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Universality of entanglement and quantum-computation complexity
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We study the universality of scaling of entanglement in Shor’s factoring algorithm and in adiabatic quantum
algorithms across a quantum phase transition for bothNRecomplete exact cover problem as well as
Grover’s problem. The analytic result for Shor’s algorithm shows a linear scaling of the entropy in terms of the
number of qubits, therefore making it hard to generate an efficient classical simulation protocol. A similar
result is obtained numerically for the quantum adiabatic evolution exact cover algorithm, which also shows
universality of the quantum phase transition near which the system evolves. On the other hand, entanglement
in Grover’s adiabatic algorithm remains a bounded quantity even at the critical point. The classification of
scaling of entanglement appears as a natural grading of the computational complexity of simulating quantum
phase transitions.
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[. INTRODUCTION must necessarily create an exponentially large amougtabf
some point.

One of the main theoretical challenges in quantum- Another topic of intense research concerns the behavior of
computation theory is quantum-algorithm design. Some atentanglement in systems undergoing a quantum phase tran-
tempts to uncover underlying principles common to allsition [10]. Quantum correlations in critical systems have
known efficient quantum algorithms have already been exbeen analyzed in many situations and using a wide range of
plored although no definite and satisfactory answer has beaghtanglement measuremerigs11-1§. In particular, it has
found yet. On the one hand, it has been seen that majorizveen noted13,14,16,17 that some of these measurements
tion theory seems to play an important role in the efficiencyhave important connections to well-known results arising
of quantum algorithmg1-3]. All known efficient quantum  from conformal field theory19-22. More generally, when a
algorithms show a step by step majorization of the probabilsplitting of a d-dimensional spin system is made, the von
ity distribution associated to the quantum register in the meaNeumann entropy for the reduced density matrix of one of
surement basis. Therefore, efficient quantum algorithmshe subsystemsE(p)=-tr(plog, p) at the critical point
drive the system toward the final solution by carefully reor-should display a universal leading scaling behavior deter-
dering the probability amplitudes in such a way that a mamined by thearea of the region partitioning the whole sys-
jorization arrow is always present. On the other hand, th@em. This result depends on the connectivity of the Hamil-
most relevant ingredient is likely the role entanglement playsonian and applies as is to theories with a Gaussian
in quantum-computational speedup. Regarding this topicgontinuum limit. For example, when separating the system
several results have recently been fof#e9] which suggest into the interior and the exterior of a sphere of radtuand
that entanglement is at the heart of the power of quanturassuming an ultraviolet cutoff,, the entropy of, e.g., the

computers. interior is

An important result was obtained by ViddB], who
proved that large entanglement of the quantum register is a E=c (B)d_l (1)
necessary condition for exponential speed-up in quantum -1 X

computation. To be concrete, a quantum register such that the o
maximum Schmidt number of any bipartition is bounded atWhere ¢, corresponds to a known heat-kernel coefficient
most by a polynomial in the size of the system can be simut21]. In terms of the number of spins present in the system,
lated efficiently by classical means. The figure of maeyit this leading universal scaling behavior can be written as
proposed in[8] is the maximum Schmidt number of any E ~ p@-D/d 2
bipartitioning of the quantum state or, in other words, the

maximum rank of the reduced density matrices for any posftwhich reduces to a logarithmic law far=1). This explicit
sible splitting. It can be proved that=25"), where the von  dependence of entanglement on dimensionality throws addi-
Neumann entrop¥(p) refers to the reduced density matrix tional light on some well-established results from quantum
of either of the two partitions. lj=0(poly(n)) at every step  computation.

of the computation in a quantum algorithm, then it can be A similar situation is present in quantum adiabatic algo-
efficiently classically simulated. Exponential speedup overithms, initially introduced by Farhet al. [23], where the
classical computation is possible only if at some step in thedamiltonian of the system depends on a control paranseter
computationy ~ exp(n?), or E(p) ~nP, a andb being posi-  which in turn has a given time dependence. The Hamilto-
tive constants. In order to exponentially accelerate the pemians related to adiabatic quantum computation for solving
formance of classical computers, any quantum algorithnrsomeNP-complete problemg$such as three-variable satisfi-
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ability (3-SAT) or exact cover can be directly mapped to exr ®
interactive nonlocal spin systems, and therefore we can ex| 0> Un U QFT @
tend the study of entanglement to include this kind of Hamil- o, @ f
tonian. This point of view has the additional interest of being ' > =)
directly connected to the possibility of efficient classical
simulations of the quantum algorithm, by means of the pro- FIG. 1. Quantum circuit for the order-finding algorithm for the
tocol proposed in Ref8]. modular exponentiation function.

In this paper we analyze the scaling of the entropy of
entanglement in several quantum algorithms. More conn anda'?+1 is a nontrivial factor oiN. Therefore, the fac-
cretely, we focus on Shor’s quantum factoring algorif#]  toring problem has been reduced to the order-finding prob-
and on a quantum algorithm solving by adiabatic evolutionem of the modular exponentiation functia mod N, and it
the NP-complete exact cover problef@5], finding for both s at this point where quantum mechanics comes into play.
of them evidence of a quantum exponential speedup withrhe procedure can be cast in two different ways.
linear scaling of quantum correlations, which makes difficult
the design of an efficient classical simulation. We study fur- 1. Shor's proposal for order finding
thermore the adiabatic implementation of Grover’s quantum ) )
bounded quantity even at the critical point, regardless of th@f K qubits(such that 2 [N?,2N?]) and a target register of
size of the system. n=[log, N] qubits (where the brackets indicated the closest

We have structured the paper as follows. In Sec. Il webigger integer. The performance of the quantum algorithm
analytically address the study of quantum entanglemer® shown in Fig. 1, where we are making use of the Had-
present in Shor’s factoring algorithm. We consider the probamard gate initially acting over thequbits of the source, the
lem of universal scaling of entanglement at the critical pointunitary implementation of the modular exponentiation func-
of an adiabatic quantum algorithm solving tN&-complete ~ tion
exact cover problem in Sec. Ill, where we present numerical
results for systems up to 20 qubits. In Sec. IV we focus on Udax) = [a)|(x + a% modN) 3
the adiabatic implementation of Grover’s quantum search al- .
gorithm, and derive analytical expressions for the study ofWhere|q) and|x) respectively belong to the source and tar-
entanglement in the system. Finally, in Sec. V we collect thedet registers and the quantum Fourier transform operator
conclusions of our work.

1 k-1
Ay == > ™2 ), (4)
Il. SCALING OF ENTANGLEMENT IN SHOR'’S 2% o
FACTORING ALGORITHM
. _ , All these operations can be efficiently implemented by
_Itis believed that the reason why Shor’s quantum algoeans of one- and two-qubit gates. Finally, a suitable clas-
rithm for factorization[24] so clearly beats its classical rivals gjca| treatment of the final measurement of this quantum

is rooted in the clever use it makes of quantum entanglemen&gorithm provides us with in a few steps, and therefore the
Several attempts have been made to understand the behavm;me factorization oN in a time O((log, N)3).

of the quantum correlations present throughout the computa-
tion [6,7]. In our case, we will concentrate on the study of
the scaling behavior for the entanglement entropy of the sys-
tem. We shall first remember both Shor’s origifia4] and We refer the interested reader[&8] for more details. The
the phase-estimatiof29] proposals for the factoring algo- quantum circuit is similar to the one shown in the previous
rithm and afterward we shall move to the analytical analysissection but slightly modified, as is shown in Fig. 2. The
of their quantum correlations. unitary operatolV; to which the phase-estimation procedure
is applied is defined as

2. Phase-estimation proposal for order finding

A. The factoring algorithm Vf|x> - |(a x)mod N) (5)
The interested reader is addressed2é,29-31 for pre-
cise details. Given an odd integirto factorize, we pick up [notice the difference between expressi¢hsand (3)], be-
a random numbea€[1,N]. We make the assumption thet ing diagonalized by the eigenvectors
andN are co-primegotherwise the greatest common divisor

of a andN would already be a nontrivial factor &f). There r ®

exists a smaller intege)rle[l,N], called theordt? of the 17 Un T QFT =9
modular exponentiatiom®* mod N, such thata” modN=1. &n @

Let us assume that the we have chosen is such thats 11>7 £ Vi K
even anda”’?> modN+# -1, which happens with very high

probability [bigger than or equal to 12 log, N)]. This is the FIG. 2. Phase-estimation version of the quantum circuit for the

case of interest because then the greatest common divisor ofder-finding algorithm. The controlled operationAgV;).
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1 7t . and the last equation would be exact. This is not neces-
lvg) = T/zz e 2™sP"|aP mod N) (6)  sarily the case, but the corrections to this expression vary
™ p=0 as O(1/29, thus being exponentially small in the size of
such that the system.
‘ It follows from expression(12) that the rank of the re-
Vilvog = €™ vy, (7)  duced density matrix of the target register at this point of the
and satisfying the relatiofil/r?)3% [vy)=|1). The opera- computation Is

tor is applied over the target register, being controlled on the rank prarged = I - (13

bits of th i h that . . .
qublts ot the source In such a way tha Because €[1,N], this rank is usuallyD(N). If this were not

AV = [)HVEX), (8) the case, for example, if were O(log, N), then the order-

. finding problem could be efficiently solved by a classical
where byA(Vy) we understand the full controlled operation naive algorithm and it would not be considered as classi-

?‘0“”9 over t'he whole system, which can be efﬁCi.emecaIIy hard. Becaus@|l is exponentially big in the number
implemented in terms of one- and two-qubit gates. As in the,¢ ¢, hits we have found a particular bipartition of the
previous case, the information provided by a final measureg stem(namely, the bipartition between the source regis-
ment of the quantum computer enables us to get the facto r and the target registeand a step in the quantum al-

of N'in a time O((logz N)°). gorithm in which the entanglement, as measured by the
rank of the reduced density matrix of one of the sub-
systems, is exponentially big. This implies in turn that
We choose to study the amount of entanglement betweefihor’'s quantum factoring algorithm cannot be efficiently
the source and the target register in the two proposed quastassically simulated by any protocol in R¢8], owing to
tum circuits, right after the modular exponentiation operatiorthe fact that at this step=0O(N), therefore constituting an
U; (Fig. 1) or the controlledv; operation(Fig. 2), and before inherent exponential quantum speedup based on an expo-
the quantum Fourier transform in both cases. At this step ofientially big amount of entanglement. It is worth noticing
the computation, the pure quantum state of the quanturthat the purpose of the entanglement between the two reg-
computer is easily seen to be exactly the same for both quarmsters consists in leaving the source in the right periodic
tum circuits, and is given by state to be processed by the quantum Fourier transform.
Measuring the register right after the entangling gate dis-
entangles the two registers while leaving the source in a
l) = K2 > lopfa® modNy, 9 periodic state, and this effect can be accomplished only by
=0 previously entangling the source and target. These conclu-
and therefore the density matrix of the whole system is  sions apply both to Shor’s original propos@ircuit of
oy Fig. 1) and to the phase-estimation versi@ircuit of Fig.

1 , 2).
)l = > 2 (laXg’))(|a* mod N)(a® mod NJ). The behavior of the rank of the system involves the fact
a.9'=0 that the entropy of entanglement of the reduced density ma-
(10) trix at this point will mainly scale linearly with the number

. ) . of qubits,E~log, r ~log, N~ n, which is the hardest of all
Tracing out the quantum bits corresponding to the source, W possible scaling laws. We will again find this strong be-

get the density matrix of the target register, which reads havior for the entropy in Sec. IIl.

Ptarget™ trsourcm£| 7% lM)

B. Analytical results

k-1

ok 1 Ill. SCALING OF ENTANGLEMENT
— E( 2 ((plq)(q’lp))(laq mod N)(a%" mod N|), IN AN NP-COMPLETE PROBLEM
P.a.qr=0 We now turn to analyzing how entanglement scales for a
(1)  quantum algorithm based on adiabatic evoluti@3], de-
that i signed to solve thé&P-complete exact cover problef25].
atis, We first briefly review the proposal and then we consider the
2k-1 study of the properties of the system, in particular the behav-
Prarget= o > |aP mod N)(a mod N| ior of the entanglement entropy for a given bipartition of the
R eard ground state.
r-1
~ FE |aP mod N){a” mod NJ|. (12 A. Adiabatic quantum computation
p=0

The adiabatic model of quantum computation deals with
The last step comes from the fact ttditmod N=1, where the problem of finding the ground state of a given system
r&[1,N] is the order of the modular exponentiation. [f 2 represented by its Hamiltonian. Many relevant computational
were a multiple ofr there would not be any approximation problems(such as 3-SAY can be mapped to this situation.
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FIG. 3. Evolution of the entanglement entropy between the two  FIG. 4. Energies of the ground state and first excited state for a
blocks of sizen/2 when a bipartition of the system is made, on typical instance with one satisfying assignment of exact cover in the
average over 300 different instances with one satisfying assignmentase of ten qubitgin dimensionless unijs The energy gap ap-

A peak in the correlations appears ®r~0.7 in the three cases.  proaches its minimum a,~0.7.

The method is briefly summarized as follows. We start fromtime is O(poly(n)), whereas if the gap is exponentially
a time-dependent Hamiltonian of the form small [O(2™")] the algorithm takes an exponentially large
time to reach the solution.

H(S() =[1 =) JHo + s(OHy, (14) The explicit functional dependence of the paramstér
whereH, andH,, are the initial and problem Hamiltonians, on time can be very diverse. The point of view we adopt in
respectively, and(t) is a time-dependent function satisfying the present paper is such that this time dependence is not
the boundary conditions(0)=0 ands(T)=1 for a givenT.  taken into account, as we study the properties of the system
The desired solution to a certain problem is codified in theas a function ofs, which will be understood as the Hamil-
ground state oH,,. The gap between the ground and the firsttonian parameter. We will in particular analyze the entangle-
excited states of the instantaneous Hamiltonian at timui ment properties of the ground state ldfs), as adiabatic
be calledg(t). Let us defineg,,, as the global minimum of quantum computation assumes that the quantum state always
g(t) for tin the interval[0,T]. If at time T the ground state remains close to the instantaneous ground state of the Hamil-
is given by the statéE,;T), the adiabatic theorem states tonian throughout the computation. Note that we are dealing
that if we prepare the system in its ground state=a®  With a system which is suitable to undergo a quantum phase
(which is assumed to be easy to prepaaed let it evolve transition at some critical value of the Hamiltonian param-

under this Hamiltonian, then eter, and therefore we expect to achieve the biggest quantum
5 correlations at this point. The question is how these big

(Eo; TP =1 - €, (15 quantum correlations scale with the size of the system when
provided that dealing with interesting problems. This is the starting point

for the next two sections.
maxdH; /dt
Ay g _ .
Imin B. Exact cover

whereH, , is the Hamiltonian matrix element between the ~TheNP-complete exact cover problem is a particular case
ground and first excited states< 1, and the maximization is of the 3-SAT problem, and is defined as follows. Givenithe
taken over the whole time intervgD, T]. Because the prob- Boolean variables(x}iz1. ,, =0, 1 0 i, wherei is re-
lem Hamiltonian codifies the solution to the problem in its garded as the bit index, we define€lauseof the exact cover
ground state, we get the desired solution with high probabilinvolving the three qubits, j, andk (say, clauseC) by the

ity after a timeT. A closer look at the adiabatic theorem tells equationx;+x;+x.=1. There are only three assignments of
us thatT dramatically depends on the scaling of the inversethe set of variablesx;,x;,xJ that satisfy this equation,
of gﬁ]m with the size of the system. More concretely, if the namely,{1,0,03, {0,1,0, and{0,0,1. The clause can be
gap is only polynomially small in the number of qubits, more specifically expressed in terms of a Boolean function in
that is to say, it scales &(1/poly(n)), the computational conjunctive normal forr{CNF) as

D (X, X, %0 = (% 0% Ox) O(=x 0 =% 0 =x) O(=x 0 =% Ox) O(=x 0% 0 =x9 O 0 —=x0 =%, (17)
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S0 ¢c(Xi, %}, %) =1 as long as the clause is properly satisfied.computational states. Observe tHats) is, apart from a

An instanceof exact cover is a collection of clauses which constant factor, a sum of terms involving local magnetic

involves different groups of three qubits. The problem is tofields in the x and z directions, together with two- and

find a string of bits{x;,x%,,...,%,} that satisfies all the three-body interaction coupling terms in taeomponent.

clauses. This system is suitable to undergo a quantum phase tran-
This problem can be mapped into finding the ground statsition (in the limit of infinite n) assis shifted from 0 to 1.

of a HamiltonianH, in the following way. Given a clausg,  The study of this phenomenon is the aim of the following

define the Hamiltonian associated with this clause as section.

1 1 1
He= 5(1 ""Tiz)i(l "'sz)i(l +0y) C. Numerical results up to 20 qubits

1 1 1 We have randomly generated instances for exact cover

+-(1-0))5(1-0))-(1-0}) with only one possible satisfying assignment and have con-

2 2 2 structed the corresponding problem Hamiltonians. Instances

1 1 1 are produced by adding clauses at random until there is ex-

5 —Of)é(l —Of)§(1 +0y) actly one satisfying assignment, starting over if we end up
with no satisfying assignments. According[&b], these are

o 1 o 1 o believed to be the most difficult instances for the adiabatic
+51-0)5(1+0)7(1 -0y algorithm. Our analysis proceeds as follows.
+ }(1 + a'iz)l(l _ a'jz)l(l _ 0.@ (18) 1. Appearance of a quantum phase transition

2 2 2 '

We have generated 300 exact cover instan@e9 ran-
where we have definea?0)=|0), 041)=-|1). Note the par- dom Hamiltonians with a nondegenerate ground $tatel
allelism between Egqq17) and (18). The quantum states of have calculated the ground state for 10, 12, and 14 qubits for
the computational basis that are eigenstateld ofvith zero  different values of the parametsiin steps of 0.01. We then
eigenvalugground statésare the ones that correspond to the consider a particular bipartition of the system into two blocks
bit string which satisfiesC, whereas the remainder of the of n/2 qubits, namely, the firsh/2 qubits versus the rest,
computational states are penalized with an energy equal to &and have calculated the entanglement entropy between the
Now we construct the problem Hamiltonian as the sum of altwo blocks. For each of the randomly generated Hamilto-
the Hamiltonians corresponding to all the clauses in our parnians we observe a peak in the entanglement entropy around

ticular instance, that is to say, a critical value of the parametegg~0.7. We have averaged
the curves obtained over the 300 instances and have obtained
Ho= > He (190 the plot from Fig. 3.
C & instance The point at which the entropy of entanglement reaches

so the ground state of this Hamiltonian corresponds to théS maximum value is identified as the one corresponding to
quantum state whose bit string satisfas the clauses. We the critical point of a quantum phase transition in the system
have reduced the original problem stated in terms of Booleaf" the limit of |nf|n|te size. ThI.S interpretation is reinforced
logic to the hard task of finding the ground state of a two-PYy the observation of the typical energy eigenvalues of the
and three-body interactive spin Hamiltonian with local mag-Systém. For a typical instance of ten qubits we observe that
netic fields. Observe that the couplings depend on the paf'® energy gap between the ground state and the first excited
ticular instance we are dealing with, and that the spin systerfitate reaches a minimum precisely for a value of the param-
has neither ara priori well-defined dimensionality nor a €ters.~0.7 (see Fig. 4. . .
well-defined lattice topology, in contrast with some more Ve observe from Fig. 3 that the peak in the entropy is
usual simple spin models. highly asymmetric with respect to the paramesek detailed
We now define ours-dependent Hamiltoniahi(s) as a  Study of the way this peak diverges near the critical region
linear interpolation between an initial Hamiltoniat, and ~ S€€Ms to indicate that the growth of entanglement is slower
H. - at the beginning of the evolution and fits remarkably well a
P curve of the typeE ~ log|log(s—s,)|, whereas the decrease of
H(s) = (1 -9)Hq + sH;, (200 the peak is better parametrized by a power Bw |s—s] @
with @~ 2.3, @ being a certain critical exponent. These laws
governing the critical region fit the data better and better as
the number of qubits is increased.

where we take the initial HamiltoniaH, to be basically a
magnetic field in thex direction; more concretely,

n

d:
Ho= >, El(l -ay), (21) 2. Analysis of different bipartitions of the system
=
' Explicit numerical analysis for ten qubits tells us that all
whered; is the number of clauges in which qubiappears, possible bipartitions for each one of the instances produce
and o*+)=[+), with |+)=(1/12)(|0)+|1)), so the ground entropies at the critical point of the same order of

state ofH, is an equal superposition of all the possible magnitude—as expected from the nonlocality of the interac-
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FIG. 5. Minimum and maximum entropy over all possible bi-
partitions of a ten-qubit system for each of the 300 randomly gen-

FIG. 7. Scaling of the minimum energy g&m dimensionless
units) with the size of the system, both in the worst case and in the

erated instances of exact cover. Instances are sorted such that trlﬁ%an case over all the randomly generated instances. Error bars
minimum entanglement increases monotonically.

give 95% confidence level for the mean.

tions. This is represented in Fig. 5, where we plot the mini-

mum and maximum entanglement obtained from all the pos-
sible partitions of the system for each one of the generated
instancegpoints are sorted such that the minimum entropy

monotonically increases

Similar conclusions derive from the data plotted in Fig. e
where we have considered the same quantities again b%
looking at 64 partitions of the ground state for 10 different
instances of 16 qubits. According to these results we restri
ourselves in what follows to the analysis of a particular bi-
partition of the system, namely, the finrst2 qubits versus

the rest.

It is worth emphasizing that the existence of a single par-
tition with exponentially large entanglement makes the algo-
rithm not amenable to classical simulation. The above resul
is stronger and shows that essentially all partitions are highl
entangled. The system is definitely hard to simulate by clas-

sical means.

2.6

3. Scaling laws for the minimum energy gap
and the entanglement entropy

To characterize the finite-size behavior of the quantum
6 phase transition, we have generated 300 random instances of
‘exact cover with only one satisfying assignment from six to
qubits, and studied the maximum von Neumann entropy
fpr a bipartition of the system as well as the minimum gap,
'Soth in the worst case and in the mean case over all the
randomly generated instances. We must point out that the

scaling laws found in this section are limited to the small
systems we can handle with our computers. Increasing the
number of qubits may lead to corrections in the numerical
esults, which would be of particular importance for a more
precise time-complexity analysis of the adiabatic algorithm.
¥igure 7 represents the behavior of the gap in the worst and
mean cases. From Fig. 8 it is noticed that the gap seems to
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FIG. 6. Minimum and maximum entropy over 64 bipartitions of

4

5

6

sorted instance

0.1 0.12 0.14 0.16
1/

0.05
10 0.04 0.06 0.08 0.18

FIG. 8. Minimum energy gagn dimensionless unijsrersus the

a 16-qubit system for ten randomly generated instances of exadhverse size of the system, both in the worst case and in the mean
cover. Instances are sorted such that the minimum entanglemenase over all the randomly generated instances. Error bars give 95%
increases monotonically. confidence level for the mean. The behavior is apparently linear.
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S - - T T T - - not necessarily imply that the quantum computer runs expo-
28 mean entanglement ro— s nential}y fas.ter_ than the classical one, as our time-complexity
26 maximum entanglement + y analysis is limited to 20 qubits.
24 * ¥ 8 The linear behavior for the entropy with respect to the
22} . size of the system could in principle be expected according
£ 2t + 5 to the following qualitative reasoning. Naively, the entropy
E 18} g was expected to scale as the area of the boundary of the
g’ 16 F . + s & 4 splitting, according to some considerations taken from con-
5 14l s 4 formal field theory(see[13,14,19-2]). This area law is in
12k _ some sense natural: because the entropy value is the same for
3 . . .. .
ik . . ] both density matrices arising from the two _subsystems, it can
o8k . . ] only be a function of th_elr shared properties, and these are
osL o l geometrically encodeq in the area of the common boundary.
0 Lt . . . . . . . For a system ofi qubits, this implies a scaling law for the
T s 8 10 12 14 16 18 20 entropy like E~n(@2/d (which reduces to a logarithm for

d=1). Our system does not have a well-defined dimension-

FIG. 9. Scaling of the entanglement entropy for an equally sized/Ity; but, Owing to the fact that there are many random two-
bipartition of the system, both in the worst case and in the mea@nd three-body interactions, the effectivieacta) dimen-
case over all the randomly generated instances. Error bars give 958ionality of the system should be very large. Therefore, we
confidence level for the mean. The data are consistent with a line@Xpect a lineafor almost linear scaling, which is what we
scaling. obtained numerically. The data seem to indicate that such an

effective dimensionality is aroundl~ n, thus diverging as

obey a scaling law of the styl®(1/n), n being the number 90€s to infinity. . .
of qubits, which would assure a polynomial-time quantum IS possible to compare our appargntly linear scaling of
computation. This law is in agreement with the results inth® mean entropy of entanglement with the known results
[25] and in concordance with the idea that the energy ga@btained by averaging this quantity over the entire manifold
typically vanishes as the inverse of the volume in condenseff n-qubit pure states, with respect to the natural Fubini-
matter systemsghere the volume is the number of qubits Study measure. According to the results conjectured by Page
Error bars in the two plots give the 95% confidence level in[32] and later proved inf33], the average entropy for an
the numerically calculated mean. equally sized bipartition of a randomqubit pure state in the
We have considered as well the scaling behavior of thdargen limit can be approximated b~ (n/2)-1/(2In2)
entanglement entropy for an equally sized bipartition of the(in our notation, therefore also displaying a linear scaling
system, also in the worst and in the mean cases. The dakaw (but different from ours In fact, this is an indicator that
obtained from our simulations are plotted in Fig. 9, wheremost of then-qubit pure states are highly entangled, and that
the error bars give the 95% confidence level in the mean, an@diabatic quantum computation naturally brings the system
seem to be in agreement with a strongly linear scaling oflose to these highly entangled regions of the pure state
entanglement as a function of the size of the number of qutanifold (more information about the average entanglement
bits. More concretely, a numerical linear fit for the mean©f ann-qubit system can be found {i34]).
entanglement entropy gives us the ld&w-0.1n. Observe
that the entropy of entanglement does not become saturated 4. The entanglement-gap plane

at its maximum allowed valuévhich would beE=n/2 for The plots in Fig. 10 and Fig. 11 show the behavior of the

n qubits, so we can say that only 20% of all the possible ye oy in the entanglement versus the gap, both again in the
potential available entanglement appears in the quantum alyerage and in the worst case for all the generated instances.

gorithm. Linearity iln the sca}ling !aw Wou.Id imply that t.his Clearly, as the gap becomes smaller the production of en-
quantum computation by adiabatic evolution, after a suitablg, o jement in the algorithm increases. A compression of the

discretization of the continuous time dependence, could NQlnerqy |evels correlates with high quantum correlations in
be classically simulated by the protocol of Rg8]. Given .o system

that the scaling of the gap seems to indicate that the quantum
computation runs for a time polynomial in the size of the
system, our conclusion is that apparently we are confronted
with an exponentially fast quantum computation that seems The critical points, seems to be bounded by the values of
extremely difficult(if not impossible to simulate efficiently s associated with the minimum gap and with the maximum
by classical means. This could be an inherent quantum meentropy. Actually, the critical point corresponding to the
chanical exponential speedup that can be understood in termsinimum size of the energy gap is systematically slightly
of the linear scaling of the entropy of entanglement. Notebigger than the critical point corresponding to the peak in the
also the parallelism with the behavior of the entanglemenentropy. On increasing the size of the system, these two
found in Shor’s algorithm in Sec. Il. As a remark, our nu- points converge toward the same value, which would corre-
merical analysis shows that the quantum algorithm is diffi-spond to the true critical point of a system of infinite size.
cult to simulate classically in an efficient way, which doesThis effect is neatly observed in Fig. 12, which displays the

5. Convergence of the critical points
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FIG. 10. Mean entropy of entanglement versus mean size of the FIG. 12. Mean critical point for the energy gap and for the

energy gap(in dimensionless unijs Error bars give 95% confi-  enyony Error bars give 95% confidence level for the means. Note

genc? Ie\:oe_: for the means. Each point corresponds to a fixed NUM5¢ they tend to approach as the size of the system is increased.
er of qubits.

Hamiltonian is noninteracting Linear scaling of entangle-
values ofs associated with the mean critical points both for ment should therefore be a universal law for these kinds of
the gap and for the entropy as a functionnof quantum algorithms. The specific coefficients of the scaling
law for the entropy should be a function only of the connec-
tivity of the system, that is, of the type of clauses defining

All the above results suggest that the system comes clogée instances.
to a quantum phase transition. The characterization we have We have explicitly checked this assertion by numerical
presented based on the study of averages over instances &#nulations for clauses of exact cover but involving four
constructs its universal behavior. The results do not depengubits(x; +X;+x,+x=1), which is a particular case of 4-SAT.
on particular microscopic details of the Hamiltonian, such adn Fig. 13 we plot the behavior of the entropy of entangle-
the interactions shared by the spins or the strength of locahent for a ten-qubit system for these types of clauses and
magnetic fields. Any adiabatic algorithm solvingkeSAT  compare it to the same quantity calculated previously for the
problem and built in the same way we have done for exactlauses involving three qubitshe usual exact cover Hamil-
cover should display on average exactly the same propertidenian). We observe again the appearance of a peak in the
we have found regardless of the valuekpfwhich follows  entropy, which means that the system is evolving close to a
from universality(the casek=2, though not beindgN\P com-  quantum phase transition.
plete [37], should also display this property as its Hamil-  Figures 14 and 15, respectively, show the scaling of the
tonian would also consist of local interactions in a high-energy gap in the mean and worst cases and the scaling of
dimensional lattice; k=1 is a particular case, as its

6. Universality

1
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FIG. 13. Entanglement as a function of the Hamiltonian param-
FIG. 11. Maximum entropy of entanglement versus minimumeter for clauses of exact cover involving thrée=3) and four(k
size of the energy gafin dimensionless unijs Each point corre- =4) qubits, for a ten-qubit system, averaged over all the randomly
sponds to a fixed number of qubits. generated instances.
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0.6 - T - T tonian evolution[26—28 and study its properties as a func-
miean ggg IV I tion of the number of qubits and the parameteiFor this
05 - 1 problem, it is possible to compute all the results analytically,
so we shall get a closed expression for the scaling of en-
04 - . tanglement. As a side remark, it is worth noting that the
treatment in[8] is not valid for oracular problems as it is
g o3t i . assumed that all quantum gates are known in advanced. In-
: dependently of this issue, we shall see that the system re-
ool £2 T x mains little entangled between calls to the oracle.
0.1 . A. Implementation of Grover's searching algorithm
X x x with adiabatic quantum computation
0 0001 0002 0003 o008 0.005 Grover’s searching algorithif26] can be implemented in
14n%) adiabatic quantum computation by means ofgttependent
Hamiltonian

FIG. 14. Minimum energy gagin dimensionless unijsversus
1/(n%), both in the worst and in the mean cases over all the ran- H(s) = (1 —9)(I = |s)(g]) + s(I = [Xo){Xq)), (22
domly generated instances of clauses involving four qubits, up to N
n=16. Error bars give 95% confidence level for the mean. ThaNhere|s>E(1/2“/2)2)2(:61|x>, n is the number of qubits, and
behavior seems to be linear. %) is the marked state. The computation takes the quantum
state from an equal superposition of all computational states
the peak in the entropy in the mean and worst cases as weflirectly to the statgxy), as long as the evolution remains
up to 16 qubits. Error bars again give 95% confidence level@diabatic. The time the algorithm takes to succeed depends
for the means. The behavior is similar to the one alreadpn how we choose the parametrizationsof terms of time.
found for the instances of exact cover involving three qubitsOur aim is to compute the amount of entanglement present in
(Figs. 8 and § which supports the idea of the universality of the register, and we need not deal with the explicit depen-
the results. The minimum energy gap seems to scale in thigence of the parametsron time and its consequencésee
case as-1/n° (n being the number of qubitswhich would ~ [27,28 for further information about this topic
again guarantee a polynomial-time quantum adiabatic evolu- It is straightforward to check that the Hamiltonig®2)
tion. has its minimum gap between the ground and first excited
states as=0.5, which goes to zero exponentially fast as the
number of qubits in the system is increased. Therefore, this
IV. SCALING OF ENTANGLEMENT IN ADIABATIC Hamiltonian apparently undergoes a quantum phase transi-
GROVER'S ALGORITHM tion in the limit of infinite size ats=0.5. Quantum correla-

Let us now consider the adiabatic implementation oftions approach their maximum for this value offor more
Grover’s quantum searching algorithm in terms of a Hamil-?é’s]?rovers problem as a quantum phase transition, see

16 T 1 T T T T
mean entanglent +e— + B. Analytical results
maximum entanglent +
14 + T It can be seer(see, for example[36]) that the ground
state energy of the Hamiltonian given in E@2) corre-
12 + 4 sponds to the expression
g 3
£ 1 4
3 1t * - E_(s)=—<1—\/(1—25)2+—ns(1—s)), (23
8 U 2 2
5 3
08 I ¥ § where s is the Hamiltonian parameter. The corresponding
2 normalized ground state eigenvector is given by
Y z i
[E(s)=alx) +b X [%), (24
3 X?tXO
04 é ;3 1Io 1I2 1I4 1Ie
n where we have defined the quantities
FIG. 15. Scaling of the entanglement entropy for an equally a= ab,

sized bipartition of the system, both in the worst and in the mean

cases over all the randomly generated instances of clauses involving

four qubits, up ton=16. Error bars give 95% confidence level for P=—
the mean. The data are consistent with a linear scaling. 2"—1+a?
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-1 bounded quantity of quantum correlations is enough to give a
Q= on_ 1 _rony(q1 — . (25 square root speedup.
2"-1-[2"(1 -9)]E_(s) -
We have explicitly calculated the von Neumann entropy
In all the forthcoming analysis we will assume that thefor p,,,. Because the rank of the reduced density matrix is 2,
marked state corresponds [i)=|0), which will not alter  there are only two nonvanishing eigenvalues that contribute
our results. The corresponding density matrix for the groundn the calculation, which are
state of the whole system ofqubits is then given by

—} 1 _ n2 _ _Rp2
pn=b(a? = 20+ 1)|0)(0] + B2 (t] + (= (| 40| +[0) he=pllEVIZAZT-DAC-BY] (30
X(¢)), (26)  We analyze the limih— o for s# 0.5 ands=0.5 separately.

(a) s#0.5. In the limit of very highn we can approximate

where we have definedp) as the the unnormalized sum of the ground state energy given in Ha3) by

all the computational quantum statéscluding the marked
one, |¢)EE)2(261|X>. Taking the partial trace over half the
qubits, regardless of which/2 qubits wechoose, we find
the reduced density matrix

E_(s) ~ %[1 -V1-4s(1-9)]. (31

Therefore, the quantity
P2 = b(a” = 2+ 1)|0"X0'| + 2207 ¢ X&' | 1
+ b= 1)(|§' )0 +[0")(¢')), (27) T E 99 (32)
where we understand thi') is the remaining marked state diverges ats=0.5, which implies that this limit cannot be
for the subsystem ofi/2 qubits and|¢’>52§:0‘1|x> is the  correct for that value of the parameter. The closer we are

remaining unnormalized equal superposition of all theto s=0.5, thebigger isa. In this limit we find that
possible computational states for the subsystem. Defining

2 /2
the quantities A~ %, (33)
a“+2
A aZ + 2n/2 -1
A+ 2'-1 . o+ 22 y
a2+ 2" (34)
B a+2V2-1
= n g n/2
a +2"-1 2
-z (39
2n/2 . o
C= (28) where all these quantities tend to zeronas . It is impor-

A+2'-1 tant to note that the convergence of the limit depends on the

[note thatA+(2"2—1)C=1], the density operator for the re- value of a or, in other words, how close ts=0.5 we are.

duced £1/2 qubi b di ) The closer we are te=0.5, theslower is the convergence,
t;[i(i)en assystem 0 qubits can be expressed In matrix NO- 5y therefore any quantity depending on these parameters

(such as the entropywill converge more slowly to its
AB - B asymptotic value. For the eigenvalues of the reduced den-

sity matrix we then find that when— o
Pr2={ . . . | (29

1
Do A — =(1%1), (36)

where its dimensions aré’2x 272, We clearly see that the O A+~1 andh-~0, and therefore the asymptotic entropy is

density matrix has rank equal to 2. Therefore, because E(s# 0.5,n— %) =-\,log, A, - \_log, \_=0.
rank(p) =25% Op [where E(p) is the von Neumann en- 37
tropy of the density matrixp], we conclude thaE(p,»),

which corresponds to our entanglement measure betweerhe convergence of this quantity is slower as we move to-
the two blocks of qubits, is always1. This holds true wards=0.5.

even for nonsymmetric bipartitions of the complete sys- (b) s=0.5 We begin our analysis by evaluating the quan-
tem. Regardless of the number of qubits, entanglement itities ats=0.5 and then taking the limit of large size of the
Grover's adiabatic algorithm is alwaysb@undedquantity — system. We have that(s=0.5=(2"-1)/(2V?-1)~2"2,

for anys, in contrast with the results obtained in the previousFrom here it is easy to get the approximations

sections for Shor’s factoring algorithm and for the exact

cover problem. Grover’s adiabatic quantum algorithm essen- A~ 1

tially makes use of very little entanglement, but even this 2’
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FIG. 16. Von Neumann entropy for the reduced system as a FIG. 17. Von Neumann entropy for the reduced systens at
function of s for 10, 12, and 14 qubits. As the size of the system=0.5 as a function oh. For infinite size of the system there is
increases the entropy tends to zero at all points, except@ts  Ssaturation at 1.
where it tends to 1.

point, which is reminiscent of short ranged quantum correla-

1 tions in quantum spin chairts.

B~ PYER Let us note that, in the limit of infinite size, the quantum
state in Grover’s algorithm is separable with respect to any
bipartition of the systenand therefore not entangled, as it is

1 a pure statgfor anys except fors=0.5. All the entanglement
C~ Sz (38)  throughout the algorithm is concentrated at this point, but

this entanglement is still a bounded quantity and actually
equal to 1. Consequently, a small amount of entanglement
appears essentially only at one point when the size of the
system is big, whereas the rest of the algorithm needs to
N ~ }{1 + \/1 -4 21/2<}i _ i)} - 1 + 1 handle just separable states. We point out that these results

2 422 n 27 w4 apply as well to the traditional discrete-time implementation
(39) of Grover’s searching algorithm, as the states between itera-

tions are the same as in the adiabatic version for disarete

values.

and therefore

so\;—3 and E(s=0.5,n—x)=1. According to Eq.(39)
we can evaluate the finite-size corrections to this behavior
and find the scaling of the entropy with the size of the
system for very large. The final result for the entropy at
the critical point reads In this paper we have studied the scaling of the entangle-
ment entropy in several quantum algorithms. In particular,
we have proved analytically that Shor’s factoring algorithm
makes use of an exponentially large amount of entanglement
between the target register and the source register after the

Note that the entropy remains bounded and tends to & for _modular exponentiation operation, which in turn implies the

=0.5 as a square root in the exponential of the size of thémpossibility of an efficient classical simulation by means of

system, which is the typical factor in Grover’s quantumthe protocpl of Ref[8]. Fu.rthermo.re, we haye provided nu-
algorithm. merical evidence for a universal linear scaling of the entropy

We have represented the evolution of the entanglemert/th the size of the system together with a polynomially
entropy as a function df for different sizes of the system in SMall gap in a quantum algorithm by adiabatic evolution
Fig. 16 and have plotted in Fig. 17 the maximum value of thedewsed to SO!V? theN P—complt_ate exact cover problgm,
entropy along the computation as a function of the size of th&herefore obtaining a polynomial-time quantum algorithm
system according to the expression given in ). We can
now compare the two plots with Fig. 3 and Fig. 9 in the Ia somewhat similar situation is present in one-dimensional quan-
previous section. The behavior for the entropy in Grover'stum spin chains outside the critical region, where the entanglement
adiabatic algorithm is dramatically different from the one entropy also reaches saturation when the size of the system is in-
observed in theNP-complete problem. Entanglement gets creased14]. Saturation does not appear in higher dimensional sys-
saturated in Grover’s adiabatic algorittewen at the critical tems.

V. CONCLUSIONS

4
E(s=0.5n>1)~1-——2"2, (40)
In2
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TABLE |. Entanglement scaling laws in different problems, in order of decreasing complexity.

Problem Entanglement scaling
Adiabatic exact cover quantum algorithm E=0(n)
Shor’s quantum factoring algorithm E=0(log, r) ~O(n)
Critical d-dimensional spin networks E=0(n(@-Drd)
Critical one-dimensional spin chains E=0(log, n)
Noncritical one-dimensional spin chains E=0(1)
Adiabatic Grover’s quantum algorithm E=0(1)

which would involve exponential resources if simulated clasknown that the so-called cluster state of the one-way quan-
sically, in analogy with Shor’s algorithm. The universality of tum computer can be generated by using Ising-like interac-
this result follows from the fact that the quantum adiabatictions on a planar two-dimensional lattif@8—4Q. This fact
algorithm evolves close to a quantum phase transition andan be related to the line@n the size of the boxbehavior
the properties at the critical region do not depend on particuef entropy for spin systems in two dimensions. One-
lar details of the microscopic Hamiltonigimstancg such as  dimensional models seem not to be able to efficiently create
interactions among the spins or local magnetic fields. Wahe highly entangled cluster stg#l]. Again, this fact can be
have also proved that the von Neumann entropy remains #aced to the logarithmic scaling law of the entropy in spin
bounded quantity in Grover’s adiabatic algorithm regardles§hains, which is insufficient to handle the large amount of
of the size of the system even at the critical point. Moreentanglement needed to carry out, e.g., Shor’s algorithm.
concretely, the maximum entropy approaches 1 as a squalote also thatd= 3)-dimensional systems bring unnecessar-
root in the size of the system, which is the typical Groverily large entanglement.
scaling factor. Quantum phase transitions remain as the more demanding
Our results show that studying the scaling of the entropysystems in terms of entanglement. They are very hard to
is a useful way of analyzing entanglement production insimulate classically. It is then reasonable to try to bring
quantum computers. Results from other fields of physicd\P-complete problems into a quantum phase transition
[19-27 can be directly applied to bring further insight into setup, which quantum mechanics handles naturally.
the analysis of quantum correlations. Different entanglement
scaling laws follow from different situations according to the ACKNOWLEDGMENTS
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