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We propose a parallel quantum computing mode for ensemble quantum computer. In this mode, some qubits
are in pure states while other qubits are in mixed states. It enables a single ensemble quantum computer to
perform “single-instruction-multidata” type of parallel computation. Parallel quantum computing can provide
additional speedup in Grover’s algorithm and Shor’s algorithm. In addition, it also makes a fuller use of qubit
resources in an ensemble quantum computer. As a result, some qubits discarded in the preparation of an
effective pure state in the Schulman-Varizani and the Cleve-DiVincenzo algorithms can be reutilized.
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I. INTRODUCTION

Quantum computer realization schemes can be classified
into single-quantum-computer type where only a single
quantum system is used, e.g., the trap ion[1], and ensemble-
quantum-computer(EQC) type such as the liquid nuclear
magnetic rosonance(NMR) scheme[2,3] and the solid-state
scheme[4], where many copies of quantum systems are
used. A quantum computer uses superposition of states and
possesses quantum parallelism which provides enormous
computing power. It achieves exponential speedup over ex-
isting classical computing algorithms in prime factorization
[5] and simulating quantum systems[6]. However for some
problems the speedup is not exponential. For instance, Grov-
er’s algorithm[7], shown optimal[8], achieves square-root
speedup for unsorted database search. In some other prob-
lems, quantum computer cannot achieve any speedup[9]. It
is natural to explore additional speedup by making quantum
computers work in parallel, as in classical computation. By
running many identical quantum computers in parallel, an
unsorted database search can be speeded up greatly[10,11].
Using Liouville space computation[12], exponentially fast
search can be achieved[13,14]. The speedup is achieved by
using more resources. EQC is a potential place to exploit this
parallelism because there are many molecules in it. Each
molecule is potentially a single quantum computer, and an
EQC is potentially a collection of that number of quantum
computers. At present, an EQC is used as a single quantum
computer using effective pure state technique[2,3], apart
from the lack of projective measurement. Though preparing
effective pure state is tedious, Cleve and DiVincenzo[15],
Schulman and Vazirani[16] have proposed efficient algo-
rithms to produce a portion of qubits in a pure state and
discard some qubits in the completely mixed states.

In this paper, we introduce the idea of parallel quantum
computing(PQC) in a single EQC. In the PQC a subset of
qubits is prepared in pure state while the other qubits in
mixed state. On one hand, this enables the “single-
instruction-multidata” type of parallel computation in a
single EQC for additional speedup, for example, for the
Grover and the Shor algorithms. On the other hand, the PQC

uses qubits in mixed state and makes a full use of the qubit
resources. For instance, those qubits discarded in the Cleve-
DiVincenzo[15] and the Schulman-Vazirani[16] algorithms
can now be reused. The PQC is the classical parallel opera-
tion of many single quantum computers.

II. LIOUVILLE SPACE ENSEMBLE COMPUTING

In 1998, Mádi, Brüswchweiler, and Ernst proposed the
Liouville space computer in which quantum operations and
classical algorithm are combined[12]. The parallel quantum
computing mode we proposed here is a generalization of the
Liouville space computation. We briefly review the Liouville
space computation in this section. In a NMR ensemble sys-
tem, the state can be represented by density operators which
are linear combinations of direct products of spin-
polarization operators[17,12]. In a strong external magnetic
field, the eigenstates of the Zeeman Hamiltonian,

ufinl = u001¯ 01l = uaab ¯ abl, s1d

are mapped on states in the spin Liouville space,

sin = uflkfu = I1
aI2

aI3
b
¯ In−1

a In
b, s2d

where

Ik
a = uaklkaku =

1

2
s1k + 2Ikzd = F1 0

0 0
G , s3d

Ik
b = ubklkbku =

1

2
s1k − 2Ikzd = F0 0

0 1
G s4d

represent, respectively, the spin-up and spin-down state of
the spin. A Liouville space computation is performed by us-
ing a mixed state, which is a linear combination of the basis
states in Eq.s2d,
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r = o
j=1

M

s j , s5d

whereM gives a restriction for the range of basis states to be
included.

The Brüswchweiler algorithm[13] is a Liouville space
computing algorithm. Like the Grover algorithm, it finds a
marked state in an unsorted database. Suppose the oracle is a
computable functionf. It has the following property:fsxd
=0 for all x exceptx=z, andz is the item we want to find out
for which fszd=1. In Liouville space computation and the
Brüswchweiler algorithm, an ancilla bit is used and its state
is represented byI0. The output of the oracle is stored on the
ancilla bit I0, whose state is prepared in thea state at the
beginning. The output off can be represented by an expec-
tation value ofI0z for a pure state,

f = FsI0
asind =

1

2
− TrsUfI0

asinUf
+I0zd. s6d

If sin happens to satisfy the oracle, thenI0
a is changed to

I0
b. This gives the value of the trace equal to −1/2, and hence

f equals to 1. The input off can be a mixed state of the form
r=o j=1

N I0
a s j, wheres j is one of the form in Eq.(2):

f = o
j=1

N

FsI0
a s jd = FSo

j=1

N

I0
a s jD +

N − 1

2
. s7d

The oracle is applied simultaneously to all the components in
the NMR ensemble. The oracle operation is quantum me-
chanical. The essential feature of the Brüswchweiler algo-
rithm is as follows: suppose that the unsorted database has
N=2n number of items. We needn-qubit system to represent
these 2n items. The algorithm containsn oracle queries each
followed by a measurement.

(1) Each timeI0
aIk

a sk=1,2, ... ,nd is prepared. In fact, the
input stateI0

a
¯1¯ Ik

a
¯1¯ is a highly mixed state[12].

This Liouville operator actually represents the 2n−1 number
of items encoded in mixed state:

I0
aIk

a = I0
asI1

a + I1
bdsI2

a + I2
bd ¯ sIn

a + In
bd

= o
g1,g2,...,gk−1,gk,gk+1,...,gn=a,b

I0
aI1

g1I2
g2
¯ Ik−1

gk−1Ik
aIk+1

gk+1
¯ In

gn

= o
i1,i2,...,ik−1,ik+1,...,in=0,1

ui1i2 ¯ ik−10ik+1¯ inl

3ki1i2 ¯ ik−10ik+1¯ inu, s8d

where the identity operators have been omitted for clarity.
This mixed state contains half the number of items in the
database. Thekth bit is set toa. The other half of the data-
base withkth bit equal tobsor 1d is not included.

(2) Applying the oracle function to the system. As seen in
Eq. (7), the operation is done simultaneously to all the basis
states. Ifkth bit of the marked state is 0, then the marked
state is contained in Eq.(8). One of the 2n terms in Eq.(8)
satisfies the oracle and the oracle changes the sign of the
ancilla bit from a to b. If one measures
the spin of ancilla spin after the functionf, the value will be

f =s2n−1ds1/2d+1/2−s2n−2ds1/2d=1. If the kth bit of the
marked state is 1, then the state(8) will not contain the
marked item. Upon the operation of the functionf, there is
no flip in the ancilla bit. A measurement on the ancilla bit’s
spin I0z will yield f =s1/2ds2n−1d+1/2−s2nds1/2d=0. How-
ever, without obtaining the value off, we can know the
marked state by measuring the ancilla bit’s spin. If one mea-
sures the spin of ancilla spin after the oracle, the value will
bes2n−1−1ds1/2d−1/2=N/4−1 for thekth bit of the marked
state being 0. If thekth bit of the marked state is 1, then the
state(8) will not contain the marked item. Upon the opera-
tion of the oracle, there is no flip in the ancilla bit. A mea-
surement on the ancilla bit’s spinI0z will yield s1/2ds2n−1d
=N/4. Therefore by measuring the ancilla bit’s spin, one
actually reads out thekth bit of the marked state.

(3) By repeating the above procedure fork from 1 to n,
one can find out each bit value of the marked state.

Brüswchweiler algorithms have been implemented in a
3-qubit NMR systems[18,19]. The Brüswchweiler algorithm
has been applied to global optimization problem[20]. In fact,
using the Liouville space computation, the unsorted database
search algorithm can achieve its ultimate optimum, a single
query. By putting all a NMR ensemble in a complete mixed
state, a single query is sufficient to find all the marked items
satisfying an oracle[14]. It has been demonstrated experi-
mentally in a 7-qubit NMR system recently[21].

It is worth pointing the salient features of Liouville space
computer. First, all the computational operations are quan-
tum mechanical. The operations are exactly the same as
those in quantum computer. Second, classical parallelism is
introduced in Liouville space computing since different com-
ponents may carry different computation tasks at the same
time. Third, there is no quantum superposition of the basis
states in Liouville space computation. Because of this, the
Liouville space computer can be replaced by an ensemble of
reversible computers, which can in principle be implemented
by classical reversible Turing machines. In the parallel quan-
tum computing proposed in this paper, we generalize the
Liouville space computer to allow quantum superposition of
the computational basis states to perform computation. We
will see that the effective pure state quantum computation
and the Liouville space computation can be viewed as two
extremes of the parallel quantum computation.

III. PARALLEL QUANTUM COMPUTING

We introduce notations first. We call a term in a super-
posed state as a component, for instanceuc0l in auc0l
+buc1l; a term in a density matrix a constituent, for instance,
uc0lkc0u in p0uc0lkc0u +p1uc1lkc1u+p2uc2lkc2u. We can divide
ann number qubits system into two parts, one withn1 qubits
and the other withn2 qubits, andn1+n2=n. The state of this
n-qubit system may be represented byu j1, j2l, where u j1l is
the firstn1 qubit state andu j2l is the lattern2 qubits state. We
can also combine the two parts to represent the state as
u j12l;u j1j2l. We use interchangeably binary and decimal rep-
resentations. For instance, a 4-qubit state withn1=n2=2 can
be represented asu01,10l= u0110l= u1,2l= u6l, where the first
and third are in the separated binary and decimal forms,
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whereas the second and fourth are in the combined binary
and decimal forms, respectively.

We then describe the ensemble measurement which is a
generalization of that used in Liouville space computation
[12,18]. Assume that an EQC can detect the transition signal
from a single molecule. For a molecule withn+1 qubits, one
qubit is used as the ancilla qubit and is labeled 0. The Hamil-
tonian of the ancilla qubit is

H = v0I0z + o
k.0

2pJ0kI0zIkz, s9d

whereJ0k is theJ-coupling constant between the ancilla and
the kth qubit. I jz is thez component of the spin operator for
the j th qubit. The transition frequency of the ancilla qubit
depends on the state of the remainingn qubits. If the ancilla
qubit transition occurs withn qubits in stateui1i2¯ inl, its
transition frequency is thenv0+ok=1

n pJ0ks−1dik. This transi-
tion produces a peak in the ancilla qubit spectrum. For in-
stance, then-qubit stateui1i2¯ inl= u00¯0l corresponds to
the highest frequencyv0+ok=1

n pJ0k, and the state
ui1i2¯ inl= u11¯1l corresponds to the lowest frequency
v0−ok=1

n pJ0k. Thus one can tell the state of then qubits
ui1i2¯ inl by looking at this sign of the multiplet compo-
nent. Moreover, the ancilla qubit state itself is represented
by the spectral peak direction. If the ancilla qubit is in the
u0lsu1ld state before transition, then the spectral peak is
upwardsdownwardd. The state in the PQC can be a super-
position of basis states, sayo j2=0

N2−1 cj1,j2
u j1, j2l. In this state

the first n1 qubits are inu j1l and the lattern2 qubits are in
superposed state of then2 register. When we measure the
ancilla qubit, we will observe only one transition. The
transition frequency is random in one of the
frequencies corresponding to then2-qubit states in states
u0l ,¯ , uN2−1l, because then-qubit state will collapse into
one of N2 basis statesu j1, j2l= u j1j2l randomly with prob-
ability ucj1,j2

u2. When the superposed state is transformed
into a single basis state, the transition frequency will be
definite and determined by Eq.s9d. This ancilla qubit
spectrum method will serve as the ensemble measurement
throughout this paper. It can tell the ancilla qubit state by
the peak direction and then-qubit state by the transition
frequency.

Our quantum computer model is an EQC withN1=2n1

molecules. Each molecule can be operated and measured. It
has n+m+1 qubits. They are divided into three parts: one
ancilla qubit, a function register withm qubits, and an argu-
ment register withn qubits. The argument register is further
divided into two parts: one part withn1 qubits calledn1
register and another part withn2 qubits calledn2 register, and
n=n1+n2. In general before a computation, the function reg-
ister and ancilla qubit are prepared in the pure stateu0l. The
argument register is in a mixed state withN1 constituent.
Each constituent is characterized by the state of then1 reg-
ister. Then2 register in a given constituent is in a superposed
state of itsN2=2n2 basis states. The density operator of the
ensemble is

r =
1

N1
o
j1=0

N1−1F o
j2=0

N2−1

cj1,j2
u0,j1, j2lGF o

j2=0

N2−1

cj1,j2
* k0,j1, j2uG ,

s10d

where inui , j1, j2l, i, j1, and j2 are the states for the function,
the n1 and then2 registers, respectively, ando j2=0

N2−1 ucj1,j2
u2

=1. The ancilla qubit state is not written out explicitly. In
this EQC, there areN1 constituents andN1 molecules. Each
molecule is in a different state,o j2=0

N2−1 cj1,j2
u0, j1, j2l, which is

a superposition ofN2 number of computational basis states.
In general, a quantum computation performs unitary trans-
formations on both the argument and the function registers.
Denoting this transformation asUc, the quantum computa-
tion on states10d will be

r → rc = UcrUc
−1 =

1

2n1
o
j1=0

N1−1F o
j2=0

N2−1

cj1,j2
Ucu0,j1, j2lG

3F o
j2=0

N2−1

cj1,j2
* k0,j1, j2uUc

†G . s11d

An ensemble measurement is then performed to read out the
result.

The quantum computation represented in Eq.(11) on the
ensemble(10) is defined as the parallel quantum computing.
In fact it is N1 quantum computers working in parallel. The
computation instructionUc is the same for all molecules, but
the databases, numbers represented by different molecules,
are different. Hence, the PQC is the single-instruction-
multidata type of parallel computation in classical computa-
tion. The state(10) is the most general initial state, and in
most applications the following simplified state is sufficient:
the n1 register in the complete mixed state
o j1=0

N1−1 s1/N1du j1lk j1u and the n2 register in the equally
weighted superposed stateo j2=0

N2−1 Î1/N2u j2l. In this case,
cj1,j2

=1/ÎN2 for all possiblej1 and j2.

IV. PARALLELIZING THE GROVER ALGORITHM
AND THE SHOR ALGORITHM

Application of the PQC to the Grover algorithm is studied
in this section. Suppose the marked state isu j1

0j2
0l. Then only

one qubit is required for the function register in this algo-
rithm. This qubit is also used as the ancilla qubit for the
ensemble measurement. Preparing the function register in the
u0l state, then2 register in the equally weighted superposed
state, and then1 register in the complete mixed state, we
have then

r =
1

N1
o
j1=0

N1−1FÎ 1

N2
o
j2=0

N2−1

u0,j1, j2lGFÎ 1

N2
o
j2=0

N2−1

k0,j1, j2uG .

s12d

In this way, we divide the database intoN1 subdatabases,
each withN2 items. Apply a zero-failure rate Grover algo-
rithm f22g to the ensemble withJ iterations, whereJ−1 is
the integer part offsp /2d−bg / s2bd and is approximately
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pÎN2/4 and b=arcsin1/ÎN2. In this modified Grover al-
gorithm, each iteration consists of four steps:s1d apply the
query to the wholen-qubit argument register and on con-
dition that the query is satisfied, rotates the phase of the
marked state through anglef=2 arcsinfÎN2 sinp / s4J+6dg
sf is slightly smaller thanpd; s2d make a Hadmard trans-
formation on then2 register; s3d make a phase rotation
through anglef on the u0¯0l basis state of then2 regis-
ter; s4d make a Hadmard transformation on then2 register
again. If a subdatabase does not contain the marked state,
the above operation does not produce any observable ef-
fect. The constituent that contains the marked item has its
n1 register in stateu j1

0l. The modified Grover algorithm
transforms itsn2 register from the equally weighted super-
posed state into a single stateu j2

0l so that the constituent is
in the marked stateu j1

0j2
0l. At the end of the modified

Grover algorithm, one makes a further query and on con-
dition that the query is satisfied, makes a flip on the func-
tion register. The density matrix becomes

r f = S 1

N1
Du0lk0u o

j1Þ j1
0
F o

j1=0

N1−1 Î 1

N2
u j1j2lG

3F o
j1=0

N1−1 Î 1

N2
k j1j2uG + S 1

N1
Du1lk1uu j1

0j2
0lk j1

0j2
0u.

Finally, by measuring the ancilla qubit, one obtainsN1 tran-
sition peaks in the spectrum, each from a constituent. For
those constituents without the marked item, each peak is up-
ward and its transition frequency is random in one of those
corresponding statesu j10l, . . ., u j1N2−1l. The constituent
with the marked item is in a unique state and produces a
downward peak with definite frequency corresponding to the
stateu j1

0j2
0l. It finds the marked state with certainty.

The number of queries is aboutpÎN2/4=pÎN/N1/4.
This is only 1/ÎN1 of that a standard Grover algorithm re-
quires. This is so because there areN1 single quantum com-
puters searching in parallel, each in a reduced database with
only N/N1=N2 items. It requirespÎN/N1/4 steps for each
single quantum computer to complete the search. In one ex-
tremen1=0, there is only a single molecule, the number of
query ispÎN/4, which is just that for the standard Grover
algorithm. On the other extreme, ifn1=n, n2=0, the EQC
containsN=2n molecules in completely mixed state, only a
single query is needed. This is just the Liouville space com-
puting fetching the algorithm proposed recently[14]. In
Liouville space computation[12], no superposition of the
computational basis states is used. Each molecule can also be
viewed as a reversible classical computer that can be realized
quantum mechanically[23], or simply be implemented di-
rectly using classical Turing machine with three tapes[24]. If
n1=n−1 andn2=1, the algorithm finds the marked item with
just two queries. Clearly, the speedup is achieved at the ex-
pense of more molecules. The number of queriesNq and the
number of moleculesN1 satisfyNq

23N1=const.
If we fix the number of molecules in an EQC, say atNE,

then in order that each constituent is occupied by at least one
molecule,n1 cannot be larger than log2NE , otherwise there

will be constituents without any occupying molecules. We
assume that the qubit numbern is very large,NEø2n. The
maximum value forn1 is log2NE. A natural estimate of the
bound is to setNE=NA, the Avogadro constant. This sets to
n1ø79. In principle, we can varyn1 from 0 to log2NE so that
the functioning of the EQC changes. Whenn1=0, all NE
molecules are in the same pure state and the EQC works as a
single quantum computer. Most NMR EQC quantum compu-
tation experiments done so far manage to get this effect using
the effective pure state technique. Whenn1=1, the ensemble
is divided into two subensembles each withNE/2 molecules.
Each subensemble works as a single quantum computer. The
whole ensemble works as two single quantum computers in
parallel. Whenn1= log2NE , the ensemble works asNE single
quantum computers working in parallel.

In the above discussion, a single molecule and an en-
semble of many molecules in pure state are all treated as a
single quantum computer. We point here that the EQC can do
more by implementing the parallel operation proposed in
Refs.[10,11]. In these works, the Grover algorithm is run on
somek identical quantum computers in parallel. It is equiva-
lent to repeating the algorithm in a single quantum computer
k times. We call this parallel algorithm as repetition parallel
algorithm (RPA). For instance, in Ref.[10], by running one
iteration of Grover’s algorithm onk number of identical
quantum computers simultaneously and then measuring
these quantum computers simultaneously, the marked state
can be found by picking out the one most quantum comput-
ers point to. Because the marked state will appear 9k/N
times in the outcome, whereas any other state appearsk/N
times. Whenk=OsN ln Nd, the probability that the marked
state occurs more than any other state approaches unity. In
Ref. [11], k identical quantum computers are searching in
parallel. In each quantum computer, the probability for find-
ing marked state is amplified. Because there arek quantum
computers, by using the majority-vote rule, one needs less
iterations on each quantum computer. The speedup scales as
OsÎkd. The extent of speedup is the same as the PQC algo-
rithm. But there are several differences between the PQC and
the RPA:

(1) In the PQC, the database for each quantum computer
is reduced fromN to N/N1, whereas in repetition parallelism,
the database size is alwaysN.

(2) In the PQC, somen1 qubits are in mixed state,
whereas in the RPA, all qubits are in pure states. This gives
the PQC the advantage to make a fuller use of qubit re-
sources as we will explain later.

(3) The PQC algorithm has full success rate whereas the
RPA is probabilistic. To overcome fluctuation, it requires
more resource than that in the PQC. For instance, for single
query searching, the PQC algorithm requiresN molecules
whereas the algorithm in Ref.[10] requires OsN ln Nd
molecules.

Shor’s algorithm can also be run in the PQC. The aim is
to find the periodr of ax modNb. We need two registers, one
argument register withn qubits whereNb

2,2n,2Nb
2 and one

function register with similar size. We divide the argument
register inton1 qubits in the complete mixed state, andn2
qubits in pure state. The ensemble is prepared in state de-
scribed by Eq.(12). We performax mod Nb and store the
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results in the function register. After performing Fourier
transform on only then2 register, the states in then2 register
becomes identical in all constituents. By measuring then2
register using an ancilla qubit, the period in then2 register
N2/ r can be found. The speedup is achieved due to two
factors. First, the Fourier transform is done on a smaller
space in then2 register, and it requires onlyOsn2

2d steps as
compared withOsn2d steps in standard Shor algorithm. Sec-
ond, there areN1 constituents, therefore there areN1 transi-
tions by a single ensemble measurements. In standard Shor
algorithm, several runs of the algorithm are required. In the
PQC, this can be reduced by a factor of 1/N1. We illustrate
this in a simple example withNb=15, a=7, n=8, n1=2, n2
=6. Shor’s algorithm in a single quantum computer yields
the following stateucl=su0l+ u64l+ u128l+¯ dsu1l+ u7l+ u4l
+ u13ld, and the period in the argument register is
q/ r =64, whereq=256. With the PQC, the resulting state
is r=fsu1l+ u7l+ u4l+ u13ldgsf00g+f01g+f10g+f11gd u fsu0l
+ u16l+ u32l+ u48ldg, where the square bracketed quantities
denote the corresponding density operator, e.g.,f00g and
fsu1l+ u7l+¯ dg. Upon measurement, four transitions from
the n2 register appear, and this is equivalent to running the
algorithm with six qubits four times. But for the PQC opera-
tion of Shor’s algorithm, there is a restriction onn1: it should
not be large, otherwise the Fourier transformation inn2 qu-
bits will not achieve the desired destructive interference.

V. IMPLEMENTATION WITH REALISTIC NMR
ENSEMBLES AND THE NOTION

OF A LOGICAL MOLECULE

In reality, some number, sayNE, of molecules has to be
used as a logical molecule. A logical molecule can be viewed
as the minimum number of molecules that acts as a single
quantum computer. Then a molecule in the preceding discus-
sion should be understood as a logical molecule. The number
of logical molecules in an EQC isNs/NE, whereNs is the
total number of molecules in the ensemble. In practice, a
NMR EQC contains a large number of molecules, say 1016.
Though with effective pure state technique, the number of
molecules contributing to quantum computation is reduced,
there are still 1010. This is much more than that needed for a
logical molecule. Thus in ensemble quantum computation
with effective pure state technique, it is possible to see the
effect of repetition parallelism. Indeed, it has been pointed
out that in ensemble quantum computation, unsorted data-
base search can be faster than Grover algorithm[25] by trad-
ing space resources with time resources, a reflection of the
repetition parallelism. In implementing the PQC, effective
pure state technique can also be used to prepare then2+m
+1 qubits in pure state.

A logical molecule is in fact a subensemble of molecules
in the same pure state. Hence the difference between a single
molecule and a logical molecule is essentially the difference
between a single molecule and an ensemble of molecules in
the same pure state. The minimum number of molecules re-
quired for a logical molecule depends on the measurement
sensitivity. In the following, we explain the differences be-

tween a logical molecule and a single molecule in a measur-
ing process, in an example with three qubits, one qubit as the
ancilla qubit and the other two qubits as working qubits.
Here the first qubit is the ancilla qubit.

(1) If the two working qubits are in a computational basis
stateu0i1i2l, wherei1, i2 are either 0 or 1, then there is only
a single transition for the ancilla qubit,u0 i1 i2l→ u1 i1 i2l. In
this circumstance, there is no difference between a single
molecule and a logical molecule except that the intensity of
the transition from the logical molecule isNE times of that
for a single molecule, whereNE is the number of molecules
in a logical molecule.

(2) When the two working qubits are in a superposed
state, for example,u0lsu01l+ u10ld /Î2(the first ketu0l repre-
sents the state of the ancilla qubit), then there will be two
transition possibilities for the ancilla qubit. One is from
u0 0 1l to u1 0 1l with 50% probability and the other is from
u0 1 0l to u1 1 0l also with 50% probability. For a single
molecule, there will be only one transition, either the first or
the second. For a logical molecule, both transitions will oc-
cur. Half of the molecules will experience transitionu0 0 1l
→ u1 0 1l and the other half will go through transition
u0 1 0l→ u1 1 0l. We should see two transitions, each with an
intensity ofNE/2 times of that from a single molecule.

(3) When there are more components in the superposed
state of the working qubits, sayNc, there will beNc transition
lines in the ancilla qubit spectrum with a reduced intensity,
NE/Nc times of that for a single molecule. Then the mini-
mum number of moleculesNE for a logical molecule is to
makeNE/Nc times of the transition from a single molecule
detectable in experiments. In quantum algorithms,Nc is usu-
ally very small, for instance, it is equal to 1 in the Grover
algorithm. Thus the minimum number of molecules in a logi-
cal molecule is only a multiple of the minimum number of
molecules producing a detectable transition signal when each
molecule makes the same transition.

(4) According to Laddet al. [4], NE is of the order of
Os105d for present-day technology. With the development of
technology, this number could be further reduced. But it is
important to note that this number is more or less a constant
for quantum algorithms, for instance the Grover algorithm,
and it scales more or less as a constant with the number of
qubits in the molecule. For example, if the apparatus can
detect the simultaneous transition of 105 molecules, then for
Grover algorithm with three qubits we need 105 molecules as
a logical molecule unit, and with ten qubits we need the
same number of molecules as a logical molecule unit. As this
number is more or less fixed, to utilize the benefit of the
classical parallelism discussed in our paper, one can simply
add more molecules in the ensemble as long as it is feasible
in the experiment. A logical molecule is in fact a suben-
semble of molecules in the same pure state. Hence the dif-
ference between a single molecule and a logical molecule is
essentially the difference between a single molecule and an
ensemble of molecules in the same pure state, which has
been discussed in the literatures. The minimum number of
molecules required for a logical molecule depends on the
measurement sensitivity.

(5) From this discussion, we see that as long as each
component in an ensemble can be detected, there is no need
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for the number of molecules in each component to be equal.
This property makes the parallel quantum computing flexible
in practical implementation.

VI. DISCUSSION AND SUMMARY

The PQC uses mixed state in general. One can take ad-
vantage of this to make a full use of the qubit resources in
EQC. In the Cleve-DiVincenzo[15] and the Schulman-
Vazirani [16] algorithms,Osnd qubits are prepared in pure
state while some qubits[OsÎnd in Ref. [15] andOsnd in Ref.
[16]] have to be in the completely mixed state and be dis-
carded. In the PQC, these qubits can be reused. This gives a
natural criteria for dividingn into n1 and n2. We can use
these discarded qubits as then1 register. This increases con-
siderably the number of qubits usable in an EQC.

As is common to all NMR ensemble computing schemes,
the effective pure state[2,3] ensemble quantum computing
and the Liouville space computing[12], the PQC uses the
free decay signals for the measurement, hence the PQC re-
quires a sensitivity that is exponential in the number of qu-
bits. The difference between the effective pure state
ensemble-quantum-computing scheme and the Liouville
space computing and the PQC in the aspect of measurement
is that some transitions are suppressed in the effective pure
state quantum computing, only one or a few spectral lines are
retained, while in the Liouville space computing and the
PQC nearly all transition lines are collected. To recognize the
computing result, it is necessary to identify the frequency of
the transition spectral lines. There are altogether 2n number
of transitions, hence it scales exponentially with the number
of qubitsn.

It is worth pointing that there are different interpretations
of the density matrix for a mixed state. In this work and our
previous work[14,18,26], we have used the ensemble aver-
age definition, which is called proper mixed state, by
d’Espgnat[27]. In this interpretation, in a given instant, the
state of a molecule in an ensemble is in a definite quantum
state. But if we take an average over all the ensembles, an
“average” molecule in the ensemble has a probability distri-
bution in the set of pure states. We use this picture as an
approximation to a NMR ensemble within a time period of
the dephasing timeT2, i.e., within a period of timeT2, a
molecule is approximately in a definite pure quantum state.
Another interpretation of a mixed state is that a molecule in
an ensemble is not in a definite pure quantum state at any
given instant because of its entanglement with the environ-
ment. This interpretation has been used, for instance in Ref.
[28]. When the number of molecules in an ensemble is small,
these two different interpretations of mixed state can make a

difference in the outcome for the PQC. In the first interpre-
tation, because a molecule in an ensemble is in a definite
quantum state, it remains in a definite quantum pure state
during the process of computation. For example, if there are
2n molecules in an ensemble and each molecule is in a dif-
ferent computational basis statesui1i2¯ inl, wheren is the
number of qubits in each molecule, then the ensemble is
represented by density matrix proportional to a 2n32n unit
matrix. In each state, there is a molecule in that state. In the
second interpretation, each molecule in an ensemble itself is
not in a pure quantum state at a given instant. For instance,
for an ensemble with 2n molecules described by the same
unit density matrix, at a given instant each molecule has 1/2n

probability to be in one of 2n computational basis states.
There is some probability that some computational state is
not occupied by any molecules in the ensemble at some in-
stant. However, when the number of molecules in the en-
semble is much larger than 2n, then it is certain that every
computational basis state is occupied by some molecules. In
this case, the two different interpretations of the mixed state
leads to identical results. For realistic NMR ensemble, there
are huge numbers of molecules in an ensemble, and the num-
ber of qubits is much small compared to this number. Hence
the two different interpretations of a mixed state do not affect
the parallel quantum computing mode we proposed. It is
worth pointing that there are still different views about the
interpretation of mixed state, and these are closely related to
fundamental issues in quantum mechanics. For instance, the
first postulate in quantum mechanics reads “the state of the
particle is represented by a vectorucstdl in a Hilbert space”
[29]. Mixed state(or ensemble) is introduced in quite a num-
ber of textbooks, for instance, by Shankar[29] and Ka[30].
Whether a mixed state is only a mathematical tool for de-
scribing a quantum system with insufficient information or it
is indeed a physical state, and how good a mixed state de-
scribes a NMR ensemble are interesting questions and need
further attention. These issues need heavy involvement and
we leave it to a separate publication.
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