PHYSICAL REVIEW A 69, 052315(2004)

Propagation of quantum information through a spin system
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It has been recently suggested that the dynamics of a quantum spin system may provide a natural mechanism
for transporting quantum information. We show that one-dimensional rings of qubits with (tiad-
independentinteractions, constant around the ring, allow high-fidelity communication of quantum states. We
show that the problem of maximizing the fidelity of the quantum communication is related to a classical
problem in Fourier wave analysis. By making use of this observation we find that if both communicating
parties have access to limited numbers of qubits in the (anfgaction that vanishes in the limit of large rings
it is possible to make the communication arbitrarily good.
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In quantum information science it is a crucial problem toring into a given state and to transfer the state, as well as
develop techniques for communicating qubits. A key task ipossible, along the chaifor ring) to the output qubit. The
to develop protocols for taking a qubit’s state at one locatiorinput and output qubits were placed at diametrically opposite
to another while minimizing the degradation of the quantumplaces in the chair(or ring) and the interaction between
coherence. neighboring qubits was time independent and constant

In this paper we consider whether it is possible to use @round the length of the system. Interestingly if a ring has
one-dimensional(1D) arrangement of qubits—a ring— length four, there is a time after which the state of the output
coupled by nearest-neighbor interactions, to communicate @ubit is precisely the same as that of the input qubit. As the
qubit from one part of the ring to another with high fidelity. length of the system is increased, however, the maximum

It is clear that this communication can be done, for ex-fidelity achievable was found to go down with increasing
ample, if one can perform fast local unitary operations on thé€Paration. For example, chains of length of approximately
individual qubits (by fast we mean that the local unitary 80 have fidelity not much better than 2(@is is the fidelity
operations are effectively instantaneous compared with th@f the best classical transmission of an unknown qutius

time it takes the interaction between qubits to change th% € approacr} W?]UId not Ble ijseful forftrﬁmsmissioT ovEr Ior;]g

. o . . distances. A further notable feature of the protocol is that the
state _appremab}y This is because any nearest-_nelghbor_ "Ntime at which the maximum fidelity is rea(?hed does not de-
teraction can be used to perform a swap operation on pairs %{;nd in any simple way on the length of the ring. This is

qu!tS[l_‘Hf LS the_ communication can be perfprmed bYhecause the maximum fidelity arises when an expression of
putting a given qubit into the state to be communicated angyq torm Zjeiﬂ'ajt reaches its maximurtwheret is the time
then moving it along the chain of qubits by swapping theang theq, are rational constants, which depend on the length

state along the line to the required position. of the ring. Thus in this framework there is no natural notion
In this paper, however, we have in mind the situation thalpf the speed of transmission along the fiber.

we do not have access to the whole set of SpinS during the Further progress was made in Rg], where the authors
communication; rather the set of spins behaves more like 8nhow that a single qubit can be communicated perfectly in a
fiber into which one can input a qublt State, and hope that thﬁypercube geometry_ The authors also show how to commu-
state appears at the other end of the fiber. The question igcate a qubit perfectly in a linear chain with variable cou-
whether it is possible for a set of spins with only its passiveplings given by a specific arithmetic sequence. Using this
interaction to act as an effective communication channel. jdea for communicating arbitrary distances, would however
We would also like the qubit fiber to have the property require refabricating the channel for each distance.
that we could increase the |ength of the fiber without needing A further interesting proposa| for Communicating guan-
to completely refabricate it; thus if we wanted to communi-tym information using the ground state of a certain spin sys-
cate twice as far we would like to be able to simply add twotem has been recently developed in R@]. There it was
identical fibers together and find that the f|de||ty and time Offound that perfect transmission iS possib'e When the freedom
transmission depended in a simple way on the fidelity ando apply local measurements on all spins is allowed.
time of the individual fiber. We can summarize our desiderata in this paper by saying
Some interesting work has already been done in this aregyat we wish to develop schemes for high-fidelity quantum
concerning the communication of qubits along a 1D Heisencommunication with three essential criteri@) Minimum
berg spin chairi5] (and, more recently, in the 1RY model,  control requirements. We require that it is unnecessary to
[6]). In Ref. [5] the aim was to put one qubit in a chain or gpply many fast control operations throughout the transmis-
sion. (ii) Robustness. We want the device to be capable of
tolerating small errors without diminishing the quality of the
*Electronic address: T.J.Osborne@bristol.ac.uk communication too muchiii) Flexibility. We want to be
"Electronic address: N.Linden@bristol.ac.uk able to change parametdmich as the locations of the com-
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municating partiessimply without requiring a new device Ultimately we are interested in how well a spin ring per-
be fabricated. forms as a conduit for quantum information. In this more
Our proposal makes quantum spin chains behave as a mgeneral scenario we allow Alice and Bob the freedom to
dium through which quantum information propagates. Usingapply a number of encoding/decoding operations in succes-
the fact that dynamics in restricted subspaces for 1D quarsion. The objective is to maximize the number of qubits suc-
tum spin chains can be described by classical Fourier waveessfully communicatedi.e., when 7= 7) per unit time.
analysis, we show that there are natural notions of groupVrite the maximum number of qubits that can be success-
velocity and dispersion for quantum information. We pro-fully communicatedwhere the maximum is taken over the
pose a figure of merit for the information propagation, theencoding/decoding operations a durationT asM (T). We
qubit rate, and analyze this quantity for a family of ideal anddefine the long-time averag®,(H) £lim1_.(1/T)M(T) to
realistic physical models: nearest-neighbor 1D spin chainsse the qubit rate foH.
In addition, we argue that our protocols satisfy the require- Obviously the evaluation of.(H) is extremely difficult,
ments in(i)—(iii ) that we outlined in the previous paragraph. even for the simplest systems. We only obtain lower bounds
We show how to increase the quality of quantum commusor this quantity for a class of rotationally invariant nearest-
nication in a variety of realistic spin models by relaxing the neighbor Hamiltonians.
restriction that the two parties can only access a single qubit. There is a simple case where we can eval@i@) ex-
We allow both parties the ablllty to access a limited numberacﬂy, name|y whemH is a Hamiltonian Corresponding to the
of extra sites, a fraction which tends toward zero as theranslation operatoH=—i log(7}, where7 is defined by the
length of the chain increases. The connection between thgiowing action on computational basis vectors,
propagation of quantum information in spin rings and clas-77|a, a,, ... ay) 2 |ay,a3, ... ,ay,a;). When H is of this
sical Fourier wave analysis provides a way to visualize thgy, the qubit rate takes the maximum val@e(H)=1 for

prog_agatlon of quantum information as a pulse through & - e have adopted rescaled time units; we will discuss

mewlum. wrn t se descrintion of th toco] wehoW to calculate the constant of rescaling latér. order to
Ve now turn 1o a precise description of the proloCol Wegeq 1y first note that whemn is an integer the propagator

will study. We consider a ring o spin-1/2 systems evolv- U(n)=eH"=7" is a power of the translation operator. To

ing according to a nearest-neighbor HamiltorkanNe iden- o oo the qubit rate, Alice needs to encode the state of a

tify the (N+1)th site with the first site, 1.ef.; =A. We qubit into one site of the ring at every integtal

imagine that two parties, Alicd and BobB are located at As we'll argue presently, every HamiltoniaH corre-

tsr:tetsthl andN/2, respect:jve:‘y.(We assumel,j for f&mphm%, Sponding to the translation operation is massively nonlocal
at né ring 1S composed of an even NUMDET Of SPINS. NO&,,y ¢4ntains interaction terms between many separated sub-

however, that our subsequent results do not depend on thgilstems. For this reason it is unlikely that a system will be
fact) We suppose that Alice and Bob are able to access gy jcated that naturally evolves accordingHo
total of A sites each, centered on the first andit@th sites, Consider now the translation operatfirlt is easy to see

respecnvely. Alice and Bob are allowed to perfor.m any op-hat the action off on computational basis states breaks up
eration allowed by the rules of quantum mechanics on thei[..+ piocks. For example, the stat@0---0) and|11---1)
sites. Finally, we assume that the completely polarized statg blocks all by thellnselves and the stat§s, |
|00-+-0) is an eigenstate of the Hamiltoni&h and that be-  _3 " " wherelj) denotes the state of a0)’s with a|1'> in
fore Fhe protocol begins thg system Is prepared in th|s' Statethe’jth ’sit’e, form a blockwe’ll often refer to these states as
Alice wants to qommunlcatg_epo_ssmly unknowh qubit one-particle statgs The remaining basis states each segre-
state|y)) to Bob. Given a specification df (assumed to be e "intg blocks in a similar fashion. Consider a block of
known to both Alice and BoAlice performs some encoding giateg of sizeM. Choose a state from this block and call it
operationU, on herA qubits. The system is now in the state ). Every state|a) within the block can be written as
[W(0))=U,00---0). As the ring is always evolving accord- ) =T ag). Using theseM states one can construbt
ing to H this state immediately begins to evolvib(t)) eigenstates of T- |ﬁk>:1/\W2M WD a),  where v
=e"™|w(0)). Bob now waits a certain period of im&  _J2@M)i i the Mth root of unity. ]\_/\l/e note Jthat each set of
which depends only ohl, A, andN, and when this duration  gjgenstates so constructed is a quantum Fourier transform of
elapses he performs a decoding operatignon his addres-  he seff|w;)[j=1, ... M}. Performing this procedure for each
Bock gives rise to the complete set of eigenstates/for
We study the qubit rate for the class of rotationally invari-
t nearest-neighbor spin-1/2 models. Because of the rota-

state into one of the qubits in the ringAdditionally, Bob
could apply a swap operation to move the decoded state intgn

a static register qubit. We prefer to ignore such register qu

bits because we imagine that decoding unitary operation%onal |_nvar|ance[H,7j=O and we may S|mul_taneously di-
could also be performed as intermediate steps in a kind d gonalize bottH and 7. We restrict our attention further to

quantum repeatgrThe protocol is deemed to succeed whent"® class of 1D spin rings, which fix the following special
the average fidelity eigenstates of, which we call the twistedV states,

N
a1 i—1)k| :
FHNA,T,Up, Ug) 2 ﬁ f AUlele), (D) Wik £ 3 ),

where|y) is the input state, which we average over the Blochwhere u is the Nth root of unity u=e?™N' [13]. All the
sphere, ancp is the decoded output state, is above someprotocols we describe in this paper take place in the subspace
prespecified threshold value formed by the twistedV states.
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The spin HamiltoniarH fixes the state$W(k)) with ei- how Bob decodes his state. We choose to concentrate the
genvaluesw(k) (and also, via a rescaling of enerdy,fixes  state into one qubit in order to facilitate the evaluation of the
|00---0) with eigenvalue @ Suppose we start the system in average fidelity of the channgl.

the arbitrary Staté\]f(o»:amo-~-0>+ﬂEJN:1Cj|j>, where|af? After decoding, the statp of the qubitN/2 has density
+B|?=1 and={L|cj|*=1. The subsequent time evolution of operator
this state can be written *
(Ial2+lﬁlz(1—CB(T)) JCsMap ) 5
N = * )
VCe(Ma B |BI7Ca(T)

[W(1) = a00-- 0) + BE G MWK, (2
k=1 with respect to the basi§0)y.,|1no} Of qubit N/2. This
where®,=1/ NN 40"V, The coefficientcj(t) of the ~ State may be written p=Ex(|n ) = Mol Do YIM§

|j) term can be found as +My|n M, where|yy2= |02+ Bl Lz and Mg and
N M, are the Kraus operators of an amplitude damping channel
(1) = =3 Gerolkre2it-Dn, &
VNik=1 (1 0 )
Mqy= —_—
Because the dynamics only take place in the zero- and °~\o VCg(T)

one-particle subspace we can establish the following useful
result. Supposex=0. If we bipartition the spin system into and

two subsystem# and A we can always write the system’s 0 \V1-Cg(M
state|W(t))=={L,g(t)j) in the following way: M, = 0 0 :
— 1 _/ — I\N—
(W) = V1 =CaAl)|H)alOa+ VCAD[O)A 6 DA (B ith respect to the basi§0)n,2, | 1wt (cf. Ref.[5]).
where The fidelity ({UgpUL|#) of Bob’s state with the input

state is given by

= (1)]2
C= 2 Jei (0" ot + 1 + 2Co(T) - Co(M ] a2IBR + Co(MIB.  (6)

jeA
The average fidelity Eqg.(1) can be evaluated a%
) = 1 S b)) +§\yCB(T)+éCB(T). This function depends monotonically
V1=Calt)jen il on the quantityCg(T).

It is clear from the discussion in the preceding paragraphs

and that the quantity’s(T) plays a central role in determining the
effectiveness of the communication protocol. We now study
|¢p') = 1 > e®))). this quantity further, and show how to reduce the problem of

\/CA_(t)jE; J its maximization to a well-known type of problem in Fourier

wave analysis.
Note that Eq.(3) is a two-term Schmidt decomposition of ~ Motivated by the importance ofg(T) we introduce a
|'W(t)) because$|0)a=al¢'|0)a=0. method for visualizing quantum states which lie within the
When Alice wants to send the sta¢)=«|0)+8|1) she one-particle subspace. Given such a state=|00---0)
will encode this state aa|00~--0>+ﬂ2}\':1cj(0)|j>, where she +,82}“:10j|j>, we visualize it by plotting the quantities
is free to choose nonzem(0) as long as the indek lies ¥ =c;|* against site number. Clearly the area under the re-
within her subset of addressable spins. After tifiehas  sulting (ban graph equals 1. Obviously this pictorial repre-
elapsed then this state can be written, following the discussentation does not represent any of the phase information
sion in the previous paragraph, as contained in the system’s state. However, this phase informa-
tion plays no part in the quantity we are interested’ig(;T),
|W(T)) = BV1 —Cgs(T)|7)sl0)g + |0)a(|0)g + BVCs(T)|7')g),  Which is simply the area under the graph of the stat&))
@) between sitedN/2-A/2,... N/2+A/2. The graph of the
system’s statéy(T)) is given by

where now the bipartition is given U§B, whereB is Bob'’s 2

N
1| 5
addressable spins ainow refers to all the other spins and yi(T) = = | X Gget2m(-1kiN
N =1
_ 2
Ce(T) = JEB |ei(t)| : It is worth emphasizing that the method we have just in-

troduced for visualizing quantum states of the ring depends
Bob now applies a decoding unitabyg to his partB of  crucially on the properties of our spin systems. The dynamics

the ring. The unitary igpartially) defined byUg|0)s=|0g)  for the ring occurs solely within the zero- and one-particle

andUg|7')s=|N/2). (There is a great deal of arbitrariness in subspaces spanned I8 and{|j)|j=1, ... N}. This subspace
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scales linearly with the ring. It is precisely this feature which  Unless the system is dispersionlg¢ask)=ck] the initial
facilitates our construction for the graph of the state, which isvave packet will spread as time evolvgdl. The rate of
essentially a method for representing, visually, a linear numspread of the initial wave packet is proportional to the

ber (in N) of degrees of freedom. second-order term
The problem of maximizing the area under the graph
v;(T) between certain sites is a well-known classical problem 1 dPwk
in Fourier wave analysis; our problem has been reduced to 27 dk? k:ko.

studying the linear dynamics of superpositions of complex
scalar waves. The quantity(k) is the dispersion relation and |f this derivative is zerolas will be the case in one of the
the position variable is given by;=(j—1)/N. We wish to  models we considgrthere is no appreciable spread of the
work out an assignmertt(0) of initial amplitudes in Alice’s  wave packet to second order (k). There may, however,
subsystem, or a wave packet of quantum information, so thdie contributions from third- and higher-order terms, which
subsequent evolution preserves as much of the width anchuse an initial wave packet to spread.
integrity of the wave packet as possible. The generic strategy10] for designing wave packets
Given a specification of the dispersion relatiefk) we  which change shape as little as possible is to use a Gaussian-
have all the information we require to embark on the desigrmodulated wave of variancA centered at positiom, and
of wave packets which preserve their shape. These numbevwgave numberk, corresponding to the maximum available
are, of course, the eigenvalues Hff for the eigenstates group velocityv(kg). In our case the “wave” is a twisted/
[W(K)). state, so this “wave packet’ is writted¥(0))=a|0)
To illustrate our ideas in the following we use the Heisen-+ 8|G(x,,Kg,A)), where
berg model orN sites

N 2
— (X; = %) . )
|G(Xk1k0,A)> = 1/\,",/\/‘2 e__JF+27leoxj|J>

N N
H:XEI_%/E O'j‘(Tj+]_, =1
j=1
and V is chosen to normalize the state. The graph for the

where we have introduced an arbitrary constanWe will initial state is given by
explain which value ofy we choose in the following. The N 5
dispersion relation for the Heisenberg modelkwig)=2x[1 1 D _<X'-Xi>2+27ik0x_
—-cog27k/N)]. (We have rescaled the zero of energy for i(0) _JT/ j:j_e 2A? !

the Heisenberg model so thi@ has eigenvalue zerp.

Currently our problem is not identical to the well-studied This state has exactly the form of a Gaussian-modulated
problems in wave motiorisee, for example, Ref9]). The  complex scalar wave centered around wave nunkgemd
difference is that we are dealing with wave motion in a dis-with (spatia) width L. (We define widthL to be when more
crete system whereas most of the theory of wave matdn than some prespecified area, say 93%s within an inter-
least in regards to the design of optimal wave paokistfor  val L centered on the maximum of the Gaussian. We note
continuous systems. In the subsequent discussion we withatL is some multiple ofA. Throughout the remainder of
make use of the results from the continuous theory, but ithis paper we chooske=4A.)
must be understood that these results only hold asymptoti- |t is known that an initial Gaussian wave packet, under
cally in the limit whereN—co and the intersite spacing  time evolution, remains, to good approximation, a Gaussian
—0. In particular, we emphasize that the appearance of def width L(t) satisfying[10]
rivatives must be understood as a formal device and really
only make sense in this limit. We'll justify the applicability L(t) o" (Kt \? [V
of these asymptotic results presently by comparing them @z W
with numerical results.

In classical Fourier wave theory the concept of group veBecause Alice is assumed able to address ®Hly0) sites
locity plays a crucial role in the design of wave packets[recall we have rescaled the length of the ring to be 1 by
which preserve their shape as time evoly8 The group  defining the position variable = (j —1)/N] we propose using
velocity v(ko) for a wave numbek, is defined to be the Gaussian initial pulse introduced in the previous para-

graph truncatedand renormalizedafter NL(0) sites.
1 dolk We want to design a wave packet that spreads by an
27 dk kzko' amount that scales favorably with We demand that a wave
packet of widthL spreads by only a constant factor to a final
[For the models we consider we are given a specification oWidth of L’ = kL by the time it reaches Bob. To simplify the
(k) which makes sense for fractionlglso that it is possible discussion we note that for typical wave numbers clodg to
to compute this derivativgThe significance of this quantity we have o”(ky)=\/N? (this is true of all the models we
is that an initial wave pack@lewkez””xik consisting of fun-  considey. We analyze the scaling, witb=N (the time it
damental waves with large amplitude focused on wave numtakes for a wave packet to traverse the yjngf the spread
berky will translate with velocityv (k) as time evolves. S(N) of the wave packet:

()

v(ko) =
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100

50

Time 4 , Time ' ,
0 9o Site 0 o Site
s |E|Sn 1. Propagation of the stafié/2) in a 100-site Heisenberg FIG. 2. Propagation of a truncated Gaussian-modul#iesiate
P g of width 10 and wave numbeX/4 in a 100-site Heisenberg spin
ring.
27012
= = +| — . . . . .
S(N) =L(N)/L(0) {1 (NLZ(O)) } ' first show the dynamics of the state with a sinfflg at site

i ) . N/2 (this type of localized initial state is what is used in the
If we want the final width of the wave packet to be '”depen'protocols of[5-7]). Because the stal®/2) is an equal su-
dent of the length of the ring we need to chods®)  perposition of all the twistedV states all the waves are in-
=1/VN. This means that the initial packet needs to beyglyed in the dynamics and hence the initial packet disperses
supported on a subsystem containing on the ordetMf rapidly. In Fig. 2 we see that the shaped pulse retains its
sites. In the “mesoscopic” limit of large but finitd the  shape for much longer durations. This is because fewer
fraction of the ring that Alice and Bob need to access canyaves are involved in the superposition. We note that, ge-
be made arbitrarily smaliit scales asN™'/?). nerically, for wave packets centered around wave numbers

We now analyze these results for the Heisenberg modehot equal toN/4 a square-root scaling for the final wave
We want a signal pulse to travel as fast as possible. Lookingacket is observed.
at the group velocityw’(k)=(2x/N)sin(2m/N)k] we find Before we conclude our discussion of the numerical re-
that this occurs fok=N/4,3N/4, v(k)=+(2x/N). At this  sults, we refer to Fig. 3. In this graph we have plotted, for the
point we choosey=1/4. We dothis so that the final wave Heisenberg ring, the width of the final wave packse de-
packet will arrive at Bob's portion of the ring at timteN  fine the widthF to be when more than 95% of the area lies
(recall that Alice and Bob are separated by a distadt2).

So we choose the initial wave packet to be a truncated 50
Gaussian-modulated superposition of widtk of twisted W
states centered arouteN/4.

The case of wave packets centeredkgrN/4 is rather
special—note that the dispersian’'(ky) for this model is
identically 0. Naively applying formula Eq7) for the spread
of the wave packet suggests that an initial wave packet of
any width will not spread at all. This is an artifact of our

) & =
w S W

‘Width of final wavepacket
o
=)

approximation; we assumed that the dispersion relation could ®

be expanded and truncated at second order with little error. 20}

In the special situation wher@”(k,) vanishes we need to go 151

to third order. For this case a Gaussian pulse does not remain

a Gaussian(Instead, it becomes an Airy functigd1].) The 107 1000 2000 3000 4000 5000

formula Eq.(7) is invalid in this case and we need to use the Number of sites

third-order broadening factdd 1] FIG. 3. Dots: size of the final wave packet in the Heisenberg
L(t) { 1{ " (Kot 2712 spin ripg for N=50 to N=5000. (The initial wave packet is a
— = +—( — ) ] ) Gaussian-modulated wave of variant&’® truncated after B3
L(0) 2\\2L%(0) sites) Final width F is defined to be when more than 95% of the

. . . . wavepacket lies betweeh sites. Solid line: graph of 2083 for
We solve this equation fa=N to find the widthL(0) of the comparison. The apparent jumps of integer amounts greater than 1

initial wave packet which has C?ggtam spread VNENWe i, the numerical results is an artifact of the way the width of the
find that L(0) need only scale ali™~. Such a wave packet final wave packet is calculated. The final wave packet has a se-
consists ofNL(0)=N*? sites. quence trailing oscillations. In order to get an area of more than

We illustrate these results for the Heisenberg ringNof  some arbitrary amourdike 0.95) it is sometimes necessary to in-
=100 sites in Figs. 1 and 2. By way of contrast, in Fig. 1 weclude several more sites in a go.
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within F/2 sites either side of sitd/2) for rings of sizes 50 through straightforwardly for the general class of models in
through 5000 sites. We have also plottedN*8 for com-  EQ. (8).

parison. Because the Heisenberg model is diffusionless to We see from the dispersion relation K@) that the most
second order in the dispersion relatiofi(ky) =0, we expect general rotationally invariant nearest-neighbor Hamiltonian
that the numerically recorded spread ought to be smaller thafing the twistedW states is dispersive. This shows us that,
the spread predicted for models with second-order dispefl order for a Ha['nl!tqnlam to exponentiate to the transla-
sion. We can see from Fig. 3 that this is indeed the case. Fd{on Operator7=e", it is necessary foH to contain interac-
N=5000 the proportion of the ring that Alice and Bob musttlor_l terms between sep_arat_ed parties. This verifies our earlier
be able to access is less than 1% each. claim that such a Hamiltonian must be nonlocal.

To conclude we construct all the rotationally invariant ~ Finally, we note that our results imply that the qubit rate
nearest-neighbor spin Hamiltonians which fix t and for a rot.atlonally invariant nearest-neighbor Hamiltonian on
twisted W states. An easy way to construct all such Hamil-N Sites is bounded belovQoe(H)=1/N.
tonians is to first assume that the Hamiltonian preserves We have introduced a method for improving the quantum

Szég}\lzﬂszl Any such Hamiltonian may be written as commu_nication characteristics of 1D quantum 'spin rings.
According to the connection between the dynamics of quan-
N tum information in these rings with Fourier wave analysis we
H=col + > [ci0] 0] + o0 0] + dy(0] 0,y + 0 071y) have been able to import many of the results concerning the
=1 design of signals which disperse minimally. Clearly our re-
td(oto. to ot rei(otor.. — oo sults |IlustraFe that our communication protocol has minimal
2_( A AER Jil) +1( 17 L) i+ control requirements and is flexible. We have not tackled the
+ 11070741 = 0 07, (0] 0741 + 07 07,9, (8)  problem of determining the resistance of our protocol to er-
ror.
1 ; P ; ; .
whereo? £ 5(ofid)). It may be verified, with a little alge- Many future problems suggest themselves at this stage.

bra, that this is the most general rotationally invariantperhaps the most interesting is the extension of the results to
nearest-neighbor Hamiltonian which nontrivially fixes the |inear chains. In this case our results cannot be applied be-
twisted W states.(There is one additional term which fixes cause the twistedV states are not eigensta‘[es for nearest-
the twistedW states o oy,,, however, it trivially annihilates  neighbor Hamiltonians on a chain. However, a generalization
these states and thus contributes nothing to the dispersiasf our method of pulse shaping ought to be possible. Another
relation. Note also that thfy term annihilates the twisted/  jmportant future problem concerns the resistance of the pro-

states. o . . . . tocol to errors. We believe that the protocol is robust, but a
The Hamiltonian Eq(8) gives rise to the following dis- full analysis needs to be done. Finally, we note that all our
persion relation protocols take place in the single-particle subspace. The di-
_ 2w , (2w mension of this subspace increases linearly with increasing

w(k)=A+B COS( N k) +B sm( N k)’ ©) numbers of qubits; however the Hilbert space of the system

increases exponentially witN. Perhaps it is possible to in-

whereA=cy+c;(N-1)+c,+2d,, B=2d,, andB’'=-2e,. We  crease the qubit rate substantially by taking advantage of
note that both the Heisenberg model in a magnetic field anthrger subspaces which include two and higher particles.
the XY model in a magnetic field can both be expressed as ifrurther investigations along these lines are being conducted.
Eq. (8) for specific choices ot;, d;, e;, andf,. The disper- ACKNOWLEDGMENT
sion relation EQ.(9) is no more general than that for the
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