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In this work, we generalize the quantum-secret-sharing scheme of Hillery, Bužek, and Berthiaume[Phys.
Rev. A 59, 1829(1999)] into arbitrary multiparties. Explicit expressions for the shared secret bit is given. It is
shown that in the Hillery-Bužek-Berthiaume quantum-secret-sharing scheme the secret information is shared in
the parity of binary strings formed by the measured outcomes of the participants. In addition, we have
increased the efficiency of the quantum-secret-sharing scheme by generalizing two techniques from quantum
key distribution. The favored-measuring-basis quantum-secret-sharing scheme is developed from the Lo-Chau-
Ardehali technique[H. K. Lo, H. F. Chau, and M. Ardehali, e-print quant-ph/0011056] where all the partici-
pants choose their measuring-basis asymmetrically, and the measuring-basis-encrypted quantum-secret-sharing
scheme is developed from the Hwang-Koh-Han technique[W. Y. Hwang, I. G. Koh, and Y. D. Han, Phys. Lett.
A 244, 489 (1998)] where all participants choose their measuring basis according to a control key. Both
schemes are asymptotically 100% in efficiency, hence nearly all the Greenberger-Horne-Zeilinger states in a
quantum-secret-sharing process are used to generate shared secret information.
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I. INTRODUCTION

The combination of quantum mechanics with information
has produced many interesting and important developments.
Quantum cryptography is one important application. Quan-
tum key distribution(QKD) concerns the distribution of one-
time-pad keys between distant two parties[1]. With quantum
mechanics, other cryptographic task can be realized. Suppose
Alice wants two parties Bob and Charlie who are at distant
places to fulfill certain tasks. Alice knows that one of them
may be dishonest, but she does not know who this dishonest
guy is. To complete this task, classical cryptography uses the
secret-sharing technique[2,3]. In quantum information, this
task can be achieved by quantum secret sharing(QSS), and it
is a fruitful area of research. Many researches have been
carried out[4,5,7–9]. It has also been demonstrated in ex-
periment recently[6]. With quantum mechanics, one can
share both classical information and quantum information. In
this paper, we consider the issue of sharing of classical secret
information. We specifically consider the QSS scheme pro-
posed by Hillery, Bužek, and Berthiaume(hereafter we refer
to HBB protocol) [4]. In Ref. [4], secret sharing with three
and four parties have been studied. In the HBB QSS scheme,
the secret sharing is accomplished by using the Greenberger-
Horne-Zeilinger (GHZ) state [10]. In this scheme, Alice,
Bob, and Charlie need to choose randomly one measuring
basis from either thesx measuring basis or thesy measuring
basis, respectively, similar to the Bennett-Brassard 1984
(BB84) QKD scheme[1]. In half of the cases, nobody
chooses thesy axis or two parties choose thesy axis, the
measuring results of the three parties are correlated. In these
cases, Bob and Charlie can combine their measuring-basis
information and their measurement outcomes to determine
the results of Alice’s measurement. In this case, Alice’s mea-
surement result is used as the secret information that she

wants Bob and Charlie to share. Generally in order to estab-
lish the secret-sharing scheme, a detailed table needs to be
constructed to list all the possible combinations of the mea-
suring basis and the possible outcomes of all parties. When
the number of participating parties is large, the construction
of such a table is very tedious and it is also inconvenient to
use. In this paper, we reformulate the HBB scheme in simple
mathematical terms, and the shared secret information be-
comes the parity of a binary string formed by the measured
outcomes of the participating parties. From this formulation,
the rules in the HBB QSS scheme are obtained. For instance
for a round of communication to be a valid one, the number
of parties choosing thesy basis has to be even, because when
even number of parties choose thesy basis, the bit value of
Alice has a one-to-one correspondence with the parity of the
binary number formed by the measurement outcomes of the
participating parties. From this mathematical formalism, we
generalize the HBB scheme into arbitrary number parties
cases. This is given in Sec. II.

In the HBB QSS scheme, only half of the GHZ states can
be used for secret sharing. This is the intrinsic limitation of
this scheme. This is similar to the BB84 QKD scheme where
only half of the photons transmitted can be used to generate
useful keys. In QKD, Lo, Chau, and Ardehali[11] have pro-
posed a scheme that increases the intrinsic efficiency to
100% asymptotically. In their scheme, they choose one pre-
ferred measuring basis most of the time, and choose the other
measuring basis, the unfavored measuring basis, with a small
probability. The events that Alice and Bob choose the unfa-
vored measuring basis are used later for eavesdropping
checking. This has greatly increased the intrinsic efficiency
of the BB84 scheme. In the limiting case of large numbers,
the efficiency approaches 100%. This has been shown to be
unconditionally secure[11]. Hwang, Koh, and Han[12] have
proposed another modification to the BB84 QKD scheme
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that also increases its efficiency to nearly 100% by letting
Alice and Bob to choose identical measuring basis according
to a common secret key. This control key is used repeatedly
during a QKD transmission session. Controlled keys
have also been used in QKD in the controlled-order-
rearrangement-encryption scheme[13], where Alice takes
one particle from each Einstein-Podolsky-Rosen(EPR) pair
from a group of EPR pairs and mixes up their orders and
sends them to Bob, and Bob recovers the orders of the par-
ticles to get the correct particle correlation of EPR pairs.
Alice and Bob synchronize their action by using a control
key repeatedly. The following example explains the Koh and
Han technique: if the control key is 0101001110, then Alice
and Bob choose their measuring basis in the following se-
quence “+3 + 3 + + 3 3 3+” where “+” represents the
vertical-horizontal measuring basis, and “3” represents the
diagonal-antidiagonal measuring basis. The control key is
usually quite short, say 1000 bits long. It is repeated again
and again until the QKD process ends. In this way, Alice and
Bob can always choose the same measuring basis. The
quantum-mechanical nature of the single photons renders
eavesdropping detectable, and the random nature of the mea-
sured results keeps the information on the control key safe. It
has been shown that the scheme is secure[14] for ideal
single-photon sources. The essential ingredient in these im-
provements is to allow the two parties to use identical mea-
suring basis as much as possible. Generalizing these two
techniques, we have proposed two efficient QSS schemes
that are asymptotically 100% in efficiency. This is given in
Sec. III. A summary is given in Sec. IV.

II. MULTIPARTY HBB QUANTUM-SECRET-SHARING
SCHEME

We present then-party HBB QSS scheme first. Suppose
there aren parties taking part in the secret-sharing process. It
is done by using a sequence of GHZ multiplets

uclGHZ =
1
Î2

su000¯ 0l + u111¯ 1ld, s1d

where statesu0l= uz+l and u1l= uz−l are eigenstates of the
spin projection in thez direction,sz. Alice keeps one particle
and sends the other two particles to Bob and Charlie each.
Then Alice, Bob, Charlie randomly choose from thesx and
the sy basis to measure their particles respectively. The
eigenstates of thesx and thesy operators are

u0lx = u+ xl =
1
Î2

su0l + u1ld, u1lx = u− xl =
1
Î2

su0l − u1ld,

s2d

u0ly = u+ yl =
1
Î2

su0l + i u1ld, u1ly = u− yl =
1
Î2

su0l − i u1ld.

s3d

Inversely we have the expansion of the eigenstates of thesz
operator in terms of thesx and thesy eigenbasis as follows:

u0l =
1
Î2

su0lx + u1lxd, u1l =
1
Î2

su0lx − u1lxd, s4d

u0l =
1
Î2

su0ly + u1lyd, u1l = −
i

Î2
su0ly − u1lyd. s5d

We make the convention that the positive polarized states
alongx or y axis are taken as 0, and those along the negative
direction are denoted as 1. In the HBB scheme, only half of
the GHZ particles can be used for secret sharing. The choice
of the measuring basis plays an important role in judging
whether a round of measurement can be used for secret
sharing.

We use a sequencefb1s jd ,b2s jd , . . . ,bis jd , . . . ,bns jdg to de-
note the measuring basis information for Alice, Bob,. . . for
the j th GHZ-state. The number in the bracketj refers to the
j th GHZ state in a sequence of secret-sharing operations. The
subscript refers to the order number of particles, 1 represents
Alice’s particle, 2 refers to Bob’s particle, and so on. If
bis jd=0, then theith party uses thex basis, andbis jd=1
means that theith party uses they axis. To obtain the mea-
suring result in such a case, we need to expand the GHZ state
in the eigenbasis offbis jd , i =1, . . . ,ng. Using Eqs.(4) and
(5), the u00¯0l component can be written as

u00¯ 0l = p
i=1

n SÎ1

2
su0lbi

+ u1lbi
dD , s6d

and theu11¯1l component can be written as

u11¯ 1l = p
i=1

n S− i
Î2

su0lbi
− u1lbi

dD . s7d

When they basis are chosen by an odd number of partici-
pants, the expansion foru11¯1l has the following form:

u11¯ 1l = ±
i

sÎ2dnp
i=1

n

su0lbi
− u1lbi

d, s8d

where the + sign is forn=2k+1 and − sign is forn=4k+1,
wherek is a positive integer.

Hence the GHZ state in Eq.(1) can be rewritten as

uclGHZ =
1

2sn+1d/2Sp
i=1

n

su0lbi
+ u1lbi

d ± ip
i=1

n

su0lbi
− u1lbi

dD ,

s9d

for an odd number of participants choosing they basis. There
is no cancellation between the first product term and the
second product term in Eq.s9d, and terms such as
u0i2i3¯ in−1lb1b2¯bn

and u1i2i3¯ in−1lb1b2¯bn
both present in

the expansion in Eq.s9d. In other words, for a set of mea-
sured valuesi2, . . . ,in measured in measuring basisb2, . . . ,bn
by the participants Bob, Charlie, and so on, Alice’s measured
result still has two possibilities. Even if then−1 secret-
sharing parties get together and disclose their measuring-
basis information and their measuring outcomes, they still
cannot obtain the result of Alice’s measurement. For instance
in a three-party QSS, if Alice chooses they axis, Bob and
Charlie choose thex axis, the expansion in the eigenbasis of
sy, sx, andsx sfor Alice, Bob, and Charlie, respectivelyd will
be
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s1 − id
4

su000l + u011l + u101l + u110ld +
s1 + id

4
su001l + u010l

+ u100l + u111ld, s10d

where the basis ordersy−x−x in the subscript are omitted
for brevity. When Bob and Charlie have definite measured
results, Alice’s result still has two possibilities. For instance,
when Bob and Charlie’s results are 0 and 0, respectively
salong the positive-x axisd, Alice’s result may be 0salong the
positive-y axisd from componentu000l, or 1 salong the
negative-y axisd from componentu100l. Thus it is not use-
ful for quantum secret sharing.

When the number of parties choosing they basis is even,
we have

uclGHZ =
1

2sn+1d/2Sp
i=1

n

su0lbi
+ u1lbi

d ± p
i=1

n

su0lbi
− u1lbi

dD .

s11d

Because some terms in the second product term in the ex-
pansion have negative sign, they cancel with relevant terms
in the first product term, hence there are only 2n−1 terms left
in Eq. s11d. Among the 2n−1 terms, the value of the first bit,
which is the result of Alice’s measurement, is uniquely de-
termined by the remainingn−1 bit values. In this case when
then−1 parties get together and reveal their measuring-basis
information and the measured results, they can uniquely de-
termine the bit value of Alice. Unless alln−1 participating
parties present, the determination of Alice’s bit value is im-
possible. For instance, if onlyn−2 parties are present, from
their measured values and measuring-basis information, they
can only narrow the state down to two possibilities in which
Alice can have either 0 or 1. Thus it is only when alln−1
parties work collectively that they can get the bit value of
Alice.

Summarizing the above observation, the general rule for
multiparty secret sharing are as follows.

(1) The number of parties using thesy basis has to be
even.

(2) When the number of parties usingy basis is equal to
2s2k+1d wherek is a non-negative integer, the bit value of
Alice is simply the modulo 2 sum of then−1 parties’ bit
value plus 1:

iAlice = i1 = i2 % i3 % ¯ % in % 1. s12d

For instance in a three-party QSS with two parties usingy
axis, there is a componentu100l in the expansions11d, the
modulo 2 sum of Bob and Charlie gives 0, then adding 1
gives 1.

(3) When the number of parties taking they basis is 4k,
then the bit value of Alice is simply the modulo 2 sum of the
n−1 parties’ bit values.

iAlice = i1 = i2 % i3 % ¯ % in. s13d

Hence then party HBB QSS scheme can be given as
follows: (1) Alice prepares ann particle GHZ state(1); (2)
Alice keeps one particle at her own hand and sends the rest
of particles to then−1 participants, each party a particle; and

(3) each party chooses randomly from thex or they measur-
ing basis to measure his/her particle. He/she keeps the mea-
sured result and the measuring-basis information for his/her
particle. If the measured result is up(down) along the mea-
suring basis, he/she records the result as 0(1); (4) the above
procedures(1)–(3) are repeated many times until sufficient
number of measured results are produced. This should be at
least twice as much as the number of desired shared bits;(5)
after procedure(4), each participants sends the measuring-
basis information to Alice through a classical channel and
upon receiving all the measuring-basis information, Alice
counts the number of parties choosing they basis. Alice pub-
licly announces the nature of this number for each round:
odd, or an even number with the form of 2s2k+1d, or an
even number with the form of 4k. The exact number ofk
need not be disclosed. If the number is odd, then that round
of measurement result is dropped, and if the number is even,
all the participants keep their measured values and the
measuring-basis information for these events;(6) Alice se-
lects a sufficiently large subset of events and asks the par-
ticipants to disclose their measured values for these events.
From this information, Alice can check if there exists eaves-
dropping in the quantum channel. For instance, if an eaves-
dropper tries to intercept the QSS scheme by measuring the
state of the particle intended for a legitimate participant us-
ing randomly thex or the y basis, the error rate will be as
high as 25%, just like the BB84 QKD case. If the error rate
is high, then Alice concludes that there is eavesdropping and
the QSS session is dropped. If the error rate is low, then the
QSS session is concluded safe and after quantum error cor-
rection and privacy amplification, a final secret sharing bit
string is produced. Then−1 participants can determine the
shared secret bit using the QSS rules given in Eqs.(12) and
(13) for each valid of transmission.

We have reformulated the HBB QSS protocol in a concise
mathematical form and generalized it into arbitrary multipar-
ties. In these rules, the secret key can be simply calculated
using the parity of the measurement outcomes of the partici-
pating parties together with the number ofy basis used in the
process. However only half of the GHZ states can be used
for quantum secret sharing.

III. ASYMPTOTIC 100% EFFICIENT QSS SCHEMES

By 100% efficient, we mean that all the GHZ-state par-
ticles used in a QSS scheme can be used for sharing the
secret information as compared with the original HBB-QSS
scheme where half of the GHZ states have to be discarded,
because half of the time the participants may choose an odd
number of sy basis. Here we propose two efficient QSS
schemes using techniques that were originally used for QKD
to increase the efficiency. Full efficiency can be obtained if
the participants can always choose the right combination of
measuring basis so that there are always even number of
participants choosing thesy-measuring basis. This can be
achieved in two different ways. One is to use the method
proposed by Lo, Chau, and Ardehali for QKD[11]. In this
scheme the efficiency of the BB84 QKD scheme is asymp-
totically 100%. The other one is the one based on the method
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proposed by Hwang, Koh, and Han[12]. They have discov-
ered that the efficiency of BB84 QKD scheme can be in-
creased to 100% by letting Alice and Bob to choose identical
measuring basis according to a common secret key repeat-
edly, say with a 1000 bit control key. For instance a 0 in the
control key means Alice and Bob use the horizontal-vertical
measuring basis and a 1 in thecontrol key directs them to
use the diagonal-antidiagonal measuring basis. These
schemes have several advantages. First the efficiency is in-
creased to 100% asymptotically. Second the public an-
nouncement of measuring basis can be omitted or almost
omitted and this saves a lot of storage space, classical com-
munication, and the comparison computation time. These
techniques can be generalized with some modification for
use in QSS. In the following, we present the results in de-
tails.

A. The favored-measuring-basis efficient QSS scheme

We call the efficient QSS scheme based on the Lo-Chau-
Ardehali technique as the favored-measuring-basis efficient
QSS scheme. It is noticed that if all the participants in a QSS
round choose thesx basis, it is a valid QSS round, and the
GHZ state in Eq.(1) can be written in thesx basis as

uclGHZ =Î 1

2n+1Sp
i=1

n

su0l + u1ld − p
i=1

n

su0l − u1ldD
=Î 1

2n−1 o
i1i2¯in

8 ui1i2 ¯ inl, s14d

where the prime over the sum means a restricted sum for
those running indices satisfying

i1 % i2 % ¯ % in = 0. s15d

Terms likeu10¯0l are absent from the GHZ-state expres-
sion because a part from the second product cancels with
that from the first product term in Eq.s14d. Hence a high-
efficiency QSS scheme based on the Lo-Chau-Ardehali
techniquef11g can be designed as follows:s1d Alice pre-
pares a sequence ofn-particle GHZ state in states1d; s2d
for each GHZ state, Alice keeps one particle at her own
site and sends the restn−1 particles to other participants,
each particle to a participant;s3d each participant chooses
with a large probability to measure his/her particle in the
sx basis, and with a small probability to measure in thesy
basis. They records the basis they use and the outcome of
the measurement for each particle;s4d after a large num-
ber of GHZ-state particles have been distributed and mea-
sured, they publish their measuring basis for each GHZ
state; ands5d for those rounds of communication where at
least one of the participants chooses thesy basis, all the
participants publish also the outcomes of their measure-
ments. In approximate half of these events, an even num-
ber of participants choose thesy basis, and the outcomes
of the measurements of all the participants are correlated,
and they will be used to check eavesdropping. We can
modify the refined data analysis method proposed in Ref.
f11g to catch Eve. In the refined data analysis, one only

checks those cases that an even number of participants
choose thesy basissexcluding the case when no partici-
pants choose thesy basisd. Eve’s interception will cause
significant errors. Eve needs to intercept all then−1 par-
ticles sent by Alice to the othern−1 participants. Suppose
Eve always uses thesx basis to intercept for those events
that two participants choose thesy basis, Eve will intro-
duce an error rate as high as 50%. If we just look at the
events where two participants choose thesy basis, this
case can be seen as an variant of the efficient QKD
scheme between these two participants where they use the
sx basis most of the time and thesy basis only a small
number of times in Ref.f11g. By examining the error rate,
the participants can determine whether the QSS commu-
nication is secure. For noiseless channels and ideal photon
sources, if no errors exist one can conclude the QSS op-
erations as safe. If there are errors then one concludes that
the QSS operations are insecure and discards the result.
For noisy channels and imperfect photon sources, one has
to use quantum error correction and privacy amplification
method to get secure shared secret information. A more
rigorous security analysis for this scheme, and the details
of the postprocessing is needed, and this work is under
way. We will not touch this issue in this paper.

B. The measuring-basis-encrypted efficient QSS scheme

We call the efficient QSS scheme based on the Hwang-
Koh-Han QKD technique as the measuring-basis-encrypted
QSS scheme, because the measuring basis of the participants
are controlled by a secret key and this information is en-
crypted. In the Hwang-Koh-Han QKD scheme, the measur-
ing basis of Alice and Bob in a QKD process is synchronized
by a control key. Different from QKD where Alice and Bob
use the same secret key to synchronize their measuring basis,
we needn-control keys to control the valid choices of mea-
suring basis for then participants. Furthermore, the control
key sequence is different for different participant. In Table I,
we give an example of control keys for a three party QSS
scheme. Here only the first 10 bits of the control keys are
shown. In practice, the control keys are about 1000 bits long.

The essential part is to generate a control key for each
participant so that the set of measuring basis in a QSS trans-
mission always has an even number ofsy basis. Now we
introduce a method for establishing the control key se-
quences for each party on-site using the original HBB QSS
scheme. First we run the HBB QSS scheme in its original
form, that is, all parties choose their measuring basis ran-
domly. They record their results and also the measuring-basis
information. They then send the measuring-basis information

TABLE I. An example of valid control keys for a three-party
measuring-basis-encrypted QSS scheme.

Round No. 1 2 3 4 5 6 7 8 9 10

Alice x y x y x x y x x y

Bob x x y y x x y y x x

Charlie x y y x x x x y x y
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to Alice, but the measured results are kept secret. Upon re-
ceiving the measuring-basis information from all parties, Al-
ice can decide which GHZ-multiplets are valid QSS opera-
tion, that is, she knows that in these operations there are an
even number of parties having chosen thesy basis. She then
tells all then−1 parties to retain the results in these rounds.
Then each of the party will have a sequence of random num-
bers which is known only to himself/herself. It is noted that
each party’s control key is different from others. These num-
bers are used to determine each party’s measuring-basis
choice. Except Alice, each party will use thesxssyd basis, if
the bit value in her/his sequence is 0(1). Alice’s control
sequence is slightly different from the others in the following
way: if the number ofsy basis in the measurement is 4k, she
simply choosesxssyd basis if her measured result is 0(1),
and if the number ofsy-basis measurement is 2s2k+1d, then
she will choosesyssxd basis if her measured result is 0(1).
This is because when the number ofsy basis is 4k, the mea-
sured result’s parity is even, and it is odd when it is 2s2k
+1d. As in the QKD case, this control key can be used re-
peatedly. The control sequence needs not be long, a few hun-
dreds of bit, the order of a thousand is sufficient.

The on-site generation of the control keys can be spared if
the participating parties keep part of the random numbers left
over from a previous QSS operation.

The security of the QSS has been discussed in Ref.[4],
and the discussion there also applies here. The security of the
repeated use of a control sequence is discussed in Refs.
[12,14], and they can be adapted here with some minor
modification. The QSS scheme can be viewed as a two
“party” quantum key distribution scheme if one views the
n−1 parties as whole as a single participant. Thesen−1
participants as a whole share a common secret key with Al-
ice. However inside thesen−1 parties, they have to act col-
lectively to work out the secret key of Alice. Any eavesdrop-
ping will cause significant errors to the random key.
Similarly, if one of the party is dishonest, significant error
will occur. For instance if Eve uses randomly thesx basis

and thesy basis to measuren−1 particles Alice sends to the
n−1 participants, then Eve will haves1/2dn−1 probability to
choose the right measuring basis. For those that Eve has
chosen the wrong measuring basis, there is 50% of probabil-
ity to make error in the parity of the string, which is the
shared secret information. Hence the error rate introduced by
Eve is

e= f1 − s1/2dn−1g1/2. s16d

For n=3, this amounts to3/8=37.5%. As the number of
participants increase, the error rate approaches 50%.

IV. SUMMARY

We have generalized the HBB QSS scheme into arbitrary
number of parties, and given explicit expressions for the
shared secret information in terms of the parity of strings
formed by the measured results of then−1 participants. By
generalizing the Lo-Chau-Ardehali QKD scheme[11] and
the Hwang-Koh-Han QKD scheme[12], we have developed
two efficient QSS schemes: the favored-measuring-basis
scheme and the measuring-basis-encrypted QSS schemes.
The efficiency of these QSS schemes are asymptotically
100%. We have also qualitatively showed the security of the
QSS scheme. It remains to be shown the security of these
QSS schemes in noisy channels and with imperfect single-
photon sources, in a way similar to what have been done for
the security of QKD[15–17]. Work is under way and the
result will be published elsewhere.
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