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We experimentally demonstrate a simple classical-field optical heterodyne method which employs postse-
lection to reproduce the polarization correlations of a four-particle entangled state. We give a heuristic argu-
ment relating this method to the measurement of multiple quantum fields by correlated homodyne detection.
We suggest that using multiple classical fields and postselection, one can reproduce the polarization correla-
tions obtained in quantum experiments which employ multiple single-photon sources and linear optics to
prepare multiparticle entangled states. Our experimental scheme produces four spatially separated beams which
are separately detected by mixing with four independent optical local oscillators(LO) of variable polarization.
Analog multiplication of the four beat signals enables projection onto a four-particle polarization-state basis.
Appropriate band pass filtering is used to produce a signal proportional to the projections of the maximally
entangled four-field polarization state,uH1d uH2d uH3d uH4d+ uV1d uV2d uV3d uV4d, onto the product of the four LO
polarizations. Since the data from multiple observers is combined prior to postselection, this method does not
constitute a test of nonlocality. However, we reproduce the polarization correlations of the 32 elements in the
truth table from the quantum mechanical Greenberger-Horne-Zeilinger experiments on the violation of local
realism. We also demonstrate a form of classical entanglement swapping in a four-particle basis.
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I. INTRODUCTION

Currently, there is great interest in understanding what
constitutes truly quantum mechanical behavior. This question
is of particular significance in the areas of quantum compu-
tation, quantum teleportation, and quantum cryptography,
where superposition and entanglement play a central role.
One way to explore this question is to study the differences
and similarities between measurements made on quantum
and classical-wave systems[1]. The purpose of the present
paper is to present one such study, a demonstration of the
entanglement of four classical fields.

Superposition and interference are common to both quan-
tum wave functions and classical waves. As a consequence
of interference in a single-particle quantum system, the
Wigner phase space function can be negative, as in a quan-
tum superposition of states(Schrödinger cat state). Using a
two-window heterodyne detection method, we have demon-
strated that the transverse mode of a classical field with two
mutually coherent spatially separated lobes also has a Wigner
phase-space function with a negative region[2].

A central feature of superposition and interference in mul-
tiparticle quantum systems is the concept of entanglement,
which describes correlations between the measured proper-
ties of different particles, such as their momenta or polariza-
tions [3,4]. The concept of entanglement and a general defi-
nition of its measure are currently being explored[5].

In practice, it is difficult to prepare entangled many-
particle quantum states. One proposed simplifying method
employs single-photon sources and linear optics to overcome
this problem[6,7]. As a further simplification, weak-coherent
sources and phase modulation are already being employed to
implement quantum key distribution employing the BB84
protocol [8,9]. The classical-field methods exploit the fact
that the wave function of a single photon in a given spatial

modeElsxd is the same as the mode function, i.e., the wave

function is k0uÊsxdu1ll=Elsxd, where Ê is the positive fre-
quency part of the field operator.

Using photons from independent sources and linear optics
[10–12], postselection techniques have been used to demon-
strate violations of Bell’s inequalities and also to implement
quantum logic gates such as a controlled-NOT gate. Further, it
has been suggested that the violation of Bell’s inequality for
continuous variables can be accomplished using macroscopic
light fields[13]. Since the mode functionElsxd is the same as
the transverse mode of a classical field, these ideas suggest
that classical fields and linear optics can be used to create
entangled states of multiple classical fields by postselection.
Indeed, it has been pointed out that postselection techniques
allow violation of Bell’s inequality even with classical cor-
relations [14]. Our paper is a direct demonstration of this
idea.

Study of entanglement with classical fields may offer use-
ful alternatives to entanglement obtained by using photons
from independent sources to implement quantum informa-
tion processing and provides new insights into the funda-
mental features of quantum measurement and entanglement.
Our classical experiments employ heterodyne detection to
measure field correlations and postselection by frequency fil-
tering after the data from multiple observers is combined.

Our heterodyne method is similar to the homodyne tech-
niques which have been used previously to measure the non-
local correlations in a two-particle quantum entangled sys-
tem, and to demonstrate a violation of Bell’s inequalities. In
the experiment by Ouet al. of Ref. [15], strong local oscil-
lator fields are used for homodyne detection of correlated
photon pairs, where correlations between the two detected
quadrature field amplitude fluctuations are measured. By
contrast, other experiments[16–18] employ weak local os-
cillator fields, which are used to measure the phase differ-
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ences between correlated photon pairs and the local oscillator
fields. For weak local oscillator fields, photon counting is
employed for the measurements. In homodyne experiments
with either weak or strong local oscillator fields, pairs of
single-mode correlated fields or two-field correlations are de-
tected via the measured intensity correlations.

Recently, we have demonstrated a classical-wave method
for reproducing the correlations of a two-particle entangled
state using independent heterodyne measurements on spa-
tially separated beams followed by postselection[19]. In
those experiments, polarization correlations are obtained be-
tween two spatially separated classical fields. It is shown that
Bell’s inequalities are formally violated since the interfer-
ences of a two-particle entangled quantum state are repro-
duced. The method combines the data from the two observ-
ers by analog multiplication and then uses postselection by
frequency filtering to measure the desired part of the inter-
ference signal. Since the data from the two observers is com-
bined before postselection, this method does not constitute a
test of quantum nonlocality. However, the classical correla-
tions so obtained reproduce those of the corresponding quan-
tum experiments.

A classical-wave method for reproducing the correlations
of a three-photon Greenberger-Horne-Zeilinger(GHZ) ex-
periment has been suggested theoretically[1]. The suggested
experiment reproduces the correlations that formally violate
local realism. However, the proposed method has the prop-
erty that the measurements made by the three observers can-
not be spatially separated, since the interferences occur in the
position-polarization entangled state of a single field. Hence,
nonlocal correlations cannot be demonstrated. Furthermore,
although such experiments can in principle be implemented,
as noted in Ref.[1], they have not been done.

In this paper, we demonstrate a simple classical-wave ex-
periment which employs postselection to reproduce the po-
larization correlations of three- and four-particle entangled
states. In contrast to the schemes suggested in Ref.[1], our
technique does not require phase stability of interfering
beams. In our work, four spatially separated classical beams,
1–4, each containing two orthogonally polarized fields with
different frequencies, are used to measure the four-field po-
larization entangled state uCcld=fuH1d uH2d uH3d uH4d
+ uV1d uV2d uV3d uV4dg /Î2, where we use the parenthesis nota-
tion of Spreeuw to denote the classical polarization state
[20]. The classically correlated state is directly measured by
heterodyne detection with four independent local oscillator
(LO) beams of arbitrary polarizations, using a scheme which
is independent of the LO phases to obtain stable signals. By
fixing the polarization of the fourth LO beam at 45°, our
classical system reproduces the correlations obtained for a
three-particle GHZ entanglement[21,22]. To demonstrate the
correlation properties of the classical field GHZ state, we
reproduce the 32 elements of the truth table which is used in
the quantum experiments to demonstrate violation of local
realism.

The central feature of our scheme is the use of heterodyne
detection of multiple classical fields. The detection system
employs analog multiplication of the signals from several
observers and subsequent frequency selection(instead of

coincidence detection) to postproject the desired entangled
part of the four-field state. Since the method combines the
data from several observers before postselection, it cannot be
used to test nonlocality. However, the method does yield a
signal proportional to the inner product of a chosen multipar-
ticle entangled state onto the product basis of the multiple
field polarization states. The square of the signal amplitude
so obtained is proportional to the joint probability for the
corresponding quantum experiment.

Briefly, to produce a four-field entangled state, we employ
an optical beam of frequencyvv=v+2p3120 kHz with
vertical polarization and an optical beam of frequencyvH
=v+2p330 kHz with horizontal polarization, which are
combined through a 50/50 beamsplitter. Two additional
beamsplitters, placed at the outputs of the first, produce four
spatially separated superposition beams. Two of these beams
are rotated in polarization using a half-wave plate at a 45°
angle to interchange the horizontal and vertical components.
The four output beams are sent to four spatially separated
measurement systems, each of which employs heterodyne
detection with an independent LO of frequencyv and at
arbitrary polarization angle. The heterodyne signal at each
detector then contains two frequency components, at 30 and
120 kHz. Correlated field detection is accomplished by using
three analog multipliers to produce a four-field product sig-
nal. The number of multipliers is equal to the number of
coincidence detectors required in a quantum experiment.
Band pass filtering after each multiplier is used to select the
components of the desired state, yielding an overall signal at
300 kHz that contains two indistinguishable, interfering con-
tributions, proportional to the projections of the four-field
state uH1d uH2d uH3d uH4d+ uV1d uV2d uV3uV4d onto the product
of the four LO polarizations.

We begin by giving a heuristic argument in Sec. II which
relates our classical-field heterodyne method to the corre-
lated homodyne detection of multiple fields in quantum ex-
periments and to the measurement of the corresponding
quantum intensity correlations. In Sec. III, we describe our
previous experiments which reproduce the polarization cor-
relations obtained in the coincidence detection of entangled
two-particle states[19]. In later sections, this technique is
extended to reproduce the correlations obtained in fourfold
coincidence detection. To demonstrate the correlation prop-
erties of the classical-field state, measurements are made in
the same basis as employed for the GHZ test of local realism.
For this reason, in Sec. IV, we briefly review the quantum
test of local realism for three-particle GHZ entanglement
[21,22]. In Sec. V, we demonstrate that the classical-field
experiments reproduce the 32 elements of the truth table ob-
tained in quantum experiments on a three-particle GHZ en-
tangled state, which contradicts local realism. As an applica-
tion of our four-field entangled state, we briefly demonstrate
a classical version of entanglement swapping in Sec. VI.

II. QUANTUM INTENSITY CORRELATIONS AS A
CONSEQUENCE OF CORRELATED FIELDS

Homodyne detection of quantum correlated optical beams
has previously been explored as a means of demonstrating
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the violation of Bell’s inequalties[16–18]. In this section, we
give a heuristic argument to show that the correlated detec-
tion of photons in two separated beams can be interpreted as
arising from correlated fluctuations in their respective field
operators which are directly measurable via homodyne de-
tection as shown in Fig. 1. The fields are correlated at the
source and propagate causally to the separated observers.
This concept of correlated field fluctuations shows how the
correlations measured in quantum intensity correlation ex-
periments can be reproduced by measuring the product of
homodyne or heterodyne detection signals, which measure
the field.

Typical two-photon sources are based on parametric
downconversion. In the Mandel-Ou experiments[3], a type
II downconverter produces a pair of orthogonally polarized
photons which are combined on a beam splitter. We assume
that for each pump pulse, the probabilityueu2 of creating the
two-photon state is small so that photon pile up is avoided.
Following the pump pulse, the quantum state of the fields in
output ports 1 and 2 of the beam splitter then can be written
as

uCl = uvacl +
e

2
fsuH1V2l − uV1H2ld + suH1V1l − uH2V2ldg.

s1d

Here, the first term is the vacuum state with no photons
present, while the two-photon state contains states for the
orthogonally polarized photons to be split between the two
beams or to both go into one beam or the other.

In the experiments, polarizers are placed in each beam
and oriented at anglesu1 andu2, respectively. The field op-
erator after polarizer 1 isE1=cosu1 a1H+sin u1 a1V, where

a1Hsa1Vd is the annihilation operator for a horizontally(ver-
tically) polarized photon in beam 1. Similarly, for polarizer
2, E2=cosu2 a2H+sin u2 a2V.

For intensity correlation(photon coincidence) measure-
ment, one measures the operatorI1I2, whereI1,2~E1,2

† E1,2. In
this case, neither the vacuum state nor the states with both
photons in one beam contribute to the coincidence probabil-
ity. The coincidence intensity measurement postprojects out
the desired part of the quantum state and the relative prob-
ability of coincidence iskCuI1I2uCl=se /2d2 sin2su2−u1d. The
probability for detecting a photon in either beam is the same
as the probability of pair production, and iskCuI1uCl
=kCuI2uCl=e2/2. The corresponding probability of coinci-
dence is thenkCuI1I2uCl / kCuI1uCl=sin2su2−u1d /2.

As noted above, to guarantee that only two photons are
prepared and detected in each measurement, the production
and the detection rate of pairs is low andueu2!1. Hence, the
quantum state of Eq.(1) is mostly the vacuum state. Never-
theless, the vacuum state plays no role in the calculation of
the coincidence probability and it is usually omitted in de-
scribing the state.

However, the vacuum state leads to correlated field fluc-
tuations. SincekCuE1,2uCl=0, the mean fields are zero, al-
though the corresponding intensities are nonzero. Hence, the
fields can be considered to fluctuate. The field fluctuations
are correlated sincekCuE2E1uCl=e sinsu2−u1d /2Þ0. Hence,
the nonlocal intensity correlations measured by the two de-
tectors can be considered to arise from correlations in the
field fluctuations. A field fluctuation in one detector is polar-
ization correlated with a field fluctuation in the other.

When the mean fields are nonzero, one can consider a
measurement of a fluctuation in one detector to determine the
relative phase between the field fluctuation and the mean
field in that detector. Since the mean fields and the field
fluctuations are correlated at the source, this necessarily de-
termines the correlation between the mean field and field
fluctuation in the other detector. These field correlations are
built in at the source and propagate causally to the two ob-
servers according to Maxwell’s equations.

An important property of multiparticle states which take
the form of Eq.(1) is that

kCuI1I2uCl = ukCuE2E1uClu2. s2d

Equations2d shows that the same correlations obtained by
joint intensity measurement can be obtained by correlated
field measurement. In principle, this can be accomplished by
homodyne detection of each field as used previously to mea-
sure the Wigner function for a single mode fieldf23g. In this
case, Fig. 1, a balanced detection system 1 would measure a
signal proportional toV1=ELO1

* E1+H.c., where the LO field
is a strong classical field, and similarly for balanced de-
tector 2. Multiplication of the homodyne signals for two
balanced detectors, squaring, and averaging over the clas-
sical phases of the local oscillator fields yields a result
proportional to the right-hand side of Eq.s2d.

FIG. 1. Correlated homodyne detection of two fields. Fluctua-
tions in the quantum fieldE1std are measured by mixing with a
strong classical local oscillator(LO) field ELOstd using a balanced
detection scheme. Using an independent LO field, fluctuations in
the fieldE2std are measured. The product of the fluctuating currents
DI1 and DI2 yields the correlation between the fluctuations in the
quantum fields 1 and 2.
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Equation(2) explains why the measurement of correlated
classical fields can reproduce quantum correlation measure-
ments. As demonstrated below, we use a product of signals
from multiple heterodyne detectors to obtain a signal propor-
tional to the product of the classical-field amplitudes. With
appropriate band pass filtering, we postproject only that part
of the signal proportional to the entangled state of interest.
By defining the joint intensity to be proportional to the
square of the product of the heterodyne signals, according to
Eq. (2), one obtains polarization correlations in agreement
with the quantum results[19].

III. TWO-PARTICLE ENTANGLEMENT

In quantum optics, coincidence detection yields the joint
probability of an event and also acts as a projection measure-
ment on the desired quantum state in a multiparticle system,
eliminating for example, the vacuum state as described
above. In a two-photon system described in abbreviated form
by an entangled state

uc−l = suH1V2l − uV1H2ld/Î2,

these two photons are produced by parametric downconver-
sion. They are orthogonally polarized signal and idler pho-
tons, which are combined with a beamsplitterf3g. The out-
puts of the beamsplitter provide two spatially separated
beams, beams 1 and 2 which propagate to two analyzers.
Beam 1 propagates to an analyzing linear polarizer at an
angle u1, with respect to the horizontal axis. The analyzer
projects out the polarization component

uu1l = cosu1uH1l + sin u1uV1l. s3d

Similarly, beam 2 propagates to analyzer 2 which projects
out the polarization component

uu2l = cosu2uH2l + sin u2uV2l. s4d

Now, by detecting these two photons in coincidence, we ob-
tain the joint probabilityPsu1,u2d for the detection of one
photon of polarizationu1 and one photon of polarizationu2
as

Psu1,u2d = uku1,u2uc−ulu2 =
1

2
sin2su1 − u2d. s5d

From Eq. s5d, coincidence detection projects the entangled
stateuc−l onto the product stateuu1luu2l.

These joint detection probabilities can be reproduced by
using two classical fields[19]. In the classical-field experi-
ments, frequency selection rather than time domain coinci-
dence is used to postproject the desired part of the multipar-
ticle quantum state. Two optical beams with fieldsu1d, u2d are
each generated by combining on a beamsplitter a field of
frequencyv+dH with horizontal polarization and a field of
frequencyv+dV with vertical polarization. Fieldsu1d andu2d
are each measured by heterodyne detection using a LO
of frequency v with variable polarization, yielding two
beat signals each containing two frequencies,dH anddV. An

analog multiplier is used to obtain the product of the beat
signals from each detector, producing a net signal amplitude
that is proportional to the projection of a factorized input
field stateu1d u2d onto the two-field polarization stateuu1d uu2d
of the LO’s. A band pass filter at the frequencydH+dV is then
used to postproject a signal containing two interfering con-
tributions, which is proportional to the inner product of
uccl

− d=fuH1d uV2d− uV1d uH2dg /Î2 onto the LO polarization
state uu1du2d. The square of the amplitude of this signal is
proportional to the joint probability of Eq.(5). The present
paper extends this method to produce four-field entangle-
ment, reproducing the truth table for the GHZ test of local
realism.

IV. CORRELATIONS IN GHZ ENTANGLEMENT

In our experiments, we produce a classical four-field en-
tangled state. To demonstrate that the classical state produces
the same polarization correlations as the true quantum state,
it is convenient to use the same methods and the same basis
states as in the GHZ test of local realism theory.

We begin by reviewing the essential features of the GHZ
test of local realism theory that is based on a quantum me-
chanical three-particle entangled state[21,22]. The prepara-
tion of entangled states of three or more particles is experi-
mentally challenging. In the experiment of three-particle
entanglement demonstrated by Zeilinger’s group[24], two
pairs of polarization entangled photons are transformed into
three entangled photons and a fourth independent photon.
The fourfold coincidence detection of these four photons
provides a projection measurement onto the desired GHZ
state ucl=s1/Î2dsuH1luH2luV3l+ uV1luV2luH3lduH4l. The
fourth photon uH4l is a trigger photon and the remaining
three entangled photons are used to observe the GHZ en-
tanglement. The fourth photon is always horizontally polar-
ized and hence can be neglected in determining the states of
the remaining three photons. By rotating the third-photon
polarization state so that the horizontal and vertical compo-
nents are interchanged, i.e.,V3↔H3, any measurement on
the first three particles in the stateucl can be regarded as a
measurement on the three-particle GHZ entangled state,

uCGHZ
3 l =

1
Î2

suH1luH2luH3l + uV1luV2luV3ld. s6d

Here the superscript 3 indicates a three-photon state. The
GHZ arguments about physical reality are based on the mea-
surements of polarization correlations on three particles in
this GHZ state. The measurements of polarization correla-
tions between the three particles leads to a conflict with local
realism for nonstatistical predictions of quantum mechanics
f21,22g. That is in contrast to the two entangled particles test
of Bell’s inequalities, where the conflict arises for statistical
predictions of quantum mechanics.

We can demonstrate the GHZ argument[21,22] for a
three-particle test of local realism as follows: A photoni is
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said to possess an element of realityXi with the value +1 or
−1 when its linear polarization state isH8 or V8, respectively,
whereH8 andV8 are at angles 45° and −45° with respect to
the original vertical directionV. Similarly, a photon is said to
possess an element of realityYi with value +1 or −1 when its
polarization state is right handed,R, or left handed,L, re-
spectively. The polarization states corresponding to these el-
ements of reality are given by

uH8l =
1
Î2

suHl + uVld,

uV8l =
1
Î2

suHl − uVld,

s7d

uRl =
1
Î2

suHl + i uVld,

uLl =
1
Î2

suHl − i uVld,

where theHsVd is the horizontal(vertical) polarization state
of the photon.

One can define elements of reality for joint measurement
of three particles as the product of the elements of reality for
each particle. For example, a measurementY1Y2X3 on the
GHZ state means that the first and second photons are each
projected onto the polarization stateuRl or uLl, and the third
photon is projected onto the polarization stateuH8l or uV8l.
Since each of the photons has two orthogonal polarizations
in the chosen basis, there is a complete set of 23=8 orthogo-
nal three-photon product states in this measurement. There
are also eight possible combinations for measuring either
circular Y or linear X polarization on three particles, and
eight possible three-photon states for each combination. In
the following, we consider four types of measurements for
the GHZ state of Eq.(6), namely Y1Y2X3, Y1X2Y3, and
X1Y2Y3, andX1X2X3.

In order to determine which elements of reality for three-
photon coincidences are also realizations predicted by quan-
tum mechanics, we conduct measurements on polarization
correlations of three photons in the GHZ state. Suppose now
that certain measurements ofY1Y2X3, Y1X2Y3, and X1Y2Y3
are predicted to be nonzero for the GHZ state. Then for an
X1X2X3 experiment, the expectations using a local realistic
theory are exactly the opposite of the expectations using
quantum physics, as we now show, following the arguments
of Refs.[21,22].

To see why, let’s demonstrate the argument with an
example for the measurement combinationY1Y2X3 on the
GHZ state. We write Eq.(6) in a form which directly shows
the possible outcomes forY1Y2X3 measurements. For the
three photons, the polarizationsuR1l, uL1l, uR2l, uL2l, uH38l,
and uV38l are obtained from Eq.(7). Then, the statesuHil and
uVil, where i =1,2,3, can bewritten in the measurement
basis as

uH1l =
1
Î2

suR1l + uL1ld,

uV1l =
1

iÎ2
suR1l − uL1ld,

uH2l =
1
Î2

suR2l + uL2ld,

s8d

uV2l =
1

iÎ2
suR2l − uL2ld,

uH3l =
1
Î2

suH38l + uV38ld,

uV3l =
1
Î2

suH38l − uV38ld.

Now, by using the Eq.(8) for three photons in the GHZ state,
uCGHZ

3 l of Eq. (6) can be rewritten in the basis for theYYX
configuration as

uCGHZ
3 lYYX=

1

2
suR1L2H38l + uL1R2H38l + uR1R2V38l + uL1L2V38ld.

s9d

One can see that each three-particle state of Eq.s9d has an
element of realityY1Y2X3 with a product value of −1. Note
that theR1L2H38=−1 means that if the photon 1 isR polarized
and photon 2 is alsoL polarized, then, the photon 3 must be
H8 polarized. The existence of the componentuR1luL2luH38l
and not of its complementary componentuR1luL2luV38l
can also be verified by direct projection on the GHZ
state uCGHZ

3 l, i.e., kR1ukL2ukH38uCGHZ
3 l=1/2 and

kR1ukL2ukV38uCGHZ
3 l=0. Thus, in the measurementY1Y2X3,

four of eight possible components of three-photon product
states are nonzero for the GHZ state. By using the same
procedure as discussed above for theYYXconfiguration, the
GHZ state can be written to display theYXY, XYY, andXXX
configurations of reality by using the appropriate basis,

uCGHZ
3 lYXY=

1

2
suL1H28R3l + uR1V28R3l + uR1H28L3l + uL1V28L3ld,

s10d

uCGHZ
3 lXYY=

1

2
suH18L2R3l + uV18R2R3l + uH18R2L3l + uV18L2L3ld,

s11d

and
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uCGHZ
3 lXXX=

1

2
suH18H28H38l + uV18V28H38l + uH18V28V38l

+ uV18H28V38ld. s12d

As in Eq. s9d for the YYX configuration, each element of
reality for the three photons in the configurationsX1Y2Y3 of
Eq. s10d andY1X2Y3 of Eq. s11d has the product value of −1.

Now, according to the local realism theory, sinceYiYi =
+1, it is obvious that the product of three configurations
fsX1Y2Y3dsY1X2Y3dsY1Y2X3dg=X1X2X3 will lead to the pre-
diction thatX1X2X3=−1, since each factor is −1 according to
the above arguments. However, this is in contradiction with
the quantum results obtained directly from Eq.(12) for the
GHZ state in theX1X2X3 basis, whereX1X2X3= +1.

In the following section, we describe a classical experi-
ment which measures the four-field entangled state
fuH1H2H3H4l+ uV1V2V3V4lgÎ2. As in the quantum experi-
ments, we use this state to measure the correlations for the
three-particle GHZ state of Eq.(6). To verify the polarization
correlations in the classical state, we reproduce the results
predicted by quantum mechanics in the test of quantum non-
locality.

V. REPRODUCING GHZ ENTANGLEMENT WITH
CLASSICAL FIELDS

In our experiments, as seen in Fig. 2, a HeNe laser beam
is split and sent through two fixed-frequency acousto-optic
modulators to produce a beam of frequencyvH=v+dH with
horizontal polarization and a beam of frequencyvv=v+dV
with vertical polarization, wheredH=2p330 kHz anddV
=2p3120 kHz. These two beams are combined on beam
splitter BS1 producing two output fields. Beamsplitter BS2
produces two copies of the transverse mode of one of the
output fields of BS1: beam 1, which propagates to detector 1

and beam 3, which propagates to detector 3. Similarly, beam-
splitter BS3 produces two copies of the transverse mode of
the other output field of BS1: beam 2 propagates to detector
2 and beam 4 propagates to detector 4. Half-wave plates
oriented at 0° in beams 1 and 2 shift the phase of the hori-
zontal field relative to that of the vertical. This cancels the
180° relative phase shifts arising from BS1. The total fields
E1 andE2 in beams 1 and 2, respectively, are then given by

E1 = E1 exps− ivVtdV̂1 + E1 exps− ivHtdĤ1, s13d

E2 = E2 exps− ivVtdV̂2 + E2 exps− ivHtdĤ2. s14d

Half-wave plates oriented at 45° inbeams 3 and 4 inter-
change the horizontal and vertical components. The opti-
cal fields E3 and E4 are given by

E3 = E3 exps− ivHtdV̂3 + E3 exps− ivVtdĤ3, s15d

E4 = E4 exps− ivHtdV̂4 + E4 exps− ivVtdĤ4. s16d

Each of the four beams is sent to a heterodyne detector and
mixed with an independent local oscillator beam of fre-
quency v. The relative phases of the local oscillators are
independent and not stabilized. As shown below, the local
oscillator phases appear as a common factor in the signals
and therefore do not need to be controlled. The polarization
state of each local oscillator beam is chosen to be in one of
the four polarizationsH8, V8, R, andL by using al /2 plate
and al /4 plate independently.

Now, in order to demonstrate that our classical-field sys-
tem can reproduce projection measurements on the GHZ
state of Eq.(6), we choose the four local oscillator beams at
arbitrary polarization angles with unit vectors denoted by
êLOi, where i =1,2,3,4. Theheterodyne beat signal is de-
tected as shown in the detection diagram of Fig. 3. In detec-
tor D1, the amplitude of the heterodyne beat signal obtained
from the interference between local oscillator LO1 and the
field E1 can be written in the parenthesis notation of Ref.
[20],

A1 = sELO1uE1d ; E dxdy ELO1
* sx,y,tdêLO1

* ·E1sx,y,td,

s17d

and similarly for LO2, LO3, and LO4. Here,ELO1sx,y,td
=ELO1sx,ydexps−ivtd is the LO1 field amplitude in the
plane of a photodiode detector andE1 is the vector field
amplitude for beam 1. By using Eq.s13d, the beat signal
amplitudeA1 is then

A1 ~ sêLO1uV̂1dsELO1uE1dexps− idVtd

+ sêLO1uĤ1dsELO1uE1dexps− idHtd, s18d

wheresELO1uE1d denotes the spatial overlap integral of LO1
and the field of beam 1. The beat signal amplitudes in detec-
tors D2, D3, andD4 are similarly given by

FIG. 2. Experimental arrangement for the measurement of the
four-field entangled stateuCcl

4 dGHZ. D1, D2, D3, andD4 are detectors
used to obtain the beat signal amplitudesA1, A2, A3, andA4 respec-
tively, each of which contains two frequencies, 120 and 30 kHz.
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A2 = sELO2uE2d ~ sêLO2uV̂2dsELO2uE2dexps− idVtd + sêLO2uĤ2d

3sELO2uE2dexps− idHtd,

A3 = sELO3uE3d ~ sêLO3uV̂3dsELO3uE3dexps− idHtd + sêLO3uĤ2d

3sELO3uE3dexps− idVtd,

A4 = sELO4uE4d ~ sêLO4uV̂4dsELO4uE4dexps− idHtd + sêLO4uĤ4d

3sELO4uE4dexps− idVtd. s19d

As shown in the detection diagram, Fig. 3, the beat signals
from detectorsD1 and D2 are sent to an analog multiplier
which yields a product signalsA1+A1

*dsA2+A2
*d proportional

to the real part of the amplitudeA1A2+A1
*A2. The beat am-

plitudesA1 andA2 each contain two beat frequenciesdH and
dV, yielding nonzero frequency components in the product
signal: dH±dV, 2dH=60 kHz, and 2dV=240 kHz. Bandpass
filters are used to select the product signals at the sum fre-
quencies 2dH and 2dV. In this case, only one part of the
product amplitude, i.e.,A1A2, contributes to the bandpassed
signal. The corresponding beat signal amplitudes are, respec-
tively,

g60 kHzsA1,A2d ~ sELO1uE1dsELO2uE2dsêLO1uĤ1dsêLO2uĤ2d

s20d

and

g240 kHzsA1,A2d ~ sELO1uE1dsELO2uE2dsêLO1uV̂1dsêLO2uV̂2d.

s21d

The product signals at 60 and at 240 kHz areadded by
using a summing amplifier, yielding a net signal ampli-
tude S12std which contains two contributions, i.e., the

Ĥ1Ĥ2 component at 60 kHz and theV̂1V̂2 component at
240 kHz.

Similarly, the beat signals from detectorsD3 and D4 are
multiplied, band passed at 60 and 240 kHz. In this case, only
the A3A4 amplitude contributes to the sum frequency terms.
The resulting product signal contains components at 60 and
240 kHz given by

g60 kHzsA3,A4d ~ sELO3uE3dsELO4uE4dsêLO3uV̂3dsêLO4uV̂4d

s22d

and

g240 kHzsA3,A4d ~ sELO3uE3dsELO4uE4dsêLO3uĤ3dsêLO4uĤ4d.

s23d

Note that horizontal and vertical polarizations are inter-
changed with respect to Eq.s20d. These product signals are
added using a summing amplifier, yielding a net signal am-

plitude S34std containing two contributions, i.e., theV̂3V̂4

component at 60 kHz and theĤ3Ĥ4 component at
240 kHz.

Now, the summed product signalsS12std and S34std are
multiplied using an analog multiplier and then band pass
filtered at 300 kHz. In this case, the resulting product signal
amplitude at 300 kHz contains two interfering contributions,
which arise from the two ways that a product of the 60 and
240 kHz components can be obtained:

g300 kHzsA1,A2,A3,A4d

~ sELO1uE1dsELO2uE2dsELO3uE3dsELO4uE4d

3fsêLO1uV̂1dsêLO2uV̂2dsêLO3uV̂3dsêLO4uV̂4d

+ sêLO1uĤ1dsêLO2uĤ2dsêLO3uĤ3dsêLO4uĤ4dg. s24d

The magnitude ofsELO1uE1dsELO2uE2dsELO3uE3dsELO4uE4d is a
common factor in each path and it is controlled by a gain
amplifier after each band pass filter. Hence, the product am-
plitude g300 kHz in Eq. s24d can be written as

g300 kHz~ sêLO1usêLO2usêLO3usêLO4uCGHZ
4 dcl, s25d

where theuCGHZ
4 dcl is given by

uCGHZ
4 dcl =

1
Î2

fuH1H2H3H4d + uV1V2V3V4dg. s26d

Here for simplicityĤ andV̂ are denoted asH andV, respec-
tively. The superscript 4 denotes the four-field entangled
state. The detection technique projects out the fourfold coin-
cidence signal from the desired entangled four-particle GHZ
state. The method measures the projected amplitude, which

FIG. 3. Detection scheme for observing GHZ entanglement by
frequency postselection. The analog multiplierss3d, band pass fil-
ters, and summing amplifierss+d enable postprojection of an en-
tangled four-field state onto a four-field product basis.
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can be squared to yield a signal proportional to the fourfold
joint intensity.

Now, in order to demonstrate the polarization correlations
of the classical four-field stateuCGHZ

4 dcl, we reproduce the
correlations for GHZ entanglement by using the three-
particle GHZ state. As in the quantum experiments, we fix
the polarization of LO4, in our case at 45°,

êLO4
45° =

1
Î2

sĤ4 + V̂4d, s27d

so that the beat signalA4 at detectorD4 is equivalent to the
trigger photon in the quantum GHZ experiment. Then,
sêLO4uCGHZ

4 dcl is proportional touH1H2H3d+ uV1V2V3d, that is
to uCGHZ

3 dcl, where the superscript 3 indicates the three-field
state. Thus, in the following sections, the frequency filtered
signal amplitude at 300 kHz can beused to reproduce the
polarization correlations of three-particle GHZ entangle-
ment where the polarizations of LO1, LO2, and LO3 are
in one of the four projections,H8, V8, R, andL.

A. Measurement of theYYX, YXY, and XYY configurations

As a first demonstration of our classical system, we repro-
duce the polarization correlations for theY1Y2X3 configura-
tion for three-particle GHZ entanglement. As noted above,
the LO4 polarization is fixed at 45°, Eq.(27). The possible
polarization states of the local oscillator beams LO1, LO2,
and LO3 are given by

êLO1
R,L =

1
Î2

sĤ1 ± iV̂1d,

êLO2
R,L =

1
Î2

sĤ2 ± iV̂2d, s28d

êLO3
H8,V8 =

1
Î2

sĤ3 ± V̂3d.

For the classical-field state, the measurement of the ele-
ment of realityR1L2H38 in theY1Y2X3 configuration is accom-
plished by setting the polarizations of the LO1, LO2, and

LO3 beams to beêLO1
R , êLO2

L , and êLO3
H8 . Now, from Eq.(25)

the magnitude of the beat signalg300 kHz is

g300 kHzsA1,A2,A3,A4d

~ sêLO1
R ,êLO2

L ,êLO3
H8 ,êLO4

45° uCGHZ
4 dcl

= sêLO1
R uV1dsêLO2

L uV2dsêLO3
H8 uV3dsêLO4

45° uV4d

+ sêLO1
R uH1dsêLO2

L uH2dsêLO3
H8 uH3dsêLO4

45° uH4d

~ sêLO1
R ,êLO2

L ,êLO1
H8 uCGHZ

3 dcl, s29d

where the contribution from the LO4 is a constant factor,
sincesêLO4

45° uV4d=1/Î2 andsêLO4
45° uH4d=1/Î2.

In this case, the magnitude of the signalg300 kHz is pro-
portional to the projectionkR1L2H38 uCGHZ

3 l. This is readily
determined from Eq.(9) and indicates the existence of a
classical signal corresponding to the element of reality
R1L2H38 in the Y1Y2X3 configuration as shown in Fig. 4(a)

where a large signal amplitude is observed. However, when
the LO3 polarization state is changed toV8, this induces a
minus sign in Eq.(29). Hence the magnitude of the signal

g300 kHz for the projectionsêLO1
R ,êLO2

L ,êLO3
V8 uCGHZ

3 dcl is ap-
proximately zero as shown in Fig. 4(b). This signal is pro-
portional to the projectionkR1L2V38 uCGHZ

3 l=0 from Eq. (9)
and so indicates that the elementR1L2V38 in theYYXconfigu-
ration is zero as predicted by GHZ entanglement. Similarly,
the elements of realityR1R2V38, L1R2H38, and L1L2V38 in the
Y1Y2X3 configuration are nonzero as predicted by GHZ en-
tanglement. The elements of reality not predicted by GHZ
entanglement areR1R2H38, L1R2V38, andL1L2H38, respectively.
The corresponding nonzero and zero classical-field state pro-
jections are given by Eq.(9):

sêLO1
R ,êLO2

L ,êLO3
H8 uCGHZ

3 dcl ~ kR1L2H38uCGHZ
3 l =

1

2
,

sêLO1
R ,êLO2

L ,êV8
LO3uCGHZ

3 dcl ~ kR1L2V38uCGHZ
3 l = 0,

sêLO1
L ,êLO2

R ,êLO3
H8 uCGHZ

3 dcl ~ kL1R2H38uCGHZ
3 l =

1

2
,

sêLO1
L ,êLO2

R ,êLO3
V8 uCGHZ

3 dcl ~ kL1R2V38uCGHZ
3 l = 0,

sêLO1
R ,êLO2

R ,êLO3
V8 uCGHZ

3 dcl ~ sR1R2V38uCGHZ
3 l =

1

2
,

sêLO1
R ,êLO2

R ,êLO3
H8 uCGHZ

3 dcl ~ sR1R2H38uCGHZ
3 l = 0,

sêLO1
L ,êLO2

L ,êLO3
V8 uCGHZ

3 dcl ~ kL1L2V38uCGHZ
3 l =

1

2
,

sêLO1
L ,êLO2

L ,êLO3
H8 uCGHZ

3 dcl ~ kL1L2H38uCGHZ
3 l = 0. s30d

As shown in Fig. 4, the amplitude of the signal at 300 kHz,
g300 kHz, has nonzero and zero amplitudes as predicted by
Eq. (30), which are identical to the results for the corre-
sponding quantum state.

The set of eight elements of reality for theYYXconfigu-
ration is a complete set spanning the product basis for the
polarization of the three measured fields, since a complete
two-state basis is provided for each field. Hence, the total
joint intensity at 300 kHz is contained in the eight possible
elements for this configuration. Thus, for each element in
this configuration, the classical joint intensity is normalized
by dividing the absolute square of the signal amplitude
g300 kHzof each element of reality by the sum of the absolute
squares ofg300 kHz for each element. The classical-field mea-
surements then yield the joint probability representation of
theYYXconfiguration which is shown in Fig. 4(i). Note, for
comparison, that the predictions of quantum mechanics
would yield a probability of1/4=0.25 for each large signal
and zero for each small signal, showing that the classical
joint intensities are in good agreement.
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Similarly, the measurements for theYXY and XYY con-
figurations are shown in Figs. 5 and 6, demonstrating that the
classical joint intensities are in agreement with the quantum
predictions as they should be.

B. Measurement of theXXX configuration

Finally, we reproduce the polarization correlations for
measurements for theX1X2X3 configuration of three-particle
GHZ entanglement which contradicts the theory of local re-
alism. The appropriate polarization states of the local oscil-
lator beams LO1, LO2, and LO3 are given by

êLO1
H8,V8 =

1
Î2

sĤ1 ± V̂1d,

êLO2
H8,V8 =

1
Î2

sĤ2 ± V̂2d, s31d

êLO3
H8,V8 =

1
Î2

sĤ3 ± V̂3d.

For the eight combinations of linear polarizations in the
XXX, the expected nonzero and zero classical-field state pro-
jections are given by

sêLO1
H8 ,êLO2

H8 ,êLO3
H8 uCGHZ

3 dcl ~ kH18H28H38uCGHZ
3 l =

1

2
,

sêLO1
V8 ,êLO2

H8 ,êLO3
H8 uCGHZ

3 dcl ~ kV18H28H38uCGHZ
3 l = 0,

sêLO1
V8 ,êLO2

V8 ,êLO3
H8 uCGHZ

3 dcl ~ kV18V28H38uCGHZ
3 l =

1

2
,

sêLO1
H8 ,êLO2

V8 ,êLO3
H8 uCGHZ

3 dcl ~ kH18V28H38uCGHZ
3 l = 0,

sêLO1
H8 ,êLO2

V8 ,êLO3
V8 uCGHZ

3 dcl ~ kH18V28V38uCGHZ
3 l =

1

2
,

sêLO1
V8 ,êLO2

V8 ,êLO3
V8 uCGHZ

3 dcl ~ kV18V28V38uCGHZ
3 l = 0,

sêLO1
V8 ,êLO2

H8 ,êLO3
V8 uCGHZ

3 dcl ~ kV18H28V38uCGHZ
3 l =

1

2
,

sêLO1
H8 ,êLO2

H8 ,êLO3
V8 uCGHZ

3 dcl ~ kH18H28V38uCGHZ
3 l = 0. s32d

For the eight possible measurements in theXXX configura-
tion, the zero and nonzero signal amplitudesg300 kHzfor each
element of reality withX1X2X3= ±1 are shown in Fig. 7. For
the elements of reality withX1X2X3=−1, i.e., H18H28V38,

FIG. 4. Measurement of elements of reality
for the YYXconfiguration using a four-classical-
field entangled state.(a)(c)(e)(g) Components of
physical reality predicted by GHZ entanglement
exhibit nonzero signals at 300 kHz.(b)(d)(f)(h)
Elements of physical reality not predicted by
GHZ entanglement produce nearly zero signal at
300 kHz. (i) The normalized signal squared ob-
tained for these elements agrees with the predic-
tions of quantum mechanics.
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V18V28V38, H18V28H38, andV18H28H38, the signal amplitudeg300 kHz
is zero. For the elements of reality withX1X2X3= +1, i.e.,
V18H28V38, H18V28V38, V18V28H38, andH18H28H38, the signal amplitude
g300 kHz is nonzero. The normalized joint intensity represen-
tation of the classical signals for theXXX configuration is
also shown in Fig. 7(i).

The experimental observations for theX1X2X3 configura-
tion produced by our classical-wave system are in agreement
with the quantum predictions of GHZ entanglement, giving
strong signals only whenX1X2X3= +1. Our experiments for-
mally produce results which contradict the predictions of lo-
cal realism, where strong signals are expected only if
X1X2X3=−1. By reproducing the 32 elements of the truth
table, we have demonstrated that the entangled four-
classical-field state exhibits the same polarization correla-
tions as in the quantum system. Since particle properties are
not required for reproducing the correlations, this result is a
consequence of reproducing all of the superposition and in-
terference properties of the corresponding quantum state.

VI. ENTANGLEMENT SWAPPING

The classical-field scheme is readily modified to demon-
strate a form of entanglement swapping[25]. In our experi-

ments, all four beams are not entangled prior to joint hetero-
dyne detection and frequency selection. Hence, the input
state effectively corresponds to noninteracting particles. We
can arrange for an observer A to make a type of Bell state
measurement on beams 1 and 2. Observer A transmits a clas-
sical signal to another observer B who measures polarization
correlations for beams 3 and 4. By multiplying the classical
signal from observer A by his signal and band pass filtering
at 300 kHz, observer B observes correlations corresponding
to the Bell state selected by observer A. This method works
by a form of generalized two-frequency phase-sensitive de-
tection and reproduces the correlations present inuCGHZ

4 dcl as
described below.

In this method, seen in Fig. 8, the symmetrical detection
diagram of Fig. 3 is used for beams 1 and 2, measured by
observer A and for beams 3 and 4, measured by observer B.
Observer A multiplies the signals from a pair of detectors 1
and 2, band passes the product signal at 60 and 240 kHz and
then sums. Defining horizontalsHd and vertical sVd field
components, this yields from beams 1 and 2 a signal ampli-
tude S12std~ sêLO1êLO2uF+stdd12, where uF+stdd12 is a time-
dependent Bell state, uF+stdd12=fuH1H2dexps2idHtd
+ uV1V2dexps2idVtdg /Î2, with 2dH=2p360 kHz, and 2dV

FIG. 5. Measurement of elements of reality
for the YXYconfiguration using a four-classical-
field entangled state.(a),(c),(e),(g) Components
of physical reality predicted by GHZ entangle-
ment exhibit nonzero signals at 300 kHz.
(b),(d),(f),(h) Elements of physical reality not
predicted by GHZ entanglement produce nearly
zero signal at 300 kHz.(i) The normalized signal
squared obtained for these elements agrees with
the predictions of quantum mechanics.
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=2p3240 kHz. Observer B does the same for beams 3 and
4, where the horizontal and vertical components are inter-
changed with respect to beams 1 and 2, yielding a signal
amplitude S34std~ sêLO3êLO4uF+stdd34, where uF+stdd34

=fuV3V4dexps2idHtd+ uH3H4dexps2idVtdg /Î2. Multiplying the
signals corresponding toS12 andS34 together in a third ana-
log multiplier and bandpassing at 300 kHz yields two inter-
fering contributions proportional to the inner products of the
four LO polarizations with uCGHZ

4 dcl=fuH1H2H3H4d
+ uV1V2V3V4dg /Î2 as before.

In order to demonstrate classical-field entanglement swap-
ping, we imagine that observer A sets his local oscillator
polarizations at 45°, and measuresS12std. Observer A sends
his signal to observer B who measuresS34std for arbitrary
LO3 and LO4 polarizations. Observer B multiplies his signal
by the signal sent from observer A and band passes the prod-
uct signal at 300 kHz. As described above, the signal at
300 kHz is proportional to the inner product of the four LO
polarizations withuCGHZ

4 dcl. Since observer A has fixed LO
polarizations at 45°, observer B measures polarization corre-
lations characteristic of the time-independent Bell state
uF+d34=fuH3H4d+ uV3V4dg /Î2. If observer A sets his LO1 po-
larization at 45° and his LO2 polarization at −45°, then ob-

server B measures polarization correlations corresponding to
the Bell stateuF−d34=fuH3H4d− uV3V4dg /Î2. As in the quan-
tum case, only certain Bell states can be swapped[25]. It is
necessary to change the experimental set up to swap other
Bell states, such asfuH3V4d± uV3H4dg /Î2.

In our experiments, with the polarizations of observer A
set to 45°, 45°, respectively, we find that observer B obtains
a nonzero signal at 300 kHz when his polarizers are set to
45°, 45°, and a zero signal when his polarizers are set to 45°,
−45°, respectively, as shown in Fig. 9. This corresponds to
measurement of the Bell stateuF+d34 for observer B as it
should. This result shows that observer A can generate a
classical signal which controls the entangled state which will
be observed by B.

VII. DISCUSSION

In this paper, we have shown that multiplication of signals
obtained by heterodyne detection of classical fields can be
used to measure classical-field correlations, which corre-
spond to entangled states. The squared magnitude of the
product signal is the joint intensity in the classical experi-
ments. Entangled states are selected by postprojection using

FIG. 6. Measurement of elements of reality
for the XYY configuration using a four-classical
field entangled state.(a),(c),(e),(g) Components
of physical reality predicted by GHZ entangle-
ment exhibit nonzero signals at 300 kHz.
(b),(d),(f),(h) Elements of physical reality not
predicted by GHZ entanglement produce nearly
zero signal at 300 kHz.(i) The normalized signal
squared obtained for these elements agrees with
the predictions of quantum mechanics.
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frequency domain band pass methods, rather than time do-
main coincidence detection as in photon counting experi-
ments. Classical postselection is implemented after combin-
ing heterodyne detection signals from spatially separated
observers. This is different from the quantum case where the
postselection technique can be implemented by any of the
independent observers. Our postselection is only possible af-
ter the independent observers combine their data and then
select the desired frequency components. This biased statis-
tical analysis permits classical fields or photons from inde-
pendent sources to exhibit nonclassical correlations.

In our experiments, the nonlocal correlations of a four-
particle entangled state are reproduced by using a simple
scheme employing heterodyne detection of four classical
fields, yielding large robust signals which are independent of
the phases of the local oscillators. The correlations for the
classically entangled four-field state are demonstrated by for-
mally reproducing the 32 elements of the truth table obtained
in a three-particle quantum GHZ experiment on the violation
of local realism.

We have given a simple argument to show that intensity
correlations in low count rate quantum experiments can be

considered to arise from correlated fields. The correlated
field fluctuations can be directly measured by multiplying
balanced homodyne detection signals. The squared magni-
tude of this correlated field signal reproduces the joint prob-
abilities obtained in the corresponding intensity correlation
experiments and is closely related to the classical joint inten-
sity measured in our classical-field experiments.

The classical-field experiments differ from their photon
counting quantum counterparts in that they fail to exhibit the
wave-particle duality of the quantum experiments: Only the
interference features are reproduced. However, since the
classical-field state is directly measured, the classical experi-
ments are similar to quantum experiments, which use homo-
dyne detection methods[16–18].

The ability to generate entangled states of many particles
is essential to the development of quantum information pro-
cessing methods. Generation of such states can be very chal-
lenging in real quantum systems, where loss and decoher-
ence easily destroy the state and coincidence count rates tend
to be low when the number of particles is large. The produc-
tion of a classically entangled four-field state may serve as a
first step in developing classical-wave methods to simulate a

FIG. 7. Demonstrating violation of local real-
ism theory by measurement of elements of reality
for the XXX configuration using a four-classical-
field state.(a),(c),(e),(g) Elements of physical re-
ality predicted by GHZ entanglement exhibit
nonzero signals at 300 kHz.(b),(d),(f),(h) Ele-
ments of physical reality not predicted by GHZ
entanglement produce nearly zero signal at
300 kHz. (i) The normalized signal squared ob-
tained for these elements agrees with the predic-
tions of quantum mechanics producing strong
signals only whenXXX=1, i.e., forV18H28V38, etc.
This is in contradiction with local realism which
predicts strong signals only whenXXX=−1, i.e.,
for H18 ,H28V38, etc.
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quantum network. The demonstration of a classical form of
entanglement swapping in the four-field basis is already a
type of information processing, as it enables the correlation
measurements of one observer to determine the correlation
measurements for another observer. Scaling in the classical-
field method is a concern[1]. However, producing the maxi-
mally entangled state of 2N particles never requires more
than two input frequencies and two band-pass filters, as in
the present experiments.

We note that to measure correlations between separated
beams, the classical scheme employs four independent, spa-
tially separated LO beams. In principle, the signal from each
heterodyne detector can be recorded and correlated at a later
time. This is possible since the relative phases of all of the
pairs of superposed fields are preserved in propagation to the
detectors. The signals can then be analyzed numerically, us-
ing multiplication and appropriate frequency selection. For
this scheme to work, it is necessary that the four observers
synchronize their time origins with a precision small com-
pared to the inverse of the frequency differences employed in
the experiments. This can be accomplished with a light pulse
from the source region to all observers. In the quantum ex-
periments, the observers must be sure to measure correlated
photons produced in the same event. For low count rates, this
is readily assured: if the experiment produces only one rep-
etition per hour, it is easy for the observers to synchronize
the measurement timing. Of course, an important goal of
current quantum experiments is to achieve very high repeti-

tion rates. As the rate increases, the observers must choose
time origins which are consistent within the inverse of the
production rate of correlated photons.

The classical-field correlation experiments exhibit many
features which are in common their quantum counterparts.
The unitary evolution of a pure quantum state and the evo-
lution of the classical field are both deterministic, although
the quantum measurements are not. The calculation of the
projections of the classically entangled field states is identi-
cal to that of the quantum counterpart, reproducing the mul-
tiparticle interferences and the corresponding polarization
correlations. Except for the nonlinear elements in the quan-
tum sources, both systems employ nearly identical linear op-
tical networks for combining beams and for detection. The
number of analog multipliers used in the classical correlation
measurements is identical to the number of multiplications
required in the corresponding quantum coincidence measure-
ments. Quantum correlation experiments often employ post-
projection based on coincidence counting[3]. In our classical
scheme, postprojection is accomplished by a frequency fil-
tering method that enables selection of the desired compo-
nents of the multiparticle wavefunction, although this occurs
after combining the data of the multiple observers. As in the
quantum experiments, the implementation of four-particle
entanglement is easier than for three-particles: To directly
simulate a three particle entangled state, three frequencies
are required. By contrast, only two frequencies and three
beamsplitters are required to generate an output that simu-
lates four-particle entanglement, because the polarizations
can be interchanged in pairs. This is similar to the use of two

FIG. 8. Symmetrical detection scheme for demonstrating
classical-field entanglement swapping in the four-field basis. The
signal measured by observer A is sent to observer B, who multiplies
this signal by his own to obtain a net signal at 300 kHz. Observer B
then measures correlations determined by the Bell state chosen by
observer A.

FIG. 9. Demonstration of entanglement swapping. Observer A
sets his LO 1 and 2 polarizations at 45° and 45°, respectively, to
select the Bell stateufcl

+ d12. Observer B’s signals are then propor-
tional to the projections of the corresponding Bell stateufcl

+ d34 onto
the polarizations of LO’s 3 and 4.(a) Observer B sets his LO 3 and
4 polarizations at 45° and 45°, respectively, yielding a nonzero
signal at 300 kHz.(b) Observer B sets his LO 3 and 4 polarizations
at 45° and −45°, respectively, yielding a zero signal at 300 kHz.
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pairs of parametric down converters in the corresponding
quantum mechanical experiments. As in the classical experi-
ments, it is easier to demonstrate three-particle quantum
GHZ entanglement starting from a four-particle entangled
state by using the fourth photon as a trigger. In demonstrat
ing a form of entanglement swapping, we find a limitation in
the basis of Bell states that can be swapped without changing

the experimental configuration. This is similar to the limita-
tion encountered in the quantum experiments[25].
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