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Information rate of a waveguide
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We calculate the communication capacity of a broadband electromagnetic waveguide as a function of its
spatial dimensions and input power. We analyze the two cases in which either all the available modes or only
a single directional mode are employed. The results are compared with those for the free-space bosonic
channel.
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In the analysis of electromagnetic communication chanelectric and magnetic terms, respectively, possess null longi-
nels using quantum information, emphasis has been placaddinal components. These modes are characterized by the
on free-space communication protocols, in which wavesvave vectorg5]
propagate unconstrained: a gosgimmaof all the obtained
results can be found in Reffl,2]. Here we will focus on n,n,=1,2,... TE
constrained communication lines, such as optical fibers or my Ty ]
radio waveguides, in the lossless limit. Although the spatialk =\~~~ ks] With 1 n =012, .. ™,
mode structure for free-space propagation between a pair of 2
apertures has long been underst¢8}]] its near-field modes
only approximate the lossless behavior of ideal waveguides. 1)

In contrast, since the spatial properties of the waveguide

modes are always well defined, we will be able to derive thevhere the discretization of the transverse components de-
exact dependence of the information rate on the system pdives from the boundary conditions at the waveguide walls
rameters, e.g., the poweP and the waveguide cross- and where the longitudinal componéqtis a positive quan-
sectional area, obtaining results that closely resemble thetity because we are considering only modes propagating
ones described in Refi1,4] for the free-space channel. from the sender to the receiver. By introducing the transmis-
Moreover, as will be discussed in detail, our derivation re-sion time7 (i.e., the time interval in which the sender oper-
solves some of the open issues connected with the optimiz&tes the channglthe longitudinal parametds; can be dis-
tion of the multimode communication protocols. cretized using periodic boundary conditions. In particular, a

We start by describing the waveguide communicationmode with wave vectok bounces off the waveguide walls
channel in Sec. | and calculate the rate in Sec. II. In particu{see Fig. 1 so that it propagates across the transmission line
lar, Secs. Il A and Il B are devoted to the regimes of multiplewith a longitudinal speedgroup velocity ¢ cos 6= ck/[k|.
modes and single directional mode, respectively. The discusthis means that all the photons of that mode used in the

sion and the comparison with prior results are given intransmission can be ideally enclosed in a box of longitu-
Sec. lIl. dinal lengthc7 cos 6: assuming periodic boundary condi-

tions ks can be discretized asn2ys/(c7 cos 6), with n; a
positive integer. This relation introduces a nonlinearity in
the dependence of the mode frequenciegn;,n,,ny)

Although guided-wave optical communications are nor-=clk| on the parameters,, n,, andng, i.e.,
mally carried out using dielectric waveguides, metallic
waveguides provide a simpler mode structure for deriving
the broadband information rate. In the ideal, lossless case
that we consider, such waveguides confine the electromag-

(ny=n,=0 excluded

I. THE CHANNEL

netic field into a finite region of space by means of perfectly k \ St
reflecting boundaries. In this paper we will analyze in detail Ly 7

the rectangular cross-section case with transverse spatial di- 2 i

mensionsL; and L, described in Fig. 1, even though the 1 g Ly

procedure can be readily extended to other configurations. In

a hollow waveguide the transverse-electromagnetic modes F|G. 1. Description of the ideal metallic waveguide. The modes
customarily used in free-space communications do nNO{TE or TM) with wave vectork propagate in the positive longitu-
propagate. They are replaced by the transverse-elg@Er  dinal direction bouncing off the perfectly reflecting walls of the
and the transverse-magnefitM) modes in which only the waveguide.
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w(Ng,Ny,N3) . i, 27y, satisfy Eq.(4). Notice that Eq.(7) might be seen as an
7:“ L_ll__z? ' 2 instance of the Holevo-Schumacher-Westmoreland theo-
rem [7], but for the case under consideration it was first
where derived by Yuen-Ozawg2]. The maximization of Eq(7)
5 o under the constraint4) can be performed by means of a
f(x) = 206 + %)) _ (3y  Vvariational principle: the maximum is reached forthat
~Xg + &+ 40C +x3) satisfies
As will be discussed in Sec. Il A, this is the main difference S(p) N Tr{Hp] N _
between our approach and the free-space calculation per- {T_E T _ETr[ ]} 0, (8)

formed in Ref.[1].
where\ and\’ are the two Lagrange multipliers that derive

from the power constraint4) and from the normalization
Il. THE COMMUNICATION RATE condition onp, respectively(the factor In 2 hasheen in-
o ) ) serted so that all calculations can be performed using
The communication rat® is the maximum number of atyral logarithms Using standard techniquesee, for

bits per second that can be transmitted through the channgfstance, Ref[8]), it is possible to show that Eq8) is
and is given by the capacity.e., the maximum of the mutual gatisfied by the density matrix

information between the input and the output of the channel

divided by the transmission tim& The capacity can be es- _ 6"_"0H

timated from a quantum-mechanical analysis of the commu- Pmax= Z(\o)’ )
nication in which each symbda, transmitted with probabil- i . ) )
ity density p(6), is associated with a quantum state) of ~ Where Z(\)=Tr[e™] is the partition function and is
the Hilbert spacé+ of the media used in the communication determined by the equation

procesgin our case, the electromagnetic figltlvVithout any

) O . ; a (InzZ(\)

constraints, the infinite dimensions of the input spatef P=- — 7 (10
the system under consideration can accommodate an arbi- 2

Ao

trary amount .Of mformatlon_ and th_e capacity would OIIVerge'Using this solution, the maximum rate in bits per unit time is
Physically it is, thus, sensible to introduce an energy CONg v given b
straint on the accessible input sta{@3. In particular, we Y9 y

consider the following limit on the available average power 1 In Z(\o)
(i.e., energy transmitted per unit time R= o\ NPT ) (11
pP= M’ (4)  To obtain an explicit expression fét, we thus only need to
T evaluate the partition functiod(\) for the Hamiltonian(5).

hIn the two following sections we will undertake such en-

where p=/dfp(0)p(6) is the average message sent throug deavor for two different communication scenarios

the channeli.e., the electromagnetic field state at the input
andH is the Hamiltonian of the modes, i.e.,

+ A. Multimode communication
H= E Hk,a Hk,e = hwkak,eak,ev (5)
k,e

In this section we calculate the ra®ewhen all the wave
) _ . o vectors that propagate in the positive longitudinal direction
with e=TE, TM anda, . being the annihilation operator of (fom the sender to the receiyeare employed in the com-
the modee with wave vectork and commutator munication.
toq_ Since modes with differerit or different e are indepen-
8 1] = Oeer St - 6 i . . ) .
[Ber B o] Kk © dent, the partition function factorizes in product of single-

In order to calculate the capacity of the channel under conmode partition function&, () so that

sideration, i.e., the maximization of the mutual information

under the constraint4), we need the infinite-dimensional In Z(\) :E InZ, (M), 12
extension 2] of the Holevo theorenm6] which, in the noise- ke

less case, gives an upper bound to the capacity in terms fith

the maximal input von Neumann entropy. As discussed in

Ref. [2], this upper bound is achievable, so that the rate is Z (\) = Tr[eM ke = 1 (13)
N3 1 - e_)\ﬁwk )
Sp)
R= mpax T ) Substituting Eq(13) into Eq.(12) one can comput&(\) by

summing over the allowed values f, n,, andng. Since we
whereS(p)=-Tr[p log, p] is the von Neumann entropy and are interested in the stationary information rate, we should
the maximum is taken over all the possible density matritake the limit7— o which allows the summation oves, to
cesp of the modes employed in the transmission, whichbe replaced with an integral. Even with this simplification,
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the calculation is quite demanding and is postponed to the
final paragraphs of this section for the sake of readability. 8 F 1
Here we consider the simpler high-power/high cross-section |
regime, defined by the condition = 18 -
AP Rl 14
v=z =L (14) <ol 1s
¢ i a) | ol b)
whereA=L,L, is the cross-sectional area of the waveguide. 500 4 1000 H0e 7 1000

In this regime too, the summations ovgrandn, reduce to

integrals and, apart from corrections of orderylEq. (12) FIG. 2. Numerical plots(a) Plot of the rateR given by Eq.(22)

as a function of the dimensionless paramejerb) Comparison

becomes . . )
between the same solution and the asymptotic behdjgy, of
Eq. (24): the ratio between these two quantities tends to 1for
gAcT 1 =1
In Z(\) = o vdX In 1~ et | (15 :
. (" 1
where the volume integral must be performed on the sub- Fnl’nz(,B) = . dxIn 1~ A |- (21

spaceV of positive x; and f(x) is defined in Eq.(3). The

parameterg=2 in Eq. (15) counts the different species of jging Eq.(11), one can show tha@\/A/c is a function only
modes, TE and TM in this case. It plays the same role as thgs the dimensionless parameter defined in Eq.(14). In
polarization degeneracy in the free-space propagation gf . Eq.(11) becomes

electromagnetic waves. By performing a change of integra-

tion variables and using the integral of E&2) of the Ap- __ ¢ R
pendix, Eq.(15) reduces to R= In 2VAl *W(Bo) |, (22)
gr® AT where B, is the dimensionless quantity determined by the
In Z(\) = TTECS (16)  condition(10), i.e., the solution of
Substituting this result in Eq10) gives Y N o
(g7 A\ In Fig. 2 the numerical evaluation of the raReis reported.
°~\ g0 pad2) (17 Notice that in the limity>1, the solution(22) approaches
the asymptotic behavior
which through Eq(11) implies the following maximum rate: R\r’Z 4 [gm?\M4 §
~ 328 T (24)
4 (gWZA)l/4<P)3/4 " c 31In2\ 80
" 3In2\ 80c? h) (18) which corresponds to the high-power/high cross-sectional

. . limit solution of Eq.(18) discussed previously.

Numerlc_al resultsWhen conqmon(14) dpe_s_ not apply, the The dimensionﬁeés ;)Jarametyztha‘t)identifieﬁ the onset of
summations ovem, and n in the def|n'|t|on of InZ(») the asymptotic regime foRVA/c has a relatively simple
cannot be performed analytically. In this case we can reqp, gjca| interpretation. From the density matrix, £9), we
sort to numerical evaluation of the rate. For the sake Okgg hat the occupancy probabilities are highest for the
S|mpI|C|ty we will consider a wa}vegwde with square CrOSSIowest-frequenc;(lowest photon energymodes. From the
section, i.e.L,=L,. Remembering that not all the values g, formulation for the partition function, E€L2), we see

of n; and n, contribute both to the TE and to the TM ot the triple-integral approximation in Eq15) will be

modes, the summation of E¢12) can be written as valid when the occupancy probabilities change very little
between modes with adjacent energy levels. The largest such
In Z(\) = C—ZW( WAﬁC) (19) photon-energy spacing occurs for the Iovlest-frequency
VA \E modes, and, roughly speaking, is equalft/ VA, i.e., the

photon energy of the waveguide’s cutoff frequency. If we
with concentrate all of the sender’s average power into the lowest-

frequency mode, the resulting power spectral density will be

approximatelyPyA/c, and hencey equals this spectrum

wWEp) = > Foun,(B) + > Foo(B), (200  measured in units of the photon enefgy VA of the lowest-
Nynp=1 n=1 order mode. The conditiog> 1 then guarantees the desired
smooth behavior of the occupancy probabilities, because
where Eq. (9) implies that high-photon-number occupancy of the
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lowest-order mode will, of necessity, be accompanied bywvaveguide under an average input power constraint. In par-

similar occupancy of other low-frequency modes. ticular, we found that when the sender is using all the avail-
This analysis clarifies the regime of applicability of the able modesR scales ag&\""*P%4, as reported in Eq18). This

approximation(18) and underlines the importance of the scaling is reminiscent of the free-space communication one

quantity y in the definition of maximum rate. [1]. The main difference between the two cases is that, for
_ o o waveguides all the positively propagatifkgrectors actually
B. Single directional mode communication reach the receiver owing to the reflecting walls of the wave-

In this section we calculate the ra®when the wideband ~guide. For frequencys propagation over ah-m-long free-
transmission is limited to using a single direction of the waveSpace path between |dent|c§1I CWCU|32 apertures of diameter
vector k. We will specify this direction assigning the polar D, there are approximatefD w/(8cL)] low-loss propaga-
angle @=arccosks/|k|) and the azimuth angle e tion modes per polarization stdtg]. In essence, the low-loss

=arctarik,/ky). In terms of the discretization parametess ~ Modes represent propagation angles that lie within the solid
n,, andns, these conditions become angle subtended by the receiver at the sender. These low-loss

modes can be accounted for by introducing a factor of

np _ gtan (25) VSiN Onax (Omax b€INg the channel angular aperture as seen by
n - L, @ the senderin the free-space rate—see Sec. VI A in Réi.
The lossy free-space modes that do not satisfy the preceding
g \2 [ mny\2  sir? 6 [ 2mng)\? angular_ subtensg condi?ion can bg used for communicat_ion,
— — | == , (26) but their analysis requires inclusion of an accompanying
L, L, cod 6\ cT

noise source, which is mandated by the quantum theory of
where the nonlinear relation of ER) was used in deriving 10SS. As noted at the end of this section, finding the capacity
Eq. (26). In this case, only those modes withcompatible ©f the lossy propagation channel is a considerably more dif-
with the chosen direction contribute to the partition functionficult problem.

sum(12), i.e., Apart from these physical considerations, a technical dif-
ference between our calculation and the free-space analysis
In Z0) i i I 1 is also evident. In deriving their result, authorg df, instead
nZ(\)= n of using Eq.(7), calculate the maximum rate as
n3=0 nyn,=1 1- e—27r)\n3/(Tc0§ 0) gEeq ( )v
X 5n2,nl tan ¢ L2/L15n1,2n3Ll sin 6/[cT(1 + tar? ¢)1/2co 6] R= maxz MCOS 0, (30)

(27) Pke ke T

whered is the polar angle of the mode wave vedtaand the
maximum is performed over the mode stajgs (e here
counts the different polarizations of free-space electromag-
netic wavegs The presence of the term céss introduced

in the sum to take into account the difference in the lon-
gitudinal speed of mode propagatidin our calculation it

is the nonlinear Eq(2) that takes care of thifAccord-
ingly, the power constraint is calculated as

where, for the sake of simplicity, only the TM mode has
been considered and where the two KronecRsrtake into
account the condition&5) and (26). Again working in the
high-power/high cross-sectional regini&4), the summa-
tions can be replaced with integrals and the KronecRsr
become Diracs functions, so that we find

I ¢ ax | !
nz() = 21 )y " 1 — g Micxg/ood ¢ Ao~ tan¢) > TriHy cpi.cl
P - L EIFK,E.

cos 6. (31
sin 6 ) _mTcos ¢ e T

><5(X1—X3 — - ,
V1 +tarf ¢ cos 6 12\ This procedure assumes implicitly that the maximum com-
(29) munication rate is achieved by a global state of the input

i i N modes which is unentangled over This assumption is cor-
whereV is again the subspace of positive components;of rect as can be sedat least for the waveguide communica-
Substituting this result into Eq$10) and(11), we now find  {jon protocol studied hejefrom the factorized form of the
that the maximum rate is state in Eq(9). In order to compare the two approaches, we
have calculated the maximum rate of the waveguide using
=" /=, (29) Egs.(30) and(31) in place of Eqs(7) and(4). The results

In2 V 3 are, predictably, similar to the ones reported in Sec. Il A,

If both the TE and TM modes of the chosen direction were€Ven though the numerical factor differs: in fact, for multi-
used for the transmission, then a fact@ would appear in Mode communication and high-power regime, we now find

Eq. (29). 4 (Qﬂ,zA)m(P)sm
IIl. DISCUSSION “31In2\120¢2) \#

_cos@ 7P

P (32)

In the preceding section we calculated the maximum ratemaller than Eq(18) by a (3/2)** factor, which derives
R for information transmission through an ideal metallic from the particular choice of maximization of E@O).

052310-4



INFORMATION RATE OF A WAVEGUIDE PHYSICAL REVIEW A 69, 052310(2004

If we consider the case of a single directional mode, on ACKNOWLEDGMENTS
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apart from the co® factor that takes into account the de-
crease in longitudinal propagation speed of the field due to
the reflections at the waveguide walls. APPENDIX

All the results discussed in this paper have been obtained ) ) ] ) )
in the lossless case, in which all the photons injected into the !N this appendix the integration needed for Eg5) is
waveguide arrive to the receiver. In the presence of loss, th@!Ven. , _ _
calculation procedure complicates noticeably: the capacity is After performing the change of variableg=2\%cx (]
no more simply given by the entropy of the initial state, but=1.2,3, the integral in Eq(15) becomes
by the Holevo quantity, which is not known to be additive oc o w 1
over successive uses of the chanf@®,1q. Finally, we f dylf dyzf dysln[—_f(y):|
have not considered the presence of prior entanglement 0 0 0 1-e
shared between the sender and the receiver. In this case the e % 1
rate R can be doubled by using the superdense coding pro- = —f dx xf dyln{ﬁ}, (A1)
tocol [11]. The calculation of the entanglement assisted ca- 2Jo 0 1 - TymWyed)

acity for the single directional mode case in the presence of . . .
I%ss \)//vas given ir? Ref12], following the procedurg of Ref. where in the right-hand term polar coordinates have been

employed in they,,y,) plane. Changing to polar coordinates

[13]. . .

In conclusion we have calculated the maximum commu-also in the plane spanned Egx,y), the integral becomes
nication rate for a perfect waveguide in the two regimes of w2 mcosd [* . 1 -
multimode and single directional-mode communication. A f —3f drrein = | ==

. ) . 0 (1+sing)®J, 1-€ 120
comparison with the known results on free-space communi-
cation schemes has been given. (A2)
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