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We examine the entanglement of general mixed states of a two-qubit Heiset¥2ighain in the presence
of a magnetic field, and its detection by means of different criteria. Both the exact separability conditions and
the weaker conditions implied by the disorder and the von Neumann entropic criteria are analyzed. The ensuing
limit temperatures for entanglement in thermal states of diffexéfmodels are then examined and compared
with the limit temperature of the symmetry-breaking solution in a mean-field-type approximation. The latter,
though generally lower, can also be higher than the exact limit temperature for entanglement in certain cases,
indicating that symmetry breaking does not necessarily entail entanglement. The reentry of entanglement for
increasing temperatures is also discussed.
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I. INTRODUCTION conditions and quantification can be easily obtained. For this

Entanglement is one of the most distinctive features ofPUrpose, we will consider a system of two qubits interacting
quantum mechanics, representing the ability of compositéhrough a Heisenber§Y ZHamiltonian[15] in the presence
quantum systems to exhibit correlations which have no clasof an external magnetic field. Interest in this model stems
sical analog. Recognized already by Schrodindérit has  from the potential use of Heisenberg spin chains for gate
recently become the object of intensive research due to theperations in solid-state quantum computgt$,17. The
key role it plays in the field of quantum informatig@—€].  pairwise entanglement of thermal states of isotrgpig, 19
Rigorously, a mixed state of a bipartite system is said to be anq anisotropiY [20-22 Heisenberg models have accord-
separableor cIaSS|ce_1IIy _correlateq[?] if it can be e?‘PfeSSed ingly been recently studied, and several interesting features
as a convex combination of uncorrelated densities, pe., have appeared already in the two-qubit ci28, such as the

=2 0,05 ® pg, Wherepy, pg are mixed states of each sub- o ) X
system andq, are non-negativenumbers. Otherwisep is possibility of en_tanglement reentry for increasing tempera-
tures or magnetic fields.

entangledor inseparable. When separahjesatisfies all Bell e | . .
inequalities as well as other properties characteristic of clas- e Will first review the exact separability conditions for
sical systems. generalmixtures of the eigenstates of arbitraxyy Z Hamil-

A pure Statq;:|([)><(])| is separable just for tensor product tonians, examining in particular thermal states and the pos-
stateg®)=| )| ), but in the case of mixed states, such assibility of entanglement reentry. We will also analyze the
thermal statespcexd-H/T], with H the system Hamil- Wweaker conditions provided by thdisorder criterion [23],
tonian, it is in general much more difficult to determine which is the strongest one based just on the spectrum of
whetherp is separable or not. Only in special cases, such agnd one of its reductions, and is hence more easy to imple-
a two-qubit or qubit-qutrit system, simple necessary and ment in general than other criteria. Violation of the disorder
sufficient conditions for separability are knovi#,9]. More-  conditions also ensures distillabilifi24]. These conditions
over, the entanglement of formation of a mixed sfd® has  are hereexactin the absence of a magnetic field. Although
been explicitly quantified only for a two-qubit systgitil].  the disorder criterion admits a generalized entropic formula-
Nonetheless, it is known that any mixed state becomes seption [25], it is stronger than the von Neumann entropic cri-
rable if it is sufficiently close to the fully mixed staf#2,13.  terion [26], based on the same information, whose predic-
For thermal states of finite systems, this implies théihiie  tions will also be analyzed. The ensuing exact and
limit temperature for entanglemefit4], T,, will always exist ~ approximate limit temperatures for entanglement in thermal
such thatp becomes separabléT=T,. It is then interesting states of differenXYZ models will then be examined.
to analyze if it is possible to estimate this temperature with Finally, we will discuss the mean-field.e., independent
simple separability criteria, and how it is related to the criti- qubit) approximation for thermal states, with the aim of com-
cal temperaturel, of the symmetry-breakingolution in a  paring the previous limit temperatures with the correspond-
mean-field-type approximation, which is the conventionaling mean-field critical temperaturk.. It will be shown, re-
starting point for describing interacting many-body systemsmarkably, that for T>0, symmetry breaking is not
Such solutiongi.e., like deformed or superconductingor- ~ necessarily a signature of entanglemeso thatT, may be
mally reflect the presence of strong correlations and collechigher thanT,, although it is usually lower. The model and
tive behavior. methods are described in Sec. I, while three different ex-

The aim of this work is to examine these issues in aamples are analyzed in detail in Sec. Ill. Conclusions are
simple yet nontrivial model where the exact entanglemenfinally drawn in Sec. IV.
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Il. FORMALISM
A. Model and separability conditions

We will consider a HeisenberY Z chain [15] for two
qubits in an external magnetic fielwalong thez axis. De-
noting with S=s*+sB the total spin of the system, the corre-
sponding Hamiltonian can be written as

H=bs-2 3 v, (13
i=x,y,z
=HZ—U+(S§+S§_1)_U—(§5<_S32/)! (1b)

where H,=bS,—v,(S;-1/2) and v,=(vxtvy)/2. The ferro-
magnetic (antiferromagnetic case corresponds to;=0
(=<0), and the standarXY model tov,=0. Its normalized
eigenstate$i|®;)=E;|d;) are given by

=) % |-
[Pod=—F=—,
V2

E0'3: El)zi Uy,

1
=- Evzi A,

Wl ) ucf--)

|y ) = 5 Eio (2

N
with A=v_y1+b%/v?, u,=V1xb/A and |++)=|+)|+) the
separable eigenstates $f(standard basjsThe state$d,
are maximally entangled, where@b, ,) are entangled for
v_# 0, with concurrence_/ A (see the Appendjx They be-
come maximally entangled fdr=0, in which case the set of
states(2) is just the Bell basis.

PHYSICAL REVIEW A69, 052306(2004)

%|p2—p1| < Po+*Ps, (5a)
b2 1/2
IPs=pol < | (pL+ P2~ p(pz -p)?| . (5b)
or, in terms of the average§)=2(s's")+1/2, as
(S-SH=1-9), (6a)
S+ - DI <K~ (87, (6b)

imposing bounds on the averages of the last two terms in
Egs.(1b). If p is entangled, only one of Eq&) is violated,
and its concurrence is given precisely by the difference be-
tween the left- and right-hand sides of the broken inequality
(see the Appendix The entanglement arises essentially from
one of the stateBb; ,) (|®g3) if Eq. (53 [Eq. (5b)] is bro-
ken. Equations (5) are always satisfied if|p;—1/4
<(4y2)7'0j, i.e., if p is sufficiently close to the fully mixed
state. Ifb=0, p is diagonal in the Bell basis and Eq%)
reduce accordingly t@;<1/20j [26], while Egs.(6) to 1
<(P)=<1+2AS) fori=x,y,z as(S)=0.

Disorder and entropic separability condition¥he disor-
der criterion[23] states that ifo is separablep is majorized
by the reduced densitigg g = Trg o p, Which means that is
more mixed(i.e., disordered than p,, pg. In a two-qubit
system, this implies that the largest eigenvaluep afhould
not exceed that gb, and pg, which is in general a necessary

We will first consider general statistical mixtures of the condition that becomesufficientwhenp is pure ordiagonal

previous eigenstates, which can be written as
3

P:E pj|‘1’j><‘bj| (3a)
j=0

2 (DS,

i=xy,z

11
=24+ (S)S,+4 3b
23S (3b)
wherep;=0, =% p;=1 and

b 1 1
(8= 1 (PL=po), () = 5(p1+ Po— 5),

1 _
(') = Z[ps— Pot UX(pz— pl)] i=xy, (4

in the Bell basig23,25.
For the state(3), p,=1/2HSy)s; for «=A,B, and the
disorder criterion leads to the inequalities

|

which in terms of total spin averages can be recast as

(S -DI<A-SHL+2AUSHL-SH1H2, (8a)

b
_(pZ_pl) O, 13! (7)

A

<1|:]_+
p]\z

(S+S - DI <(SH+(S). (8b)
Equations(7) and (8) are clearly less stringent in general
than Eqgs.(5) and(6), but becomesxactfor b=0 ((S,)=0),
i.e., whenp is diagonal in the Bell basis.

The standard entropic criteriof26], based on the von

with (O)=TrpO. Equations(3) comprise standard thermal Neumann entropyS,(p)=-Tr p log, p, states that ifp is
states as well as those arising in more general statistical deeparable Sy(p) = Sy(p,) for @=A,B. Although exact for
scriptions[27,28, and represent the most general two-qubitpure state$in which caseS,(p) =0 andS,(pa) =Sy(pg) is just

state with good permutational and phase flip symmétry

the entanglement gf [11])], for mixed states it is in general

-7 real in the standard basis. The two-site density matrixweaker than the disorder criterid@5], except when botlp

of an N qubit XY Z chain with cyclic boundary conditions is
in fact also of this forn722].

Exact separability conditiond~or the stat&3), they can
be most easily determined with the Peres critefi®jp suffi-
cient for two qubitg[9], and can be cast as

andp, have rank two. Figure 1 depicts, fp;=0 andb/v_
=1, the regions where the stat®) is entangled and where
entanglement is detected by the disorder and the standard
entropic criteria.

Standard thermal state and entanglement reerfor

052306-2



SEPARABILITY CONDITIONS AND LIMIT ...
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FIG. 1. Range of values gb, and p; where the staté3) is
entangledshaded sectoysfor p;=0, b/v_=1. Equation53) is bro-
ken in sectorA while Eq. (5b) in sectorsB. Entanglement is de-

tected by the disorder criterion in the black and dark gray sector
and by the von Neumann entropic criterion just in the black sector

They both coincide at the border of the triangle, whetes rank 2,
and are exact fop,=0, wherep is in addition diagonal in the Bell
basis.

p=exd-BH]/Trexd—-pH], B=1/T>0, 9)
i.e., pj>e 5 in Eq. (3a), Egs.(5) become
%e"”z sinNBA| < cosiBv.), (109
. SN
e PzsinhBu,| < {1 + psmhz(ﬁA)} . (10b

and determine a finite limit temperature for entanglenTgnt

such that they are satisfiedT=T,.. Nonetheless, entangle-

S
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finite temperature interval arount} (see case 3 in Sec. )ll
When |®,) becomes separabl@_/b—0), p,—1 and T,

—0, whereas when it becomes maximally entandlet_

—0), p.— 1/2 andT, — 0, so that no reentry takes place in
this limit. In contrast, ifE;<E,, p,<1/2<p. 0 T=0 and

no reentry or enhancement ©fp) can take place. Nor can it
occur for a mixture of®g) and|®5) or |®,) and|®,), since
they are separable just for equal weights, as seen from Egs.
5.

For the statg9), the disorder condition&7) become

(1 - ‘ E‘ )eﬁ”z sinhBA| < coshiBv.), (129

e Pzsinh Bv,| < cosiBA) + siniBA|, (12b

b
A

and lead to a lower limit temperature for entanglement de-
tection, TY<T,, with T¢=T, just for b=0. The entropic cri-
terion leads to an even lower limit temperatdig<T¢. The
feentry effectcannot be detectebly the disordefand hence

Sby the entropig criterion. Violation of Egs.(7) requires

p;>1/2 for somej, so that in the thermal case just the en-
tanglement arising from thgroundstate can be detected. For
a mixture of |[®,) and |®3), Egs. (7) are broken just for
P2>pg=(2-|b/A))™ or p,<p;=(2+|b/A|)~* (see Fig. 1,
which does not allow to detect the reentry whEp<<Ej
sincep;=<1/2.

B. Symmetry-breaking mean-field approximation

The thermal stat€9) represents the density operator that
minimizes the free energy

F(p)=(H)-TSp)=Trp[H+T In p].

In a finite temperature mean-field or independent qubit ap-
proximation, Eq.(13) is minimized among the subset of-

(13

ment, as measured by the entanglement of formation or corcorrelatedtrial densities, given in this case by

currence, may not be a decreasing functionrdbr T<T,

when the ground state is less entangled than the first excited

state[18-21], and even entanglement vanishing plus reentry, .. arbitrary ps, pg, Obtaining thus an upper bound to the

hinimum free energy. The only way such an approximation

of H, and hence Eqg10), do not depend on the signs bf
anduv..
Let us consider for instance a mixture |db,) and|®s)

[Po=p1=0 in (38)], which corresponds to the outer border in

Fig. 1. This state is separabjest for p,=p.=(1+v_/A)™*
=1/2, with Eq.(58) [Eq. (5b)] broken forp,>p. (p2<pe)-
Its concurrence iC(p)=|p,/p.—1|. The state(9) will ap-
proximately be of this form for lowr if E, andE; are suf-

Pmi = PA® pe, (14

can reflect entanglement is throughimmetry breakingthe
optimum density that minimizeB(p,,;) may break some of
the symmetries present in the Hamiltonidnand become
degenerate. In these case<ritical temperature T will

exist such that the optimum density becomes symmetry con-
serving forT=T.. At T=0, symmetry breaking implies en-
tanglementf the ground state oH is nondegenerate, since
for pure states separability corresponds to an uncorrelated

ficiently close and well below the remaining levels. Hence, ifdensity. However, this is not necessarily the caseTfor0

E,<Eg, C(p) will initially decrease ag increases from zero,
vanishingat the temperature
TI’ = (E3 - Ez)lln[Alv_], (11)

wherep,=p,, but will exhibit areentryfor T>T,, with Eq.
(109 [Eq. (10b] broken forT<T, (T,<T<T,). Due to the
remaining levels,C(p) will actually vanish in a small but

where symmetry breaking just indicates, in principle, that the
true thermal state is not uncorrelated. On the other hand,
entanglement does not necessarily imply symmetry breaking
either, both afT=0 or T>0, as correlations need to be in
general sufficiently strong to induce a symmetry-breaking
mean field[29].

The densitiep,, a=A,B, can be parametrized as
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exd - BAes” 1
PR el
Trexd— BAsY] 2

C(p)

() =Trp, s*=- %A“tanf{%ﬁlﬂ] / A9

so that Eq(14) corresponds to an approximate independent
qubit Hamiltonianh=% , A¢s*. Minimization of F(p,;) with
respect ta\* leads then to the self-consistent equatitsee

for instance Ref[30])

T./v,

N=——=, i=XxY,z, (16)

sorder
where(H)=Tr psH. A similar equation obviously holds B ,ﬁ:;f‘;’f;c{f_f:
for the n qubit case. In the case of E@L), (H)n=b(S) e

=23 vi(s'sP) and Egs.(16) become

A8 =ba, - 205, (17)

Permutational symmetry will be broken X*#\B, and

phase flip symmetry ik # 0 or Ay # 0. The latter has to be

broken in order to see any effect from the last two interaction

terms in Eq.(1b) at the mean-field level, since otherwise 0 2 4

their mean-field averages vanish. In such a case the sign of v/

one of thex, (or )‘;) remains undetermined, giving rise at FIG. 2. Top: the concurrence as a function of temperature for

least to a two-fold degeneracy. , . v_=v,=0 and indicated values af,/b. Center: The corresponding
For instance, in the ferromagnetic cage=0, (H)mf IS exact limit temperature for entanglemeibnstant and the limit

minimum for (s*)=(s") and permutational symmetry needs temperatures below which entanglement is detected by the disorder

not be broken. Hence\*B=\. Defining vm=Max{vy,vy], and by the von Neumann entropic criterion. The critical temperature

Um:Min[Ux,Uy]. a phase-flip symmetry breaking solution for the symmetry-breaking mean-field approximation is also shown.

with [\y| #0 and\,=0 becomes feasible and provides the Bottom: the concurrence at the previous limit temperatures.

lowest free energy ity >v, and|b| <b.=vy-v,, provided

Clp(Tu)]

05 -

0=<T<T, with =yp,-v, and |®,) if b>b,, so that forb>b,, p becomes
1+ entangled only afinite temperature %0, in agreement with
T.= va”n{—X]- x=|bl/be<1. (18  Eq.(11) (T,—0 forv_/b—0). On the other hand, . <v,,
- no entanglement occurs at any temperature. These features

can be appreciated in Fig. 2 for,=0 (XX mode), where

T. decreases ag increases, withT;—0 for y—1 and T, by=v, and[20]
0~ U+

%%UM(l—f/S) for y<<1. This solution is insensitive to,,
As discussed in Sec. I, is usually lower tharT,, but can
also behigher. For example, ifo=0 andv,>vy=v,>0, T,
=0y/2, but the ensuing exact thermal state, diagonal in th"el'he disorder criterion can now detect entanglement just
Bell basis, isseparabledJT>0 (T.=0), as the grou_nd state is through the violation of Eq(7) for j=0,3,i.e., Eq?(le) in J
degeneratéE,=E;=-v,/2) and hencey;<1/20 |, T. the thermal case, which can occur only for by, i.e., when
|®5) is the ground state. The entanglement arisingTior0
when b>b, cannot be detected. In addition, the limit tem-
IIl. EXAMPLES peratureT? determined by Eq(12h will depend onb, de-
We now examine in detail the previous limit temperatures®'€2sIN9 ad increases and vanishing for- by. Its behavior
in three different cases. We set in what follows=0, v, 0 vz=0iS §_hown in the central padnel of Fig. 2, whefg
>0, since the concurrence and limit temperatures are indé= 1d.1~b/(v2v,)] for b—0 while Te=(v,-b)/In 2 for b
pendent of their signs. — by=v,. Also shown is the concurrence &t T¢ (bottgm
1) v_=0,v,>0 (XXZmode). The state$d, ,) are in this pane), which is maximum a}lb:bc [where C(p(Ty))
caseseparablewith A=b in Eq. (2). Entanglement can then — 2/3] and decreases asa *(V2-1)b/v, for b—0. The

Te=av,, a=1/IM1+2]~1.134. (19)

only arise through the violation of E¢b), i.e., Eq.(10b) in  limit temperatureTg of the entropic criterion is still lower.
the thermal case, which is nowdependenof the magnetic  For v,=0 andb—0, T;—0.478,, with C(p(T)) —0.584.
field b. If v, >wv,, the thermal stat€9) will then be entangled In this case the ground-state critical fiely coincides

for any bif T>0, up to a limit temperatur&, that is inde-  with the mean-field critical field).. Hence, a stable symme-
pendent ofb. However, the ground state [@5) if b<b, try breaking mean-field solution is here feasible just for
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Cp)

Te/v_

CIp(Tu]

v_/b

FIG. 3. Same quantities as in Fig. 2 fer=v,=0 and different
values ofv_/b.

b<by, with T, given by Eq.(18) with vy =v.. Since now
[H,S,]=0, this “deformed” solution breaks the rotational in-
variance around theaxis and possesses, accordinglgoa-
tinuous degeneracyAs seen in Fig. 2, fop,=0 T; is much
lower thanT,, lying actually quite close to the entropic limit
temperaturelg. Forb—0, T.—v./2, with C(p(T,)) — 0.55.
Note, however, that fop— by, TC>Tg due to the logarithmic
vanishing ofT; in this limit, whereC(p(T,)) — 1/2.

2) v_>0, v,=0. This case of maximum anisotrofy,
=-v,) represents, fow,=0, the two-qubit version of the stan-

dard Lipkin model, widely employed in nuclear physics to

test symmetry-breaking mean-field based descript{@%%.
It describes the interplay between a single-particle tbn

and a monopole interaction that induces a deformed meal
S

field. The state$P, ,) are now entangled, whereas the state
|®g 9 becomedegenerate Hence, in the thermal casge
=po, and entanglement can only arise from the statgs),
i.e., through the violation of Eq5a) [Eq. (109 in the ther-
mal casé This requiresA > -uv,, i.e., that®,) be the ground
state.

The limit temperaturd, determined by Eq.108 depends
now on the fieldb, with p entangled for & T<T, andC(p)
a decreasing function df, as seen in Fig. 3 far,=0. In this
case, entanglement occuirsb and

A]
U_ L

with Tezav_[1+%(1—a/\s’§)b2/v§] for b—0. A remark-
able feature is that as increasesT, now increaseseven

Te= A/arcsin){ (20

PHYSICAL REVIEW A 69, 052306(2004)

gap A between the ground and the first excited states in-
creases. Moreover, fdo— o, To=b/In(2b/v_) —oe, being
then possible to make entangled atny temperature by
increasing the field.

For po=ps, entanglement will be detected by the disorder
criterion through the violation of Eq7) for j=1,2,i.e., of
Eq. (129. For v,=0, this will occur for any value ob but
below the lower limit temperature

Td

For b—0, T¢=TJ1l-ab/(y2v_)], with C(p(Td))=(12
—-1)b/v_. Equation(21) is not a monotonous increasing
function of b, being minimum atb=~1.2%_, but for b
—, Td=b/In[4b%/v?]=T,./2, becoming then also infinite
in this limit. Hence, the emergence of entanglement for
large fields is also detecte(since it is a ground state
effect) but above a higher threshold. Note also that
TYTe=1/2 0 b, with C(p(T%)=0.33. The limit tenpera-
ture of the entropic criterion lies very close T for b

— (asTg/AHO in this limit) but becomes smaller ds
decreases, witiig—0.478_ for b—0.

Forv,=0, a phase flip symmetry breaking mean field so-
lution becomes here feasibbmly for b<b.=v_. Forb> b,
ground-state correlations, though nonvanishing, are not
strong enough to induce a symmetry-breaking mean field, so
that the entanglement effect for large fields cannot be cap-
tured by the mean field. The permutationally invariant solu-
tion corresponds ta,# 0 and\,=0, so that the critical tem-
perature is given again by E¢L8) with vy, =v_. Hence, T,
—v_/2 for b—0, lying again very close ta@ in this limit,
while T,— 0 for b—b,, whereC(p(T,)) —1/y2=~0.71.

3) v.>0, v_>0. This is the case witlinite anisotropy
v=v_lv,>0, where entanglement vanishing plus reentry
may occur asl increases. Fov,>v,=0, the two lowest
states ard®,) and |®3), with E,<Ez for A>v,-v,, i.e.,
b?>bj=Max{0,(v,-v,)?—v?]. For b above but close tty,

Eq. (109 [Eg. (10b] will be broken for O=T<T,/
(T, <T<T,), with T, <T,. Hence, ad increases from zero,
We concurrence will first decreasejanishing for T
e [T,;,T;], but will exhibit a reentry forT>T,, vanishing
finally for T=T,.

This behavior is depicted in Fig. 4 far,=0 andy=0.7,
where by=0.7lv, and the reentry occurs fopy<<b<b,
~1.1v,. Forb close tob, T, andT; are practically coinci-
dent and equal to the value given by Ed1), T,=(A
-vy)/In[A/v_], becoming the difference exponentially small
for b— by (T; =T, =T, 2+/Tr). Forb> b, the reentry disap-
pears andl, becomes the continuation d&f, undergoing
then a sharp drop d=b,. Forb—o, T,—, as in case 2,
while for b—0, T,—0.93,. At fixed T<0.93,, entangle-
ment vanishing plus reentry will then also occur asn-
creases.

As discussed in Sec. Il, the disorder criterion cannot de-
tect the reentry for increasing. Instead, the limit tempera-
ture T¢ vanishesfor b— by, as seen in Fig. 4, with Eq12g

d _ .
Te= A/arcsmv{ A b (21

though the entanglement gb,) decreases, since the energy broken for b>b, and (12b) for b<h,. Nevertheless,‘l'g
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values. The disorder conditions are exact in the absence of a
magnetic field, but become weaker as the field increases and
are unable to detect the reentry of entanglement for increas-
ing temperatures in thermal states, an effect which may here
arise when the ground state is less entangled than the first
excited state. The von Neumann entropic criterion leads to
still lower limit temperatures and is not exact even for zero
field. Nonetheless, both the disorder and entropic criteria do
— predict the increase in the limit temperature for large fields
15 i P occurring in anisotropic models.
' entropic - The critical temperature for the symmetry-breaking mean
1 mean field - | field solution is normally also lower than the exact limit
| temperature for entanglement in the examples considered
and always vanishes for sufficiently large fields. However, it
] can also be higher, particularly when the lowest energy levels
T are close and entangled, implying that such solutions, nor-
mally regarded as signatures of the presence of strong corre-
0.5 . lations in the system, are not rigorous indicators of entangle-
] ment for T>0. It is well known that in small systems, the
RN ] sharp thermal mean-field transitions are to be interpreted just
] as rough indicators of a smooth crossover between two re-
T N —— gimes. The concept of entanglement allows, however, to for-
0 1 2 mulate a crossover precisely. Finite systems regain in this
v, /b sense a critical-like behavior for increasifig becoming
classically correlate@but not uncorrelatedfor T=T,, and
FIG. 4. Same quantities as in Fig. 2 for>0 and finite aniso-  jth an entanglement undetectable through the eigenvalues
tropy y=v./v-=0.7. Entanglement vanishing plus reentry occurs asy¢ p and one of its reductions fng$T<Te.
T increases for 0.8 v,/b=<1.4, as indicated by the solid lines of
the central panel. In the top panel, daslisdlid) lines depict the
concurrence in the interval where E&a) [Eq. (5b)] is broken. ACKNOWLEDGMENTS

Te/v,

Clp(Tu)]
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-Tdob for b— 0. Note also thaT? lies very close taTd for
b=0.5%,, but becomes lower ab decreases, withTg
—0.3%, for b—0. Now C(p(T%)<0.370b, with APPENDIX

C(p(Tg)=0.15 for b=hy and C(p(Tg))—0.37 and 0.32 for The concurrence of a mixed stageof two qubits is a

[where C(p)=0.15 atb=b, while C(p)—1 and 0.7 forb

—bg, respectively. C(p) =Max2\y = Tr R,0], (A1)
Foruv,=0, a stable mean-field solution breaking phase ﬂipwhere)xM is the largest eigenvalue &=[p"2pp'/2]¥2 andp

symmetry becom_es feasible only bf.< bc_vj' with Ux=U+ the spin-flipped density operator, given in the standard basis
+U‘>.b0 and T, given bY Eq.(18) with UM~ Ux The ratio by p=(oy® 0oy)p (0y® 0y), with o, the Pauli matrix. The
Tolv. is then Iar'ger than in case 1. Fpr0.7,T; lies close to entanglement of formatiofil0] is an increasing function of

T, for bswv,, with T,.— 0.8, and C(p(T.)) —0.034 forb C(p) and can be obtained as

— 0. However, the most striking effect is that>T, for
1.1<b/v,=<1.33, i.e., forb just above the reentry interval. 1 —

In this region,p becomes separable at a low temperature, yet ~ €(p) == 2 q,l00,q,, 0.= 5[1 +V1-Cp)].
correlations remain strong to induce a symmetry-breaking v

mean field. On the other hand, for>b, the ground state Maximum entanglement correspondsQtp) =1, separability

remains entangled but correlations are not strong enough tg C(p)=0. For a pure statp=|®)d| C(p):|@|gl‘)>| and
induce symmetry breaking, as occurs in case 2. &(p) becomes the von Neumann entropy of the subsystems
[11], Sy(pa)=Sxpp).
IV. CONCLUSIONS For the state3), the eigenvalues dR are

We have examined the exact and the disorder separability 1 b2 v
conditions for general mixed states of two qubits interacting M2 5{ {(m +py)° - p(pz - p1)2:| + X(pl - pz)},
through a generaKYZ Heisenberg Hamiltonian, which can
be succinctly expressed in terms of total spin expectatiomnd \g 3=pg 3. Hence, ifh\y=\; or A, (Ag Or \3), EQ. (A1)
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becomes the difference between the left- and right-hand sides 0] also lead to Eqg5). Only one of themg,,, is nega-

of Eq. (5a [Eq. (5b)] when positive.
The eigenvalues of the partial transpose of E). are

G1.2=3[Po+P3x(v-/A)(p,~pp)]  and  dos=3{P1+P2x[(Ps
~po)?+(0?/A%)(p—-py)?1M3, so that the conditionsg;

tive when p is entangled [31], with q,=Min[q;,0s]
(Min[qg,qz]) if Ny=Aq or A, (\g Or A3). In the first case
C(p)=-2q,, but in the second cas&(p) #—2q,, unlessb
=0 or p;=p,.
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