PHYSICAL REVIEW A 69, 052316(2004)

Frustration, interaction strength, and ground-state entanglement in complex quantum systems

Christopher M. Dawsar?* and Michael A. Nielseh®>'
School of Physical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
2Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125, USA
33chool of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
(Received 13 January 2004; published 14 May 2004

Entanglement in the ground state of a many-body quantum system may arise when the local terms in the
system Hamiltonian fail to commute with the interaction terms in the Hamiltonian. We quantify this phenom-
enon, demonstrating an analogy between ground-state entanglement and the phenomenon of frustration in spin
systems. In particular, we prove that the amount of ground-state entanglement is bounded above by a measure
of the extent to which interactiorfeustratethe local terms in the Hamiltonian. As a corollary, we show that the
amount of ground-state entanglement is bounded above by a ratio between parameters characterizing the
strength of interactions in the system, and the local energy scale. Finally, we prove a qualitatively similar result
for other energy eigenstates of the system.
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I. INTRODUCTION multaneously compatibldasesfor Hilbert space. For ex-
. Lo . ample, consider a system of two spﬁrparticles with Hamil-
A central problem in physics is understandlng thg ground'tonianH:—g(a§+a§)—a§o§, where the superscripts indicate
state properties of a complex many-body Hamiltonian, espe-, . .

which spin the operators act on, ang, o, ando, are the

cially the ground-state correlations. As an outgrowth of that sual Pauli spin oberators. The around state of this svstem
interest, there has recently been considerable work on undelaf{-rises as thepresullat of a cbm eti%ve rocess betweenymini-
standing thenonclassicalcorrelations in the ground state, P P

that is, theground-state entanglemer§ome recent work on mizjng the clontribution o the energy f”’”.‘ the IOCQI H"?‘m“'
this problem, with further references, includes Refs.tonl'an’ 9o+ o), and from the Interaction Hamlltonlan,
[1-15,33. This work has been motivated by the remarkable_‘fzof‘ Of course, because these two Hamilionians do not

recent progress in using entanglement as a physical resourB8V€ common eigenvectors, the actual ground state cannot

to accomplish feats such as quantum computation and quaR©SSiPly minimize both simultaneously, and must be a com-

tum teleportatiort promise between the respective ground states of the local and
In this paper we connect the phenomenon of ground-stat@tera_Ctlon Hamiltonians. .

entanglement to a well-known idea in condensed-matter This example suggests a connection between the grou_nd-

physics, that offrustration, which we now briefly review. state entanglement and a generalized concept of frustration.

More detailed introductions may be found in Rg£S]. A If the interaction term in the Hamiltonian were turned off,
typical example of a frustrated spin system is shown in Fig.
1. It consists of a triangular arrangement of three é)'par—
ticles, each pair being coupled by a classical antiferromag-
netic coupling(+Jo,o,, with positive coupling strength).
The antiferromagnetic coupling means that neighbors prefer
to be antialigned in order to minimize their interaction ener-
gies. However, a little thought shows that it is impossible for
all three spins to simultaneously be antialigned with each of
their neighbors. It is therefore not possible to simultaneously +J +]
minimize all three interaction energies, and the system is said
to be frustrated for this reason. The ground state of the
Hamiltonian is a compromise between the minimum-energy
states of the interaction terms.

Let us consider an analogous example in which frustration
arises not from the difficulty of choosing simultaneously +J
compatible spin configurations, but rather from choosing si-

FIG. 1. A system containing three sp%rparticles, coupled by a

*Electronic address: dawson@physics.ug.edu.au classical antiferromagnetic coupling-Jo,o, with positive cou-
"Electronic address: nielsen@physics.ug.edu.au; pling strengthJ) favoring antialignment. There is no way all the
URL: www.qinfo.org/people/nielsen competing coupling energies can be simultaneously minimized; for

see, Refs[16,17 for reviews and further references. this reason we say the systentfigstrated
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the system would sit in an unentangled state—the ground Il. BACKGROUND ON ENTANGLEMENT MEASURES

state of the local Hamiltonian. As the interaction term is T K id . t introd it
turned on, it causes the local Hamiltonian to become frus-, 'O Make our ideas precise we must introduce a quantita-

trated. As a result, the ground state sits in a basis which is V€ measure of the amount of entanglement in the ground
compromise between the unentangled basis of the loc&tate of a quantum system. A major focus of research in
Hamiltonian, and the basis for the interaction Hamiltonian.guantum information science over the past few years has
Provided the interaction was chosen appropriately, the resuéen developing such a theory of entanglenfentd several

will be an entangled ground state. Furthermore, it is cleagood candidate measures exist. We shall use a measure of
that the more frustrated the local Hamiltonian is by the in-entanglement introduced in Reff25,26. For an n-body
teraction, the greater the potential entanglement in thguantum system in a staig this entanglement measure is

ground state. defined by
The main result of this paper is a bound that makes these - 5
intuitive ideas quantitatively precise. Our paper thus illus- E(y)=1- 1ma§ Ky ® -+ ® gy (1)

trates a general idea discussed in Rgffsl4,19-22, namely,

that quantum information science provides tools and perThat is, E(¢) measures the maximal overlap has with a

spectives for understanding the properties of complex quarproduct statey; ® - - ® 4, of the n bodies making up the

tum systems, complementary to the existing tools of quansystem.

tum many-body physics. What makesE(y) a good entanglement measure? Refer-
We begin in Sec. Il by reviewing some basic material onences[25,26 investigated the properties &) and found

quantitative measures of entanglement. In Sec. Ill we prove gat it has many properties that make it a good measure of

general, nonperturbative bound on the ground-state entanglgntanglement. These properties include the fact tha(y)

ment, relating it to the extent to which the interaction Hamil- . only decrease, never increase, under local operations and
tonian frustrates the local Hamiltonian. We call this thejssical communication, i.e., it is an entanglement mono-

“entanglement-frustration” bound. The proof of the bound iStone; andii) E(y) is zero if and only ifis unentangled, and

conceptually and mathematically extremely simple. Its interyqryise is positive. In addition, an interesting connection

est lies in illustrating quantitatively a connection betweeny o4 peen foungR7] betweerE(y) and the theory of quantum

two apparently digparate physical .phenomer)a, and in .thglgorithms, withE() being related to the probability of suc-
consequences which follow from this connection, to be dis-

cussed in later sections cess of an aI_gorithm whose initial state is equivalenttop
' . to a local unitary transformation.
In Sec. IV we apply the entanglement-frustration bound to
an illustrative example. Using this example, we determine
necessary conditions for the bound to saturate the ground- ll. ENTANGLEMENT-FRUSTRATION BOUND

state entanglement. It is then shown by construction that it is . . .
The general scenario we consider israbody quantum

possible to come arbitrarily close to saturation for all pos—system with HamiltoniarH=H, +H,. H, is a local Hamil-

sible values of the ground-state entanglement, and we Ol nian consisting of single-body docal terms, and therefore
clude that the entanglement-frustration bound is thus th(lgI 9 9 y '

strongest poss_lblg bqqnd of its type. . . remaining terms in the Hamiltonian, and is called theer-
Aside from its intuitive appeal and immediate relevance,___. oo
action Hamiltonian

the entanglement-frustration bound has an elegant corollary We let E, be the global ground-state energy, i.ec., the
O - ) . "

described in Sec. V. Intuitively, it is clear that the ground- round-state ener H, with [Ep) an r ndin
state entanglement of a Hamiltonidh=H, _ +H, is small if groung-state - energy OL ' | o/ any Correspo 9
ground state. Similarife; andEj are defined to be the local

the size of the interactiofl, is small compared with some and interaction ground-state energies, respectively,Hor
appropriate local energy scale associated With Indeed, it nd H,. We define thefrustration energyof the system as

is straightforward to use perturbation theory to demonstrate (=E,~E5—E}. The frustration energy thus measures the

bound along these lines, valid in the limit wheis a small wtent to which the alobal around state fails to simulta-
perturbation. The entanglement-frustration bound allows u§ L 9 grour ; . :
neously minimize the local and interaction energies. It is

to prove a general nonperturbative bound quantifying thiseasil shown from matrix eigenvalue inequalities thEt
intuition. This corollary is proved in Sec. V. Section VI gen- y 9 q

L | . _ . . .
eralizes these results so that they applyatbitrary eigen- ZE%\JIFEJO,zeSr%%aIS d%\;‘vla%; aarr:glg nhegvaetl\;ecc?;?;ﬁy, r‘zﬂi d's
states of the Hamiltonian, not just the ground state. This igtqate y L ! 9
done using methods quite different from those used in Sec e

V, using a variant on a powerful theorem from linear algebra Our aim is to relate the amou_nt of entanglement in the
known as the Davis-Kahan theorem. ground statef(|Egy)), to the frustration energl;. Of course,

The results in Secs. lll-V provide a compelling picture of 0 "élate the dimensionless quant{Ey)) to E;, which has
how ground-state entanglement arises as the result of frustra-

tion between competing local and interaction terms in the 2see e.g., Refg23,24 for an introduction and further references
system Hamiltonian. Section VI generalizes some of thesen the theory of entanglement.

results to apply to other energy eigenstates as well. The papefNote that this measure is a slightly rescaled version of that in
concludes in Sec. VIl with a discussion of some possiblerefs.[25,26, but has essentially the same properties. In the present
extensions to this work. context the rescaled definition turns out to be easier to work with.

as an eigenbasis of unentangled statgscontains all the
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TABLE I. Quantities important in derivation of the The first step in the proof of the entanglement-frustration
entanglement-frustration bound. bound, Eq.(2), is to prove that
Quantity Description (Eo|H.|Eo) - E5 < E;. (3)
E;, [E) jth energy eigenvalue and corresponding eigenvec- physically, this is just the obvious statement that the extent
e tor of the tot_al HamiltoniarH _ to which the local Hamiltonian is frustrated is no larger than
B [ED jth energy eigenvalue and eigenvector of the local — the total frustration in the system. The proof is simply to split
HamiltonianH_ the frustration energy into a sum of contributions from the
E}, |E}> jth energy eigenvalue and eigenvector of the local and interaction frustration energies:
interaction HamiltoniarH,
AE! Excitation gap between the ground and first E; = (Eo/H|Eo) - E§ - Efy (4)
excited energies of thih subsystem
HamiltonianH, L I
=((Eo|H.|Eo) — Eg) + ((Eo|H||Eo) — Ep). 5
AEgnt Minimum energy required to excite at least two (BolHu[Eo) ~ Bg) + (BalH|Eo) - o) ®
slszysltegws of, equal to the second smallest of  The inequality of Eq(3) now follows from the observation
theAE above that (Eq|H,|Eq) = E},
Es Frustration energy=Eo—E,—E, The second step in the proof of the entanglement-

frustration bound is to expan#) in terms of the eigenstates

[) of H., [Eq)=3; o|E}). We assume that the local ener-

, . ) E

units of energy, we require another energy scale in the SySsies are ordered so thEtsEis---. We now split the ex-

tem. The relevant energy scale turns out to be associated WiffL, \<ion of|Ey) into terms with energies beIO\EB+AE ,
en

local excitations of the system. Suppose we decompise 5, into terms with energies at led&j+AEq,, that is,
asH;+H,+---+H,, whereH, is the contribution to the local

Hamiltonian from thelth subsystem. The energy scale we k
will refer to is the gap between the ground and first excited |Eg) = > a].|E}-> +9E,), (6)
energies. The term “gap” is often used in two different j=0

senses, in some cases it refers to the energy difference be-
tween the ground state and the first excited state with a/here () k is the largest integer such thf <Eg+AEgy,
strictly higher energy. We will use the alternative senseand thusEy,;=Eg+AEeqy (ii) |E.) is a normalized state
where the gapAE' is zero if H, has a degenerate ground containing all the terms of energy at led&j+AE,,, and
state. thus is orthogonal to the lower energy terms; aiid vy is
Now let AE' denote the gaps between the ground and firsthe amplitude for [E;), and thus satisfies|y[’=1
excited energies for eacH,, and letAE,, be thesecond ~Zj-o |01j|2-
smallestof these energies. That is, suppose we choose For later use it is important to note thak a;|E) is a
lo,l1,... such thatAE'o<AE1<---. Then AE,,=AE't. For  product state, as all the terrﬁS,L> involve excitations of the
the convenience of the reader we have placed brief descrigame subsysterfsystemjo, to return to the notation used
tions of these quantities in Table . earlier in definingAEeEt). Furthermore, its overlap squared
Physically,AE is the energy we need to put into a sys- with |Eg) is given by, (o]
tem with HamiltonianH, in order to cause an excitation  Returning to the main line of the proof, from E@) we
from the ground state into an excited state of either sysgem have
or systeml,. It is thus the minimal amount of energy that we

. . k
would need to put into the system in order to cause entangle-

- 2L 2
ment in the ground state, since merely exciting one system, (EoHL|Eo) = % |“J| S [IAXELHLEL). ()
while leaving the others alone, leaves the system still in a =
product state. But E'=E5, (E,[HE,)>E5+AEe, and |A°=1

Our result relating the ground-state entanglement to the

. . : . K, |ai|? so
frustration energy andE,, is the inequality j=0 |“J|

k k
E, (EoHL[Eo) = X |y E5 + (1 -2 |aj|2)<E5 +AEqn).
E(Eo) < 3£ — ) i=0 i=0

ent (8)
We call this theentanglement-frustratiobhound. This bound o o
tells us that when the frustration energy is small comparedRearrangement of this inequality gives
with AEg,, there cannot possibly be much entanglement in

the ground state of the system. Thus it is only systems in L K )

which the interaction and local terms substantially frus- (EolHL|Eo) — Eg = 1_2 |aj” | ABent ©)
trate one another that it is possible to have a highly en- 1=

tangled ground state. Combining Egs(3) and(9) we have
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k 1 r . .
Ey . E;/AF,
1-2 |a'|2) = . (10 0.9} /A Fen,
( i ") AEen o8l — E(E)
. . . . 7t
Our desired result, Eq2), will follow if we can establish 26

that E(|Ey)) < (1—2}‘:0 |a;|?). This follows immediately from

the definition of the entanglement measure, Bg, and the

observation we made earlier in the proof, th&g) and the

product state=¥, o;|E[) have overlap squaredl_j|a;[2

IV. APPLICATION AND SATURATION OF THE
ENTANGLEMENT-FRUSTRATION BOUND

In this section we consider two separate but related issues.
First, in Sec. IV A we apply the entanglement-frustration FIG. 2. The ground-state entanglement and entanglement-
bound to an illustrative and physically relevant Hamiltonian,frustration bound for the transverse Ising Hamilton{ad) plotted
the two-spin transverse Ising model. This example is used t@gainst the parameter
develop insight into the question of when the entanglement-
frustration bound is saturated. Building on these insights, wgorm, with largest Schmidt coefficieht Ao=(29
analyze this question in more generality in Sec. IV B, show-+ \§1+492)/\N_ The ground-state entanglement is given by
ing that the entanglement-frustration bound can be saturatep_)\g, which simplifies to
for all possible values of the ground-state entanglement.

Thus there is a sense in which the entanglement-frustration 1 g
bound is the best possible bound of its type. E(Ey)==-+—. (13
A. Two-spin transverse Ising model To calculate the entanglement-frustration bound we must

first split the Hamiltonian into a local and interaction part,
Ho=-g(0l+0?), andH,=-o20?. With these choices we find

’ that E;=-2g and E}):—l. The two spin systems each have
the same local energy spectrum with the gap between the
ground and excited states being, 20 we haveAE,,=2g.
yThis gives the entanglement-frustration bound

As an illustrative example, consider a system of two spin
% particles evolving under a transverse Ising Hamiltonian

H=- g(a)l( + 0')2() - 0'%0'5. (11)

In this model, the two particles are coupled magneticall
along theirz axes, and interact with an external magnetic

field of strengthg directed along the axis. For the purposes B _1+2g-Vi+ 4g? (14)
of this example we takg=0. Theg<0 analysis is similar, AEqn 2g '

but it simplifies the discussion to pick a definite value for the . . .

sign of g. A comparison of the quantities appearing in EdS) and

Note that while the two-spin transverse Ising model is(14) is shown in Fig. 2. Both 'ghe ground-state entanglement
mathematically rather trivial, it has genuine physical interest2nd the entanglement-frustration bound decrease sharply as
Furthermore, we will find that it is surprisingly informative Increases from 0. For these small valuesgahe bound is

as a way of understanding the conditions under which th&PProximately double the entanglement. dincreases fur-

entanglement-frustration bound is saturated. For these ref1€r the ground-state entanglement decreases rapidly to 0,
sons we describe the results in some detail. while the bound decreases to 0 more slowly. The

Physically,g—0 is the strong-coupling limit, where we entanglement-frustration bound is clearly not very tight in

expect the ground state to become quite entangled. We withis case, although the qualitative behavior of the bound and

see in detail below that it becomes maximally entangled irf"€ actual ground-state entanglement is similar.
this limit, i.e., E(|Eq))— 2, for our entanglement measure. In We can identify two reasons for the failure to saturate the
1 - bRl 2! .

X . g entanglement-frustration bound in this example. First, in the
contrast,g—» is the weak-coupling limit, and we expect

; " .language of Sec. lll, the quantityE |H, |E,) is strictly
that the ground state should be a product state in that limit,
E(|E0>)—>go unds shou product s I I 1iarger than Eg+AE,,, We see from Eq.(12) that |E,)

=|—= —=L
The ground-state energy of E@.1) is easily found to be =|=-). and thus(E, [H.[E ) =Eg+ 2AEen It follows that
Eo=-V1+4g? and the ground state is - o
(Eo[HL|Eq) = AgEg + (1 = Ag)(Eg + 2AEp) (15)

1 —
|Ep) = \TN[(ZQ +V1+4g9))+ +) +[=-)], (120 and upon substitution into E@5) this gives

where N=1+(2g+\«“‘1’-_F4g)2 is a normalization constant, “By contrast, ifg<0 the largest Schmidt coefficient ig=1/\N.
and |+)=(|0)£|1))/v2. Note that|Ey) is in its Schmidt This is the main difference between thec0 andg=0 cases.
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E¢ = 2AEon(1 — A2 + (EqH,|Eq) - E} (16)  Hamiltonian H=-g(oy+0%) - 0%02. In our earlier analysis
we setH, =-g(o1+02) andH,=-olo?2.
However, there is a certain arbitrariness in the splitting

E (EqlH\|Eq) - E} into local and interaction Hamiltonians. From a mathemati-
AE =2E(|Ep)) + AE . (17)  cal point of view, there is nothing to stop us from splittidg

ent ent up asH=H|+H/, where H/ is any desired local Hamil-
The entanglement-frustration bound is therefore at leagionian, and we simply choodé/ =H-H,. So, for example,
twice the ground-state entanglement with this choicélgf ~ we could choosél] =—go; andH| =-go%—o30%. The reason
for all values ofg. for this ambiguity is that while the class of local Hamilto-

The second contribution to the excess is the termnians is perfectly well defined, there is no similar definition
(<EO|HI|E0>_E|0)/AEent- Physically, this is the ratio of the of what it means for a Hamiltonian to be an interaction
frustration of the interaction energy to the local energy scaleHamiltonian. Failing to have such a definition, we are free to
The excess sharply increases from 0 for sngaland de- chooseH; however we like, compensating by choosing an
creases slowly ag— . For g greater than about 2 the appropriate interaction Hamiltonian.
ground-state entanglement is close to 0 and the This freedom to choose a splitting into local and interac-
entanglement-frustration bound is composed almost entirel{jon parts is reflected in the fact that the entanglement-
of this excess term. rustration bound holds for any choice of splitting=H,
+H,. Of course, whileE(|Ey)) is not affected by the splitting
chosen, the quantitieSE,,; andE; are. As a result the exact
value of the entanglement-frustration bound depends on the

When, if ever, is the entanglement-frustration bound satuparticular splitting chosen. We will use this freedom in
rated? We will show in this section that for all possible val-choosing a splitting to engineer saturation in the
ues of E(|Ep)) we can find a Hamiltoniatd whose ground —entanglement-frustration bound.
state has that amount of entanglement, and saturates the Physically, of course, there is often a reason to favor one
entanglement-frustration bound as closely as desired. splitting into local and interaction parts over another. For

Interestingly, it turns out that it is not possible émactly ~ €xample, if we regard the transverse Ising Hamiltonian as a
saturate the entanglement-frustration bound except in the exaodel of two magnetically coupled spins placed in an exter-
treme C&SEE(|EO>):O andE(|Eo>):1_ However, as we show nal magnetic field, then there is a clearly defined physical
in this section, it is always possible to saturate the bound t§€nse in which g(o;+0%) ought to be regarded as the local
as good an approximation as desired. term in the Hamiltonian and 0‘%0’5 as the interaction term.

To see that exact saturation is not possible, consider the However, the same model Hamiltonian may describe
necessary condition for saturatidBo|H,|Ep)=E} identified ~ many quite different physical systems, and it is not at all
in the previous section. This condition implies th&g) is a clear that the splitting into local and interaction Hamiltonians
ground state oH,, and therefore also an eigenstatekyf ~ Will necessarily be the same for all these physical systéms.
=H-H,. Entanglement in an eigenstate of a local Hamil-Priori it does not seem that the mathematics of quantum
tonian is only possible if there is an associated degeneracy. [fi€chanics distinguishes any special subclass of interaction
|Ey) is a ground state dfi, then we conclude thatE,=0, Hamiltonians, and this makes it impossible to define a
the entanglement-frustration bound is undefined, and so sattlique splitting ofH into local and interaction parties on
ration certainly does not occur. On the other handEj is purely mathematical grounds. More importantly, from our

an excited state dfl, corresponding to some eigenvalE}e point of view, the entanglement-frustration bound holds for
then any splitting whatsoever, regardless of its physigal un-

physica) origin, and it is interesting to address the question

(EolH|Eo) - E5 = E} — Eg. (18)  of which splitting gives the best value for the entanglement-
frustration bound.

Let us return now to the question of saturation, and to a

or

B. Saturation of the entanglement-frustration bound

But since|Ep) is entangled, by assumption, we must have

L L . . . .
Ej<_EE|(|)'|2|éE>ejtiEL Cﬁ/rgsb ||£m/nAgE th>|sl mt:onttrr]g trt(;seurI;Ef - closer investigation of the example of the transverse Ising
= (FolFLlE0) "0 9 o ent— = S XI"model considered in the previous section. In this example the
mum values ofE(|Eg) for qubits is3, and more generally  gecomposition ofEy) into eigenstates of the local Hamil-
for pairs of d-dimensional systems it i&-1/d. We con-  tonianH, is equivalent to the Schmidt decomposition, and

clude that it is not possible for the entanglement-the largest Schmidt coefficient is given [g;|Eg)|. Further-
frustration bound to exactly saturate, except whefmgre, the inequality

E(|Ep)=0 or 1.
The above analysis, however, says nothing|Ey) arbi-
trarily close to a ground state &f,, and in these cases it is L
poss>ilble that the %ound approaclhes saturation. (BuHUE,) = Bg+ ABen (19
Before dealing directly with the issue of saturation, it isis strict becauséE  )=|--) is an excitation ofboth sub-
helpful to address another issue, the question of how a givesystems, WhereaS"0+AEemis the energy of aingleexcited
many-body Hamiltoniad is to be split into local and inter- subsystem. The excess is therefore the energy gap of the
action parts. Consider, for example, the transverse Isingemaining subsystem.
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| - = HL=—g(al‘+02) _ Es _g
1.0 z T _ - + )
I A E(lEo) = g+ (EolHilE) ~ E)/AEan, (24
075/ prad ] i.e., the amount by which the entanglement exceeds the
E g entanglement-frustration bound is composed entirely of the
ﬁ 05 P _ second term identified earlier in E¢L7).
5 P = To minimize this excess we choosesmall and positive.
/ = Observing thaH,=H-H, we may do perturbation theory in
0251, ez ] y to show:
00 o T Ep = Eo — (Eo|H([Eq) + O(¥) (25)
E(|Eo))
=(EqlH|Eo) + O(¥?), (26)

FIG. 3. Comparison of the ground-state entanglement and
entanglement-frustration bounds for two choices of splitting in th
transverse Ising model. The solid line denotes the ideal case
saturation.

here we usetH,=H-H_ in the second line. Using this fact
nd the observatioAE.,=7, we have

|
On the other hand, if we take advantage of the possibility m
of different splittings ofH to chooseH, =-go then there is AEent
zero energy associated with an excitation of the second sub-
system and Eq(19) becomes an equality. The interaction Taking the limit asy—0 we see that the entanglement-

Hamiltonian is determined by the choice of local Hamil- frustration bound approaches the ground-state entanglement.
tonian, H|=H—H|_=—gO'>2(—O'%O'§, and we calculate a second In summary, we have shown:

=0(y). (27)

entanglement-frustration bound Proposition 1.Let H be an arbitrary bipartite Hamil-
tonian. Then there exists a local Hamiltonidlp and corre-
E. 1 [Vi+4g2-\V1+¢? sponding interaction HamiltonianH, such that the

AEem_E_ 29 . (20) entanglement-frustration bound derived from the splitting

H=H_+H, is arbitrarily close to the ground-state entangle-

) ment ofH.

The two bounds Eq(14) and Eq.(20) are plotted againstthe  Thjs shown that, in principle, the entanglement-frustration
ground-state entanglement in Fig. 3. It is clear that this sechound may be arbitrarily close to saturation for all possible
ond choice forH, provides a substantially tighter bound, as ygjyes of the ground-state entanglem&nEy)). We there-

we expect. fore conclude that the entanglement-frustration bound cannot

Let us generalize this example further. Suppbbes an  pe strengthened without using more detailed knowledge of
arbitrary bipartite Hamiltonian acting on twadimensional 4,4 system properties.

systems, with ground state Schmidt decomposition Our results show that saturation of the entanglement-
frustration bound is always possible with an appropriate
choice of splitting. They do not, of course, tell us what split-

|Eo) = Nagho) + E \jlajby), (21)  ting ought to be used, except in the unusual situation where

1=t one knows virtually everything about the ground state al-

ready, in which case one may as well calculate the ground-

where we have chosen labels so thas the largest Schmidt  state entanglement directly. Thus the content of Proposition 1

coefficient. In order to ensure that EQL9) is saturated we s not that we ought to expect to calculate ground-state en-

d-1

choose a splitting oH with H_ as follows: tanglement exactly, merely by choosing the appropriate split-
ting for the Hamiltonian. Rather, Proposition 1, and the
HL=— ylagag ® I, (22 methods that lead to it, tell us that the entanglement-

frustration bound is the best possible, and provide some

wherey>0 is a parameter that will be chosen later in orderPlysical guidance as to how to choose the splitting into local
to best saturate the bound. It is clear that E2q) is an and interaction Hamiltonians in order to achieve the best

expansion ofE,) in an energy eigenbasis bf,, of the same possible values for th_e entan.glenjent frustratipn bound.

form as used in Eq6), and thus that In_ the case (_)ﬁ-partlt_e Ha_lmlltomans, Proposmon_l can be
applied by taking a bipartite split between any single sub-

system and the remaining subsystems, and is possible in this

—N—-pL . T . . .
(EL[HLIE|)=0=E5+AEy, (23)  manner to gain some indication of the distribution of en-
tanglement within the ground state. This problem is dis-
It follows that for this choice of local Hamiltonian, cussed further in Sec. VII.
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V. GROUND-STATE ENTANGLEMENT AND THE RATIO perturbation theorem is a variant on a celebrated theorem of
OF INTERACTION STRENGTH TO THE LOCAL linear algebra, the Davis-Kahan theor¢28].°
ENERGY SCALE A detailed discussion of how our eigenspace perturbation

theorem compares to the Davis-Kahan theorem is given be-
O|PW. Summarizing, the major differences are thgt our
eproof is simpler(ii) our conclusions are more powerful, but

Svstem. SUDPDOSE We defiﬁg 10 be the laraest eigenvalue (iii ) our hypotheses are more specialized. For these reasons,
y - >upp ax 9 9 we believe our eigenspace perturbation theorem is of sub-

I =l _pl
?t:;é;n:nlﬁir?{ioimga I.Eg b?;g%ﬁ;é?éggg'ggﬂig?ﬁ Iﬁ; tlgf stantial independent interest in its own right.
! ! tonian, 1.€., ! 9" The second step in the proof of the bound is to apply our

est and the smallest energies. It follows that eigenspace perturbation theorem to understand how the en-

Ep< <EE|H|E5> (28) tanglement in an energy eigenstate depends on the relation-
ship between the strength of the local and the interaction
Hamiltonians.

The inequality Eq(2) has a nice corollary that is easily
proved, relating the ground-state entanglement to a ratio
the interaction strength with the local energy scale of th

— /=L L L L
=(EglH.|Eq) + (EglHh[Eq) (29) Let us begin with the eigenspace perturbation theorem.
Theorem 1 (Eigenspace perturbation theoreh®t A, B,
<E-+E (30) i = i
0 7 Emax- and C be matrices such th&=B+C, with A andB normal

matrices. Leta be an eigenvalue &, and suppos®, is any
projector that projects onto some subspace of the corre-
sponding eigenspacéP, may, for example, project onto the

E{m entire eigenspacelet 8 be some subset of the eigenvalues
AE_ BD  of B, and letQ, be a projector onto an arbitrary subspace of
. . . _ . N the eigenspace correspondingate 3. DefineQ=Z2,_ ;5 Q.

The inequality Eq(31) is an interesting result. Intuition, Then

experience, and perturbation theory tell us that if we start
with a local Hamiltonian and slowly turn on an interaction, P.CQ ulcjut
the ground-state entanglement will depend on how strong the PQl < A = A
interaction is, compared with the local terms in the Hamil- a a
tonian, which tend to keep the ground state unentangledvhereS<T denotes a matrix inequality, i.€T~Sis a posi-
Equation(31) is a precise, completely general statement oftive matrix, |§ =SS, AaEminbeﬁ|a_ b| is the distance
this intuition, a statement that holds even nonperturbativelyfrom a to the setB, andU is some unitary matrix.
The interpretation of these inequalities in terms of eigen-

Rearranging this inequality we obtaE}sE{m. Combining
with Eq. (2) then gives

E(Ey) <

ent

(32)

VI. HIGHER-ENERGY EIGENSTATES AND THE RATIO space perturbation is perhaps not immediately clear. Rather
OF INTERACTION STRENGTH TO THE LOCAL than describe this interpretation immediately, we defer the
ENERGY SCALE description until after the proof of the theorem and a discus-

sion of how this result relates to the Davis-Kahan theorem.

In Sec. V we proved a bound, E(1), quantifying the Proof: We begin by proving the first inequality. Multiply-
intuition that when an interaction term is switched on in ajng A=B+C on the left byP, and on the right byQ,, we
many-body system, the ground-state entanglement will depbtainaP,Q,=bP,Q,+P,CQ,, which may be rearranged to
pend on how strong the interaction is compared with theyive
strength of the local Hamiltonian. Of course, a similar intu-
ition applies also for higher-energy eigenstates. Unfortu- P.CQp
nately, the strategy used to prove Eg1) cannot be applied PaQy = a-b
directly to energy eigenstates other than the ground and most
excited stateSThe reason is that the proof of E@1) relied  Observe thatP,Q|?=P,QP,=2,P,Q,Q,P,. Substituting Eq.
on the entanglement-frustration bound, E2), and there is  (33) and its adjoint gives
no natural analog of this bound—or even a definition of frus-
tration energy—for states other than the ground and most P.Q2=3 P.CQ,C'P,

a

(33

excited states. > Ja-bf? (34)
In this section we prove a bound validating this intuition
for all energy eigenstates. The bound is proved in two steps. .
First, supposé=B+C, whereA andB are normal matri- =3 P.CQ,C P, (35)
ces. We will prove a generaigenspace perturbation theo- b Ai '

rem making precise the intuition tha&& and B have similar
eigenspaces whe@ is sufficiently small. Our eigenspace where we usedia—b|2>A§. Summing outb gives

*We only proved Eq.(31) for the ground state. An analogous ®For an account of the Davis-Kahan theorem, see Theorem VI1.3.1
result for the most excited state may be proved by applying®. on page 211 of Refl29], and the surrounding discussion in Chap.
to the Hamiltonian H. VIl of that work.
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, _ |P.CQP? inequalities. Finally, our proof of Theorem 1 seems to be
|PaQI* =< A2 (36)  substantially simpler than known proofs of the Davis-Kahan
a theorem.

) ) ) To better understand how Theorems 1 and 2 relate to

The conclusion follows b_y using the operator monoton?cny eigenspace perturbations, suppose tRatprojects onto a
qf_thg_square root function, i.e., the fact thatS& T then subspaceP, spanned by a single eigenstad of A, andQ
VS=AT. ) o projects onto a subspaa2 spanned by eigenstatéls), b

To prove the second inequality in the statement of the. 5 The norm|||P,Q||| turns out to measure the orthogonal-
theorem, it obviously suffices to provi@,CQ<UIC|U".  jyy of these two subspaces. For example, in the special case
Note first that P,CQC'P,<P,CC'P,. But P.CC'P, and  \yhenQ is a rank-1 projectorQ=|by(b|, we have
C'P,C are positive operators with the same eigenvalues, so
there_exists a unitan¥ such thatP,CC'P;=VCTP,CV! 1PQIlI = llla)albXbllll = Kalb)[l[[a)blll| (39)
<VC'CV'. Putting these observations together gives
P,CQC'P,<VC'CV!, from which it follows that which is proportional to the cosine of the angle betwggn
PACQC'P,<UCC'U" for some unitaryU. The result now and|b). (Note that||||a)(b|||| is a constant independent (af)
follows by using the operator monotonicity of the square-and|b), due to unitary invariance of the nomihus Theo-
root function. | rems 1 and 2 tell us that this cosine is very sntafid thus

The conclusion of Theorem 1 has a nice implication inja) and|b) are close to orthogonaivhenever the ratio of the
terms of matrix norms. Suppogé ||| is aunitarily invariant  size of the perturbatiofj|C||| to the distance\, is small. It
matrix norm, i.e.|||USM||=|||S||| for any unitariedJ andV.  follows that provided|||C||| is sufficiently small, all the
(Most of the familiar norms in common use in quantum in- eigenvectors ofA and B are nearly orthogonal, except for a
formation, including all thé, norms, are easily shown to be single nearly parallel eigenvector.
unitarily invariant) Using the polar decomposition we see  More generally, the singular values BfQ are the cosines
that S=|JU for some unitaryU, and thus Eq(32) implies  of what are known as theanonical anglebetween the sub-

that spacesP and Q.2 If |||P,Ql|| is small then the cosines of the
canonical angles are small, and it can be shown that all vec-
lP.calll il tors inP are very nearly orthogonal to all vectors ¢
IIPQlll = A =75 (37) Let us return now to the problem of bounding the en-
a a

tanglement in an arbitrary eigenstdffq) of a many-body
HamiltonianH. H is split into a local partH,, and an inter-
for any unitarily invariant norm]| -|||. action part,H,, as before. Our starting point is again the
Let us compare the eigenspace perturbation theoremyxpansion of|E;) in terms of the eigenstatd&y) of H,.
Theorem 1, with the Davis-Kahan theorem. The Davis-Associated to any local Hamiltonian we can identify some
Kahan theorem is as follows: natural subspaces that contain no entanglement. These sub-
Theorem 2 Davis-Kahan theorerhet A, B and C be spaces are Spanned by a set of eigensﬂﬂaﬁ related to
matrices such thaA=B+C, with A andB normal matrices. each other byexcitations or de-excitations of a single sub-
Let « and B be subsets of the eigenvaluesAfandB, re-  systemAny superposition of such states factors into a prod-
spectively. LetP (respectivelyQ) project onto the space yct state, and for convenience we will refer to such a sub-
spanned by all the eigenspaces/ofrespectivelyB) corre-  space as aroduct subspaceOur use of this term should not
sponding to elements af (respectively). Suppose further- e confused with the more genefahd more commonuse
more thate and 8 are separated by an annulus of widm  of the term product subspace, to mean any vector subspace
the complex plane, e.g., with inside the annulus, an8  containing no entanglement; our use of the term is specific to
outside the annulus. Then for any Unitarily invariant normg particu|an-|l_, and refers to those Subspaces Spanned by sets
M-Il of eigenstates*,E,ﬁ,) which are all related by excitations or
de-excitations of a single subsystem.
llIPcqll lIcl] We will see later that for eaclEj> there is a natural way
lIPQlll = s = s (38) to choose a corresponding product subspace from the eigen-
states ofH,. For now letK be any such product subspace
There are three interesting differences between the Davisnd expandE;) in the energy eigenbasis 6f, as follows:
Kahan theorem and Theorem 1. First, Theorem 1 is more
specialized than Davis-Kahan, in that it applies only for a IE,->: > Ofk|Ek>+ YE.), (40)
single eigenvalue ofA, not for multiple eigenvalues. We KIEY ek
have tried and failed to extend our proof to the more general
case. A second difference is that Theorem 1 gives an operatorhere|E, ) is orthogonal to all states iit. It follows from
inequality that implies the corresponding inequalities for uni-Eq. (1) that
tarily invariant norms, but which is not implied by those

- 8For an introduction to the canonical angles, see Chap. VIl of Ref.
A review of operator monotonicity may be found in Chap. V of [29], especially the first section. We do not need to use any proper-
Ref. [29]. ties of the canonical angles in this paper.
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Let |EJ-L> be thejth excited eigenstate of the local Hamil-
tonian. We choose the product subspiicso that the expres-
sion

Our strategy is to apply Theorem 1 to obtain a bound on

[A?=1-Zerd?.
Define P; to be the projector ontdEJ-). We're trying to
bound the amplitude squarggi? of the component ofE;)

AEj o= {nin == (48)

|Ek>E}CL

is maximized.AE; ¢ is a generalization ofAE,, in Sec.

orthogonal tok’, so letkC, denote the subspace spanned byj|| in that it is the energy required to excite or de-excite at

all eigenstate$Eq) of H, not in K and defineQy to be the
corresponding projector. Theorem 1 implies that

[[H]
AEj

|||PjQICL|||$ (42

where AEj,chmin\Ebe;chj—EH- Next we must show
how [[[P;Q || is related to the entanglemet|E))).
It is easily seen from Eq40) that Q,CL|E,->=|EL> and so

[11PiQxc, [11 = III[E;}Es | Qi I (43

=|ANENXEL]]- (44)

As remarked earlier, the value gffv)(wl||| for any normal-

ized vectordv) and|w) is a constant that depends only upon

least two subsystems from the stdE%r). Note that the
calculation ofAE; ¢ is tedious, but in principle straight-
forward provided that the energy spectrum bl is
known: simply enumerate the possible product subspaces
given the spectrum dfl, (a long, but finite lis}, and then
calculate the minimum by inspection.

Now for each|E[;> e K, we have by the triangle inequal-
ity

- E|l = |EL - EY - [E- - (49)

= AE; one— |Ef ~ Ej. (50)

Furthermore, it is straightforward to show thi;-E;|
<|E,.J and so

AEj = min [Ex — Ej| = AE;j ent— [Epa -
|EIIZ>E}CL

(51)

the norml|||-|||. Without loss of generality we may assume
that [[|[v)(w]|[[=1, since multiplying a unitarily invariant Substituting into Eq(47) we obtain a result in terms of the
norm by a constant gives another unitarily invariant norm.spectrum ofH, and the strength dofi, alone.

We will say any norm satisfying this condition reormal- Proposition 2 Let H=H, +H, with H, a local Hamil-
ized [Examples of normalized unitarily invariant norms in- tonian, and supposAEj,em>|E'maJ. Then the entanglement

clude the operator norm|A|=sup-4|Alv)| and the
. . — F T AAD
Hilbert-Schmidt norm|A[,=tr(AA").]

Assuming that||-]|| is normalized we see that
11PiQic Il =11, (45)
and it follows from Eqs(41) and(42) that
[[H 11
E(E)) < ———. (46)
5 (AEjc )

For any normalized, unitarily invariant nort}-||| we have
[S|=<|||Sl|| where| || is the operator norm ar@any operator
[29]. The strongest bound of this form is therefore

IH,

E(E)) < (AE, ¢ 7

(47)

Different choices of the product subspakeprovide us
with a different bound in Eq47). Ideally we would like to
choosek so that the quantit)AEj,,CL is as large as possible.
If Ej, or a good approximation té&;, is known then we
would ensure thaiC contained Ey) where|E;~E;| is mini-
mal. More typicallyE; is unknown, and this is not possible.
However, there is still a natural way for us to choose

Importantly this choice also allows us to obtain a lower

bound forAE]-y,CL in terms of relatively simple quantities that
depend only onH, and H,, not on typically difficult-to-
calculate quantities associated with the total Hamiltorkian

in the jth excited eigenstaﬂE,») of H, as measured using the
definition of Eq.(1), is bounded above by
1§
(AEj,ent_ |E|ma>J)2'
Noting that|E}.,]<|H,|| this can be restated in a slightly

weaker but perhaps more elegant form, supposikg e
= [H:

E(E)) < (52)

E(IE)) < M 5= : 5. (59
(AEj,ent_ ”HI”) (AE',ent_ 1)
[IHl

Equationg52) and(53) confirm and quantify our intuition
that when the nonentangled energy scale associatedh‘:ﬂth
is large compared to the strength of the interaction Hamil-
tonian we expect little entanglement in the excited s|tﬁp)3
of the total Hamiltonian.

Equation(52) should be compared with the earlier result
Eq. (31) for the ground-state entanglement. We see that the
present result is equivalent to the earlier result, except for the
presence of the term|E}, .| in the denominator of Eq52),
which makes the present result weaker.

VIlI. CONCLUSION

We have introduced the frustration enefgyas a measure
of the degree of frustration between local and interaction
terms in the Hamiltoniatd=H, +H, of a many-body quan-
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tum system. This measure, when related to a local energiyons, however, we are unable to directly deduce anything
scale, allowed us to derive the entanglement-frustratiomusing the techniques in this paper.

bound on the ground-state entanglement in the system. An Throughout this paper we have defined frustration to oc-
interesting feature of this bound is that it depends only orcur when it is not possible to find a simultaneous ground

spectral properties of the Hamiltoniartd, H,, and H,. state for some local and interaction part of a Hamiltonian.
Ground-state entanglement properties can therefore be easilylis is based on an analogy to the usual definition of frus-
inferred directly from the spectra alone. tration, which involves competition between interactions, as

The entanglement-frustration bound has, in turn, beesliscussed in the Introduction, and illustrated in Fig(An
used to prove a bound, E¢31), relating the ground-state insightful review of classical and quantum frustration in this
entanglement to a ratio of the strength of the interactions angense may be found in RgB0].) Both these points of view
an appropriate local energy scale. This bound involves onlpuggest interesting extensions of the investigations in the
the eigenvalues of the local and interaction Hamiltonianspresent paper.
which are typically much easier to calculate than the eigen- For example, we believe that quantum frustration suggests
values of the full Hamiltonian, and thus this bound is moreinteresting parallels with the phenomenon esftanglement
likely to be useful in practice. A similar bound for an arbi- sharing[31] which places restrictions on the distribution of
trary energy eigenstate is proved in E¢s2) and(53). entanglement amongst many particles. In particular, we ex-

Ultimately it would be useful to have many powerful gen- Pect nontrivial distributions of entanglement in the ground
eral techniques enabling us to infer ground-state entanglestate of two overlapping interactions. For example, consider
ment properties of a Hamiltonian by considering the inter-a Hamiltonian acting on three spinparticles as before,
play between its constituent terms. This is not always easy. H=Hpags + Hac, (55)

For example, consider the following system of three %)m-
particles: and suppose thati,g and Hgc have nondegenerate, maxi-

mally entangled ground states. It is impossible for entangle-
H=g,Hs+ g,Hg + gcHc + Hag + Hge, (54) ment to be distributed in a way that would provide a ground

state forH that is a simultaneous ground stateHfg and
where A,B,C label the three particledd,,Hg,He are local Hgc. The system is therefore necessarily frustrated. We
Hamiltonians,Hag,Hgc are interaction Hamiltonians on the might ask what happens to the ground-state entanglement
appropriate subsystem, amgl,gg,gc control the respective distribution in systems such as this, and whether there are
strengths of the local Hamiltonians. The bound E3{) de-  any properties of the constituent Hamiltonians that allow us
rived from the entanglement-frustration bound tells us that ifto prove quantitative bounds relating the distribution of two-
gy is relatively large then there is little entanglement betweerparty, GHZ-type and W-type entanglement in this system.
particleB and the rest of the syste&C. From this we may
deduce that if there is any entanglement in the ground state ACKNOWLEDGMENTS
then it must be between particldsandC. To some extent, We thank Henry Haselgrove and Guifre Vidal for enjoy-
then, the entanglement-frustration bound allows us to deterable and encouraging discussions. Much of this work was
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