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We examine the entanglement of general mixed states of a two-qubit HeisenbergXYZchain in the presence
of a magnetic field, and its detection by means of different criteria. Both the exact separability conditions and
the weaker conditions implied by the disorder and the von Neumann entropic criteria are analyzed. The ensuing
limit temperatures for entanglement in thermal states of differentXYZmodels are then examined and compared
with the limit temperature of the symmetry-breaking solution in a mean-field-type approximation. The latter,
though generally lower, can also be higher than the exact limit temperature for entanglement in certain cases,
indicating that symmetry breaking does not necessarily entail entanglement. The reentry of entanglement for
increasing temperatures is also discussed.
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I. INTRODUCTION

Entanglement is one of the most distinctive features of
quantum mechanics, representing the ability of composite
quantum systems to exhibit correlations which have no clas-
sical analog. Recognized already by Schrödinger[1], it has
recently become the object of intensive research due to the
key role it plays in the field of quantum information[2–6].
Rigorously, a mixed stater of a bipartite system is said to be
separableor classically correlated[7] if it can be expressed
as a convex combination of uncorrelated densities, i.e.,r
=onqnrA

n
^ rB

n , whererA
n , rB

n are mixed states of each sub-
system andqn are non-negativenumbers. Otherwise,r is
entangledor inseparable. When separable,r satisfies all Bell
inequalities as well as other properties characteristic of clas-
sical systems.

A pure stater= uFlkFu is separable just for tensor product
statesuFl= ufAlufBl, but in the case of mixed states, such as
thermal statesr~expf−H /Tg, with H the system Hamil-
tonian, it is in general much more difficult to determine
whetherr is separable or not. Only in special cases, such as
a two-qubit or qubit1qutrit system, simple necessary and
sufficient conditions for separability are known[8,9]. More-
over, the entanglement of formation of a mixed state[10] has
been explicitly quantified only for a two-qubit system[11].
Nonetheless, it is known that any mixed state becomes sepa-
rable if it is sufficiently close to the fully mixed state[12,13].
For thermal states of finite systems, this implies that afinite
limit temperature for entanglement[14], Te, will always exist
such thatr becomes separable∀TùTe. It is then interesting
to analyze if it is possible to estimate this temperature with
simple separability criteria, and how it is related to the criti-
cal temperatureTc of the symmetry-breakingsolution in a
mean-field-type approximation, which is the conventional
starting point for describing interacting many-body systems.
Such solutions(i.e., like deformed or superconducting) nor-
mally reflect the presence of strong correlations and collec-
tive behavior.

The aim of this work is to examine these issues in a
simple yet nontrivial model where the exact entanglement

conditions and quantification can be easily obtained. For this
purpose, we will consider a system of two qubits interacting
through a HeisenbergXYZHamiltonian[15] in the presence
of an external magnetic field. Interest in this model stems
from the potential use of Heisenberg spin chains for gate
operations in solid-state quantum computers[16,17]. The
pairwise entanglement of thermal states of isotropic[18,19]
and anisotropicXY [20–22] Heisenberg models have accord-
ingly been recently studied, and several interesting features
have appeared already in the two-qubit case[21], such as the
possibility of entanglement reentry for increasing tempera-
tures or magnetic fields.

We will first review the exact separability conditions for
generalmixtures of the eigenstates of arbitraryXYZHamil-
tonians, examining in particular thermal states and the pos-
sibility of entanglement reentry. We will also analyze the
weaker conditions provided by thedisorder criterion [23],
which is the strongest one based just on the spectrum ofr
and one of its reductions, and is hence more easy to imple-
ment in general than other criteria. Violation of the disorder
conditions also ensures distillability[24]. These conditions
are hereexact in the absence of a magnetic field. Although
the disorder criterion admits a generalized entropic formula-
tion [25], it is stronger than the von Neumann entropic cri-
terion [26], based on the same information, whose predic-
tions will also be analyzed. The ensuing exact and
approximate limit temperatures for entanglement in thermal
states of differentXYZmodels will then be examined.

Finally, we will discuss the mean-field(i.e., independent
qubit) approximation for thermal states, with the aim of com-
paring the previous limit temperatures with the correspond-
ing mean-field critical temperatureTc. It will be shown, re-
markably, that for T.0, symmetry breaking is not
necessarily a signature of entanglement, so thatTc may be
higher thanTe, although it is usually lower. The model and
methods are described in Sec. II, while three different ex-
amples are analyzed in detail in Sec. III. Conclusions are
finally drawn in Sec. IV.
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II. FORMALISM

A. Model and separability conditions

We will consider a HeisenbergXYZ chain [15] for two
qubits in an external magnetic fieldb along thez axis. De-
noting with S=sA+sB the total spin of the system, the corre-
sponding Hamiltonian can be written as

H = bSz − 2 o
i=x,y,z

visi
Asi

B, s1ad

=Hz − v+sSx
2 + Sy

2 − 1d − v−sSx
2 − Sy

2d, s1bd

where Hz=bSz−vzsSz
2−1/2d and v±=svx±vyd /2. The ferro-

magnetic (antiferromagnetic) case corresponds tovi ù0
sø0d, and the standardXY model to vz=0. Its normalized
eigenstatesHuF jl=EjuF jl are given by

uF0,3l =
u+ − l 7 u− +l

Î2
, E0,3=

1

2
vz ± v+,

uF1,2l =
u±u+ +l 7 u7u− − l

Î2
, E1,2= −

1

2
vz ± D, s2d

with D=v−
Î1+b2/v−

2, u±=Î1±b/D and u±±l;u± lu± l the
separable eigenstates ofSz (standard basis). The statesuF0,3l
are maximally entangled, whereasuF1,2l are entangled for
v−Þ0, with concurrencev−/D (see the Appendix). They be-
come maximally entangled forb=0, in which case the set of
states(2) is just the Bell basis.

We will first consider general statistical mixtures of the
previous eigenstates, which can be written as

r = o
j=0

3

pjuF jlkF ju s3ad

=
1

4
+

1

2
kSzlSz + 4 o

i=x,y,z
ksi

Asi
Blsi

Asi
B, s3bd

wherepj ù0, o j=0
3 pj =1 and

kSzl =
b

D
sp1 − p2d, ksz

Asz
Bl =

1

2
Sp1 + p2 −

1

2
D ,

ksi
Asi

Bl =
1

4
Fp3 − p0 ±

v−

D
sp2 − p1dG, i = x,y, s4d

with kOl;TrrO. Equations(3) comprise standard thermal
states as well as those arising in more general statistical de-
scriptions[27,28], and represent the most general two-qubit
state with good permutational and phase flip symmetryU=
−eipSz real in the standard basis. The two-site density matrix
of an N qubit XYZchain with cyclic boundary conditions is
in fact also of this form[22].

Exact separability conditions. For the state(3), they can
be most easily determined with the Peres criterion[8], suffi-
cient for two qubits[9], and can be cast as

v−

D
up2 − p1u ø p0 + p3, s5ad

up3 − p0u ø Fsp1 + p2d2 −
b2

D2sp2 − p1d2G1/2

, s5bd

or, in terms of the averageskSi
2l=2ksi

Asi
Bl+1/2, as

ukSx
2 − Sy

2lu ø k1 − Sz
2l, s6ad

ukSx
2 + Sy

2 − 1lu ø fkSz
2l2 − kSzl2g1/2, s6bd

imposing bounds on the averages of the last two terms in
Eqs.(1b). If r is entangled, only one of Eqs.(5) is violated,
and its concurrence is given precisely by the difference be-
tween the left- and right-hand sides of the broken inequality
(see the Appendix). The entanglement arises essentially from
one of the statesuF1,2l suF0,3ld if Eq. (5a) [Eq. (5b)] is bro-
ken. Equations (5) are always satisfied if upj −1/4u
ø s4Î2d−1∀ j , i.e., if r is sufficiently close to the fully mixed
state. If b=0, r is diagonal in the Bell basis and Eqs.(5)
reduce accordingly topj ø1/2∀ j [26], while Eqs.(6) to 1
ø kS2lø1+2kSi

2l for i =x,y,z, askSzl=0.
Disorder and entropic separability conditions. The disor-

der criterion[23] states that ifr is separable,r is majorized
by the reduced densitiesrA,B;TrB,A r, which means thatr is
more mixed(i.e., disordered) than rA, rB. In a two-qubit
system, this implies that the largest eigenvalue ofr should
not exceed that ofrA andrB, which is in general a necessary
condition that becomessufficientwhenr is pure ordiagonal
in the Bell basis[23,25].

For the state(3), ra=1/2+kSzlsz
a for a=A,B, and the

disorder criterion leads to the inequalities

pj ø
1

2
F1 +U b

D
sp2 − p1dUG, j = 0, . . . ,3, s7d

which in terms of total spin averages can be recast as

ukSx
2 − Sy

2lu ø k1 − Sz
2lf1 + 2ukSzlu/k1 − Sz

2lg1/2, s8ad

ukSx
2 + Sy

2 − 1lu ø kSz
2l + kSzl. s8bd

Equations(7) and (8) are clearly less stringent in general
than Eqs.(5) and (6), but becomeexact for b=0 skSzl=0d,
i.e., whenr is diagonal in the Bell basis.

The standard entropic criterion[26], based on the von
Neumann entropyS2srd=−Tr r log2 r, states that ifr is
separable,S2srdùS2srad for a=A,B. Although exact for
pure states[in which caseS2srd=0 andS2srAd=S2srBd is just
the entanglement ofr [11])], for mixed states it is in general
weaker than the disorder criterion[25], except when bothr
andra have rank two. Figure 1 depicts, forp1=0 andb/v−
=1, the regions where the state(3) is entangled and where
entanglement is detected by the disorder and the standard
entropic criteria.

Standard thermal state and entanglement reentry. For

N. CANOSA AND R. ROSSIGNOLI PHYSICAL REVIEW A69, 052306(2004)

052306-2



r = expf− bHg/Tr expf− bHg, b ; 1/T . 0, s9d

i.e., pj ~e−bEj in Eq. s3ad, Eqs.s5d become

v−

D
ebvz sinhubDu ø coshsbv+d, s10ad

e−bvz sinhubv+u ø F1 +
v−

2

D2sinh2sbDdG1/2

, s10bd

and determine a finite limit temperature for entanglementTe,
such that they are satisfied∀TùTe. Nonetheless, entangle-
ment, as measured by the entanglement of formation or con-
currence, may not be a decreasing function ofT for T,Te
when the ground state is less entangled than the first excited
state[18–21], and even entanglement vanishing plus reentry
may occur[21], as discussed below. Note that the spectrum
of H, and hence Eqs.(10), do not depend on the signs ofb
andv±.

Let us consider for instance a mixture ofuF2l and uF3l
[p0=p1=0 in (3a)], which corresponds to the outer border in
Fig. 1. This state is separablejust for p2=pc;s1+v−/Dd−1

ù1/2, with Eq.(5a) [Eq. (5b)] broken forp2.pc sp2,pcd.
Its concurrence isCsrd= up2/pc−1u. The state(9) will ap-
proximately be of this form for lowT if E2 andE3 are suf-
ficiently close and well below the remaining levels. Hence, if
E2,E3, Csrd will initially decrease asT increases from zero,
vanishingat the temperature

Tr = sE3 − E2d/lnfD/v−g, s11d

wherep2=pc, but will exhibit a reentry for T.Tr, with Eq.
s10ad fEq. s10bdg broken forT,Tr sTr ,T,Ted. Due to the
remaining levels,Csrd will actually vanish in a small but

finite temperature interval aroundTr ssee case 3 in Sec. IIId.
When uF2l becomes separablesv−/b→0d, pc→1 and Tr

→0, whereas when it becomes maximally entangledsb/v−

→0d, pc→1/2 andTr →`, so that no reentry takes place in
this limit. In contrast, ifE3,E2, p2,1/2øpc ∀ Tù0 and
no reentry or enhancement ofCsrd can take place. Nor can it
occur for a mixture ofuF0l and uF3l or uF1l and uF2l, since
they are separable just for equal weights, as seen from Eqs.
s5d.

For the state(9), the disorder conditions(7) become

S1 −U b

D
UDebvz sinhubDu ø coshsbv+d, s12ad

e−bvz sinhubv+u ø coshsbDd + U b

D
UsinhubDu, s12bd

and lead to a lower limit temperature for entanglement de-
tection,Te

døTe, with Te
d=Te just for b=0. The entropic cri-

terion leads to an even lower limit temperatureTe
søTe

d. The
reentry effectcannot be detectedby the disorder(and hence
by the entropic) criterion. Violation of Eqs.(7) requires
pj .1/2 for somej , so that in the thermal case just the en-
tanglement arising from thegroundstate can be detected. For
a mixture of uF2l and uF3l, Eqs. (7) are broken just for
p2.pd=s2−ub/Dud−1 or p2,pd8=s2+ub/Dud−1 (see Fig. 1),
which does not allow to detect the reentry whenE2,E3
sincepd8ø1/2.

B. Symmetry-breaking mean-field approximation

The thermal state(9) represents the density operator that
minimizes the free energy

Fsrd ; kHl − TSsrd = TrrfH + T ln rg. s13d

In a finite temperature mean-field or independent qubit ap-
proximation, Eq.s13d is minimized among the subset ofun-
correlatedtrial densities, given in this case by

rmf = rA ^ rB, s14d

with arbitrary rA, rB, obtaining thus an upper bound to the
minimum free energy. The only way such an approximation
can reflect entanglement is throughsymmetry breaking: the
optimum density that minimizesFsrmfd may break some of
the symmetries present in the HamiltonianH, and become
degenerate. In these cases acritical temperature Tc will
exist such that the optimum density becomes symmetry con-
serving forTùTc. At T=0, symmetry breaking implies en-
tanglementif the ground state ofH is nondegenerate, since
for pure states separability corresponds to an uncorrelated
density. However, this is not necessarily the case forT.0,
where symmetry breaking just indicates, in principle, that the
true thermal state is not uncorrelated. On the other hand,
entanglement does not necessarily imply symmetry breaking
either, both atT=0 or T.0, as correlations need to be in
general sufficiently strong to induce a symmetry-breaking
mean fieldf29g.

The densitiesra, a=A,B, can be parametrized as

FIG. 1. Range of values ofp2 and p3 where the state(3) is
entangled(shaded sectors), for p1=0, b/v−=1. Equation(5a) is bro-
ken in sectorA while Eq. (5b) in sectorsB. Entanglement is de-
tected by the disorder criterion in the black and dark gray sectors,
and by the von Neumann entropic criterion just in the black sectors.
They both coincide at the border of the triangle, wherer has rank 2,
and are exact forp2=0, wherer is in addition diagonal in the Bell
basis.
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ra =
expf− blasag

Tr expf− blasag
=

1

2
+ 2ksalsa,

ksal = Trra sa = −
1

2
latanhF1

2
bulauGY ulau, s15d

so that Eq.(14) corresponds to an approximate independent
qubit Hamiltonianh=oa lasa. Minimization of Fsrmfd with
respect tola leads then to the self-consistent equations(see
for instance Ref.[30])

li
a =

] kHlmf

] ksi
al

, i = x,y,z, s16d

wherekHlmf=Tr rmfH. A similar equation obviously holds
for the n qubit case. In the case of Eq.s1d, kHlmf=bkSzl
−2oi viksi

Alksi
Bl and Eqs.s16d become

li
A,B = bdiz − 2viksi

B,Al. s17d

Permutational symmetry will be broken iflAÞlB, and
phase flip symmetry iflx

aÞ0 or ly
aÞ0. The latter has to be

broken in order to see any effect from the last two interaction
terms in Eq.s1bd at the mean-field level, since otherwise
their mean-field averages vanish. In such a case the sign of
one of thelx

a sor ly
ad remains undetermined, giving rise at

least to a two-fold degeneracy.
For instance, in the ferromagnetic casevi ù0, kHlmf is

minimum for ksAl=ksBl and permutational symmetry needs
not be broken. Hence,lA,B=l. Defining vM =Maxfvx,vyg,
vm=Minfvx,vyg, a phase-flip symmetry breaking solution
with ulMuÞ0 andlm=0 becomes feasible and provides the
lowest free energy ifvM .vz and ubu,bc;vM −vz, provided
0øT,Tc, with

Tc = vMx/lnF1 + x

1 − x
G, x ; ubu/bc , 1. s18d

Tc decreases asx increases, withTc→0 for x→1 and Tc

< 1
2vMs1−x2/3d for x!1. This solution is insensitive tovm.

As discussed in Sec. III,Tc is usually lower thanTe, but can
also behigher. For example, ifb=0 andvx.vy=vz.0, Tc
=vx/2, but the ensuing exact thermal state, diagonal in the
Bell basis, isseparable∀T.0 sTe=0d, as the ground state is
degeneratesE2=E3=−vx/2d and hencepj ø1/2 ∀ j ,T.

III. EXAMPLES

We now examine in detail the previous limit temperatures
in three different cases. We set in what followsbù0, v±
ù0, since the concurrence and limit temperatures are inde-
pendent of their signs.

1) v−=0, v+.0 (XXZmodel). The statesuF1,2l are in this
caseseparable, with D=b in Eq. (2). Entanglement can then
only arise through the violation of Eq.(5b), i.e., Eq.(10b) in
the thermal case, which is nowindependentof the magnetic
field b. If v+.vz, the thermal state(9) will then be entangled
for any b if T.0, up to a limit temperatureTe that is inde-
pendent ofb. However, the ground state isuF3l if b,b0

;v+−vz and uF2l if b.b0, so that forb.b0, r becomes
entangled only atfinite temperature T.0, in agreement with
Eq. (11) (Tr →0 for v−/b→0). On the other hand, ifv+,vz,
no entanglement occurs at any temperature. These features
can be appreciated in Fig. 2 forvz=0 (XX model), where
b0=v+ and [20]

Te = av+, a = 1/lnf1 +Î2g < 1.134. s19d

The disorder criterion can now detect entanglement just
through the violation of Eq.s7d for j =0,3, i.e., Eq.s12bd in
the thermal case, which can occur only forb,b0, i.e., when
uF3l is the ground state. The entanglement arising forT.0
when b.b0 cannot be detected. In addition, the limit tem-
peratureTe

d determined by Eq.s12bd will depend onb, de-
creasing asb increases and vanishing forb→b0. Its behavior
for vz=0 is shown in the central panel of Fig. 2, whereTe

d

<Tef1−b/ sÎ2v+dg for b→0 while Te
d<sv+−bd / ln 2 for b

→b0=v+. Also shown is the concurrence atT=Te
d sbottom

paneld, which is maximum atb=bc fwhere C(rsTe
dd)

→2/3g and decreases as<a−1sÎ2−1db/v+ for b→0. The
limit temperatureTe

s of the entropic criterion is still lower.
For vz=0 andb→0, Te

s→0.478v+, with C(rsTe
sd)→0.584.

In this case the ground-state critical fieldb0 coincides
with the mean-field critical fieldbc. Hence, a stable symme-
try breaking mean-field solution is here feasible just for

FIG. 2. Top: the concurrence as a function of temperature for
v−=vz=0 and indicated values ofv+/b. Center: The corresponding
exact limit temperature for entanglement(constant) and the limit
temperatures below which entanglement is detected by the disorder
and by the von Neumann entropic criterion. The critical temperature
for the symmetry-breaking mean-field approximation is also shown.
Bottom: the concurrence at the previous limit temperatures.
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b,b0, with Tc given by Eq.(18) with vM =v+. Since now
fH ,Szg=0, this “deformed” solution breaks the rotational in-
variance around thez axis and possesses, accordingly, acon-
tinuous degeneracy. As seen in Fig. 2, forvz=0 Tc is much
lower thanTe, lying actually quite close to the entropic limit
temperatureTe

s. For b→0, Tc→v+/2, with C(rsTcd)→0.55.
Note, however, that forb→b0, Tc.Te

d due to the logarithmic
vanishing ofTc in this limit, whereC(rsTcd)→1/2.

2) v−.0, v+=0. This case of maximum anisotropysvx

=−vyd represents, forvz=0, the two-qubit version of the stan-
dard Lipkin model, widely employed in nuclear physics to
test symmetry-breaking mean-field based descriptions[29].
It describes the interplay between a single-particle termbSz
and a monopole interaction that induces a deformed mean
field. The statesuF1,2l are now entangled, whereas the states
uF0,3l becomedegenerate. Hence, in the thermal casep3
=p0, and entanglement can only arise from the statesuF1,2l,
i.e., through the violation of Eq.(5a) [Eq. (10a) in the ther-
mal case]. This requiresD.−vz, i.e., thatuF2l be the ground
state.

The limit temperatureTe determined by Eq.(10a) depends
now on the fieldb, with r entangled for 0øT,Te andCsrd
a decreasing function ofT, as seen in Fig. 3 forvz=0. In this
case, entanglement occurs∀ b and

Te = D/arcsinhF D

v−
G , s20d

with Te<av−f1+ 1
2s1−a /Î2db2/v−

2g for b→0. A remark-
able feature is that asb increases,Te now increases, even
though the entanglement ofuF2l decreases, since the energy

gap D between the ground and the first excited states in-
creases. Moreover, forb→`, Te<b/ lns2b/v−d→`, being
then possible to maker entangled atany temperature by
increasing the field.

For p0=p3, entanglement will be detected by the disorder
criterion through the violation of Eq.(7) for j =1,2, i.e., of
Eq. (12a). For vz=0, this will occur for any value ofb but
below the lower limit temperature

Te
d = D/arcsinhF D

D − b
G . s21d

For b→0, Te
d<Tef1−ab/ sÎ2v−dg, with C(rsTe

dd)<sÎ2
−1db/v−. Equation s21d is not a monotonous increasing
function of b, being minimum atb<1.25v−, but for b
→`, Te

d<b/ lnf4b2/v−
2g<Te/2, becoming then also infinite

in this limit. Hence, the emergence of entanglement for
large fields is also detectedssince it is a ground state
effectd but above a higher threshold. Note also that
Te

d/Teù1/2 ∀ b, with C(rsTe
dd)ø0.33. The limit tempera-

ture of the entropic criterion lies very close toTe
d for b

→` sas Te
d/D→0 in this limitd but becomes smaller asb

decreases, withTe
s→0.478v− for b→0.

For vz=0, a phase flip symmetry breaking mean field so-
lution becomes here feasibleonly for b,bc=v−. For b.bc,
ground-state correlations, though nonvanishing, are not
strong enough to induce a symmetry-breaking mean field, so
that the entanglement effect for large fields cannot be cap-
tured by the mean field. The permutationally invariant solu-
tion corresponds tolxÞ0 andly=0, so that the critical tem-
perature is given again by Eq.(18) with vM =v−. Hence,Tc
→v−/2 for b→0, lying again very close toTe

s in this limit,
while Tc→0 for b→bc, whereC(rsTcd)→1/Î2<0.71.

3) v+.0, v−.0. This is the case withfinite anisotropy
g=v−/v+.0, where entanglement vanishing plus reentry
may occur asT increases. Forv+.vzù0, the two lowest
states areuF2l and uF3l, with E2,E3 for D.v+−vz, i.e.,
b2.b0

2=Maxf0,sv+−vzd2−v−
2g. For b above but close tob0,

Eq. (10a) [Eq. (10b)] will be broken for 0øT,Tr
−

sTr
+,T,Ted, with Tr

−,Tr
+. Hence, asT increases from zero,

the concurrence will first decrease,vanishing for T
P fTr

−,Tr
+g, but will exhibit a reentry forT.Tr

+, vanishing
finally for TùTe.

This behavior is depicted in Fig. 4 forvz=0 andg=0.7,
where b0<0.71v+ and the reentry occurs forb0,b,br
<1.1v+. For b close tob0, Tr

− andTr
+ are practically coinci-

dent and equal to the value given by Eq.(11), Tr =sD
−v+d / lnfD /v−g, becoming the difference exponentially small
for b→b0 sTr

+−Tr
−<Tre

−2v+/Trd. For b.br the reentry disap-
pears andTe becomes the continuation ofTr

−, undergoing
then a sharp drop atb=br. For b→`, Te→`, as in case 2,
while for b→0, Te→0.93v+. At fixed T,0.93v+, entangle-
ment vanishing plus reentry will then also occur asb in-
creases.

As discussed in Sec. II, the disorder criterion cannot de-
tect the reentry for increasingT. Instead, the limit tempera-
tureTe

d vanishesfor b→b0, as seen in Fig. 4, with Eq.(12a)
broken for b.b0 and (12b) for b,b0. Nevertheless,Te

d

FIG. 3. Same quantities as in Fig. 2 forv+=vz=0 and different
values ofv−/b.
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→Te/2 for b→`, so that the entanglement effect for large
fields will be detected, whereasTe

d→Te for b→0, with Te
−Te

d~b for b→0. Note also thatTe
s lies very close toTe

d for
b*0.55v+, but becomes lower asb decreases, withTe

s

→0.39v+ for b→0. Now C(rsTe
dd),0.37∀b, with

C(rsTe
dd)=0.15 for b=b0 and C(rsTe

dd)→0.37 and 0.32 for
b→b0

7. This discontinuity arises from that ofCsrd for T=0
[where Csrd=0.15 at b=bc while Csrd→1 and 0.7 forb
→b0

7, respectively].
For vz=0, a stable mean-field solution breaking phase flip

symmetry becomes feasible only ifb,bc=vx, with vx=v+
+v−.b0 and Tc given by Eq.(18) with vM =vx. The ratio
Tc/v+ is then larger than in case 1. Forg=0.7,Tc lies close to
Te for b&v+, with Tc→0.85v+ and C(rsTcd)→0.034 forb
→0. However, the most striking effect is thatTc.Te for
1.1&b/v+&1.33, i.e., forb just above the reentry interval.
In this region,r becomes separable at a low temperature, yet
correlations remain strong to induce a symmetry-breaking
mean field. On the other hand, forb.bc the ground state
remains entangled but correlations are not strong enough to
induce symmetry breaking, as occurs in case 2.

IV. CONCLUSIONS

We have examined the exact and the disorder separability
conditions for general mixed states of two qubits interacting
through a generalXYZ Heisenberg Hamiltonian, which can
be succinctly expressed in terms of total spin expectation

values. The disorder conditions are exact in the absence of a
magnetic field, but become weaker as the field increases and
are unable to detect the reentry of entanglement for increas-
ing temperatures in thermal states, an effect which may here
arise when the ground state is less entangled than the first
excited state. The von Neumann entropic criterion leads to
still lower limit temperatures and is not exact even for zero
field. Nonetheless, both the disorder and entropic criteria do
predict the increase in the limit temperature for large fields
occurring in anisotropic models.

The critical temperature for the symmetry-breaking mean
field solution is normally also lower than the exact limit
temperature for entanglement in the examples considered
and always vanishes for sufficiently large fields. However, it
can also be higher, particularly when the lowest energy levels
are close and entangled, implying that such solutions, nor-
mally regarded as signatures of the presence of strong corre-
lations in the system, are not rigorous indicators of entangle-
ment for T.0. It is well known that in small systems, the
sharp thermal mean-field transitions are to be interpreted just
as rough indicators of a smooth crossover between two re-
gimes. The concept of entanglement allows, however, to for-
mulate a crossover precisely. Finite systems regain in this
sense a critical-like behavior for increasingT, becoming
classically correlated(but not uncorrelated) for TùTe, and
with an entanglement undetectable through the eigenvalues
of r and one of its reductions forTe

døT,Te.
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APPENDIX

The concurrence of a mixed stater of two qubits is a
measure of the entanglement ofr, given by Ref.[11]

Csrd = Maxf2lM − Tr R,0g, sA1d

wherelM is the largest eigenvalue ofR=fr1/2r̃r1/2g1/2 and r̃
the spin-flipped density operator, given in the standard basis
by r̃=ssy ^ sydr*ssy ^ syd, with sy the Pauli matrix. The
entanglement of formationf10g is an increasing function of
Csrd and can be obtained as

Esrd = − o
n=±

qn log2 qn, q± =
1

2
f1 ± Î1 − C2srdg.

Maximum entanglement corresponds toCsrd=1, separability

to Csrd=0. For a pure stater= uFlkFu, Csrd= ukF uF̃lu and
Esrd becomes the von Neumann entropy of the subsystems
f11g, S2srAd=S2srBd.

For the state(3), the eigenvalues ofR are

l1,2=
1

2
HFsp1 + p2d2 −

b2

D2sp2 − p1d2G1/2

±
v−

D
sp1 − p2dJ ,

and l0,3=p0,3. Hence, iflM =l1 or l2 sl0 or l3d, Eq. sA1d

FIG. 4. Same quantities as in Fig. 2 forv+.0 and finite aniso-
tropy g=v+/v−=0.7. Entanglement vanishing plus reentry occurs as
T increases for 0.9&v+/b&1.4, as indicated by the solid lines of
the central panel. In the top panel, dashed(solid) lines depict the
concurrence in the interval where Eq.(5a) [Eq. (5b)] is broken.
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becomes the difference between the left- and right-hand sides
of Eq. s5ad fEq. s5bdg when positive.

The eigenvalues of the partial transpose of Eq.(3) are
q1,2=

1
2fp0+p3± sv−/Ddsp2−p1dg and q0,3=

1
2hp1+p2± fsp3

−p0d2+sb2/D2dsp2−p1d2g1/2j, so that the conditionsqj

ù0∀ j also lead to Eqs.(5). Only one of them,qm, is nega-
tive when r is entangled [31], with qm=Minfq1,q2g
sMinfq0,q3gd if lM =l1 or l2 (l0 or l3). In the first case
Csrd=−2qm but in the second case,CsrdÞ−2qm unlessb
=0 or p1=p2.
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