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In this work, we generalize the quantum-secret-sharing scheme of Hillery, BuZek, and BertfiRiwse
Rev. A 59, 1829(1999)] into arbitrary multiparties. Explicit expressions for the shared secret bit is given. It is
shown that in the Hillery-Buzek-Berthiaume quantum-secret-sharing scheme the secret information is shared in
the parity of binary strings formed by the measured outcomes of the participants. In addition, we have
increased the efficiency of the quantum-secret-sharing scheme by generalizing two techniques from quantum
key distribution. The favored-measuring-basis quantum-secret-sharing scheme is developed from the Lo-Chau-
Ardehali techniqudgH. K. Lo, H. F. Chau, and M. Ardehali, e-print quant-ph/0011D@&@ere all the partici-
pants choose their measuring-basis asymmetrically, and the measuring-basis-encrypted quantum-secret-sharing
scheme is developed from the Hwang-Koh-Han techn[ueY. Hwang, I. G. Koh, and Y. D. Han, Phys. Lett.
A 244, 489 (1998] where all participants choose their measuring basis according to a control key. Both
schemes are asymptotically 100% in efficiency, hence nearly all the Greenberger-Horne-Zeilinger states in a
guantum-secret-sharing process are used to generate shared secret information.
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I. INTRODUCTION wants Bob and Charlie to share. Generally in order to estab-

The combination of quantum mechanics with information!ish the secret-sharing scheme, a detailed table needs to be

has produced many interesting and important developmentEP”Str”Cted to list all the possible combinations of the mea-

Quantum cryptography is one important application. Quan§uring basis and the possible outcomes of all parties. When
tum key distribution QKD) concerns the distribution of one- the number of participating parties is large, the construction
time-pad keys between distant two partigs With quantum of such a table is very tedious and it is also inconvenient to
mechanics, other cryptographic task can be realized. Suppodg€: In this paper, we reformulate the HBB scheme in simple

Alice wants two parties Bob and Charlie who are at distan athematical terms, and the shared secret information be-
places to fulfill certain tasks. Alice knows that one of them ©OMeS the parity of a binary string formed by the measured

: o outcomes of the participating parties. From this formulation,
may be dishonest, but she does not know who this d'Shoneﬁfe rules in the HBB QSS scheme are obtained. For instance

guy is. To cpmplete this task, classical cryptograp_hy uses th\%r a round of communication to be a valid one, the number
secret-sharing techniqye,3]. In quantum information, this ¢ narties choosing the, basis has to be even, because when
task can be achieved by quantum secret sha@®, and it eyen number of parties choose thgbasis, the bit value of

is a fruitful area of research. Many researches have beeRjice has a one-to-one correspondence with the parity of the
carried out[4,5,7-9. It has also been demonstrated in ex-pinary number formed by the measurement outcomes of the
periment recently[6]. With quantum mechanics, one can participating parties. From this mathematical formalism, we
share both classical information and quantum information. Iyeneralize the HBB scheme into arbitrary number parties
this paper, we consider the issue of sharing of classical secreases. This is given in Sec. Il.

information. We specifically consider the QSS scheme pro- In the HBB QSS scheme, only half of the GHZ states can
posed by Hillery, BuZek, and Berthiaunieereafter we refer be used for secret sharing. This is the intrinsic limitation of
to HBB protoco) [4]. In Ref. [4], secret sharing with three this scheme. This is similar to the BB84 QKD scheme where
and four parties have been studied. In the HBB QSS schemenly half of the photons transmitted can be used to generate
the secret sharing is accomplished by using the Greenbergarseful keys. In QKD, Lo, Chau, and Ardeh§lil] have pro-
Horne-Zeilinger (GHZ) state [10]. In this scheme, Alice, posed a scheme that increases the intrinsic efficiency to
Bob, and Charlie need to choose randomly one measuring00% asymptotically. In their scheme, they choose one pre-
basis from either the, measuring basis or the, measuring  ferred measuring basis most of the time, and choose the other
basis, respectively, similar to the Bennett-Brassard 1984neasuring basis, the unfavored measuring basis, with a small
(BB84) QKD scheme[1]. In half of the cases, nobody probability. The events that Alice and Bob choose the unfa-
chooses ther, axis or two parties choose the, axis, the vored measuring basis are used later for eavesdropping
measuring results of the three parties are correlated. In thestecking. This has greatly increased the intrinsic efficiency
cases, Bob and Charlie can combine their measuring-bastf the BB84 scheme. In the limiting case of large numbers,
information and their measurement outcomes to determinthe efficiency approaches 100%. This has been shown to be
the results of Alice’s measurement. In this case, Alice’'s meaunconditionally securgll]. Hwang, Koh, and Hafil2] have
surement result is used as the secret information that sh@oposed another modification to the BB84 QKD scheme
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that also increases its efficiency to nearly 100% by letting 1 i
Alice and Bob to choose identical measuring basis according 00=7(0)y+[1)y), [D=-7(0)y-|Dy). (5

. . V2 V2
to a common secret key. This control key is used repeatedly
during a QKD transmission session. Controlled keyswe make the convention that the positive polarized states
have also been used in QKD in the controlled-order-alongx ory axis are taken as 0, and those along the negative
rearrangement-encryption scherfie3], where Alice takes direction are denoted as 1. In the HBB scheme, only half of
one particle from each Einstein-Podolsky-Ro$ERR) pair  the GHZ particles can be used for secret sharing. The choice
from a group of EPR pairs and mixes up their orders anf the measuring basis plays an important role in judging
sends them to Bob, and Bob recovers the orders of the pawhether a round of measurement can be used for secret
ticles to get the correct particle correlation of EPR pairs.sharing.
Alice and Bob synchronize their action by using a control We use a sequen¢b;(j),b,(j), ... .bi(j), ... ,bs(j)] to de-
key repeatedly. The following example explains the Koh anchote the measuring basis information for Alice, Bob,... for
Han technique: if the control key is 0101001110, then Alicethe jth GHZ-state. The number in the bracketefers to the
and Bob choose their measuring basis in the following sejth GHZ state in a sequence of secret-sharing operations. The
qguence “£<+X++X X X+" where “+” represents the subscript refers to the order number of particles, 1 represents
vertical-horizontal measuring basis, and™represents the Alice’s particle, 2 refers to Bob’s particle, and so on. If
diagonal-antidiagonal measuring basis. The control key i$,(j)=0, then theith party uses thex basis, andb;(j)=1
usually quite short, say 1000 bits long. It is repeated agaifneans that théth party uses thg axis. To obtain the mea-
and again until the QKD process ends. In this way, Alice andsuring result in such a case, we need to expand the GHZ state
Bob can always choose the same measuring basis. Thg the eigenbasis ofbi(j),i=1, ... n]. Using Egs.(4) and
quantum-mechanical nature of the single photons render(g-,)’ the|00- --0) component can be written as
eavesdropping detectable, and the random nature of the mea-

sured results keeps the information on the control key safe. It " 1

has been shown that the scheme is sedarg for ideal |00"'0>:H <\/;(|O>bi+|1>bi))' (6)
single-photon sources. The essential ingredient in these im- =1

provements is to allow the two parties to use identical meaand the|11---1) component can be written as

suring basis as much as possible. Generalizing these two .

techniques, we have proposed two efficient QSS schemes =i

that are asymptotically 100% in efficiency. This is given in 11 1= H (E(|O>bi - |1>bi)>' (7)

Sec. lll. A summary is given in Sec. IV.
When they basis are chosen by an odd number of partici-

Il. MULTIPARTY HBB QUANTUM-SECRET-SHARING pants, the expansion fot1---1) has the following form:

SCHEME ;oo

i
11---1) =+ — Op. —1Dp), 8

We present the-party HBB QSS scheme first. Suppose | ) (\"2)“2 (10), = [1)p) 8
there aren parties taking part in the secret-sharing process. It

is done by using a sequence of GHZ multiplets where the + sign is fon=2k+1 and - sign is fon=4k+1,
wherek is a positive integer.

[Wenz= ,—E(|000"' 0)+[111--- 1)), 1) Hence the GHZ state in E@1) can be rewritten as
\J

n n

where stateg0)=|z+) and |1)=|z-) are eigenstates of the __ 1 ; _

spin projection in the direction,o,. Alice keeps one particle |¥enz 2(””)’2(2 (|O>bi " |1>bi) * IE (|0>bi |1>bi))’

and sends the other two particles to Bob and Charlie each. 9

Then Alice, Bob, Charlie randomly choose from thigand

the o, basis to measure their particles respectively. Thefor an odd number of participants choosing yheasis. There

eigenstates of tlhex and theo, operators arle is no cancellation between the first product term and the
_ _ N — T second product term in EQ(9), and terms such as

0)y = [+x) \"§(|O>+ D), =[x \5(|0> ), |0igi5" *in bbb, @Nd [Lizig **in-p)pp, .5, bOth present in
) the expansion in Eq9). In other words, for a set of mea-

sured values,, ... ,i, measured in measuring basis ... ,b,
_ 1 _ _ 1 . by the participants Bob, Charlie, and so on, Alice’s measured
|0>y—|+y)—$(|0>+||1)), |1>y‘|_y>_\y_§(|o>_'|l>)‘ result still has two possibilities. Even if the—1 secret-

sharing parties get together and disclose their measuring-
3) basis information and their measuring outcomes, they still
Inversely we have the expansion of the eigenstates ofthe Cannot obtain the result of Alice’s measurement. For instance

operator in terms of they, and thea, eigenbasis as follows: in & three-party QSS, if Alice chooses theaxis, Bob and
Charlie choose the axis, the expansion in the eigenbasis of

1 1 oy, gy, anday (for Alice, Bob, and Charlie, respectivelwill
= —= = — —_ 4 yr ¥ Xy X 3 [ )
|0> \’f2(|O>X + |1>X)l |1> \’,2(|0>X |1>X)! ( ) be
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(1-i) (1 +i) (3) each party chooses randomly from ther they measur-
T(|000> +[01D +[10) +|110) + 2 (/003) +(010) ing basis to measure his/her particle. He/she keeps the mea-
sured result and the measuring-basis information for his/her

+[100 +[111), (10)  particle. If the measured result is ggown) along the mea-

suring basis, he/she records the result &5)0(4) the above
Oprocedures(l)—(S) are repeated many times until sufficient
number of measured results are produced. This should be at
‘least twice as much as the number of desired shared(bjts;
Yiter procedurg4), each participants sends the measuring-
basis information to Alice through a classical channel and
upon receiving all the measuring-basis information, Alice
counts the number of parties choosing yheasis. Alice pub-
licly announces the nature of this number for each round:
odd, or an even number with the form of2k+1), or an
even number with the form ofkd The exact number ok
1 n n need not be disclosed. If the number is odd, then that round
|Wenz= i LT (o), +[25) + TT (1006, = 1)) |- of measurement result is dropped, and if the number is even,
i=1 i=1 all the participants keep their measured values and the
(11)  measuring-basis information for these everi®;Alice se-
lects a sufficiently large subset of events and asks the par-

Because some terms in the second product term in the eYinants to disclose their measured values for these events.

pansion have negative sign, they cancel Witﬁlrelevant te'MErom this information, Alice can check if there exists eaves-
in the first product term,_hlence there are onfy"2erms left 45 90ing in the quantum channel. For instance, if an eaves-
in Eq. (11). Among the 2°* terms, the value of the first bit, ;o ner tries to intercept the QSS scheme by measuring the

which is the Lesult of Alice’s m.eaSlljrement,h[s umquel;r: de-gtate of the particle intended for a legitimate participant us-
termined by the remaining-1 bit values. In this case when o4 randomly thex or they basis, the error rate will be as

_then—l parties get together and reveal their measu_ring-baSﬁigh as 25%, just like the BB84 QKD case. If the error rate
information and the measured results, they can uniquely d&g high then Alice concludes that there is eavesdropping and
termine the bit value of Alice. Unless ail-1 participating o 3ss session is dropped. If the error rate is low, then the
parties present, the detgrmmanon of .AI|ce's bit value is IM-SS session is concluded safe and after quantum error cor-
possible. For instance, if only-2 parties are present, from yoq(ion and privacy amplification, a final secret sharing bit
their measured values and measuring-basis information, thes}fring is produced. The—1 participants can determine the
can only narrow the state down to two possibilities in whichgp4red secret bit using the QSS rules given in Et@. and
Alice can have either 0 or 1. Thus it is only when alt1 (13) for each valid of transmission.
pa}rties work collectively that they can get the bit value of  \ya have reformulated the HBB QSS protocol in a concise
Alice. . , mathematical form and generalized it into arbitrary multipar-
Summarizing the above observation, the general rule fofieg |y these rules, the secret key can be simply calculated
multiparty secret sharing are as TOIIOWS' _ using the parity of the measurement outcomes of the partici-
(1) The number of parties using the, basis has 10 be  aiing parties together with the numbenydbasis used in the

eveg. When th ber of bart _ . 1o Process. However only half of the GHZ states can be used
2 en the number of parties usiygbasis is equal to for quantum secret sharing.

2(2k+1) wherek is a non-negative integer, the bit value of
Alice is simply the modulo 2 sum of the—1 parties’ bit
value plus 1: . ASYMPTOTIC 100% EFFICIENT QSS SCHEMES

where the basis ordefs—x—-x in the subscript are omitted
for brevity. When Bob and Charlie have definite measure
results, Alice’s result still has two possibilities. For instance
when Bob and Charlie’s results are 0 and 0, respectivel
(along the positive¢ axis), Alice’s result may be @along the
positivey axis) from component/000, or 1 (along the
negativey axis) from component100. Thus it is not use-
ful for quantum secret sharing.

When the number of parties choosing thbeasis is even,
we have

iAice = 11512 @i3® @i, @ 1. (12) By 100% efficient, we mean that all the GHZ-state par-
] ] ) ) _ ticles used in a QSS scheme can be used for sharing the
For instance in a three-party QSS with two parties using secret information as compared with the original HBB-QSS
axis, there is a componeftt00) in the expansior(11), the  scheme where half of the GHZ states have to be discarded,
modulo 2 sum of Bob and Charlie gives 0, then adding lpecause half of the time the participants may choose an odd
gives 1. _ _ o number of o, basis. Here we propose two efficient QSS
(3) When the number of parties taking thebasis is &,  schemes using techniques that were originally used for QKD
then the bit value of Alice is simply the modulo 2 sum of the o jncrease the efficiency. Full efficiency can be obtained if
n-1 parties’ bit values. the participants can always choose the right combination of
(13) measuring basis so that there are always even number of
participants choosing the-measuring basis. This can be
Hence then party HBB QSS scheme can be given asachieved in two different ways. One is to use the method
follows: (1) Alice prepares am particle GHZ statgl); (2) proposed by Lo, Chau, and Ardehali for QK1]. In this
Alice keeps one particle at her own hand and sends the restheme the efficiency of the BB84 QKD scheme is asymp-
of particles to then—1 participants, each party a particle; and totically 100%. The other one is the one based on the method

iAIice:i1:i2®i3® @in.
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proposed by Hwang, Koh, and H&h2]. They have discov- TABLE I. An example of valid control keys for a three-party
ered that the efficiency of BB84 QKD scheme can be in-measuring-basis-encrypted QSS scheme.

creased to 100% by letting Alice and Bob to choose identicat
measuring basis according to a common secret key repedtoundNo. 1 2 3 4 5 6 7 8 9 10
edly, say with a 1000 bit control key. For instana 0 in the
control key means Alice and Bob use the horizontal-vertical
measuring basis @na 1 in thecontrol key directs them to
use the diagonal-antidiagonal measuring basis. These Chatlie  x 'y 'y x x x x vy
schemes have several advantages. First the efficiency is in-
creased to 100% asymptotically. Second the public an- o
nouncement of measuring basis can be omitted or almo§hecks those cases that an even number of participants
omitted and this saves a lot of storage space, classical corfiioose theoy basigexcluding the case when no partici-
munication, and the comparison computation time. Thes®ants choose the, basig. Eve’s interception will cause
techniques can be generalized with some modification fopignificant errors. Eve needs to intercept all thel par-

use in QSS. In the following, we present the results in dedicles sent by Alice to the other-1 participants. Suppose
tails. Eve always uses the, basis to intercept for those events

that two participants choose thg basis, Eve will intro-
duce an error rate as high as 50%. If we just look at the
A. The favored-measuring-basis efficient QSS scheme events where two participants choose tig basis, this

We call the efficient QSS scheme based on the Lo-Chalf2S€ can be seen as an variant of the efficient QKD
Ardehali technique as the favored-measuring-basis efficierice€me between these two participants where they use the
QSS scheme. It is noticed that if all the participants in a QS¥x Pasis most of the time and the, basis only a small
round choose the,, basis, it is a valid QSS round, and the NUmber of times in Ref.11]. By examining the error rate,
GHZ state in Eq(1) can be written in ther, basis as the p_arnqpants can dete_rmlne whether the Q_SS commu-

nication is secure. For noiseless channels and ideal photon

Alice x vy X y X X y X X Yy
X y y X X

<
x

1 (. n sources, if no errors exist one can conclude the QSS op-
[Wenz=\/ o (0 +[1) =TT (o) -[1)) erations as safe. If there are errors then one concludes that
i=1 i=1 the QSS operations are insecure and discards the result.
1 For noisy channels and imperfect photon sources, one has
“\Nort 2_, ligip--ip), (14)  to use quantum error correction and privacy amplification
iqipin method to get secure shared secret information. A more
where the prime over the sum means a restricted sum fd#gorous security analysis for this scheme, and the details
those running indices satisfying of the postprocessing is needed, and this work is under

way. We will not touch this issue in this paper.

Terms like|10---0) are absent from the GHZ-state expres- B. The measuring-basis-encrypted efficient QSS scheme

sion because a part from the second product cancels with We call the efficient QSS scheme based on the Hwang-
that from the first product term in Eq14). Hence a high- Koh-Han QKD technique as the measuring-basis-encrypted
efficiency QSS scheme based on the Lo-Chau-ArdehalQSS scheme, because the measuring basis of the participants
technique[11] can be designed as follow§l) Alice pre-  are controlled by a secret key and this information is en-
pares a sequence afparticle GHZ state in statél); (2) crypted. In the Hwang-Koh-Han QKD scheme, the measur-
for each GHZ state, Alice keeps one particle at her owning basis of Alice and Bob in a QKD process is synchronized
site and sends the rest1 particles to other participants, by a control key. Different from QKD where Alice and Bob
each particle to a participant3) each participant chooses use the same secret key to synchronize their measuring basis,
with a large probability to measure his/her particle in thewe needn-control keys to control the valid choices of mea-
oy basis, and with a small probability to measure inthe  suring basis for the participants. Furthermore, the control
basis. They records the basis they use and the outcome kéy sequence is different for different participant. In Table |,
the measurement for each particld) after a large num- we give an example of control keys for a three party QSS
ber of GHZ-state particles have been distributed and meascheme. Here only the first 10 bits of the control keys are
sured, they publish their measuring basis for each GHZ&hown. In practice, the control keys are about 1000 bits long.
state; and5) for those rounds of communication where at  The essential part is to generate a control key for each
least one of the participants chooses thebasis, all the participant so that the set of measuring basis in a QSS trans-
participants publish also the outcomes of their measuremission always has an even number «f basis. Now we
ments. In approximate half of these events, an even numintroduce a method for establishing the control key se-
ber of participants choose thg, basis, and the outcomes quences for each party on-site using the original HBB QSS
of the measurements of all the participants are correlatedcheme. First we run the HBB QSS scheme in its original
and they will be used to check eavesdropping. We caitiorm, that is, all parties choose their measuring basis ran-
modify the refined data analysis method proposed in Refdomly. They record their results and also the measuring-basis
[11] to catch Eve. In the refined data analysis, one onlyinformation. They then send the measuring-basis information
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to Alice, but the measured results are kept secret. Upon reand theo, basis to measune-1 particles Alice sends to the
ceiving the measuring-basis information from all parties, Al-n-1 participants, then Eve will havd /2)""! probability to

ice can decide which GHZ-multiplets are valid QSS operachoose the right measuring basis. For those that Eve has
tion, that is, she knows that in these operations there are athosen the wrong measuring basis, there is 50% of probabil-
even number of parties having chosen #hebasis. She then ity to make error in the parity of the string, which is the

tells all then—1 parties to retain the results in these roundsshared secret information. Hence the error rate introduced by
Then each of the party will have a sequence of random numg, ¢ s

bers which is known only to himself/herself. It is noted that

each party’s control key is different from others. These num- e=[1-(1/2"Y1/2. (16
bers are used to determine each party’s measuring-basis _ _ 0

choice. Except Alice, each party will use thg(cy) basis, if For n=3, this amounts 8/8=37.5%. As the number of
the bit value in her/his sequence is(D). Alice’s control ~ Participants increase, the error rate approaches 50%.

sequence is slightly different from the others in the following

way: if the number ofry basis in the measurement ik, 4he IV. SUMMARY
simply chooseoy(o,) basis if her measured result is(0),
and if the number obry-basis measurement ig2k+1), then We have generalized the HBB QSS scheme into arbitrary

she will chooser(a,) basis if her measured result is(D). number of parties, and given explicit expressions for the
This is because when the numberagfbasis is 4, the mea- shared secret information in terms of the parity of strings
sured result’s parity is even, and it is odd when it (R formed by the measured results of the 1l participants. By
+1). As in the QKD case, this control key can be used re-generalizing the Lo-Chau-Ardehali QKD scherfiel] and
peatedly. The control sequence needs not be long, a few huthe Hwang-Koh-Han QKD schenié?2], we have developed
dreds of bit, the order of a thousand is sufficient. two efficient QSS schemes: the favored-measuring-basis
The on-site generation of the control keys can be spared Bcheme and the measuring-basis-encrypted QSS schemes.
the participating parties keep part of the random numbers lefthe efficiency of these QSS schemes are asymptotically
over from a previous QSS operation. 100%. We have also qualitatively showed the security of the
The security of the QSS has been discussed in R&f. QSS scheme. It remains to be shown the security of these
and the discussion there also applies here. The security of t§8SS schemes in noisy channels and with imperfect single-
repeated use of a control sequence is discussed in Refghoton sources, in a way similar to what have been done for
[12,14, and they can be adapted here with some minothe security of QKD[15-17. Work is under way and the
modification. The QSS scheme can be viewed as a twéesult will be published elsewhere.
“party” quantum key distribution scheme if one views the
n-1 parties as whole as a single participant. Thasd
participants as a whole share a common secret key with Al-
ice. However inside these-1 parties, they have to act col- This work was supported by the National Fundamental
lectively to work out the secret key of Alice. Any eavesdrop- Research Program Grant No. 001CB309308, the China Na-
ping will cause significant errors to the random key.tional Natural Science Foundation Grant Nos. 60073009 and
Similarly, if one of the party is dishonest, significant error 10325521, the Hang-Tian Science Fund, and the SRFDP pro-
will occur. For instance if Eve uses randomly thg basis  gram of the Education Ministry of China.
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