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It has been recently suggested that the dynamics of a quantum spin system may provide a natural mechanism
for transporting quantum information. We show that one-dimensional rings of qubits with fixed(time-
independent) interactions, constant around the ring, allow high-fidelity communication of quantum states. We
show that the problem of maximizing the fidelity of the quantum communication is related to a classical
problem in Fourier wave analysis. By making use of this observation we find that if both communicating
parties have access to limited numbers of qubits in the ring(a fraction that vanishes in the limit of large rings)
it is possible to make the communication arbitrarily good.
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In quantum information science it is a crucial problem to
develop techniques for communicating qubits. A key task is
to develop protocols for taking a qubit’s state at one location
to another while minimizing the degradation of the quantum
coherence.

In this paper we consider whether it is possible to use a
one-dimensional(1D) arrangement of qubits—a ring—
coupled by nearest-neighbor interactions, to communicate a
qubit from one part of the ring to another with high fidelity.

It is clear that this communication can be done, for ex-
ample, if one can perform fast local unitary operations on the
individual qubits (by fast we mean that the local unitary
operations are effectively instantaneous compared with the
time it takes the interaction between qubits to change the
state appreciably). This is because any nearest-neighbor in-
teraction can be used to perform a swap operation on pairs of
qubits [1–4]. Thus the communication can be performed by
putting a given qubit into the state to be communicated and
then moving it along the chain of qubits by swapping the
state along the line to the required position.

In this paper, however, we have in mind the situation that
we do not have access to the whole set of spins during the
communication; rather the set of spins behaves more like a
fiber into which one can input a qubit state, and hope that the
state appears at the other end of the fiber. The question is
whether it is possible for a set of spins with only its passive
interaction to act as an effective communication channel.

We would also like the qubit fiber to have the property
that we could increase the length of the fiber without needing
to completely refabricate it; thus if we wanted to communi-
cate twice as far we would like to be able to simply add two
identical fibers together and find that the fidelity and time of
transmission depended in a simple way on the fidelity and
time of the individual fiber.

Some interesting work has already been done in this area
concerning the communication of qubits along a 1D Heisen-
berg spin chain[5] (and, more recently, in the 1DXY model,
[6]). In Ref. [5] the aim was to put one qubit in a chain or

ring into a given state and to transfer the state, as well as
possible, along the chain(or ring) to the output qubit. The
input and output qubits were placed at diametrically opposite
places in the chain(or ring) and the interaction between
neighboring qubits was time independent and constant
around the length of the system. Interestingly if a ring has
length four, there is a time after which the state of the output
qubit is precisely the same as that of the input qubit. As the
length of the system is increased, however, the maximum
fidelity achievable was found to go down with increasing
separation. For example, chains of length of approximately
80 have fidelity not much better than 2/3(this is the fidelity
of the best classical transmission of an unknown qubit), thus
the approach would not be useful for transmission over long
distances. A further notable feature of the protocol is that the
time at which the maximum fidelity is reached does not de-
pend in any simple way on the length of the ring. This is
because the maximum fidelity arises when an expression of
the formo je

ipa j t reaches its maximum(wheret is the time,
and thea j are rational constants, which depend on the length
of the ring). Thus in this framework there is no natural notion
of the speed of transmission along the fiber.

Further progress was made in Ref.[7], where the authors
show that a single qubit can be communicated perfectly in a
hypercube geometry. The authors also show how to commu-
nicate a qubit perfectly in a linear chain with variable cou-
plings given by a specific arithmetic sequence. Using this
idea for communicating arbitrary distances, would however
require refabricating the channel for each distance.

A further interesting proposal for communicating quan-
tum information using the ground state of a certain spin sys-
tem has been recently developed in Ref.[8]. There it was
found that perfect transmission is possible when the freedom
to apply local measurements on all spins is allowed.

We can summarize our desiderata in this paper by saying
that we wish to develop schemes for high-fidelity quantum
communication with three essential criteria.(i) Minimum
control requirements. We require that it is unnecessary to
apply many fast control operations throughout the transmis-
sion. (ii ) Robustness. We want the device to be capable of
tolerating small errors without diminishing the quality of the
communication too much.(iii ) Flexibility. We want to be
able to change parameters(such as the locations of the com-
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municating parties) simply without requiring a new device
be fabricated.

Our proposal makes quantum spin chains behave as a me-
dium through which quantum information propagates. Using
the fact that dynamics in restricted subspaces for 1D quan-
tum spin chains can be described by classical Fourier wave
analysis, we show that there are natural notions of group
velocity and dispersion for quantum information. We pro-
pose a figure of merit for the information propagation, the
qubit rate, and analyze this quantity for a family of ideal and
realistic physical models: nearest-neighbor 1D spin chains.
In addition, we argue that our protocols satisfy the require-
ments in(i)–(iii ) that we outlined in the previous paragraph.

We show how to increase the quality of quantum commu-
nication in a variety of realistic spin models by relaxing the
restriction that the two parties can only access a single qubit.
We allow both parties the ability to access a limited number
of extra sites, a fraction which tends toward zero as the
length of the chain increases. The connection between the
propagation of quantum information in spin rings and clas-
sical Fourier wave analysis provides a way to visualize the
propagation of quantum information as a pulse through a
medium.

We now turn to a precise description of the protocol we
will study. We consider a ring ofN spin-1/2 systems evolv-
ing according to a nearest-neighbor HamiltonianH. We iden-
tify the sN+1dth site with the first site, i.e.,AN+1;A1. We
imagine that two parties, AliceA and BobB are located at
sites 1 andN/2, respectively.(We assume, for simplicity,
that the ring is composed of an even number of spins. Note,
however, that our subsequent results do not depend on this
fact.) We suppose that Alice and Bob are able to access a
total of L sites each, centered on the first and theN/2th sites,
respectively. Alice and Bob are allowed to perform any op-
eration allowed by the rules of quantum mechanics on their
sites. Finally, we assume that the completely polarized state
u00¯0l is an eigenstate of the HamiltonianH, and that be-
fore the protocol begins the system is prepared in this state.

Alice wants to communicate a(possibly unknown) qubit
stateucl to Bob. Given a specification ofH (assumed to be
known to both Alice and Bob) Alice performs some encoding
operationUA on herL qubits. The system is now in the state
uCs0dl=UAu00¯0l. As the ring is always evolving accord-
ing to H this state immediately begins to evolve:uCstdl
=e−iHtuCs0dl. Bob now waits a certain period of timeT
which depends only onH, L, andN, and when this duration
elapses he performs a decoding operationUB on his addres-
sable qubits in order to decode or refocus the communicated
state into one of the qubits in the ring.(Additionally, Bob
could apply a swap operation to move the decoded state into
a static register qubit. We prefer to ignore such register qu-
bits because we imagine that decoding unitary operations
could also be performed as intermediate steps in a kind of
quantum repeater.) The protocol is deemed to succeed when
the average fidelity

FsH,N,L,T,UA,UBd,
1

4p
E dVkcurucl, s1d

whereucl is the input state, which we average over the Bloch
sphere, andr is the decoded output state, is above some
prespecified threshold valuet.

Ultimately we are interested in how well a spin ring per-
forms as a conduit for quantum information. In this more
general scenario we allow Alice and Bob the freedom to
apply a number of encoding/decoding operations in succes-
sion. The objective is to maximize the number of qubits suc-
cessfully communicated(i.e., when Fùt) per unit time.
Write the maximum number of qubits that can be success-
fully communicated(where the maximum is taken over the
encoding/decoding operations) in a durationT asMtsTd. We
define the long-time averageQtsHd, limT→`s1/TdMtsTd to
be the qubit rate forH.

Obviously the evaluation ofQtsHd is extremely difficult,
even for the simplest systems. We only obtain lower bounds
for this quantity for a class of rotationally invariant nearest-
neighbor Hamiltonians.

There is a simple case where we can evaluateQtsHd ex-
actly, namely whenH is a Hamiltonian corresponding to the
translation operatorH=−i logsTd, whereT is defined by the
following action on computational basis vectors,
Tsua1,a2, . . . ,aNld, ua2,a3, . . . ,aN,a1l. When H is of this
form the qubit rate takes the maximum valueQtsHd=1 for
all t. (We have adopted rescaled time units; we will discuss
how to calculate the constant of rescaling later.) In order to
see this first note that whent=n is an integer the propagator
Usnd=e−iHn=Tn is a power of the translation operator. To
achieve the qubit rate, Alice needs to encode the state of a
qubit into one site of the ring at every integralt.

As we’ll argue presently, every HamiltonianH corre-
sponding to the translation operation is massively nonlocal
and contains interaction terms between many separated sub-
systems. For this reason it is unlikely that a system will be
fabricated that naturally evolves according toH.

Consider now the translation operatorT. It is easy to see
that the action ofT on computational basis states breaks up
into blocks. For example, the statesu00¯0l and u11¯1l
form blocks all by themselves, and the statesu jl, j
=1, . . . ,N, whereu jl denotes the state of allu0l’s with a u1l in
the j th site, form a block(we’ll often refer to these states as
one-particle states). The remaining basis states each segre-
gate into blocks in a similar fashion. Consider a block of
states of sizeM. Choose a state from this block and call it
ua1l. Every stateuakl within the block can be written as
uakl=Tk−1ua0l. Using theseM states one can constructM
eigenstates of T: ubkl=1/ÎMo j=1

M ns j−1dkua jl, where n
=es2p/Mdi is the Mth root of unity. We note that each set of
eigenstates so constructed is a quantum Fourier transform of
the sethua jlu j =1, . . . ,Mj. Performing this procedure for each
block gives rise to the complete set of eigenstates forT.

We study the qubit rate for the class of rotationally invari-
ant nearest-neighbor spin-1/2 models. Because of the rota-
tional invariance,fH ,Tg=0 and we may simultaneously di-
agonalize bothH andT. We restrict our attention further to
the class of 1D spin rings, which fix the following special
eigenstates ofT, which we call the twistedW states,

uWskdl,
1

ÎN
o
j=1

N

ms j−1dku jl,

where m is the Nth root of unity m=es2p/Ndi f13g. All the
protocols we describe in this paper take place in the subspace
formed by the twistedW states.
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The spin HamiltonianH fixes the statesuWskdl with ei-
genvaluesvskd (and also, via a rescaling of energy,H fixes
u00¯0l with eigenvalue 0). Suppose we start the system in
the arbitrary stateuCs0dl=au00¯0l+bo j=1

N cju jl, whereuau2

+ ubu2=1 ando j=1
N ucju2=1. The subsequent time evolution of

this state can be written

uCstdl = au00¯ 0l + bo
k=1

N

c̃ke
−ivskdtuWskdl, s2d

where c̃k= 1/ÎNo j=1
N m−s j−1dkcj. The coefficientcjstd of the

u jl term can be found as

cjstd =
1

ÎN
o
k=1

N

c̃ke
−ivskdt+2pis j−1dk/N.

Because the dynamics only take place in the zero- and
one-particle subspace we can establish the following useful
result. Supposea=0. If we bipartition the spin system into

two subsystemsA and Ā we can always write the system’s
stateuCstdl=o j=1

N ejstdu jl in the following way:

uCstdl = Î1 −CĀstduflAu0lĀ + ÎCĀstdu0lAuf8lĀ, s3d

where

CĀstd = o
jPĀ

uejstdu2,

ufl =
1

Î1 −CĀstd
o
jPA

ejstdu jl,

and

uf8l =
1

ÎCĀstd
o
jPĀ

ejstdu jl.

Note that Eq.s3d is a two-term Schmidt decomposition of
uCstdl becauseAkfu0lA= Ākf8u0lĀ=0.

When Alice wants to send the stateucl=au0l+bu1l she
will encode this state asau00¯0l+bo j=1

N cjs0du jl, where she
is free to choose nonzerocjs0d as long as the indexj lies
within her subset of addressable spins. After timeT has
elapsed then this state can be written, following the discus-
sion in the previous paragraph, as

uCsTdl = bÎ1 −CBsTduhlB̄u0lB + u0lB̄sau0lB + bÎCBsTduh8lBd,

s4d

where now the bipartition is given byB̄B, whereB is Bob’s

addressable spins andB̄ now refers to all the other spins and

CBsTd = o
jPB

uejstdu2.

Bob now applies a decoding unitaryUB to his partB of
the ring. The unitary is(partially) defined byUBu0lB= u0Bl
andUBuh8lB= uN/2l. (There is a great deal of arbitrariness in

how Bob decodes his state. We choose to concentrate the
state into one qubit in order to facilitate the evaluation of the
average fidelity of the channel.)

After decoding, the stater of the qubitN/2 has density
operator

r = Suau2 + ubu2s1 −CBsTdd ÎCBsTdab*

ÎCBsTda*b ubu2CBsTd
D , s5d

with respect to the basishu0lN/2, u1lN/2j of qubit N/2. This
state may be written r=ETsuclN/2kcud=M0uclN/2kcuM0

†

+M1uclN/2kcuM1
†, whereuclN/2=au0lN/2+bu1lN/2 andM0 and

M1 are the Kraus operators of an amplitude damping channel
E,

M0 = S1 0

0 ÎCBsTd D
and

M1 = S0 Î1 −CBsTd

0 0
D ,

with respect to the basishu0lN/2, u1lN/2j scf. Ref. f5gd.
The fidelity kcuUBrUB

†ucl of Bob’s state with the input
state is given by

uau4 + f1 + 2ÎCBsTd − CBsTdguau2ubu2 + CBsTdubu4. s6d

The average fidelity Eq.s1d can be evaluated as12
+ 1

3
ÎCBsTd+ 1

6CBsTd. This function depends monotonically
on the quantityCBsTd.

It is clear from the discussion in the preceding paragraphs
that the quantityCBsTd plays a central role in determining the
effectiveness of the communication protocol. We now study
this quantity further, and show how to reduce the problem of
its maximization to a well-known type of problem in Fourier
wave analysis.

Motivated by the importance ofCBsTd we introduce a
method for visualizing quantum states which lie within the
one-particle subspace. Given such a stateunl=au00¯0l
+bo j=1

N cju jl, we visualize it by plotting the quantities
n j, ucju2 against site number. Clearly the area under the re-
sulting (bar) graph equals 1. Obviously this pictorial repre-
sentation does not represent any of the phase information
contained in the system’s state. However, this phase informa-
tion plays no part in the quantity we are interested in,CBsTd,
which is simply the area under the graph of the stateunsTdl
between sitesN/2−L /2 , . . . ,N/2+L /2. The graph of the
system’s stateunsTdl is given by

n jsTd =
1

N
Uo

k=1

N

c̃ke
−ivskdt+2pis j−1dk/NU2

.

It is worth emphasizing that the method we have just in-
troduced for visualizing quantum states of the ring depends
crucially on the properties of our spin systems. The dynamics
for the ring occurs solely within the zero- and one-particle
subspaces spanned byu0l andhu jlu j =1, . . . ,Nj. This subspace
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scales linearly with the ring. It is precisely this feature which
facilitates our construction for the graph of the state, which is
essentially a method for representing, visually, a linear num-
ber (in N) of degrees of freedom.

The problem of maximizing the area under the graph
n jsTd between certain sites is a well-known classical problem
in Fourier wave analysis; our problem has been reduced to
studying the linear dynamics of superpositions of complex
scalar waves. The quantityvskd is the dispersion relation and
the position variable is given byxj =s j −1d /N. We wish to
work out an assignmentcjs0d of initial amplitudes in Alice’s
subsystem, or a wave packet of quantum information, so that
subsequent evolution preserves as much of the width and
integrity of the wave packet as possible.

Given a specification of the dispersion relationvskd we
have all the information we require to embark on the design
of wave packets which preserve their shape. These numbers
are, of course, the eigenvalues ofH for the eigenstates
uWskdl.

To illustrate our ideas in the following we use the Heisen-
berg model onN sites

H = x
N

2
I −

x

2o
j=1

N

s j · s j+1,

where we have introduced an arbitrary constantx. We will
explain which value ofx we choose in the following. The
dispersion relation for the Heisenberg model isvskd=2xf1
−coss2pk/Ndg. sWe have rescaled the zero of energy for
the Heisenberg model so thatu0l has eigenvalue zero.d

Currently our problem is not identical to the well-studied
problems in wave motion(see, for example, Ref.[9]). The
difference is that we are dealing with wave motion in a dis-
crete system whereas most of the theory of wave motion(at
least in regards to the design of optimal wave packets) is for
continuous systems. In the subsequent discussion we will
make use of the results from the continuous theory, but it
must be understood that these results only hold asymptoti-
cally in the limit whereN→` and the intersite spacingd
→0. In particular, we emphasize that the appearance of de-
rivatives must be understood as a formal device and really
only make sense in this limit. We’ll justify the applicability
of these asymptotic results presently by comparing them
with numerical results.

In classical Fourier wave theory the concept of group ve-
locity plays a crucial role in the design of wave packets
which preserve their shape as time evolves[9]. The group
velocity vsk0d for a wave numberk0 is defined to be

vsk0d =
1

2p
Udvskd

dk
U

k=k0

.

fFor the models we consider we are given a specification of
vskd which makes sense for fractionalk, so that it is possible
to compute this derivative.g The significance of this quantity
is that an initial wave packetok=1

N wke
2pixjk consisting of fun-

damental waves with large amplitude focused on wave num-
ber k0 will translate with velocityvsk0d as time evolves.

Unless the system is dispersionlessfvskd=ckg the initial
wave packet will spread as time evolves[9]. The rate of
spread of the initial wave packet is proportional to the
second-order term

1

2p
Ud2vskd

dk2 U
k=k0

.

If this derivative is zerosas will be the case in one of the
models we considerd there is no appreciable spread of the
wave packet to second order invskd. There may, however,
be contributions from third- and higher-order terms, which
cause an initial wave packet to spread.

The generic strategy[10] for designing wave packets
which change shape as little as possible is to use a Gaussian-
modulated wave of varianceD centered at positionxk and
wave numberk0 corresponding to the maximum available
group velocityvsk0d. In our case the “wave” is a twistedW
state, so this “wave packet” is writtenuCs0dl=au0l
+buGsxk,k0,Ddl, where

uGsxk,k0,Ddl = 1/ÎNo
j=1

N

e−
sxj − xkd2

2D2
+2pik0xju jl

and N is chosen to normalize the state. The graph for the
initial state is given by

C js0d =
1

NUoj=1

N

e−
sxj − xid

2

2D2
+2pik0xjU2

.

This state has exactly the form of a Gaussian-modulated
complex scalar wave centered around wave numberk0 and
with sspatiald width L. sWe define widthL to be when more
than some prespecified area, say 95%,lies within an inter-
val L centered on the maximum of the Gaussian. We note
that L is some multiple ofD. Throughout the remainder of
this paper we chooseL=4D.d

It is known that an initial Gaussian wave packet, under
time evolution, remains, to good approximation, a Gaussian
of width Lstd satisfying[10]

Lstd
Ls0d

= F1 +Sv9sk0dt
L2s0d D2G1/2

. s7d

Because Alice is assumed able to address onlyNLs0d sites
frecall we have rescaled the length of the ring to be 1 by
defining the position variablexj =s j −1d /Ng we propose using
the Gaussian initial pulse introduced in the previous para-
graph truncatedsand renormalizedd after NLs0d sites.

We want to design a wave packet that spreads by an
amount that scales favorably withN. We demand that a wave
packet of widthL spreads by only a constant factor to a final
width of L8<kL by the time it reaches Bob. To simplify the
discussion we note that for typical wave numbers close tok0
we havev9sk0d=l /N2 (this is true of all the models we
consider). We analyze the scaling, witht<N (the time it
takes for a wave packet to traverse the ring), of the spread
SsNd of the wave packet:

T. J. OSBORNE AND N. LINDEN PHYSICAL REVIEW A69, 052315(2004)

052315-4



SsNd = LsNd/Ls0d = F1 +S l

NL2s0dD
2G1/2

.

If we want the final width of the wave packet to be indepen-
dent of the length of the ring we need to chooseLs0d
=1/ÎN. This means that the initial packet needs to be
supported on a subsystem containing on the order ofÎN
sites. In the “mesoscopic” limit of large but finiteN the
fraction of the ring that Alice and Bob need to access can
be made arbitrarily smallsit scales asN−1/2d.

We now analyze these results for the Heisenberg model.
We want a signal pulse to travel as fast as possible. Looking
at the group velocityv8skd=s2x /Ndsinfs2p /Ndkg we find
that this occurs fork=N/4 ,3N/4, nskd= ± s2x /Nd. At this
point we choosex=1/4. We dothis so that the final wave
packet will arrive at Bob’s portion of the ring at timet=N
(recall that Alice and Bob are separated by a distanceN/2).
So we choose the initial wave packet to be a truncated
Gaussian-modulated superposition of widthÎN of twistedW
states centered aroundk=N/4.

The case of wave packets centered onk0=N/4 is rather
special—note that the dispersionv9sk0d for this model is
identically 0. Naïvely applying formula Eq.(7) for the spread
of the wave packet suggests that an initial wave packet of
any width will not spread at all. This is an artifact of our
approximation; we assumed that the dispersion relation could
be expanded and truncated at second order with little error.
In the special situation wherev9sk0d vanishes we need to go
to third order. For this case a Gaussian pulse does not remain
a Gaussian.(Instead, it becomes an Airy function[11].) The
formula Eq.(7) is invalid in this case and we need to use the
third-order broadening factor[11]

Lstd
Ls0d

= F1 +
1

2S v-sk0dt
Î2L3s0d

D2G1/2

.

We solve this equation fort=N to find the widthLs0d of the
initial wave packet which has constant spread withN. We
find that Ls0d need only scale asN−2/3. Such a wave packet
consists ofNLs0d=N1/3 sites.

We illustrate these results for the Heisenberg ring ofN
=100 sites in Figs. 1 and 2. By way of contrast, in Fig. 1 we

first show the dynamics of the state with a singleu1l at site
N/2 (this type of localized initial state is what is used in the
protocols of[5–7]). Because the stateuN/2l is an equal su-
perposition of all the twistedW states all the waves are in-
volved in the dynamics and hence the initial packet disperses
rapidly. In Fig. 2 we see that the shaped pulse retains its
shape for much longer durations. This is because fewer
waves are involved in the superposition. We note that, ge-
nerically, for wave packets centered around wave numbers
not equal toN/4 a square-root scaling for the final wave
packet is observed.

Before we conclude our discussion of the numerical re-
sults, we refer to Fig. 3. In this graph we have plotted, for the
Heisenberg ring, the width of the final wave packet(we de-
fine the widthF to be when more than 95% of the area lies

FIG. 1. Propagation of the stateuN/2l in a 100-site Heisenberg
spin ring. FIG. 2. Propagation of a truncated Gaussian-modulatedW state

of width 10 and wave numberN/4 in a 100-site Heisenberg spin
ring.

FIG. 3. Dots: size of the final wave packet in the Heisenberg
spin ring for N=50 to N=5000. (The initial wave packet is a
Gaussian-modulated wave of varianceN1/3 truncated after 2N1/3

sites.) Final width F is defined to be when more than 95% of the
wavepacket lies betweenF sites. Solid line: graph of 2.8N1/3 for
comparison. The apparent jumps of integer amounts greater than 1
in the numerical results is an artifact of the way the width of the
final wave packet is calculated. The final wave packet has a se-
quence trailing oscillations. In order to get an area of more than
some arbitrary amount(like 0.95) it is sometimes necessary to in-
clude several more sites in a go.

PROPAGATION OF QUANTUM INFORMATION THROUGH… PHYSICAL REVIEW A 69, 052315(2004)

052315-5



within F /2 sites either side of siteN/2) for rings of sizes 50
through 5000 sites. We have also plotted 2.8N1/3 for com-
parison. Because the Heisenberg model is diffusionless to
second order in the dispersion relationv9sk0d=0, we expect
that the numerically recorded spread ought to be smaller than
the spread predicted for models with second-order disper-
sion. We can see from Fig. 3 that this is indeed the case. For
N=5000 the proportion of the ring that Alice and Bob must
be able to access is less than 1% each.

To conclude we construct all the rotationally invariant
nearest-neighbor spin Hamiltonians which fix theu0l and
twisted W states. An easy way to construct all such Hamil-
tonians is to first assume that the Hamiltonian preserves
Sz,o j=1

N s j
z. Any such Hamiltonian may be written as

H = c0I + o
j=1

N

fc1s j
+s j

− + c2s j
−s j

+ + d1ss j
+s j+1

− + s j
−s j+1

+ d

+ d2ss j
+s j+1

− + s j
−s j+1

+ d2 + e1iss j
+s j+1

− − s j
−s j+1

+ d

+ f1iss j
+s j+1

− − s j
−s j+1

+ dss j
+s j+1

− + s j
−s j+1

+ dg, s8d

wheres j
±, 1

2ss j
x± is j

yd. It may be verified, with a little alge-
bra, that this is the most general rotationally invariant
nearest-neighbor Hamiltonian which nontrivially fixes the
twisted W states.sThere is one additional term which fixes
the twistedW states,s j

−s j+1
− , however, it trivially annihilates

these states and thus contributes nothing to the dispersion
relation. Note also that thef1 term annihilates the twistedW
states.d

The Hamiltonian Eq.(8) gives rise to the following dis-
persion relation

vskd = A + B cosS2p

N
kD + B8 sinS2p

N
kD , s9d

whereA=c0+c1sN−1d+c2+2d2, B=2d1, andB8=−2e1. We
note that both the Heisenberg model in a magnetic field and
theXY model in a magnetic field can both be expressed as in
Eq. s8d for specific choices ofcj, dj, e1, and f1. The disper-
sion relation Eq.s9d is no more general than that for the
Heisenberg model so all of our discussion concerning the
design of optimal signals for the Heisenberg model carries

through straightforwardly for the general class of models in
Eq. s8d.

We see from the dispersion relation Eq.(9) that the most
general rotationally invariant nearest-neighbor Hamiltonian
fixing the twistedW states is dispersive. This shows us that,
in order for a HamiltonianH to exponentiate to the transla-
tion operatorT=eiH, it is necessary forH to contain interac-
tion terms between separated parties. This verifies our earlier
claim that such a Hamiltonian must be nonlocal.

Finally, we note that our results imply that the qubit rate
for a rotationally invariant nearest-neighbor Hamiltonian on
N sites is bounded below:Q0.95sHdù1/N.

We have introduced a method for improving the quantum
communication characteristics of 1D quantum spin rings.
According to the connection between the dynamics of quan-
tum information in these rings with Fourier wave analysis we
have been able to import many of the results concerning the
design of signals which disperse minimally. Clearly our re-
sults illustrate that our communication protocol has minimal
control requirements and is flexible. We have not tackled the
problem of determining the resistance of our protocol to er-
ror.

Many future problems suggest themselves at this stage.
Perhaps the most interesting is the extension of the results to
linear chains. In this case our results cannot be applied be-
cause the twistedW states are not eigenstates for nearest-
neighbor Hamiltonians on a chain. However, a generalization
of our method of pulse shaping ought to be possible. Another
important future problem concerns the resistance of the pro-
tocol to errors. We believe that the protocol is robust, but a
full analysis needs to be done. Finally, we note that all our
protocols take place in the single-particle subspace. The di-
mension of this subspace increases linearly with increasing
numbers of qubits; however the Hilbert space of the system
increases exponentially withN. Perhaps it is possible to in-
crease the qubit rate substantially by taking advantage of
larger subspaces which include two and higher particles.
Further investigations along these lines are being conducted.
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