement echo,
and, if the timete is long enough, completely destroy it. This
can be explained by noticing that unitary errors transform the
echo state into a state which becomes closer to an ergodic
state aste increases. As we have seen above, an ergodic state
of the whole quantum computer implies a pairwise entangle-
mentE=0 [13].

The decay of the entanglement echo can be understood by
considering that each noisy gate transfers a probability of
order e2 from the ideal state to all other states. Since there
are no correlations between consecutive noisy gates, the
population of the initial state decays exponentially, and we
can write the echo state as follows:

ucstedl < e−Re2ngte/2uc0l + o
aÞaA,aB

aastedual, s5d

whereR is a constant to be determined numerically,ngte is
the total number of gates required to perform the echo ex-
periment sng=3nq

2+nq being the number of gates per map
iterationd, and the sum runs over all the statesual

= ua1¯anq
l of the computational basis, except for the two

states involved in the initial wave vectoruc0l suaAl
= u000. . .0l and uaBl= u110. . .0ld. As the quantum algorithm
for the sawtooth map simulates a complex dynamics, it is
reasonable to assume that the coefficientsaa have random

signs and amplitudes of the order ofÎs1−e−Re2ngted / sN−2d
fto assure thatucstedl has unit normg. Given ansatzs5d for
the echo wave function, the entanglement echoEsted can be
computed analytically. It turns out that the concurrenceCsted
is

Csted = maxf 1
2s3e−Re2ngte − 1d,0g . s6d

For Re2ngte!1, we obtain

Csted < 1 − 3
2Re2ngte s7d

and

FIG. 2. Attenuation of the entanglement echo of a Bell pair in
the sawtooth map, atK=5, nq=7, and, from right to left,e=7.5
310−3,10−2, 1.2310−2, 1.5310−2, 2310−2, 3310−2, 4310−2.
Here and in the following figures data are averaged over 400 runs
with different noise realizations. Inset: semilogarithmic plot of the
same curves.

FIG. 3. Von Neumann entropy of the two initially entangled
qubits as a function of the echo timete, with the same parameter
values as in the previous figure. Inset: approach to the saturation
value S̀ for the same curves.
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Ested < 1 −
3

2 ln 2
Re2ngte. s8d

Therefore the entanglement echo is stable up to time scale

te ~ 1/se2ngd ~ 1/se2nq
2d. s9d

This theoretical estimate is confirmed by Fig. 4, in which we
plot the characteristic time scalete

* for the decay of the en-
tanglement echo, defined by the conditionEste

*d=c swe take
c=0.9d. It is clearly seen thatte

* ~nq
−2e−2. Therefore noisy

gates degrade the entanglement echo after a numberne
* of

elementary gates which isindependent of the number of
qubits:

ne
* = ngte

* ~ e−2. s10d

The Von Neumann entropySsted of the reduced two-qubit
subsystem at the echo time is shown in Fig. 3. It saturates,
for sufficiently long echo times, to the valueS̀ <2
−8/sN ln 2d, as expected for an ergodic state of the quantum

computer. We can compute analytically the approach to equi-
librium from Eq. (5), that gives, forRe2ngte@1,

Ssted − S̀

S̀
< −

3

4 ln 2
exps− 2Re2ngted. s11d

This theoretical prediction is borne out by our numerical data
shown in Figs. 3 and 4. The inset of Fig. 3 shows that the
approach to the asymptotic value is exponential. Indeed, we
haveS̀ −Ssted~e−Gte. In Fig. 4 sinsetd we plot the rateG for
different number of qubits and perturbation strengths. We
see thatG~e2nq

2.
It is interesting to compare the entanglement echo decay

with the decay of the fidelity, which is the usual tool used to
characterize the stability of quantum computation[1,2]. The
fidelity f at time te is defined asfsted= ukcsteduc0lu2, and Eq.
(5) implies that

fsted < exps− Re2ngted. s12d

This is in agreement with our numerical datasnot shown
hered. Therefore the decay of the fidelity, the decay of the
entanglement echo, and the approach to equilibrium for the
reduced Von Neumann entropy take placein the same time
scale~1/se2ngd f14g.

In summary, we have proposed a suitable method, the
entanglement echo, to study the stability of entanglement
under perturbations. We have shown that noise destroys the
entanglement of a pair of qubits and produces entanglement
between these two qubits and the other qubits of the quantum
computer. We point out that, since the entanglement can be
measured experimentally in an efficient way[15], entangle-
ment echo experiments analogous to the numerical simula-
tions discussed in this paper could be implemented in quan-
tum processors with a small number of qubits(4–10) and a
few hundreds of gates. These experiments are close to
present capabilities[16–18] and would bring new insights in
our understanding of the limits to quantum computation due
to decoherence and imperfections.
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