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Entanglement with classical fields
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We experimentally demonstrate a simple classical-field optical heterodyne method which employs postse-
lection to reproduce the polarization correlations of a four-particle entangled state. We give a heuristic argu-
ment relating this method to the measurement of multiple quantum fields by correlated homodyne detection.
We suggest that using multiple classical fields and postselection, one can reproduce the polarization correla-
tions obtained in quantum experiments which employ multiple single-photon sources and linear optics to
prepare multiparticle entangled states. Our experimental scheme produces four spatially separated beams which
are separately detected by mixing with four independent optical local oscill&tOnsof variable polarization.

Analog multiplication of the four beat signals enables projection onto a four-particle polarization-state basis.
Appropriate band pass filtering is used to produce a signal proportional to the projections of the maximally
entangled four-field polarization stafel,)|H,) |Hs) [Ha) +[V1) | V2) | V3) | Va), onto the product of the four LO
polarizations. Since the data from multiple observers is combined prior to postselection, this method does not
constitute a test of nonlocality. However, we reproduce the polarization correlations of the 32 elements in the
truth table from the quantum mechanical Greenberger-Horne-Zeilinger experiments on the violation of local
realism. We also demonstrate a form of classical entanglement swapping in a four-particle basis.
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I. INTRODUCTION mode&(x) is the same as the mode function, i.e., the wave
function is (0|&(x)|1)=&(x), where £ is the positive fre-
Currently, there is great interest in understanding Whahuency part of the field operator.
constitutes truly quantum mechanical behavior. This question Using photons from independent sources and linear optics
is of particular significance in the areas of quantum compuf10-12, postselection techniques have been used to demon-
tation, quantum teleportation, and quantum cryptographystrate violations of Bell's inequalities and also to implement
where superposition and entanglement play a central roleguantum logic gates such as a controlienlr gate. Further, it
One way to explore this question is to study the differencedias been suggested that the violation of Bell's inequality for
and similarities between measurements made on quantugontinuous variables can be accomplished using macroscopic
and classical-wave systenis]. The purpose of the present light fields[13]. Since the mode functiofi(x) is the same as
paper is to present one such study, a demonstration of thtae transverse mode of a classical field, these ideas suggest
entanglement of four classical fields. that classical fields and linear optics can be used to create
Superposition and interference are common to both quarentangled states of multiple classical fields by postselection.
tum wave functions and classical waves. As a consequendadeed, it has been pointed out that postselection techniques
of interference in a single-particle quantum system, theallow violation of Bell's inequality even with classical cor-
Wigner phase space function can be negative, as in a quarelations[14]. Our paper is a direct demonstration of this
tum superposition of stategSchrodinger cat stateUsing a  idea.
two-window heterodyne detection method, we have demon- Study of entanglement with classical fields may offer use-
strated that the transverse mode of a classical field with twéul alternatives to entanglement obtained by using photons
mutually coherent spatially separated lobes also has a Wignéom independent sources to implement quantum informa-
phase-space function with a negative regjgh tion processing and provides new insights into the funda-
A central feature of superposition and interference in mul-mental features of quantum measurement and entanglement.
tiparticle quantum systems is the concept of entanglemenQur classical experiments employ heterodyne detection to
which describes correlations between the measured propemeasure field correlations and postselection by frequency fil-
ties of different particles, such as their momenta or polarizatering after the data from multiple observers is combined.
tions[3,4]. The concept of entanglement and a general defi- Our heterodyne method is similar to the homodyne tech-
nition of its measure are currently being explofégl nigues which have been used previously to measure the non-
In practice, it is difficult to prepare entangled many- local correlations in a two-particle quantum entangled sys-
particle quantum states. One proposed simplifying methodem, and to demonstrate a violation of Bell's inequalities. In
employs single-photon sources and linear optics to overcomghe experiment by Oet al. of Ref. [15], strong local oscil-
this problem[6,7]. As a further simplification, weak-coherent lator fields are used for homodyne detection of correlated
sources and phase modulation are already being employed photon pairs, where correlations between the two detected
implement quantum key distribution employing the BB84 quadrature field amplitude fluctuations are measured. By
protocol [8,9]. The classical-field methods exploit the fact contrast, other experimenfd6-18 employ weak local os-
that the wave function of a single photon in a given spatiakillator fields, which are used to measure the phase differ-
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ences between correlated photon pairs and the local oscillateoincidence detectigrnto postproject the desired entangled
fields. For weak local oscillator fields, photon counting ispart of the four-field state. Since the method combines the
employed for the measurements. In homodyne experimengata from several observers before postselection, it cannot be
with either weak or strong local oscillator fields, pairs of used to test nonlocality. However, the method does yield a
single-mode correlated fields or two-field correlations are designal proportional to the inner product of a chosen multipar-
tected via the measured intensity correlations. ticle entangled state onto the product basis of the multiple

Recently, we have demonstrated a classical-wave methdéeld polarization states. The square of the signal amplitude
for reproducing the correlations of a two-particle entangledso obtained is proportional to the joint probability for the
state using independent heterodyne measurements on sg&/responding quantum experiment.
tially separated beams followed by postselect[ds]. In Briefly, to produce a four-field entangled state, we employ
those experiments, polarization correlations are obtained b@n optical beam of frequency,=w+27 X120 kHz with
tween two spatially separated classical fields. It is shown thatertical polarization and an optical beam of frequengy
Bell's inequalities are formally violated since the interfer- =w+2mx 30 kHz with horizontal polarization, which are
ences of a two-particle entangled quantum state are repr@ombined through a 50/50 beamsplitter. Two additional
duced. The method combines the data from the two obsenpeamsplitters, placed at the outputs of the first, produce four
ers by analog multiplication and then uses postselection b§patially separated superposition beams. Two of these beams
frequency filtering to measure the desired part of the interare rotated in polarization using a half-wave plate at a 45°
ference signal. Since the data from the two observers is conngle to interchange the horizontal and vertical components.
bined before postselection, this method does not constitute Bhe four output beams are sent to four spatially separated
test of quantum nonlocality. However, the classical correlameasurement systems, each of which employs heterodyne
tions so obtained reproduce those of the corresponding quafetection with an independent LO of frequeneyand at
tum experiments. arbitrary polarization angle. The heterodyne signal at each

A classical-wave method for reproducing the correlationsdetector then contains two frequency components, at 30 and
of a three-photon Greenberger-Horne-Zeiling&Hz) ex- 120 kHz. Correlated field detection is accomplished by using
periment has been suggested theoretiddllyThe suggested three analog multipliers to produce a four-field product sig-
experiment reproduces the correlations that formally violaté'al. The number of multipliers is equal to the number of
local realism. However, the proposed method has the prog=oincidence detectors required in a quantum experiment.
erty that the measurements made by the three observers cd#and pass filtering after each multiplier is used to select the
not be spatially separated, since the interferences occur in t@mponents of the desired state, yielding an overall signal at
position-polarization entangled state of a single field. Hence300 kHz that contains two indistinguishable, interfering con-
nonlocal correlations cannot be demonstrated. Furthermord&ibutions, proportional to the projections of the four-field
although such experiments can in principle be implementedstate [Hy) [Ha)[Hz) [Ha) +[V1)[V2) [V5|V,) onto the product
as noted in Ref[1], they have not been done. of the four LO polarizations.

In this paper, we demonstrate a simple classical-wave ex- \We begin by giving a heuristic argument in Sec. Il which
periment which employs postselection to reproduce the potelates our classical-field heterodyne method to the corre-
larization correlations of three- and four-particle entangledated homodyne detection of multiple fields in quantum ex-
states. In contrast to the schemes suggested in[Refour ~ periments and to the measurement of the corresponding
technique does not require phase Stab|||ty of interferingquantum intensity correlations. In Sec. lll, we describe our
beams. In our work, four spatially separated classical beam@yevious experiments which reproduce the polarization cor-
1-4, each containing two orthogonally polarized fields withrelations obtained in the coincidence detection of entangled
different frequencies, are used to measure the four-field pdwo-particle stateg19]. In later sections, this technique is
larization  entangled  state [Wg)=[|H;)|H,)|H3)|H,) extended to reproduce the correlations obtained in fourfold
+|V1)|V2)|V3)|V4)]/\f§, where we use the parenthesis nota_coi_ncidence detec_tion. _To demonstrate the correlation prop-
tion of Spreeuw to denote the classical polarization stat€rties of the glassmal—ﬁeld state, measurements are made in
[20]. The classically correlated state is directly measured byhe same basis as employed for the GHZ test of local realism.
heterodyne detection with four independent local oscillatofOr this reason, in Sec. IV, we briefly review the quantum
(LO) beams of arbitrary polarizations, using a scheme whicfiest of local realism for three-particle GHZ entanglement
is independent of the LO phases to obtain stable signals. B}21,22. In Sec. V, we demonstrate that the classical-field
fixing the polarization of the fourth LO beam at 45°, our €Xperiments reproduce the 32 elements of the t_ruth table ob-
classical system reproduces the correlations obtained for f@ined in quantum experiments on a three-particle GHZ en-
three-particle GHZ entanglemejtl,22. To demonstrate the tangled state, whlch contradicts local realls.m. As an applica-
correlation properties of the classical field GHZ state, welion of our four-field entangled state, we briefly demonstrate
reproduce the 32 elements of the truth table which is used i@ classical version of entanglement swapping in Sec. VI.
the quantum experiments to demonstrate violation of local
realism. _ Il. QUANTUM INTENSITY CORRELATIONS AS A

The_ central fegture of our sch_eme is the use of_ heterodyne CONSEQUENCE OF CORRELATED FIELDS
detection of multiple classical fields. The detection system
employs analog multiplication of the signals from several Homodyne detection of quantum correlated optical beams
observers and subsequent frequency selectiostead of has previously been explored as a means of demonstrating
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a;n(a4y) is the annihilation operator for a horizontallyer-

Al, tically) polarized photon in beam 1. Similarly, for polarizer
2, EZZCOS 62 a2H+Sin 02 ayy.

For intensity correlationphoton coincidengemeasure-
ment, one measures the operdtby, Wherel1,2:>c<€"{’2 &1 1N
Filter | » this case, neither the vacuum state nor the states with both
photons in one beam contribute to the coincidence probabil-
ity. The coincidence intensity measurement postprojects out
the desired part of the quantum state and the relative prob-
ability of coincidence igW|l,1,|¥)=(e/2)? sir?(6,- 6,). The

<Al AlL,>

0 probability for detecting a photon in either beam is the same
E, (1) T BS as the probability of pair production, and iV|l,|W¥)
—> =(V|l,|¥)=¢€%/2. The corresponding probability of coinci-

dence is thefW |1 ,1,|W)/(W|l,|W)=sir?(6,— 61)/2.
E As noted above, to guarantee that only two photons are
prepared and detected in each measurement, the production
and the detection rate of pairs is low aetf<1. Hence, the
tions in the quantum fieldE,(t) are measured by mixing with a quantum state of Eq1) is mostly the VaCl_Jum State. Ne‘.’er'
strong classical local oscillatgtO) field E, 5(t) using a balanced theless’ t_he vacuum Sta,t? plays 'nc') role in the cglculgtlon of
detection scheme. Using an independent LO field, fluctuations i{"€ coincidence probability and it is usually omitted in de-

the fieldE,(t) are measured. The product of the fluctuating currentsSCribing the state. _
Al; and Al yields the correlation between the fluctuations in the —However, the vacuum state leads to correlated field fluc-

quantum fields 1 and 2. tuations. SinceW|&, J¥)=0, the mean fields are zero, al-
though the corresponding intensities are nonzero. Hence, the
fields can be considered to fluctuate. The field fluctuations

the violation of Bell's inequaltief16—-1§. In this section, we are correlated sinceV|€,€,[W) =€ sin(6,~61)/2# 0. Hence,

give a heuristic argument to show that the correlated detedh® nonlocal intensity correlations measured by the two de-

tion of photons in two separated beams can be interpreted 4gCtors can be considered to arise from correlations in the

arising from correlated fluctuations in their respective fieldfield fluctuations. A field fluctuation in one detector is polar-

operators which are directly measurable via homodyne ddzation correlated Wlth a field fluctuation in the other. _

tection as shown in Fig. 1. The fields are correlated at the When the mean fields are nonzero, one can consider a

source and propagate causally to the separated observefdgasurement of a fluctuation in one detect.orto determine the

This concept of correlated field fluctuations shows how thd€lative phase between the field fluctuation and the mean

correlations measured in quantum intensity correlation exfield in that detector. Since the mean fields and the field

periments can be reproduced by measuring the product (glfuctl_Jatlons are correl_ated at the source, this n_ecessarlly_ de-

homodyne or heterodyne detection signals, which measurtérm'”e_s the correlation between the mean field gnd field

the field. fluctuation in the other detector. These field correlations are
Typical two-photon sources are based on parametri@u“t in at the source and propagate pausally to the two ob-

downconversion. In the Mandel-Ou experimef8§ a type  Servers according to Maxwell's equations. .

Il downconverter produces a pair of orthogonally polarized AN important property of multiparticle states which take

photons which are combined on a beam splitter. We assumi@® form of Eq.(1) is that

that for each pump pulse, the probabiljg)? of creating the

two-photon state is small so that photon pile up is avoided.

Following the pump pulse, the quantum state of the fields in (W11 W) = (W] £, W) 2. (2

output ports 1 and 2 of the beam splitter then can be written

as

FIG. 1. Correlated homodyne detection of two fields. Fluctua-

Equation(2) shows that the same correlations obtained by
) = [vad + f[(|H1V2>—|V1H2>) +([HyVy) = [HoV))]. joint intensity measurement can be obtained by correlated
2 field measurement. In principle, this can be accomplished by
(1) homodyne detection of each field as used previously to mea-
sure the Wigner function for a single mode fi¢RB]. In this
Here, the first term is the vacuum state with no photonsase, Fig. 1, a balanced detection system 1 would measure a
present, while the two-photon state contains states for thsignal proportional to/; =&, 5, £1+H.c., where the LO field
orthogonally polarized photons to be split between the twds a strong classical field, and similarly for balanced de-
beams or to both go into one beam or the other. tector 2. Multiplication of the homodyne signals for two
In the experiments, polarizers are placed in each bearbalanced detectors, squaring, and averaging over the clas-
and oriented at angleg; and 6,, respectively. The field op- sical phases of the local oscillator fields yields a result
erator after polarizer 1 i§;=cos 6, a;y+sin 6, a;y, where  proportional to the right-hand side of E(R).

052311-3



K. F. LEE AND J. E. THOMAS PHYSICAL REVIEW AG69, 052311(2004)

Equation(2) explains why the measurement of correlatedanalog multiplier is used to obtain the product of the beat
classical fields can reproduce quantum correlation measursignals from each detector, producing a net signal amplitude
ments. As demonstrated below, we use a product of signakhat is proportional to the projection of a factorized input
from multiple heterodyne detectors to obtain a signal proporfield state|1)|2) onto the two-field polarization staté) | 6,)
tional to the product of the classical-field amplitudes. Withof the LO’s. A band pass filter at the frequengy+ &, is then
appropriate band pass filtering, we postproject only that pamised to postproject a signal containing two interfering con-
of the signal proportional to the entangled state of interesttributions, which is proportional to the inner product of
By defining the joint intensity to be proportional to the |z//g|):[\Hl)|V2)—|Vl)|Hz)]/\@ onto the LO polarization
square of the product of the heterodyne signals, according tetate|6,)6,). The square of the amplitude of this signal is
Eq. (2), one obtains polarization correlations in agreemenproportional to the joint probability of Eq5). The present

with the quantum resultgL9]. paper extends this method to produce four-field entangle-
ment, reproducing the truth table for the GHZ test of local
IIl. TWO-PARTICLE ENTANGLEMENT realism.

In guantum optics, coincidence detection yields the joint
probability of an event and also acts as a projection measure- v CORRELATIONS IN GHZ ENTANGLEMENT
ment on the desired quantum state in a multiparticle system,
eliminating for example, the vacuum state as described |n our experiments, we produce a classical four-field en-
above. In a two-photon system described in abbreviated fornangled state. To demonstrate that the classical state produces

by an entangled state the same polarization correlations as the true quantum state,
B - it is convenient to use the same methods and the same basis
|7) = (IHV) = [ViH )2, states as in the GHZ test of local realism theory.

We begin by reviewing the essential features of the GHZ
st of local realism theory that is based on a quantum me-
‘chanical three-particle entangled stf2d,22. The prepara-
ciinon of entangled states of three or more particles is experi-
entally challenging. In the experiment of three-particle
ntanglement demonstrated by Zeilinger’s grd@g], two
Bairs of polarization entangled photons are transformed into
three entangled photons and a fourth independent photon.
The fourfold coincidence detection of these four photons
provides a projection measurement onto the desired GHZ

these two photons are produced by parametric downconve{é
sion. They are orthogonally polarized signal and idler pho
tons, which are combined with a beamsplitf8f. The out-
puts of the beamsplitter provide two spatially separate
beams, beams 1 and 2 which propagate to two analyzeré
Beam 1 propagates to an analyzing linear polarizer at al
angle 6;, with respect to the horizontal axis. The analyzer
projects out the polarization component

0= coslHy * sin Vs © state 1=/ (H)HV+HVDVIHDIH.  The
Similarly, beam 2 propagates to analyzer 2 which projectdourth photon|H,) is a trigger photon and the remaining
out the polarization component three entangled photons are used to observe the GHZ en-
tanglement. The fourth photon is always horizontally polar-
|65) = cOs B,|H,) + sin 6,|V,). (4)  ized and hence can be neglected in determining the states of

the remaining three photons. By rotating the third-photon
Now, by detecting these two photons in coincidence, we obpolarization state so that the horizontal and vertical compo-
tain the joint probabilityP(6,, 6,) for the detection of one nents are interchanged, i.&/;3<H;, any measurement on
photon of polarizatiord; and one photon of polarizatiof,  the first three particles in the std#) can be regarded as a

as measurement on the three-particle GHZ entangled state,
NP
P61, 82) = [0y, 6]y )|* = ésmz(al = 6y). (5) . 1
Wan2 = TE(|H1>|H2>|H3> +[Vp)|V2)|V3)). (6)
\

From Eg.(5), coincidence detection projects the entangled
state|") onto the product stat@;)|6,).

These joint detection probabilities can be reproduced byHere the superscript 3 indicates a three-photon state. The
using two classical field§l9]. In the classical-field experi- GHZ arguments about physical reality are based on the mea-
ments, frequency selection rather than time domain coincisurements of polarization correlations on three particles in
dence is used to postproject the desired part of the multipathis GHZ state. The measurements of polarization correla-
ticle quantum state. Two optical beams with fie|tls |2) are  tions between the three particles leads to a conflict with local
each generated by combining on a beamsplitter a field ofealism for nonstatistical predictions of quantum mechanics
frequencyw+ 84 with horizontal polarization and a field of [21,22. That is in contrast to the two entangled particles test
frequencyw+ &, with vertical polarization. Fieldfl) and|2)  of Bell's inequalities, where the conflict arises for statistical
are each measured by heterodyne detection using a L@redictions of quantum mechanics.
of frequency o with variable polarization, yielding two We can demonstrate the GHZ argumégt,22 for a
beat signals each containing two frequencigsand ,. An  three-particle test of local realism as follows: A photois
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said to possess an element of reakiywith the value +1 or 1

-1 when its linear polarization statekf or V', respectively, Hp) = T§(|R1> +[Lp),
whereH’ andV’ are at angles 45° and —45° with respect to v

the original vertical directiolv. Similarly, a photon is said to

possess an element of realitywith value +1 or -1 when its 1

polarization state is right hande, or left handedL, re- V) = —=(Rp = [Lp),
spectively. The polarization states corresponding to these el- V2

ements of reality are given by

1
|H,>:%(|H>+|V>), |H2>_E(|R2>+|L2>)y
v ®)
1
1 |V2>:3(|R2>‘||—2>).
'V'>:E('H>_ V), N

(7)

1 ! !
|R>:T1§(|H>+i|v>), |H3>_E(|H3>+|V3>).

1
1 - N _ I\
L) = EGH) —ilvy), Va) \5(|H3> IV3)).

Now, by using the Eq8) for three photons in the GHZ state,
|¥2,,,) of Eq.(6) can be rewritten in the basis for theY X
%‘onfiguration as

where theH(V) is the horizontalvertical) polarization state
of the photon.

One can define elements of reality for joint measuremen
of three particles as the product of the elements of reality for 1
each particle. For example, a measureméni,X; on the 3 - = / ' ' /
GHZ state means that the first and secondfgaoions are eat':EIGHﬁYYX 2(|R1L2H3> +ILaRH) +[RiRVS) + Ll V).
projected onto the polarization stdf or |L), and the third (9)
photon is projected onto the polarization stité) or [V').
Since each of the photons has two orthogonal polarization

in the chosen basis, there is a complete set’ef®orthogo- element of realityY,Y,Xs with a product value of —1. Note

nal three-p.hoton prqduct state_s in this measurem_ent. Thefﬁat theR;L,H;=-1 means that if the photon 1ispolarized
are also eight possible combinations for measuring enhegmd photon 2 is alsk polarized, then, the photon 3 must be

circular Y or linear X polarization on three particles, and |, polarized. The existence of the componéRY|L,)|H2)
eight possible three-photon states for each combination. Iand not of- its complementary componehR1>|L22>|V§>
3

:22 fglﬁ;v”s]?étzveofcoé]qs_l(%?r ;%L:;é?;pszZI(sm?(i;l::(est?‘tds forcan also g)e verified by direct projeé:tion on the GHz
' ' ' state  |V2,n, ie., (Rf(L(HiPE »=1/2 and

X, Y,Ys, and X, XoXs. "GHZ . 3l* Gz

In order to determine which elements of reality for three—<R1|<L2|<V_3|‘PGHZ>__0' Thus, in the measurement,Y,Xs,
photon coincidences are also realizations predicted by quafeur Of eight possible components of three-photon product
tum mechanics, we conduct measurements on polarizatiopfal€S are nonzero for the GHZ state. By using the same
correlations of three photons in the GHZ state. Suppose nofrocedure as discussed above for #éXconfiguration, the
that certain measurements WfY,Xs, Y1X,Ys, and X,Y,Y, ~ CfZ staté can be written to display tWeXY, XYY, andXXX
are predicted to be nonzero for the GHZ state. Then for afonfigurations of reality by using the appropriate basis,

X1X,X3 experiment, the expectations using a local realistic
theory are exactly the opposite of the expectations usin
quantum physics, as we now show, following the argument
of Refs.[21,22.

To see why, let's demonstrate the argument with an
example for the measurement combinatiéy¥,X; on the
GHZ state. We write Eq(6) in a form which directly shows 1
the possible outcomes for,Y,X; measurements. For the |Yanxvy= §(|H1L2R3>+|V1R2R3>+|H1R2|—3>+|V1|-2|-3>),
three photons, the polarization®;), |L1), |Ry), |L2), [H3),

®ne can see that each three-particle state of(8ghas an

1 ! ! ! !
Ve Dvxy= §(|L1H2R3> +|RyV3Rg) + [RyH3Lg) + L4 ViLa)),

(10)

and|V3) are obtained from Eq7). Then, the statef#;) and (11
[Vi), wherei=1,2,3, can bewritten in the measurement
basis as and
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A Ay and beam 3, which propagates to detector 3. Similarly, beam-
splitter BS3 produces two copies of the transverse mode of
the other output field of BS1: beam 2 propagates to detector
1Dy [1DP4 2 and beam 4 propagates to detector 4. Half-wave plates
4 ' oriented at 0° in beams 1 and 2 shift the phase of the hori-
zontal field relative to that of the vertical. This cancels the

E E

ﬂ;/ LO}{W 180° relative phase shifts arising from BS1. The total fields
E; andE, in beams 1 and 2, respectivel th i b

BS6 1 2 ) p y, are then given oy

A2 plate 45°
—

[—

D2
A, H: NBSS ” N BS3
E T\ NZplateO"\ E,=&, exp(—i t)\? + & exp(—i t)I:| (14)
Loz M2plate0°  poy a2 vIveT e o

El = 51 eX[I(— |(l)vt)\’\/1 + 51 eX[i— i(UHt)ﬁl, (13)

Ev(120 kHz) . . )
Az Eﬂ: N\Bs4_1 \=|: \d—v Half-wave plates oriented at 45° ipeams 3 and 4 inter-
D, I\ mg]m B2 change the horizontal and vertical components. The opti-
pl, 4 Ex(30 kHz) cal fieldsE; andE, are given by

FIG. 2. Experimental arrangement for the measurement of the Ba=E3 exp-iantlVa+ & exl-iavHs, (19
four-field entangled staddf‘cll)GHz. D4, D,, D3, andD, are detectors
used to obtain the beat signal amplitudgsA,, A, andA, respec- E, =&, exp—- int)\A/4 + &, exp(- iwvt)|:|4_ (16)
tively, each of which contains two frequencies, 120 and 30 kHz.
Each of the four beams is sent to a heterodyne detector and
mixed with an independent local oscillator beam of fre-

1

[P xxx= = ((HIHAHS) + [VIVAHLY + [H VA5 quency w. The relative phases of the local oscillators are
2 independent and not stabilized. As shown below, the local
+|VIHAVY)). (12) oscillator phases appear as a common factor in the signals

. ] ] and therefore do not need to be controlled. The polarization
As in Eq. (9) for the Y'Y X configuration, each element of state of each local oscillator beam is chosen to be in one of
reality for the three photons in the configuratioig,Ys of  the four polarizationsi’, V', R, andL by using ax/2 plate
Eq.(10) andY,X,Y3 of Eq. (11) has the product value of =1. anq ax/4 plate independently.

Now, according to the local realism theory, sin¢gi= Now, in order to demonstrate that our classical-field sys-
[(XY2Y3)(Y1XaY3)(Y1Y2X3)]= X1 XoX5 will lead to the pre-  state of Eq(6), we choose the four local oscillator beams at
diction thatX;X;X3=-1, since each factor is ~1 according to arbitrary polarization angles with unit vectors denoted by
the above arguments. However, this is in contradiction witl’@LOi, wherei=1,2,3,4. Theheterodyne beat signal is de-
the quantum results obtained directly from E#j2) for the  tected as shown in the detection diagram of Fig. 3. In detec-
GHZ state in theX;X;X3 basis, whereX;X,Xs=+1. tor D, the amplitude of the heterodyne beat signal obtained

In the following section, we describe a classical experi-from the interference between local oscillator LO1 and the
ment which measures the four-field entangled statgijeld E, can be written in the parenthesis notation of Ref.
[IH1HoH3H) +[V1VaVaV) N2, As in the quantum experi- [20],
ments, we use this state to measure the correlations for the
three-particle GHZ state of E¢6). To verify the polarization _ _ -
correlations in the classical state, we reproduce the results A= (ELonlEy) = f dxdy Bor(Y.08 01 - E1(X:1),
predicted by quantum mechanics in the test of quantum non-

locality. 17
and similarly for LO2, LO3, and LO4. Hereg o:(X,Y,t)
V. REPRODUCING GHZ ENTANGLEMENT WITH =&LoiX,y)exp-iwt) is the LO1 field amplitude in the

CLASSICAL FIELDS plane of a photodiode detector aid is the vector field

) o amplitude for beam 1. By using E¢13), the beat signal
In our experiments, as seen in Fig. 2, a HeNe laser bealymplitudeA, is then

is split and sent through two fixed-frequency acousto-optic

modulators to produce a beam of frequergy=w+ 5, with A, (éL01|\71)(5L01|51)9Xp(— i)
horizontal polarization and a beam of frequengy=w+ 4,
with vertical polarization, wherej,=27x 30 kHz and &, +(éL01||:|1)(5L01\51)eXp(‘i5Ht), (18)

=27X 120 kHz. These two beams are combined on beam

splitter BS1 producing two output fields. Beamsplitter BS2where (£, o;|€;) denotes the spatial overlap integral of LO1
produces two copies of the transverse mode of one of thand the field of beam 1. The beat signal amplitudes in detec-
output fields of BS1: beam 1, which propagates to detector {ors D,, D3, andD, are similarly given by
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D1 D2 D3 D4

l l Y240 kHAAL Ag) * (5L01|51)(5L02|52)(éL01|V1)(éL02|V2)-
l l (21
AlxA2 A3xA4 The product signals at 60 and at 240 kHz a@ded by

using a summing amplifier, yielding a net signal ampli-
tude S;,(t) which contains two contributions, i.e., the
H,;H, component at 60 kHz and th¢,V, component at

Filter Filter Filter Filter 240 KHz.

60kHz | [240kHz | |60KkHz | [240 kHz Similarly, the beat signals from detectdbs and D, are

multiplied, band passed at 60 and 240 kHz. In this case, only
the Az;A, amplitude contributes to the sum frequency terms.

/ The resulting product signal contains components at 60 and
@ ﬁ 240 kHz given by
Sb‘ S34(0) Yoo krdAaAr) = (EL03l€)(ELodl€a) BLogl V) (BLoalV )

(22
Filter and
300 kH ~ ~ A ~
¢ z Y240 kAP, A) % (EL03€3) (EL0alE4) (BLog|H2) (BLoglH ).
(23

FIG. 3. Detection scheme for observing GHZ entanglement by o 1ot horizontal and vertical polarizations are inter-
frequency postselection. The analog multipliexs), band pass fil-

ters, and summing amplifiefs-) enable postprojection of an en- changed W'th reSpeCt. to ECQO).'.TheS.'e p_roduct Slgr.]als are
tangled four-field state onto a four-field product basis. added using a summing amplifier, yielding a net 5'9”:”" am-
plitude S;4(t) containing two contributions, i.e., thé;V,

Ao = (ELoolE) = (L2l V2 (ELoal EeXp(— i 8t) + (€02/H2) gzg]ﬁarz]ént at 60 kHz and théisH, component at
X (EL ol Ea)exp—idyt), Now, the summed product signa%,(t) and S;,(t) are
multiplied using an analog multiplier and then band pass
filtered at 300 kHz. In this case, the resulting product signal
Az = (E ogE3) (éL03|\73)(5L03|53)eXp(—iﬁHt) + (él_03||:|2) amplitude at 300 kHz contains two interfering contributions,
which arise from the two ways that a product of the 60 and

X(ELoglE)exp—iat), 240 kHz components can be obtained:
. A Y300 kHAAL A2 Az, Ag)
A4 = (ELoalEs) = (EL0alVa) (ELoal ELeXP(—184t) + (BLoslHa) * (ELo1l€D) (EL02l€2) (ELoalE) (ELodlEa)
X (ELO4|54)EX[X— | 5\/t) . (19)

X[(éL01|\71)(éL02|\72)(éL03|\73)(éLO4|\74)

As shown in the detection diagram, Fig. 3, the beat signals + (BLog|H1) @LooH2) (BLogHa) (BLoaH)]. (24
from detectorsD; and D, are sent to an analog multiplier ) )

which yields a product signdi;+A;)(Ay+A;) proportional  The magnitude of€, o1 |€1)(€Loz| £2)(EL03|E)(ELcalEa) is @
to the real part of the amplitudA1A2+A*1A2. The beat am- common factor in each path ar_ld it is controlled by a gain
plitudesA; andA, each contain two beat frequencigsand  amplifier after each band pass filter. Hence, the product am-
&, yielding nonzero frequency components in the producPlitude ¥z i+ iN Eq. (24) can be written as

signal: oyx &y, 264=60 kHz, and 2,,=240 kHz. Bandpass N o N . 4

filters are used to select the product signals at the sum fre- Y300 k2 (BLotl (BLoal (BLogl (BLod W erz)er (25)
quencies 2, and 2. In this case, only one part of the \yhere thelWs,,)q is given by

product amplitude, i.eAA,, contributes to the bandpassed

signal. The corresponding beat signal amplitudes are, respec- 1
J ponding gnatamp P Wi = SIHIHHGHY + NV (26
\

tively,
PR e Here for simplicityl:| andV are denoted all andV, respec-
ALAY) < (EL 01| ED(ELolE H H _ ; :
Yeo i ArAe) * (E101/€D) (EL02lE2) (BrorH) (BozlH2) tively. The superscript 4 denotes the four-field entangled
(20) state. The detection technique projects out the fourfold coin-
cidence signal from the desired entangled four-particle GHZ
and state. The method measures the projected amplitude, which
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can be squared to yield a signal proportional to the fourfoldvhere a large signal amplitude is observed. However, when
joint intensity. the LO3 polarization state is changed\6, this induces a
Now, in order to demonstrate the polarization correlationsminus sign in Eq(29). Hence the magnitude of the signal

of the qlassmal four-field statgl'g,,,), we re_produce the .00 i, for the ProjeCtion(éfopétoz,é\L/<;3|‘I'?;Hz)cl is ap-
correlations for GHZ entanglement by using the threeyroximately zero as shown in Fig(l). This signal is pro-
particle GHZ state. As in the quantum e>§per|ments, we fixportional to the projectionR;L,V4| WS, )=0 from Eq.(9)
the polarization of LO4, in our case at 45°, and so indicates that the eleméft ,V5 in the Y'Y Xconfigu-

e 1o~ A ration is zero as predicted by GHZ entanglement. Similarly,

&/0s="=(Ha+ V), (27)  the elements of realitfR;R,V4, LiR,H2, andL,L,V, in the

V2 Y1Y,X5 configuration are nonzero as predicted by GHZ en-

so that the beat signd, at detectoD, is equivalent to the tanglement. The elements of reality not predicted by GHZ
trigger photon in the quantum GHZ experiment. Then,entanglement arB;R,Hg, LRV, andL;L,Hs, respectively.
(04| W2, 1) is proportional tdH;H,Hs)+|V1V,Va), thatis  The corresponding nonzero and zero classical-field state pro-
to [WZ,,,)q, Where the superscript 3 indicates the three-field€ctions are given by Eq9):
state. Thus, in the following sections, the frequency filtered , 1
signal amplitude at 300 kHz can hesed to reproduce the (01 8 o &10a| ¥ 1) = (RLHA WS, ) ==,
polarization correlations of three-particle GHZ entangle- 2
ment where the polarizations of LO1, LO2, and LO3 are

i ot AR Al alO3.,3 3\ _
in one of the four projectiongl’, V', R, andL. (801 €0 &y [Wenoa * (RiL V3| W, =0,
A. Measurement of theYYX, YXY, and XYY configurations 1
AL AR aH’ 3 1473 _ =
As a first demonstration of our classical system, we repro- (801,802, ELo3 VarDel = (LaRH3[ W) = >

duce the polarization correlations for tiYgY,X5 configura-

tion for three-particle GHZ entanglement. As noted above, AL AR AV e 3
the LO4 polarization is fixed at 45°, E7). The possible (801,802 8los Varpa = (LiReV3[Way =0,
polarization states of the local oscillator beams LO1, LO2,
and LO3 are given by R AR AV e - 1
1. A (01,802,803 Vana = (RiRV3 V) = 2
5= =Hy£iVy),

V2

T PN (o1 802 803 P el & (RiRHI WE,2) =0,
€02 = "_E(HZ tiVy), (28)
N

¢ 1
AL Al av 3 a3\ —
vy Lo A (eLOl!eLOZ’eLOSNIGHZ)CIOC<L1L2V3|\I,GHZ>_E’
e,_o‘3 = ’E(Hgng}).
\

For the classical-field state, the measurement of the ele- (o1 8l0 8 i0a PEhDa = (LiLHAWE ) =0, (30)
ment of realityR;L,H3 in the Y;Y,X5 configuration is accom- N . .
plished by setting the polarizations of the LO1, LO2, and”S shown in Fig. 4, the amplitude of t.he signal at 390 KHz,
LO3 beams to b&R.. & anda. Now. from Eq.(25) Y300 kHp @S nonzero and zero amplitudes as predicted by
LO1» ~LO2: LO3* s .

. ; g Eqg. (30), which are identical to the results for the corre-
the magnitude of the beat signgdyo kHz is sponding quantum state.

Y300 khAAL Az A Ag) _The_set of eight elements of_reality for tIYé(Xconfigu-
ration is a complete set spanning the product basis for the
o (801,800 803 812 Ve 1Dl polarization of the three measured fields, since a complete
R L A a5 two-state basis is provided for each field. Hence, the total
= (Eo1l V1) (BL 02| V2) (€[ 03] V) (04| Va) joint intensity at 300 kHz is contained in the eight possible

AR AL ~H ~45° elements for this configuration. Thus, for each element in
+ (&o1/H1) (BLoalHa) (Blosl Ha) (B4l Ha) this configuration, the classical joint intensity is normalized

o (R _al  aH |3 by dividing the absolute square of the signal amplitude

(&lor Eloz &ronlVanzen (29 Y300 khz Of €ach element of reality by the sum of the absolute
where tth contribution from che LO4 ig a constant factor,squares ofysog i, for each element. The classical-field mea-
since (&2, V4)=1/12 and (§/3,|H)=1/12. surements then vyield the joint probability representation of
In this case, the magnitude of the signahg . iS pro-  the Y'Y Xconfiguration which is shown in Fig(#. Note, for

portional to the projectiofR,L,H5|WE,,,). This is readily —comparison, that the predictions of quantum mechanics
determined from Eq(9) and indicates the existence of a would yield a probability ofl/4=0.25 for each large signal
classical signal corresponding to the element of realityand zero for each small signal, showing that the classical
R.L,H3 in the Y;Y,X5 configuration as shown in Fig.(@  joint intensities are in good agreement.
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FIG. 4. Measurement of elements of reality
for the Y'Y Xconfiguration using a four-classical-
50 field entangled statga)(c)(e)(g) Components of
physical reality predicted by GHZ entanglement
exhibit nonzero signals at 300 kH#b)(d)(f)(h)
Elements of physical reality not predicted by
GHZ entanglement produce nearly zero signal at
300 kHz. (i) The normalized signal squared ob-

50 tained for these elements agrees with the predic-
tions of quantum mechanics.

RiloH's RiLoV
0.4 0.4
0.2 0.2
-0-2 A%WW -0.2 1 2 3 4 50
-0.4 (a) -0.4 (b)
R1Ra2V'3 R4RoH's
0.4 0.4
0.2 0.2
2)[ [ s (1 {150 oaf  “d0 30 TR do 50
0.4 (0) 0.4 ()
LiR2H LiRoVy
0.4 0.4
0.2 0.2
MAAMLAAMAR 02
0 J 40 g 10 20 30 40
oz [PV YRV VY o2
-0.4 (€) -0.4 )
C LiLeVa LiLoH'3
04: 0.4
02: 0.2
4 04 t(us)
(@) t(us) (h)
0.35 — YYX
0.30 —
, R{RoV'g .
0.25 | 1k2V's LyRy H RiLo H's
0.20
0.15 -
0.10 -
0057 LiLaHy R4RoH'3 L1RxV'g RiLoV's
0.00
M o 2 4 6

Similarly, the measurements for théXY and XYY con-

figurations are shown in Figs. 5 and 6, demonstrating that the
classical joint intensities are in agreement with the quantum

predictions as they should be.

B. Measurement of theXXX configuration

Finally, we reproduce the polarization correlations for
measurements for thé;X,X5 configuration of three-particle
GHZ entanglement which contradicts the theory of local re-
alism. The appropriate polarization states of the local oscil-

lator beams LO1, LO2, and LO3 are given by
~H' V! l ~ ~
€or = =(HixVy),
V2
(3D

A\ 1 ~ ~
&y = =(HytVy),
V2

IRTIAVL 1 - ~
&0y = =(Hst Vy).
\2

jections are given by

’ ! ’ 1
AH aH! 4 3 3\
(801,802 &L 0a Y aHz)e o (HIHH W5, = 2

AV aH' aH! a3 3\ _
(801, € 02803 Y na * (ViHH3 W52 =0,

’ ! ! 1
AV AV A 3 3\
(801,802 8loa Y anza < (ViVoH3 W5 = 2

AH AV aH! |3 3\
(801,802, €03 Y ahz)a = (H1VoH3 W52 =0,

AH/ AV/ A ’ 3 3 _
(801,802,803 ¥ arDa « (H1VoVa|We ) = >

AV AV AV 3 3\ _
(801 & 02 &8 0s Yanpa = (V1VoVa ¥ = 0,

’ ’ ’ 1
AV aH 4 3 3 o\ _
(801 €02 8loa Yanpa = (ViH V3 ¥onp) = >

(é['orét'ozrél\_/osmngz)cl o <H£HéV§|\PéHZ) =0. (32

For the eight possible measurements in ¥¥X configura-
For the eight combinations of linear polarizations in thetion, the zero and nonzero signal amplitudegg, (4. for each
XXX, the expected nonzero and zero classical-field state preelement of reality withX;X,X3=+1 are shown in Fig. 7. For
the elements of reality withX;X,X;=-1, i.e., H{H,V,
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0.4 L1Vials 0.4 LiH'sls
0.2 0.2
- 7%%%
-0.2 \) E/ Wz \/ U;i H 5 %}‘H H %}(U H%O 0.2 10 0 0 40 0
-0.4 -0.4
(@ (b)
0.4 RiH%Ls 0.4 R{V'slg
0.2 0.2
_0_2} \/ 521@ \/ Uz@ U Hgg \/ U}a Y S?gﬁ o2 10 20 30 4 50
-0.4 -0.
©) %41 (@)
R4{V'5R R4H'5R
0.4 e 0.4 Thels FIG. 5. Measurement of elements of reality
0.2 0.2 for the Y XY configuration using a four-classical-
. " > 3 50 Yo A 5 0 0 field entangled state(a),(c),(e),(g) Components
-0.2 -0.2 i i i
of physical reality predicted by GHZ entangle-
041 () 04 ) ment exhibit nonzero signals at 300 kHz.
‘ LVoR (b),(d),(f),(h) Elements of physical reality not
0.4 L1H2Rs 0.4 17273 predicted by GHZ entanglement produce nearly
0.2 0.2 zero signal at 300 kHZi) The normalized signal
‘ g ko e e e o P squared obtained for these elements agrees with
-0.2 ! 4 -0.2 10 20 30 40 50 the predictions of quantum mechanics.
0.35 — YXY
0.30 — LyV'sly R4V'5R3
0.25 RiH'2L3 L1H|2 RS
0.20 —
0.15 —
0.10 —
0057 LyH'olg RiViaLs RH'2Rg L1V'2R3
0.00 i
M o 2 4 6 8

ViV4Vyg, HiVoHS, andViH HS, the signal amplitudesy i,  ments, all four beams are not entangled prior to joint hetero-
is zero. For the elements of reality witk;X,X3=+1, i.e., dyne detection and frequency selection. Hence, the input
ViHAVE, HiVAVs, ViVoHS, andHH,HS, the signal amplitude  state effectively corresponds to noninteracting particles. We
Y300 kHz IS Nonzero. The normalized joint intensity represen-can arrange for an observer A to make a type of Bell state
tation of the classical signals for th€XX configuration is measurement on beams 1 and 2. Observer A transmits a clas-
also shown in Fig. {@). sical signal to another observer B who measures polarization
The experimental observations for thgX,X; configura-  correlations for beams 3 and 4. By multiplying the classical
tion produced by our classical-wave system are in agreemessignal from observer A by his signal and band pass filtering
with the quantum predictions of GHZ entanglement, givingat 300 kHz, observer B observes correlations corresponding
strong signals only wheK;X,X3=+1. Our experiments for- to the Bell state selected by observer A. This method works
mally produce results which contradict the predictions of lo-by a form of generalized two-frequency phase-sensitive de-
cal realism, where strong signals are expected only itection and reproduces the correlations preset¥fl,,). as
X1 X,X3==1. By reproducing the 32 elements of the truth described below.
table, we have demonstrated that the entangled four- In this method, seen in Fig. 8, the symmetrical detection
classical-field state exhibits the same polarization correladiagram of Fig. 3 is used for beams 1 and 2, measured by
tions as in the quantum system. Since particle properties a@bserver A and for beams 3 and 4, measured by observer B.
not required for reproducing the correlations, this result is @bserver A multiplies the signals from a pair of detectors 1
consequence of reproducing all of the superposition and inand 2, band passes the product signal at 60 and 240 kHz and
terference properties of the corresponding quantum state. then sums. Defining horizontgH) and vertical (V) field
components, this yields from beams 1daha signal ampli-
VI ENTANGLEMENT SWAPPING tude Si(t) % (8018 0z| P+ (1)1, Where |..(t)s, is @ time-
The classical-field scheme is readily modified to demondependent — Bell _state, |®.(t))1,=[|HiHo)exp(2i5.t)
strate a form of entanglement swappif@p]. In our experi-  +|V;V,)exp2i,t)1/v2, with 28,=27x 60 kHz, and 2,
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0.4/ ViRRs
0.2
B 3 50
0.2 !
_0.4 (a)
0.4 H1 Rolg
0.2

FIG. 6. Measurement of elements of reality
for the XYY configuration using a four-classical
field entangled state(a),(c),(e),(g) Components
of physical reality predicted by GHZ entangle-
ment exhibit nonzero signals at 300 kHz.
(b),(d),(f),(h) Elements of physical reality not
predicted by GHZ entanglement produce nearly
zero signal at 300 kHzi) The normalized signal
squared obtained for these elements agrees with
the predictions of quantum mechanics.
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=27 X 240 kHz. Observer B does the same for beams 3 anderver B measures polarization correlations corresponding to
4, where the horizontal and vertical components are interthe Bell statgl®_);,=[|H3sH,)—|V5V4)1/12. As in the quan-
changed with respect to beams 1 and 2, yielding a signaum case, only certain Bell states can be swad@&dl It is
amplitude  S34(t) < (8.0g8L0a|P+(1))3s,  Where [®,(1)zs  necessary to change the experimental set up to swap other
=[|V3Va)exp(2i sqt) +|HsH ) exp(2i ait)]/1V2. Multiplying the  Bell states, such agH3V,) +[VaH,)1/12.
signals corresponding t8,, and S;, together in a third ana- In our experiments, with the polarizations of observer A
log multiplier and bandpassing at 300 kHz yields two inter-set to 45°, 45°, respectively, we find that observer B obtains
fering contributions proportional to the inner products of thea nonzero signal at 300 kHz when his polarizers are set to
four LO polarizations with |‘I’éHz)c|:[|H1H2H3H4) 45°, 45°, and a zero signal when his polarizers are set to 45°,
+|V1VaVaV,) 1742 as before. —-45°, respectively, as shown in Fig. 9. This corresponds to
In order to demonstrate classical-field entanglement swapneasurement of the Bell stajé,);, for observer B as it
ping, we imagine that observer A sets his local oscillatorshould. This result shows that observer A can generate a
polarizations at 45°, and measur®s(t). Observer A sends classical signal which controls the entangled state which will
his signal to observer B who measurBg(t) for arbitrary  be observed by B.
LO3 and LO4 polarizations. Observer B multiplies his signal
by the signal sent from observer A and band passes the prod-
uct signal at 300 kHz. As described above, the signal at VIl DISCUSSION
300 kHz is proportional to the inner product of the four LO  In this paper, we have shown that multiplication of signals
polarizations withW'g,,,)y. Since observer A has fixed LO obtained by heterodyne detection of classical fields can be
polarizations at 45°, observer B measures polarization corrassed to measure classical-field correlations, which corre-
lations characteristic of the time-independent Bell statespond to entangled states. The squared magnitude of the
|®,)34=[|H3H4) +|V3V4)1/V2. If observer A sets his LO1 po- product signal is the joint intensity in the classical experi-
larization at 45° and his LO2 polarization at —45°, then ob-ments. Entangled states are selected by postprojection using
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frequency domain band pass methods, rather than time deensidered to arise from correlated fields. The correlated
main coincidence detection as in photon counting experifield fluctuations can be directly measured by multiplying
ments. Classical postselection is implemented after combirbalanced homodyne detection signals. The squared magni-
ing heterodyne detection signals from spatially separatetude of this correlated field signal reproduces the joint prob-
observers. This is different from the quantum case where thabilities obtained in the corresponding intensity correlation
postselection technique can be implemented by any of thexperiments and is closely related to the classical joint inten-
independent observers. Our postselection is only possible asity measured in our classical-field experiments.
ter the independent observers combine their data and then The classical-field experiments differ from their photon
select the desired frequency components. This biased statiseunting quantum counterparts in that they fail to exhibit the
tical analysis permits classical fields or photons from indewave-particle duality of the quantum experiments: Only the
pendent sources to exhibit nonclassical correlations. interference features are reproduced. However, since the
In our experiments, the nonlocal correlations of a four-classical-field state is directly measured, the classical experi-
particle entangled state are reproduced by using a simpleents are similar to quantum experiments, which use homo-
scheme employing heterodyne detection of four classicallyne detection method46-18§.
fields, yielding large robust signals which are independent of The ability to generate entangled states of many particles
the phases of the local oscillators. The correlations for thés essential to the development of quantum information pro-
classically entangled four-field state are demonstrated by foreessing methods. Generation of such states can be very chal-
mally reproducing the 32 elements of the truth table obtainedenging in real quantum systems, where loss and decoher-
in a three-particle quantum GHZ experiment on the violationence easily destroy the state and coincidence count rates tend
of local realism. to be low when the number of particles is large. The produc-
We have given a simple argument to show that intensitytion of a classically entangled four-field state may serve as a
correlations in low count rate quantum experiments can bérst step in developing classical-wave methods to simulate a
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Observer A Observer B
]11 D2 D3 D4
AlxA2 A3xA4

SN

Filter Filter Filter Filter (a) t (us)
60 kHz | [240 kHz 60 kHz | |240 kHz
0.4
0.2
- ) 20 4 6 80 100
-0.2
-0.4
(b) t (us)
Filter FIG. 9. Demonstration of entanglement swapping. Observer A
300 kHz sets his LO 1 and 2 polarizations at 45° and 45°, respectively, to
¢ select the Bell staté;bg,)lz. Observer B’s signals are then propor-

tional to the projections of the corresponding Bell stath)s, onto
FIG. 8. Symmetrical detection scheme for demonstratingthe polarizations of LO’s 3 and 4a) Observer B sets his LO 3 and
classical-field entanglement swapping in the four-field basis. Thet polarizations at 45° and 45°, respectively, yielding a nonzero
signal measured by observer Ais sent to observer B, who multipliesignal at 300 kHz(b) Observer B sets his LO 3 and 4 polarizations
this signal by his own to obtain a net signal at 300 kHz. Observer Bat 45° and —-45°, respectively, yielding a zero signal at 300 kHz.
then measures correlations determined by the Bell state chosen by

observer A. . .
tion rates. As the rate increases, the observers must choose

time origins which are consistent within the inverse of the

guantum network. The demonstration of a classical form ofproduction rate of correlated photons.
entanglement swapping in the four-field basis is already a The classical-field correlation experiments exhibit many
type of information processing, as it enables the correlatiorieatures which are in common their quantum counterparts.
measurements of one observer to determine the correlatiobhe unitary evolution of a pure quantum state and the evo-
measurements for another observer. Scaling in the classicdlition of the classical field are both deterministic, although
field method is a concerfi]. However, producing the maxi- the quantum measurements are not. The calculation of the
mally entangled state of"2particles never requires more projections of the classically entangled field states is identi-
than two input frequencies and two band-pass filters, as ieal to that of the quantum counterpart, reproducing the mul-
the present experiments. tiparticle interferences and the corresponding polarization

We note that to measure correlations between separatewrrelations. Except for the nonlinear elements in the quan-
beams, the classical scheme employs four independent, spaim sources, both systems employ nearly identical linear op-
tially separated LO beams. In principle, the signal from eachical networks for combining beams and for detection. The
heterodyne detector can be recorded and correlated at a latenmber of analog multipliers used in the classical correlation
time. This is possible since the relative phases of all of thaneasurements is identical to the number of multiplications
pairs of superposed fields are preserved in propagation to thequired in the corresponding quantum coincidence measure-
detectors. The signals can then be analyzed numerically, ugaents. Quantum correlation experiments often employ post-
ing multiplication and appropriate frequency selection. Forprojection based on coincidence countjBy In our classical
this scheme to work, it is necessary that the four observerscheme, postprojection is accomplished by a frequency fil-
synchronize their time origins with a precision small com-tering method that enables selection of the desired compo-
pared to the inverse of the frequency differences employed inents of the multiparticle wavefunction, although this occurs
the experiments. This can be accomplished with a light pulsafter combining the data of the multiple observers. As in the
from the source region to all observers. In the quantum exguantum experiments, the implementation of four-particle
periments, the observers must be sure to measure correlatedtanglement is easier than for three-particles: To directly
photons produced in the same event. For low count rates, th&mulate a three particle entangled state, three frequencies
is readily assured: if the experiment produces only one repare required. By contrast, only two frequencies and three
etition per hour, it is easy for the observers to synchronizébeamsplitters are required to generate an output that simu-
the measurement timing. Of course, an important goal ofates four-particle entanglement, because the polarizations
current quantum experiments is to achieve very high repetiean be interchanged in pairs. This is similar to the use of two
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pairs of parametric down converters in the correspondinghe experimental configuration. This is similar to the limita-
quantum mechanical experiments. As in the classical expertion encountered in the quantum experimdi2s].

ments, it is easier to demonstrate three-particle quantum

GHz entanglement starting from a four—partlcle entangled ACKNOWLEDGMENT

state by using the fourth photon as a trigger. In demonstrat

ing a form of entanglement swapping, we find a limitation in ~ This research was supported by the National Science
the basis of Bell states that can be swapped without changingoundation.
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