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We study the universality of scaling of entanglement in Shor’s factoring algorithm and in adiabatic quantum
algorithms across a quantum phase transition for both theNP-complete exact cover problem as well as
Grover’s problem. The analytic result for Shor’s algorithm shows a linear scaling of the entropy in terms of the
number of qubits, therefore making it hard to generate an efficient classical simulation protocol. A similar
result is obtained numerically for the quantum adiabatic evolution exact cover algorithm, which also shows
universality of the quantum phase transition near which the system evolves. On the other hand, entanglement
in Grover’s adiabatic algorithm remains a bounded quantity even at the critical point. The classification of
scaling of entanglement appears as a natural grading of the computational complexity of simulating quantum
phase transitions.
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I. INTRODUCTION

One of the main theoretical challenges in quantum-
computation theory is quantum-algorithm design. Some at-
tempts to uncover underlying principles common to all
known efficient quantum algorithms have already been ex-
plored although no definite and satisfactory answer has been
found yet. On the one hand, it has been seen that majoriza-
tion theory seems to play an important role in the efficiency
of quantum algorithms[1–3]. All known efficient quantum
algorithms show a step by step majorization of the probabil-
ity distribution associated to the quantum register in the mea-
surement basis. Therefore, efficient quantum algorithms
drive the system toward the final solution by carefully reor-
dering the probability amplitudes in such a way that a ma-
jorization arrow is always present. On the other hand, the
most relevant ingredient is likely the role entanglement plays
in quantum-computational speedup. Regarding this topic,
several results have recently been found[4–9] which suggest
that entanglement is at the heart of the power of quantum
computers.

An important result was obtained by Vidal[8], who
proved that large entanglement of the quantum register is a
necessary condition for exponential speed-up in quantum
computation. To be concrete, a quantum register such that the
maximum Schmidt number of any bipartition is bounded at
most by a polynomial in the size of the system can be simu-
lated efficiently by classical means. The figure of meritx
proposed in[8] is the maximum Schmidt number of any
bipartitioning of the quantum state or, in other words, the
maximum rank of the reduced density matrices for any pos-
sible splitting. It can be proved thatxù2Esrd, where the von
Neumann entropyEsrd refers to the reduced density matrix
of either of the two partitions. Ifx=O(polysnd) at every step
of the computation in a quantum algorithm, then it can be
efficiently classically simulated. Exponential speedup over
classical computation is possible only if at some step in the
computationx,expsnad, or Esrd,nb, a and b being posi-
tive constants. In order to exponentially accelerate the per-
formance of classical computers, any quantum algorithm

must necessarily create an exponentially large amount ofx at
some point.

Another topic of intense research concerns the behavior of
entanglement in systems undergoing a quantum phase tran-
sition [10]. Quantum correlations in critical systems have
been analyzed in many situations and using a wide range of
entanglement measurements[9,11–18]. In particular, it has
been noted[13,14,16,17] that some of these measurements
have important connections to well-known results arising
from conformal field theory[19–22]. More generally, when a
splitting of a d-dimensional spin system is made, the von
Neumann entropy for the reduced density matrix of one of
the subsystemsEsrd=−trsr log2 rd at the critical point
should display a universal leading scaling behavior deter-
mined by thearea of the region partitioning the whole sys-
tem. This result depends on the connectivity of the Hamil-
tonian and applies as is to theories with a Gaussian
continuum limit. For example, when separating the system
into the interior and the exterior of a sphere of radiusR and
assuming an ultraviolet cutoffx0, the entropy of, e.g., the
interior is

E = c1S R

x0
Dd−1

, s1d

where c1 corresponds to a known heat-kernel coefficient
f21g. In terms of the number of spins present in the system,
this leading universal scaling behavior can be written as

E , nsd−1d/d s2d

swhich reduces to a logarithmic law ford=1d. This explicit
dependence of entanglement on dimensionality throws addi-
tional light on some well-established results from quantum
computation.

A similar situation is present in quantum adiabatic algo-
rithms, initially introduced by Farhiet al. [23], where the
Hamiltonian of the system depends on a control parameters
which in turn has a given time dependence. The Hamilto-
nians related to adiabatic quantum computation for solving
someNP-complete problems[such as three-variable satisfi-
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ability (3-SAT) or exact cover] can be directly mapped to
interactive nonlocal spin systems, and therefore we can ex-
tend the study of entanglement to include this kind of Hamil-
tonian. This point of view has the additional interest of being
directly connected to the possibility of efficient classical
simulations of the quantum algorithm, by means of the pro-
tocol proposed in Ref.[8].

In this paper we analyze the scaling of the entropy of
entanglement in several quantum algorithms. More con-
cretely, we focus on Shor’s quantum factoring algorithm[24]
and on a quantum algorithm solving by adiabatic evolution
the NP-complete exact cover problem[25], finding for both
of them evidence of a quantum exponential speedup with
linear scaling of quantum correlations, which makes difficult
the design of an efficient classical simulation. We study fur-
thermore the adiabatic implementation of Grover’s quantum
search algorithm[26–28], in which entanglement is a
bounded quantity even at the critical point, regardless of the
size of the system.

We have structured the paper as follows. In Sec. II we
analytically address the study of quantum entanglement
present in Shor’s factoring algorithm. We consider the prob-
lem of universal scaling of entanglement at the critical point
of an adiabatic quantum algorithm solving theNP-complete
exact cover problem in Sec. III, where we present numerical
results for systems up to 20 qubits. In Sec. IV we focus on
the adiabatic implementation of Grover’s quantum search al-
gorithm, and derive analytical expressions for the study of
entanglement in the system. Finally, in Sec. V we collect the
conclusions of our work.

II. SCALING OF ENTANGLEMENT IN SHOR’S
FACTORING ALGORITHM

It is believed that the reason why Shor’s quantum algo-
rithm for factorization[24] so clearly beats its classical rivals
is rooted in the clever use it makes of quantum entanglement.
Several attempts have been made to understand the behavior
of the quantum correlations present throughout the computa-
tion [6,7]. In our case, we will concentrate on the study of
the scaling behavior for the entanglement entropy of the sys-
tem. We shall first remember both Shor’s original[24] and
the phase-estimation[29] proposals for the factoring algo-
rithm and afterward we shall move to the analytical analysis
of their quantum correlations.

A. The factoring algorithm

The interested reader is addressed to[24,29–31] for pre-
cise details. Given an odd integerN to factorize, we pick up
a random numbera[ f1,Ng. We make the assumption thata
andN are co-primes(otherwise the greatest common divisor
of a andN would already be a nontrivial factor ofN). There
exists a smaller integerr [ f1,Ng, called theorder of the
modular exponentiationax mod N, such thatar mod N=1.
Let us assume that thea we have chosen is such thatr is
even andar/2 mod NÞ−1, which happens with very high
probability [bigger than or equal to 1/s2 log2 Nd]. This is the
case of interest because then the greatest common divisor of

N andar/2±1 is a nontrivial factor ofN. Therefore, the fac-
toring problem has been reduced to the order-finding prob-
lem of the modular exponentiation functionax mod N, and it
is at this point where quantum mechanics comes into play.
The procedure can be cast in two different ways.

1. Shor’s proposal for order finding

We make use of two quantum registers: a source register
of k qubits (such that 2k[ fN2,2N2g) and a target register of
n= dlog2 Ne qubits (where the brackets indicated the closest
bigger integer). The performance of the quantum algorithm
is shown in Fig. 1, where we are making use of the Had-
amard gate initially acting over thek qubits of the source, the
unitary implementation of the modular exponentiation func-
tion

Ufuqluxl = uqlusx + aqd mod Nl s3d

swhereuql and uxl respectively belong to the source and tar-
get registersd, and the quantum Fourier transform operator

Fuql =
1

2k/2 o
m=0

2k−1

e2piqm/2k
uml. s4d

All these operations can be efficiently implemented by
means of one- and two-qubit gates. Finally, a suitable clas-
sical treatment of the final measurement of this quantum
algorithm provides us withr in a few steps, and therefore the
prime factorization ofN in a timeO(slog2 Nd3).

2. Phase-estimation proposal for order finding

We refer the interested reader to[29] for more details. The
quantum circuit is similar to the one shown in the previous
section but slightly modified, as is shown in Fig. 2. The
unitary operatorVf to which the phase-estimation procedure
is applied is defined as

Vfuxl = usa xdmod Nl s5d

fnotice the difference between expressionss5d and s3dg, be-
ing diagonalized by the eigenvectors

FIG. 1. Quantum circuit for the order-finding algorithm for the
modular exponentiation function.

FIG. 2. Phase-estimation version of the quantum circuit for the
order-finding algorithm. The controlled operation isLsVfd.
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uvsl =
1

r1/2o
p=0

r−1

e−2pisp/ruap mod Nl s6d

such that

Vfuvsl = e2pis/ruvsl, s7d

and satisfying the relations1/r1/2dos=0
r−1 uvsl= u1l. The opera-

tor is applied over the target register, being controlled on the
qubits of the source in such a way that

LsVfdu jluxl = u jlVf
j uxl, s8d

where byLsVfd we understand the full controlled operation
acting over the whole system, which can be efficiently
implemented in terms of one- and two-qubit gates. As in the
previous case, the information provided by a final measure-
ment of the quantum computer enables us to get the factors
of N in a timeO(slog2 Nd3).

B. Analytical results

We choose to study the amount of entanglement between
the source and the target register in the two proposed quan-
tum circuits, right after the modular exponentiation operation
Uf (Fig. 1) or the controlledVf operation(Fig. 2), and before
the quantum Fourier transform in both cases. At this step of
the computation, the pure quantum state of the quantum
computer is easily seen to be exactly the same for both quan-
tum circuits, and is given by

ucl =
1

2k/2 o
q=0

2k−1

uqluaq mod Nl, s9d

and therefore the density matrix of the whole system is

uclkcu =
1

2k o
q,q8=0

2k−1

suqlkq8udsuaq mod Nlkaq8 mod Nud.

s10d

Tracing out the quantum bits corresponding to the source, we
get the density matrix of the target register, which reads

rtarget= trsourcesuclkcud

=
1

2k o
p,q,q8=0

2k−1

skpuqlkq8upldsuaq mod Nlkaq8 mod Nud,

s11d

that is,

rtarget=
1

2k o
p=0

2k−1

uap mod Nlkap mod Nu

,
1

r
o
p=0

r−1

uap mod Nlkap mod Nu. s12d

The last step comes from the fact thatar mod N=1, where
r [ f1,Ng is the order of the modular exponentiation. If 2k

were a multiple ofr there would not be any approximation

and the last equation would be exact. This is not neces-
sarily the case, but the corrections to this expression vary
as Os1/2kd, thus being exponentially small in the size of
the system.

It follows from expression(12) that the rank of the re-
duced density matrix of the target register at this point of the
computation is

ranksrtargetd = r . s13d

Becauser [ f1,Ng, this rank is usuallyOsNd. If this were not
the case, for example, ifr were Oslog2 Nd, then the order-
finding problem could be efficiently solved by a classical
naive algorithm and it would not be considered as classi-
cally hard. BecauseN is exponentially big in the number
of qubits, we have found a particular bipartition of the
systemsnamely, the bipartition between the source regis-
ter and the target registerd and a step in the quantum al-
gorithm in which the entanglement, as measured by the
rank of the reduced density matrix of one of the sub-
systems, is exponentially big. This implies in turn that
Shor’s quantum factoring algorithm cannot be efficiently
classically simulated by any protocol in Ref.f8g, owing to
the fact that at this stepx=OsNd, therefore constituting an
inherent exponential quantum speedup based on an expo-
nentially big amount of entanglement. It is worth noticing
that the purpose of the entanglement between the two reg-
isters consists in leaving the source in the right periodic
state to be processed by the quantum Fourier transform.
Measuring the register right after the entangling gate dis-
entangles the two registers while leaving the source in a
periodic state, and this effect can be accomplished only by
previously entangling the source and target. These conclu-
sions apply both to Shor’s original proposalscircuit of
Fig. 1d and to the phase-estimation versionscircuit of Fig.
2d.

The behavior of the rank of the system involves the fact
that the entropy of entanglement of the reduced density ma-
trix at this point will mainly scale linearly with the number
of qubits,E, log2 r , log2 N,n, which is the hardest of all
the possible scaling laws. We will again find this strong be-
havior for the entropy in Sec. III.

III. SCALING OF ENTANGLEMENT
IN AN NP-COMPLETE PROBLEM

We now turn to analyzing how entanglement scales for a
quantum algorithm based on adiabatic evolution[23], de-
signed to solve theNP-complete exact cover problem[25].
We first briefly review the proposal and then we consider the
study of the properties of the system, in particular the behav-
ior of the entanglement entropy for a given bipartition of the
ground state.

A. Adiabatic quantum computation

The adiabatic model of quantum computation deals with
the problem of finding the ground state of a given system
represented by its Hamiltonian. Many relevant computational
problems(such as 3-SAT) can be mapped to this situation.
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The method is briefly summarized as follows. We start from
a time-dependent Hamiltonian of the form

H„sstd… = f1 − sstdgH0 + sstdHp, s14d

whereH0 and Hp are the initial and problem Hamiltonians,
respectively, andsstd is a time-dependent function satisfying
the boundary conditionsss0d=0 andssTd=1 for a givenT.
The desired solution to a certain problem is codified in the
ground state ofHp. The gap between the ground and the first
excited states of the instantaneous Hamiltonian at timet will
be calledgstd. Let us definegmin as the global minimum of
gstd for t in the intervalf0,Tg. If at time T the ground state
is given by the stateuE0;Tl, the adiabatic theorem states
that if we prepare the system in its ground state att=0
swhich is assumed to be easy to prepared and let it evolve
under this Hamiltonian, then

zkE0;TucsTdlz2 ù 1 − e2, s15d

provided that

maxudH1,0/dtu
gmin

2 ø e, s16d

whereH1,0 is the Hamiltonian matrix element between the
ground and first excited states,e!1, and the maximization is
taken over the whole time intervalf0,Tg. Because the prob-
lem Hamiltonian codifies the solution to the problem in its
ground state, we get the desired solution with high probabil-
ity after a timeT. A closer look at the adiabatic theorem tells
us thatT dramatically depends on the scaling of the inverse
of gmin

2 with the size of the system. More concretely, if the
gap is only polynomially small in the number of qubits,
that is to say, it scales asO(1/polysnd), the computational

time is O(polysnd), whereas if the gap is exponentially
small fOs2−ndg the algorithm takes an exponentially large
time to reach the solution.

The explicit functional dependence of the parametersstd
on time can be very diverse. The point of view we adopt in
the present paper is such that this time dependence is not
taken into account, as we study the properties of the system
as a function ofs, which will be understood as the Hamil-
tonian parameter. We will in particular analyze the entangle-
ment properties of the ground state ofHssd, as adiabatic
quantum computation assumes that the quantum state always
remains close to the instantaneous ground state of the Hamil-
tonian throughout the computation. Note that we are dealing
with a system which is suitable to undergo a quantum phase
transition at some critical value of the Hamiltonian param-
eter, and therefore we expect to achieve the biggest quantum
correlations at this point. The question is how these big
quantum correlations scale with the size of the system when
dealing with interesting problems. This is the starting point
for the next two sections.

B. Exact cover

TheNP-complete exact cover problem is a particular case
of the 3-SAT problem, and is defined as follows. Given then
Boolean variableshxiji=1,. . .,n, xi =0, 1 ∀ i, where i is re-
garded as the bit index, we define aclauseof the exact cover
involving the three qubitsi, j , andk (say, clauseC) by the
equationxi +xj +xk=1. There are only three assignments of
the set of variableshxi ,xj ,xkj that satisfy this equation,
namely, h1,0,0j, h0,1,0j, and h0,0,1j. The clause can be
more specifically expressed in terms of a Boolean function in
conjunctive normal form(CNF) as

fCsxi,xj,xkd = sxi ∨ xj ∨ xkd ∧ s¬xi ∨ ¬ xj ∨ ¬ xkd ∧ s¬xi ∨ ¬ xj ∨ xkd ∧ s¬xi ∨ xj ∨ ¬ xkd ∧ sxi ∨ ¬ xj ∨ ¬ xkd, s17d

FIG. 3. Evolution of the entanglement entropy between the two
blocks of sizen/2 when a bipartition of the system is made, on
average over 300 different instances with one satisfying assignment.
A peak in the correlations appears forsc,0.7 in the three cases.

FIG. 4. Energies of the ground state and first excited state for a
typical instance with one satisfying assignment of exact cover in the
case of ten qubits(in dimensionless units). The energy gap ap-
proaches its minimum atsc,0.7.
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sofCsxi ,xj ,xkd=1 as long as the clause is properly satisfied.
An instanceof exact cover is a collection of clauses which
involves different groups of three qubits. The problem is to
find a string of bits hx1,x2, . . . ,xnj that satisfies all the
clauses.

This problem can be mapped into finding the ground state
of a HamiltonianHp in the following way. Given a clauseC,
define the Hamiltonian associated with this clause as

HC =
1

2
s1 + si

zd
1

2
s1 + s j

zd
1

2
s1 + sk

zd

+
1

2
s1 − si

zd
1

2
s1 − s j

zd
1

2
s1 − sk

zd

+
1

2
s1 − si

zd
1

2
s1 − s j

zd
1

2
s1 + sk

zd

+
1

2
s1 − si

zd
1

2
s1 + s j

zd
1

2
s1 − sk

zd

+
1

2
s1 + si

zd
1

2
s1 − s j

zd
1

2
s1 − sk

zd, s18d

where we have definedszu0l= u0l, szu1l=−u1l. Note the par-
allelism between Eqs.s17d and s18d. The quantum states of
the computational basis that are eigenstates ofHC with zero
eigenvaluesground statesd are the ones that correspond to the
bit string which satisfiesC, whereas the remainder of the
computational states are penalized with an energy equal to 1.
Now we construct the problem Hamiltonian as the sum of all
the Hamiltonians corresponding to all the clauses in our par-
ticular instance, that is to say,

Hp = o
C [ instance

HC, s19d

so the ground state of this Hamiltonian corresponds to the
quantum state whose bit string satisfiesall the clauses. We
have reduced the original problem stated in terms of Boolean
logic to the hard task of finding the ground state of a two-
and three-body interactive spin Hamiltonian with local mag-
netic fields. Observe that the couplings depend on the par-
ticular instance we are dealing with, and that the spin system
has neither ana priori well-defined dimensionality nor a
well-defined lattice topology, in contrast with some more
usual simple spin models.

We now define ours-dependent HamiltonianHssd as a
linear interpolation between an initial HamiltonianH0 and
Hp:

Hssd = s1 − sdH0 + sHp, s20d

where we take the initial HamiltonianH0 to be basically a
magnetic field in thex direction; more concretely,

H0 = o
i=1

n
di

2
s1 − si

xd, s21d

wheredi is the number of clauses in which qubiti appears,
and sxu+l= u+l, with u+l=s1/Î2dsu0l+ u1ld, so the ground
state ofH0 is an equal superposition of all the possible

computational states. Observe thatHssd is, apart from a
constant factor, a sum of terms involving local magnetic
fields in the x and z directions, together with two- and
three-body interaction coupling terms in thez component.
This system is suitable to undergo a quantum phase tran-
sition sin the limit of infinite nd ass is shifted from 0 to 1.
The study of this phenomenon is the aim of the following
section.

C. Numerical results up to 20 qubits

We have randomly generated instances for exact cover
with only one possible satisfying assignment and have con-
structed the corresponding problem Hamiltonians. Instances
are produced by adding clauses at random until there is ex-
actly one satisfying assignment, starting over if we end up
with no satisfying assignments. According to[25], these are
believed to be the most difficult instances for the adiabatic
algorithm. Our analysis proceeds as follows.

1. Appearance of a quantum phase transition

We have generated 300 exact cover instances(300 ran-
dom Hamiltonians with a nondegenerate ground state) and
have calculated the ground state for 10, 12, and 14 qubits for
different values of the parameters in steps of 0.01. We then
consider a particular bipartition of the system into two blocks
of n/2 qubits, namely, the firstn/2 qubits versus the rest,
and have calculated the entanglement entropy between the
two blocks. For each of the randomly generated Hamilto-
nians we observe a peak in the entanglement entropy around
a critical value of the parametersc,0.7. We have averaged
the curves obtained over the 300 instances and have obtained
the plot from Fig. 3.

The point at which the entropy of entanglement reaches
its maximum value is identified as the one corresponding to
the critical point of a quantum phase transition in the system
(in the limit of infinite size). This interpretation is reinforced
by the observation of the typical energy eigenvalues of the
system. For a typical instance of ten qubits we observe that
the energy gap between the ground state and the first excited
state reaches a minimum precisely for a value of the param-
etersc,0.7 (see Fig. 4).

We observe from Fig. 3 that the peak in the entropy is
highly asymmetric with respect to the parameters. A detailed
study of the way this peak diverges near the critical region
seems to indicate that the growth of entanglement is slower
at the beginning of the evolution and fits remarkably well a
curve of the typeE, logulogss−scdu, whereas the decrease of
the peak is better parametrized by a power lawE,us−scu−a

with a,2.3, a being a certain critical exponent. These laws
governing the critical region fit the data better and better as
the number of qubits is increased.

2. Analysis of different bipartitions of the system

Explicit numerical analysis for ten qubits tells us that all
possible bipartitions for each one of the instances produce
entropies at the critical point of the same order of
magnitude—as expected from the nonlocality of the interac-
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tions. This is represented in Fig. 5, where we plot the mini-
mum and maximum entanglement obtained from all the pos-
sible partitions of the system for each one of the generated
instances(points are sorted such that the minimum entropy
monotonically increases).

Similar conclusions derive from the data plotted in Fig. 6,
where we have considered the same quantities again but
looking at 64 partitions of the ground state for 10 different
instances of 16 qubits. According to these results we restrict
ourselves in what follows to the analysis of a particular bi-
partition of the system, namely, the firstn/2 qubits versus
the rest.

It is worth emphasizing that the existence of a single par-
tition with exponentially large entanglement makes the algo-
rithm not amenable to classical simulation. The above result
is stronger and shows that essentially all partitions are highly
entangled. The system is definitely hard to simulate by clas-
sical means.

3. Scaling laws for the minimum energy gap
and the entanglement entropy

To characterize the finite-size behavior of the quantum
phase transition, we have generated 300 random instances of
exact cover with only one satisfying assignment from six to
20 qubits, and studied the maximum von Neumann entropy
for a bipartition of the system as well as the minimum gap,
both in the worst case and in the mean case over all the
randomly generated instances. We must point out that the
scaling laws found in this section are limited to the small
systems we can handle with our computers. Increasing the
number of qubits may lead to corrections in the numerical
results, which would be of particular importance for a more
precise time-complexity analysis of the adiabatic algorithm.
Figure 7 represents the behavior of the gap in the worst and
mean cases. From Fig. 8 it is noticed that the gap seems to

FIG. 5. Minimum and maximum entropy over all possible bi-
partitions of a ten-qubit system for each of the 300 randomly gen-
erated instances of exact cover. Instances are sorted such that the
minimum entanglement increases monotonically.

FIG. 6. Minimum and maximum entropy over 64 bipartitions of
a 16-qubit system for ten randomly generated instances of exact
cover. Instances are sorted such that the minimum entanglement
increases monotonically.

FIG. 7. Scaling of the minimum energy gap(in dimensionless
units) with the size of the system, both in the worst case and in the
mean case over all the randomly generated instances. Error bars
give 95% confidence level for the mean.

FIG. 8. Minimum energy gap(in dimensionless units) versus the
inverse size of the system, both in the worst case and in the mean
case over all the randomly generated instances. Error bars give 95%
confidence level for the mean. The behavior is apparently linear.
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obey a scaling law of the styleOs1/nd, n being the number
of qubits, which would assure a polynomial-time quantum
computation. This law is in agreement with the results in
[25] and in concordance with the idea that the energy gap
typically vanishes as the inverse of the volume in condensed
matter systems(here the volume is the number of qubits).
Error bars in the two plots give the 95% confidence level in
the numerically calculated mean.

We have considered as well the scaling behavior of the
entanglement entropy for an equally sized bipartition of the
system, also in the worst and in the mean cases. The data
obtained from our simulations are plotted in Fig. 9, where
the error bars give the 95% confidence level in the mean, and
seem to be in agreement with a strongly linear scaling of
entanglement as a function of the size of the number of qu-
bits. More concretely, a numerical linear fit for the mean
entanglement entropy gives us the lawE,0.1n. Observe
that the entropy of entanglement does not become saturated
at its maximum allowed value(which would beE=n/2 for
n qubits), so we can say that only 20% of all the possible
potential available entanglement appears in the quantum al-
gorithm. Linearity in the scaling law would imply that this
quantum computation by adiabatic evolution, after a suitable
discretization of the continuous time dependence, could not
be classically simulated by the protocol of Ref.[8]. Given
that the scaling of the gap seems to indicate that the quantum
computation runs for a time polynomial in the size of the
system, our conclusion is that apparently we are confronted
with an exponentially fast quantum computation that seems
extremely difficult(if not impossible) to simulate efficiently
by classical means. This could be an inherent quantum me-
chanical exponential speedup that can be understood in terms
of the linear scaling of the entropy of entanglement. Note
also the parallelism with the behavior of the entanglement
found in Shor’s algorithm in Sec. II. As a remark, our nu-
merical analysis shows that the quantum algorithm is diffi-
cult to simulate classically in an efficient way, which does

not necessarily imply that the quantum computer runs expo-
nentially faster than the classical one, as our time-complexity
analysis is limited to 20 qubits.

The linear behavior for the entropy with respect to the
size of the system could in principle be expected according
to the following qualitative reasoning. Naively, the entropy
was expected to scale as the area of the boundary of the
splitting, according to some considerations taken from con-
formal field theory(see[13,14,19–21]). This area law is in
some sense natural: because the entropy value is the same for
both density matrices arising from the two subsystems, it can
only be a function of their shared properties, and these are
geometrically encoded in the area of the common boundary.
For a system ofn qubits, this implies a scaling law for the
entropy like E,nsd−1d/d (which reduces to a logarithm for
d=1). Our system does not have a well-defined dimension-
ality, but, owing to the fact that there are many random two-
and three-body interactions, the effective(fractal) dimen-
sionality of the system should be very large. Therefore, we
expect a linear(or almost linear) scaling, which is what we
obtained numerically. The data seem to indicate that such an
effective dimensionality is aroundd,n, thus diverging asn
goes to infinity.

It is possible to compare our apparently linear scaling of
the mean entropy of entanglement with the known results
obtained by averaging this quantity over the entire manifold
of n-qubit pure states, with respect to the natural Fubini-
Study measure. According to the results conjectured by Page
[32] and later proved in[33], the average entropy for an
equally sized bipartition of a randomn-qubit pure state in the
large n limit can be approximated byE,sn/2d−1/s2 ln 2d
(in our notation), therefore also displaying a linear scaling
law (but different from ours). In fact, this is an indicator that
most of then-qubit pure states are highly entangled, and that
adiabatic quantum computation naturally brings the system
close to these highly entangled regions of the pure state
manifold (more information about the average entanglement
of an n-qubit system can be found in[34]).

4. The entanglement-gap plane

The plots in Fig. 10 and Fig. 11 show the behavior of the
peak in the entanglement versus the gap, both again in the
average and in the worst case for all the generated instances.
Clearly, as the gap becomes smaller the production of en-
tanglement in the algorithm increases. A compression of the
energy levels correlates with high quantum correlations in
the system.

5. Convergence of the critical points

The critical pointsc seems to be bounded by the values of
s associated with the minimum gap and with the maximum
entropy. Actually, the critical point corresponding to the
minimum size of the energy gap is systematically slightly
bigger than the critical point corresponding to the peak in the
entropy. On increasing the size of the system, these two
points converge toward the same value, which would corre-
spond to the true critical point of a system of infinite size.
This effect is neatly observed in Fig. 12, which displays the

FIG. 9. Scaling of the entanglement entropy for an equally sized
bipartition of the system, both in the worst case and in the mean
case over all the randomly generated instances. Error bars give 95%
confidence level for the mean. The data are consistent with a linear
scaling.

UNIVERSALITY OF ENTANGLEMENT AND QUANTUM-… PHYSICAL REVIEW A 69, 052308(2004)

052308-7



values ofs associated with the mean critical points both for
the gap and for the entropy as a function ofn.

6. Universality

All the above results suggest that the system comes close
to a quantum phase transition. The characterization we have
presented based on the study of averages over instances re-
constructs its universal behavior. The results do not depend
on particular microscopic details of the Hamiltonian, such as
the interactions shared by the spins or the strength of local
magnetic fields. Any adiabatic algorithm solving ak-SAT
problem and built in the same way we have done for exact
cover should display on average exactly the same properties
we have found regardless of the value ofk, which follows
from universality(the casek=2, though not beingNP com-
plete [37], should also display this property as its Hamil-
tonian would also consist of local interactions in a high-
dimensional lattice; k=1 is a particular case, as its

Hamiltonian is noninteracting). Linear scaling of entangle-
ment should therefore be a universal law for these kinds of
quantum algorithms. The specific coefficients of the scaling
law for the entropy should be a function only of the connec-
tivity of the system, that is, of the type of clauses defining
the instances.

We have explicitly checked this assertion by numerical
simulations for clauses of exact cover but involving four
qubitssxi +xj +xk+xl =1d, which is a particular case of 4-SAT.
In Fig. 13 we plot the behavior of the entropy of entangle-
ment for a ten-qubit system for these types of clauses and
compare it to the same quantity calculated previously for the
clauses involving three qubits(the usual exact cover Hamil-
tonian). We observe again the appearance of a peak in the
entropy, which means that the system is evolving close to a
quantum phase transition.

Figures 14 and 15, respectively, show the scaling of the
energy gap in the mean and worst cases and the scaling of

FIG. 10. Mean entropy of entanglement versus mean size of the
energy gap(in dimensionless units). Error bars give 95% confi-
dence level for the means. Each point corresponds to a fixed num-
ber of qubits.

FIG. 11. Maximum entropy of entanglement versus minimum
size of the energy gap(in dimensionless units). Each point corre-
sponds to a fixed number of qubits.

FIG. 12. Mean critical point for the energy gap and for the
entropy. Error bars give 95% confidence level for the means. Note
that they tend to approach as the size of the system is increased.

FIG. 13. Entanglement as a function of the Hamiltonian param-
eter for clauses of exact cover involving threesk=3d and four sk
=4d qubits, for a ten-qubit system, averaged over all the randomly
generated instances.
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the peak in the entropy in the mean and worst cases as well,
up to 16 qubits. Error bars again give 95% confidence levels
for the means. The behavior is similar to the one already
found for the instances of exact cover involving three qubits
(Figs. 8 and 9), which supports the idea of the universality of
the results. The minimum energy gap seems to scale in this
case as,1/n3 (n being the number of qubits), which would
again guarantee a polynomial-time quantum adiabatic evolu-
tion.

IV. SCALING OF ENTANGLEMENT IN ADIABATIC
GROVER’S ALGORITHM

Let us now consider the adiabatic implementation of
Grover’s quantum searching algorithm in terms of a Hamil-

tonian evolution[26–28] and study its properties as a func-
tion of the number of qubits and the parameters. For this
problem, it is possible to compute all the results analytically,
so we shall get a closed expression for the scaling of en-
tanglement. As a side remark, it is worth noting that the
treatment in[8] is not valid for oracular problems as it is
assumed that all quantum gates are known in advanced. In-
dependently of this issue, we shall see that the system re-
mains little entangled between calls to the oracle.

A. Implementation of Grover’s searching algorithm
with adiabatic quantum computation

Grover’s searching algorithm[26] can be implemented in
adiabatic quantum computation by means of thes-dependent
Hamiltonian

Hssd = s1 − sdsI − uslksud + ssI − ux0lkx0ud, s22d

where usl;s1/2n/2dox=0
2n−1uxl, n is the number of qubits, and

ux0l is the marked state. The computation takes the quantum
state from an equal superposition of all computational states
directly to the stateux0l, as long as the evolution remains
adiabatic. The time the algorithm takes to succeed depends
on how we choose the parametrization ofs in terms of time.
Our aim is to compute the amount of entanglement present in
the register, and we need not deal with the explicit depen-
dence of the parameters on time and its consequencesssee
f27,28g for further information about this topicd.

It is straightforward to check that the Hamiltonian(22)
has its minimum gap between the ground and first excited
states ats=0.5, which goes to zero exponentially fast as the
number of qubits in the system is increased. Therefore, this
Hamiltonian apparently undergoes a quantum phase transi-
tion in the limit of infinite size ats=0.5. Quantum correla-
tions approach their maximum for this value ofs (for more
on Grover’s problem as a quantum phase transition, see
[35]).

B. Analytical results

It can be seen(see, for example,[36]) that the ground
state energy of the Hamiltonian given in Eq.(22) corre-
sponds to the expression

E−ssd =
1

2
S1 −Îs1 − 2sd2 +

4

2nss1 − sdD , s23d

where s is the Hamiltonian parameter. The corresponding
normalized ground state eigenvector is given by

uE−ssdl = aux0l + b o
xÞx0

uxl, s24d

where we have defined the quantities

a ; ab,

b2 ;
1

2n − 1 +a2 ,

FIG. 14. Minimum energy gap(in dimensionless units) versus
1/sn3d, both in the worst and in the mean cases over all the ran-
domly generated instances of clauses involving four qubits, up to
n=16. Error bars give 95% confidence level for the mean. The
behavior seems to be linear.

FIG. 15. Scaling of the entanglement entropy for an equally
sized bipartition of the system, both in the worst and in the mean
cases over all the randomly generated instances of clauses involving
four qubits, up ton=16. Error bars give 95% confidence level for
the mean. The data are consistent with a linear scaling.
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a ;
2n − 1

2n − 1 − f2n/s1 − sdgE−ssd
. s25d

In all the forthcoming analysis we will assume that the
marked state corresponds toux0l= u0l, which will not alter
our results. The corresponding density matrix for the ground
state of the whole system ofn qubits is then given by

rn = b2sa2 − 2a + 1du0lk0u + b2ufkfu + b2sa − 1dsuflk0u + u0l

3kfud, s26d

where we have definedufl as the the unnormalized sum of
all the computational quantum statessincluding the marked

oned, ufl;ox=0
2n−1uxl. Taking the partial trace over half the

qubits, regardless of whichn/2 qubits wechoose, we find
the reduced density matrix

rn/2 = b2sa2 − 2a + 1du08lk08u + 2n/2b2uf8lkf8u

+ b2sa − 1dsuf8lk08u + u08lkf8ud, s27d

where we understand thatu08l is the remaining marked state

for the subsystem ofn/2 qubits anduf8l;ox=0
2n/2−1uxl is the

remaining unnormalized equal superposition of all the
possible computational states for the subsystem. Defining
the quantities

A ;
a2 + 2n/2 − 1

a2 + 2n − 1
,

B ;
a + 2n/2 − 1

a2 + 2n − 1
,

C ;
2n/2

a2 + 2n − 1
s28d

[note thatA+s2n/2−1dC=1], the density operator for the re-
duced system ofn/2 qubits can be expressed in matrix no-
tation as

rn/2 =1
A B ¯ B

B C ¯ C

] ] � ]

B C ¯ C
2 , s29d

where its dimensions are 2n/232n/2. We clearly see that the
density matrix has rank equal to 2. Therefore, because
ranksrdù2Esrd ∀r fwhere Esrd is the von Neumann en-
tropy of the density matrixrg, we conclude thatEsrn/2d,
which corresponds to our entanglement measure between
the two blocks of qubits, is alwaysø1. This holds true
even for nonsymmetric bipartitions of the complete sys-
tem. Regardless of the number of qubits, entanglement in
Grover’s adiabatic algorithm is always aboundedquantity
for anys, in contrast with the results obtained in the previous
sections for Shor’s factoring algorithm and for the exact
cover problem. Grover’s adiabatic quantum algorithm essen-
tially makes use of very little entanglement, but even this

bounded quantity of quantum correlations is enough to give a
square root speedup.

We have explicitly calculated the von Neumann entropy
for rn/2. Because the rank of the reduced density matrix is 2,
there are only two nonvanishing eigenvalues that contribute
in the calculation, which are

l± =
1

2
f1 ± Î1 − 4s2n/2 − 1dsAC− B2dg. s30d

We analyze the limitn→` for sÞ0.5 ands=0.5 separately.
(a) s?0.5. In the limit of very highn we can approximate

the ground state energy given in Eq.(23) by

E−ssd ,
1

2
f1 −Î1 − 4ss1 − sdg. s31d

Therefore, the quantity

a ,
1

1 − fE−ssdg/s1 − sd
s32d

diverges ats=0.5, which implies that this limit cannot be
correct for that value of the parameter. The closer we are
to s=0.5, thebigger isa. In this limit we find that

A ,
a2 + 2n/2

a2 + 2n , s33d

B ,
a + 2n/2

a2 + 2n , s34d

C ,
2n/2

a2 + 2n , s35d

where all these quantities tend to zero asn→`. It is impor-
tant to note that the convergence of the limit depends on the
value of a or, in other words, how close tos=0.5 we are.
The closer we are tos=0.5, theslower is the convergence,
and therefore any quantity depending on these parameters
ssuch as the entropyd will converge more slowly to its
asymptotic value. For the eigenvalues of the reduced den-
sity matrix we then find that whenn→`

l± → 1

2
s1 ± 1d, s36d

sol+,1 andl−,0, and therefore the asymptotic entropy is

EssÞ 0.5, n → `d = − l+ log2 l+ − l− log2 l− = 0.

s37d

The convergence of this quantity is slower as we move to-
ward s=0.5.

(b) s=0.5. We begin our analysis by evaluating the quan-
tities ats=0.5 and then taking the limit of large size of the
system. We have thatass=0.5d=s2n−1d / s2n/2−1d,2n/2.
From here it is easy to get the approximations

A ,
1

2
,
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B ,
1

2n/2 ,

C ,
1

2n/2+1, s38d

and therefore

l± ,
1

2
F1 ±Î1 − 4 2n/2S1

4

1

2n/2 −
1

2nDG =
1

2
±

1

2n/4 ,

s39d

so l±→ 1
2 and Ess=0.5,n→`d=1. According to Eq.s39d

we can evaluate the finite-size corrections to this behavior
and find the scaling of the entropy with the size of the
system for very largen. The final result for the entropy at
the critical point reads

Ess= 0.5,n @ 1d , 1 −
4

ln 2
2−n/2. s40d

Note that the entropy remains bounded and tends to 1 fors
=0.5 as a square root in the exponential of the size of the
system, which is the typical factor in Grover’s quantum
algorithm.

We have represented the evolution of the entanglement
entropy as a function ofs for different sizes of the system in
Fig. 16 and have plotted in Fig. 17 the maximum value of the
entropy along the computation as a function of the size of the
system according to the expression given in Eq.(40). We can
now compare the two plots with Fig. 3 and Fig. 9 in the
previous section. The behavior for the entropy in Grover’s
adiabatic algorithm is dramatically different from the one
observed in theNP-complete problem. Entanglement gets
saturated in Grover’s adiabatic algorithmeven at the critical

point, which is reminiscent of short ranged quantum correla-
tions in quantum spin chains.1

Let us note that, in the limit of infinite size, the quantum
state in Grover’s algorithm is separable with respect to any
bipartition of the system(and therefore not entangled, as it is
a pure state) for anys except fors=0.5. All the entanglement
throughout the algorithm is concentrated at this point, but
this entanglement is still a bounded quantity and actually
equal to 1. Consequently, a small amount of entanglement
appears essentially only at one point when the size of the
system is big, whereas the rest of the algorithm needs to
handle just separable states. We point out that these results
apply as well to the traditional discrete-time implementation
of Grover’s searching algorithm, as the states between itera-
tions are the same as in the adiabatic version for discretes
values.

V. CONCLUSIONS

In this paper we have studied the scaling of the entangle-
ment entropy in several quantum algorithms. In particular,
we have proved analytically that Shor’s factoring algorithm
makes use of an exponentially large amount of entanglement
between the target register and the source register after the
modular exponentiation operation, which in turn implies the
impossibility of an efficient classical simulation by means of
the protocol of Ref.[8]. Furthermore, we have provided nu-
merical evidence for a universal linear scaling of the entropy
with the size of the system together with a polynomially
small gap in a quantum algorithm by adiabatic evolution
devised to solve theNP-complete exact cover problem,
therefore obtaining a polynomial-time quantum algorithm

1A somewhat similar situation is present in one-dimensional quan-
tum spin chains outside the critical region, where the entanglement
entropy also reaches saturation when the size of the system is in-
creased[14]. Saturation does not appear in higher dimensional sys-
tems.

FIG. 16. Von Neumann entropy for the reduced system as a
function of s for 10, 12, and 14 qubits. As the size of the system
increases the entropy tends to zero at all points, except ats=0.5
where it tends to 1.

FIG. 17. Von Neumann entropy for the reduced system ats
=0.5 as a function ofn. For infinite size of the system there is
saturation at 1.
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which would involve exponential resources if simulated clas-
sically, in analogy with Shor’s algorithm. The universality of
this result follows from the fact that the quantum adiabatic
algorithm evolves close to a quantum phase transition and
the properties at the critical region do not depend on particu-
lar details of the microscopic Hamiltonian(instance) such as
interactions among the spins or local magnetic fields. We
have also proved that the von Neumann entropy remains a
bounded quantity in Grover’s adiabatic algorithm regardless
of the size of the system even at the critical point. More
concretely, the maximum entropy approaches 1 as a square
root in the size of the system, which is the typical Grover
scaling factor.

Our results show that studying the scaling of the entropy
is a useful way of analyzing entanglement production in
quantum computers. Results from other fields of physics
[19–21] can be directly applied to bring further insight into
the analysis of quantum correlations. Different entanglement
scaling laws follow from different situations according to the
amount of correlations involved, as can be seen in Table I. A
quantum algorithm can be understood as the simulation of a
system evolving close to a quantum phase transition. The
amount of entanglement involved depends on the effective
dimensionality of the system, which in turn governs the pos-
sibilities of certain efficient classical simulation protocols.

These scaling laws provide a different way of understand-
ing some aspects from one-way quantum computation. It is

known that the so-called cluster state of the one-way quan-
tum computer can be generated by using Ising-like interac-
tions on a planar two-dimensional lattice[38–40]. This fact
can be related to the linear(in the size of the box) behavior
of entropy for spin systems in two dimensions. One-
dimensional models seem not to be able to efficiently create
the highly entangled cluster state[41]. Again, this fact can be
traced to the logarithmic scaling law of the entropy in spin
chains, which is insufficient to handle the large amount of
entanglement needed to carry out, e.g., Shor’s algorithm.
Note also thatsdù3d-dimensional systems bring unnecessar-
ily large entanglement.

Quantum phase transitions remain as the more demanding
systems in terms of entanglement. They are very hard to
simulate classically. It is then reasonable to try to bring
NP-complete problems into a quantum phase transition
setup, which quantum mechanics handles naturally.
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