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Parallel quantum computing in a single ensemble quantum computer
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We propose a parallel quantum computing mode for ensemble quantum computer. In this mode, some qubits
are in pure states while other qubits are in mixed states. It enables a single ensemble quantum computer to
perform “single-instruction-multidata” type of parallel computation. Parallel quantum computing can provide
additional speedup in Grover’s algorithm and Shor’s algorithm. In addition, it also makes a fuller use of qubit
resources in an ensemble quantum computer. As a result, some qubits discarded in the preparation of an
effective pure state in the Schulman-Varizani and the Cleve-DiVincenzo algorithms can be reutilized.
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I. INTRODUCTION uses qubits in mixed state and makes a full use of the qubit

Quantum computer realization schemes can be classifid§SOurces. For instance, those qubits Qiscarded in .the Cleve-
into single-quantum-computer type where only a singlePiVincenzo[15] and the Schulman-Vazirapd 6] algorithms
quantum system is used, e.g., the trap[ibly and ensemble- c¢an now be reused. The PQC is the classical parallel opera-
quantum-computefEQC) type such as the liquid nuclear tion of many single quantum computers.
magnetic rosonancd\NMR) schemg2,3] and the solid-state
scheme[4], where many copies of quantum systems are
used. A quantum computer uses superposition of states and

possesses quantum parallelism which provides enormous |, 1998, Madi, Briswchweiler, and Ernst proposed the

computing power. It achieves exponential speedup over exiqyille space computer in which quantum operations and
isting cIa;smaI .computmg algorithms in prime factorization |5ssical algorithm are combingti2]. The parallel quantum

[5] and simulating quantum systerf§. However for some  ;omputing mode we proposed here is a generalization of the
prf)blems.the speedup is not.exponenual.. For instance, Groyqyijle space computation. We briefly review the Liouville
er's algorithm(7], shown optimal[8], achieves square-root ¢ace computation in this section. In a NMR ensemble sys-
speedup for unsorted database search. In some other profiy, the state can be represented by density operators which
lems, quantum computer cannot achieve any spe€@lut 5.6 jinear combinations of direct products of spin-

is natural to explore additional speedup by making quantum,|arization operatorl7,12. In a strong external magnetic
computers work in parallel, as in classical computation. Byig|q. the eigenstates of the Zeeman Hamiltonian
running many identical quantum computers in parallel, an ’

unsorted database search can be speeded up giE@y].
Using Liouville space computatiofiL2], exponentially fast
search can be achievé§ti3,14. The speedup is achieved by . o
using more resources. EQC is a potential place to exploit thi&"® Mmapped on states in the spin Liouville space,
parallelism because there are many molecules in it. Each
molecule is potentially a single quantum computer, and an Oin =N P = 15151512 1B, (2)
EQC is potentially a collection of that number of quantum
computers. At present, an EQC is used as a single quantuhere
computer using effective pure state technid@e3], apart
from the lack of projective measurement. Though preparing 1 10
effective pure state is tedious, Cleve and DiVinceiizf], 1 =]aaN = Z(L+ 21y :[ } (3)
Schulman and Vaziranil6] have proposed efficient algo- 2 00
rithms to produce a portion of qubits in a pure state and
discard some qubits in the completely mixed states. 1 00

In this paper, we introduce the idea of parallel quantum 1 =8%B = Z(1— 2l :{ } (4)
computing(PQQ in a single EQC. In the PQC a subset of 2 01
qubits is prepared in pure state while the other qubits in
mixed state. On one hand, this enables the “singlerepresent, respectively, the spin-up and spin-down state of
instruction-multidata” type of parallel computation in a the spin. A Liouville space computation is performed by us-
single EQC for additional speedup, for example, for theing a mixed state, which is a linear combination of the basis
Grover and the Shor algorithms. On the other hand, the PQG6tates in Eq(2),

II. LIOUVILLE SPACE ENSEMBLE COMPUTING

|fin) =|001:--01) = [aaB--- aB), 1)
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M f=(2"-1)(1/2)+1/2—(2"-2)(1/2)=1. If the kth bit of the
p=> aj, (5  marked state is 1, then the stai@ will not contain the
=1 marked item. Upon the operation of the functibrthere is

hereM gives a restriction for the range of basis states to b&!© flip in the ancilla bit. A measurement on the ancilla bit's
ded < g Spino, will yield f=(1/2)(2"~1)+1/2~(2")(1/2)=0. How-

The Briiswchweiler algorithni13] is a Liouville space Ve Wwithout obtaining the value df we can know the
computing algorithm. Like the Grover algorithm, it finds a Marked state by measuring the ancilla bit's spin. If one mea-
marked state in an unsorted database. Suppose the oracle i§4€S the spin of ancilla spin after the oracle, the value will
computable functiorf. It has the following propertyf(x) ~ P€(2""=1)(1/2)-1/2=N/4-1 for thekth bit of the marked
=0 for all x excepix=z, andz s the item we want to find out State being 0. If théth bit of the marked state is 1, then the
for which f(2=1. In Liouville space computation and the State(8) will not contain the marked item. Upon the opera-

Briswchweiler algorithm, an ancilla bit is used and its statdion ©of the oracle, there is no flip in the ancilla bit. ﬁ\_inea-
is represented bl The output of the oracle is stored on the SUrément on the ancilla bit's spig, will yield (?{2)(2_ )
ancilla bit 1, whose state is prepared in thestate at the =N/4. Therefore by measuring the ancilla bit's spin, one

beginning. The output of can be represented by an expec-2actually reads out thkth bit of the marked state.
tation value oflo, for a pure state, (3) By repeating the above procedure fofrom 1 ton,

one can find out each bit value of the marked state.
N 1 o e Briswchweiler algorithms have been implemented in a
f=F(goin) = 57 Tr(UslgoinUslop).- (6)  3-qubit NMR system§$18,19. The Briiswchweiler algorithm
has been applied to global optimization problg2a]. In fact,
If oy, happens to satisfy the oracle, thehis changed to  using the Liouville space computation, the unsorted database
5. This gives the value of the trace equal to —1/2, and henceearch algorithm can achieve its ultimate optimum, a single
f equals to 1. The input df can be a mixed state of the form query. By putting all a NMR ensemble in a complete mixed

p=3\, I§ oy, whereg; is one of the form in Eq(2): state, a single query is sufficient to find all the marked items
N N satisfying an oraclg14]. It has been demonstrated experi-
_ I « N-1 mentally in a 7-qubit NMR system recentl21].
r= E; Fig o) = F(E lo Ui) Ty @) It is worth pointing the salient features of Liouville space

computer. First, all the computational operations are quan-
The oracle is applied simultaneously to all the components inum mechanical. The operations are exactly the same as
the NMR ensemble. The oracle operation is quantum methose in quantum computer. Second, classical parallelism is
chanical. The essential feature of the Briswchweiler algointroduced in Liouville space computing since different com-
rithm is as follows: suppose that the unsorted database ha®nents may carry different computation tasks at the same
N=2" number of items. We neettqubit system to represent time. Third, there is no quantum superposition of the basis
these 2 items. The algorithm contains oracle queries each states in Liouville space computation. Because of this, the
followed by a measurement. Liouville space computer can be replaced by an ensemble of
(1) Each timelgly (k=1,2,...n) is prepared. In fact, the reversible computers, which can in principle be implemented
input statelg---1---1¢---1--- is a highly mixed stat§12]. by classical reversible Turing machines. In the parallel quan-
This Liouville operator actually represents th&2number  tum computing proposed in this paper, we generalize the

of items encoded in mixed state: Liouville space computer to allow quantum superposition of
we_rapne s e o 1f - the computational basis states to perform computation. We
Igl =150 +1D)UZ +15) -~ (17 +17) will see that the effective pure state quantum computation

and the Liouville space computation can be viewed as two

- 2 2171220 oo | Ykl 9 YhtL o n | .
07172 k=1 Tk k+1 n extremes of the parallel guantum computation.

Y1 Y20 Vi1 Vi Ykt 1o+ Yn = 8

= > (TP PRV WU LR P IIl. PARALLEL QUANTUM COMPUTING

i1 2 d ke D 1rin=0,1
X(igin - iqOigry - i 8) We introduce notations first. We c_aII a term in a super-
' posed state as a component, for instamgg in alip)
where the identity operators have been omitted for clarity:+b|:); a term in a density matrix a constituent, for instance,
This mixed state contains half the number of items in the i) to| in Polbo){Wo| +Pa| )]+ Pal )| We can divide
database. Thkth bit is set toa. The other half of the data- ann number qubits system into two parts, one withqubits
base withkth bit equal tog(or 1) is not included. and the other witn, qubits, andh;+n,=n. The state of this
(2) Applying the oracle function to the system. As seen inn-qubit system may be represented |py,j,), where|j,) is
Eq. (7), the operation is done simultaneously to all the basighe firstn, qubit state andjj,) is the lattem, qubits state. We
states. Ifkth bit of the marked state is 0, then the markedcan also combine the two parts to represent the state as
state is contained in E@8). One of the 2 terms in Eq.(8)  |j1=]j1j2). We use interchangeably binary and decimal rep-
satisfies the oracle and the oracle changes the sign of thesentations. For instance, a 4-qubit state withn,=2 can
ancilla bit from « to B. If one measures be represented a1,10=|0110=|1,2)=|6), where the first
the spin of ancilla spin after the functidnthe value will be  and third are in the separated binary and decimal forms,
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whereas the second and fourth are in the combined binary q Nt Nt Np-1

and decimal forms, respectively. p=—2 | 2 ¢,l0052) || 2 ¢ i0sial |,
We then describe the ensemble measurement which is a Niji=0 [ j,=0 i2=0

generalization of that used in Liouville space computation (10)

[12,18. Assume that an EQC can detect the transition signal T . )
from a single molecule. For a molecule witk 1 qubits, one  Where inli,j1.j2). i, j1, andj, are the states forNﬂf fU”Ct'ZO”'
qubit is used as the ancilla qubit and is labeled 0. The Hamilthe N1 and then, registers, respectively, andjZy [c;, |

tonian of the ancilla qubit is =1. The ancilla qubit state is not written out explicitly. In
this EQC, there ar®l; constituents andN; molecules. Each
molecule is in a different stat&Z' ¢;, 10,1, ]2), which is
H=wgloy+ > 270 orl ks (9)  a superposition oN, number of computational basis states.
k>0 In general, a quantum computation performs unitary trans-

formations on both the argument and the function registers.

] ) ) Denoting this transformation ad,, the quantum computa-
whereJy is the J-coupling constant between the ancilla and+jon on state(10) will be

the kth qubit. I, is thez component of the spin operator for

the jth qubit. The transition frequency of the ancilla qubit P o
depends on the state of the remainigubits. If the ancilla p—pe=UepUc = 2| 2 ¢, Ud0sia

qubit transition occurs witm qubits in statelisip: i), its 1170 | 1270

transition frequency is themg+=p_; mJq(—1)'. This transi- Nl

tion produces a peak in the ancilla qubit spectrum. For in- x| > le,j2<0,j1,j2|Ul . (11
stance, then-qubit stateliqi,---i,)=|00---0) corresponds to j270

the highest frequencywo+Z.; mJ, and the state aAn ensemble measurement is then performed to read out the

ligioe-+iy=|11---1) corresponds to the lowest frequency regyit.

wo=Zj; ™ok Thus one can tell the state of thequbits The quantum computation represented in 8d) on the

liaip -+is) by looking at this sign of the multiplet compo- ensemble10) is defined as the parallel qguantum computing.

nent. Moreover, the anCIlla qub|t State |tse|f IS representeqin fact |t iS Nl quantum Computers Working in para”el_ The

by the spectral peak direction. If the ancilla qubit is in the computation instructiot,. is the same for all molecules, but

|0)(|1)) state before transition, then the spectral peak ighe databases, numbers represented by different molecules,

upward(downward. The state in the PQC can be a super-are different. Hence, the PQC is the single-instruction-

position of basis states, Sﬁﬁz’:—ol ¢j,j,li1,j2) In this state  multidata type of parallel computation in classical computa-

the firstn, qubits are inj;) and the lattem, qubits are in  tion. The statg10) is the most general initial state, and in

superposed state of th® register. When we measure the most applications the following simplified state is sufficient:

ancilla qubit, we will observe only one transition. The the n; register in the complete mixed state

transition frequency is random in one of the Ej“il:‘ol (1/Nplj1)j;] and the n, register in the equally

frequencies corresponding to t[nng—qubit §tates in stgtes weighted superposed sta@}\‘{l V"T[\]Z“Z)_ In this case,

|O>,---,|N2—1>,_ because the-qubit state will collapse into =1/N, for all possiblej; andj,.

one of N, basis statesj;,j,)=|j1jo) randomly with prob- Jul2

ability |cjl,j2|2. When the superposed state is transformed

into a single basis state, the transition frequency will be v PARALLELIZING THE GROVER ALGORITHM

definite and determined by Eq9). This ancilla qubit AND THE SHOR ALGORITHM

spectrum method will serve as the ensemble measurement o . ] )

throughout this paper. It can tell the ancilla qubit state by Application of the PQC to the Grover algorithm is studied

the peak direction and the-qubit state by the transition _in this section. Suppose the marked stat§fi). Then only

frequency. one qubit is required for the function register in this algo-
Our quantum Computer mode' iS an EQC Wm'lzznl I’Ithm ThlS qub|t iS a|SO Used a..s the anCi||'a qub|t for the

molecules. Each molecule can be operated and measured efisemble measurement. Preparing the function register in the

hasn+m+1 qubits. They are divided into three parts: onelO) state, then, register in the equally weighted superposed

ancilla qubit, a function register witm qubits, and an argu- State, and then, register in the complete mixed state, we

ment register witm qubits. The argument register is further have then

divided into two parts: one part with; qubits calledn, Ny-1 Np-1 Np-1

re_gister and another part with qubits cal_ledwz register., and p= 1 > ! = |0,j1,j2>} [ 1 > <0,j1,j2|] _

n=n,+n,. In general before a computation, the function reg- N1 =0 N2 =0 N2 o

ister and ancilla qubit are prepared in the pure d@jteThe (12)

argument register is in a mixed state with constituent.

Each constituent is characterized by the state ofntheeg-  In this way, we divide the database ink subdatabases,

ister. Then, register in a given constituent is in a superposedeach withN, items. Apply a zero-failure rate Grover algo-

state of itsN,=2" basis states. The density operator of therithm [22] to the ensemble witld iterations, wherel-1 is

ensemble is the integer part of (w/2)-B]/(2B) and is approximately
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ms‘WzM and ,B:arcsinllv‘ﬁz. In this modified Grover al- will be constituents without any occupying molecules. We
gorithm, each iteration consists of four stefi: apply the  assume that the qubit numberis very large,Ng<2". The
query to the wholen-qubit argument register and on con- maximum value fom; is log;Ne. A natural estimate of the
dition that the query is satisfied, rotates the phase of th&ound is to seNg=N,, the Avogadro constant. This sets to
marked state through angle=2 arcsifiyN, sinm/(4J+6)]  Ni=<79. In principle, we can varg, from 0 to logNe so that

(¢ is slightly smaller thanw); (2) make a Hadmard trans- the functioning of the EQC changes. Whep=0, all Ne
formation on then, register;(3) make a phase rotation molecules are in the same pure state and the EQC works as a

through angleg on the|0---0) basis state of the, regis- single quantum computer. Most NMR EQC quantum compu-

) ; : tation experiments done so far manage to get this effect using
ter; (4) make a Hadmard transformation on theregister tge effective pure state technique. Whar1, the ensemble

again. If a subdatabase does not contain the marked stati ‘divided into two subensembles each withy/2 molecules
the above operation does not produce any observable e ach subensemble works as a single quantum computer. The
. . .0 . . Whole ensemble works as two single quantum computers in
n, register in statej;). The modified Grover algorithm parallel. Whem, =log,N , the ensemble works a¢: single
transforms it:, register from the equally weighted super- quantum computers working in parallel.
posed state into a single std{§) so that the constituentis |y the above discussion, a single molecule and an en-
in the marked statgjj9). At the end of the modified semble of many molecules in pure state are all treated as a
Grover algorithm, one makes a further query and on consingle quantum computer. We point here that the EQC can do
dition that the query is satisfied, makes a flip on the func-more by implementing the parallel operation proposed in
tion register. The density matrix becomes Refs.[10,17. In these works, the Grover algorithm is run on
somek identical quantum computers in parallel. It is equiva-
1 lent to repeating the algorithm in a single quantum computer
N_|11]2> k times. We call this parallel algorithm as repetition parallel
2 algorithm (RPA). For instance, in Ref.10], by running one

1 N;-1
pi= (N—)|0><0| 2 [E
! ja#ig L1e=0
Np-1 iteration of Grover’'s algorithm ork number of identical
1., 1 10:0y/:0:0 uantum computers simultaneously and then measurin
X[ > \/N:<11J2|:| + (N_)|1><1||11]2><1112|- q P i y 9
j1=0 2 1 these quantum computers simultaneously, the marked state
can be found by picking out the one most quantum comput-
Finally, by measuring the ancilla qubit, one obtaistran-  ers point to. Because the marked state will appdaiN9
sition peaks in the spectrum, each from a constituent. Fotimes in the outcome, whereas any other state apgdais
those constituents without the marked item, each peak is ugimes. Whenk=O(N In N), the probability that the marked
ward and its transition frequency is random in one of thosestate occurs more than any other state approaches unity. In
corresponding state§;0), ..., |j;N,—1). The constituent Ref. [11], k identical quantum computers are searching in
with the marked item is in a unique state and produces parallel. In each quantum computer, the probability for find-
downward peak with definite frequency corresponding to theng marked state is amplified. Because therelkaggiantum
state|j%j9). It finds the marked state with certainty. computers, by using the majority-vote rule, one needs less
The number_of queries is aboutN,/4=m(N/N,/4. iterations on each quantum computer. The speedup scales as
This is only 1AN; of that a standard Grover algorithm re- O(vk). The extent of speedup is the same as the PQC algo-
quires. This is so because there Blesingle quantum com- rithm. But there are several differences between the PQC and
puters searching in parallel, each in a reduced database withe RPA:
only N/N;=N, items. It requiresm(N/N;/4 steps for each (1) In the PQC, the database for each quantum computer
single quantum computer to complete the search. In one exs reduced fronN to N/N;, whereas in repetition parallelism,
tremen, =0, there is only a single molecule, the number ofthe database size is alwalis
query is7/N/4, which is just that for the standard Grover (2) In the PQC, somen, qubits are in mixed state,
algorithm. On the other extreme, tif=n, n,=0, the EQC  whereas in the RPA, all qubits are in pure states. This gives
containsN=2" molecules in completely mixed state, only a the PQC the advantage to make a fuller use of qubit re-
single query is needed. This is just the Liouville space comsources as we will explain later.
puting fetching the algorithm proposed recenfli4]. In (3) The PQC algorithm has full success rate whereas the
Liouville space computatiol2], no superposition of the RPA is probabilistic. To overcome fluctuation, it requires
computational basis states is used. Each molecule can also b®re resource than that in the PQC. For instance, for single
viewed as a reversible classical computer that can be realizegliery searching, the PQC algorithm requifésmolecules
guantum mechanically23], or simply be implemented di- whereas the algorithm in Ref{10] requires O(N In N)
rectly using classical Turing machine with three taf#4§. If molecules.
n;=n-1 andn,=1, the algorithm finds the marked item with  Shor’s algorithm can also be run in the PQC. The aim is
just two queries. Clearly, the speedup is achieved at the exe find the period of a* modN,. We need two registers, one
pense of more molecules. The number of queNgsind the  argument register with qubits whereN2 < 2"< 2NZ2 and one
number of moleculedl; satisfy Néx N;=const. function register with similar size. We divide the argument
If we fix the number of molecules in an EQC, sayN¢t,  register inton; qubits in the complete mixed state, angl
then in order that each constituent is occupied by at least ongubits in pure state. The ensemble is prepared in state de-
molecule,n; cannot be larger than Iglyg , otherwise there scribed by Eq.(12). We performa* mod N, and store the
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results in the function register. After performing Fourier tween a logical molecule and a single molecule in a measur-
transform on only tha, register, the states in the register  ing process, in an example with three qubits, one qubit as the
becomes identical in all constituents. By measuring itge ancilla qubit and the other two qubits as working qubits.
register using an ancilla qubit, the period in theregister ~ Here the first qubit is the ancilla qubit.

N,/r can be found. The speedup is achieved due to two (1) If the two working qubits are in a computational basis
factors. First, the Fourier transform is done on a smallestate|Oi1iz), whereiy, i, are either 0 or 1, then there is only
space in then, register, and it requires oni(n) steps as @ single transition for the ancilla q_uij igig)—|1iqip). In
compared withO(n?) steps in standard Shor algorithm. sec.- this circumstance, there is no difference between a single

ond, there ar\, constituents, therefore there aXg transi- molecule and a logical molecule except that the intensity of

tions by a single ensemble measurements. In standard Shtfgre transition from the logical molecule Mg times of that

. : . r a single molecule, wh is the number of molecul
algorithm, several runs of the algorithm are required. In '[hqn a single molecule, wherig is the number of molectles

. ) a logical molecule.
PQC, this can be reduced by a factor oL/ We illustrate ) E\JNhen the two working qubits are in a superposed

this in a simple example with},=15,8=7,n=8, =2, gate for examplel0)(|01)+|10))/2(the first ket|0) repre-
=6. Shor’s algorithm in a single quantum computer yieldsgo s the state of the ancilla qubithen there will be two
the following state|¢>;(|0>+_|64>+|128>+~--)(|1>+|7>.+|4> _ transition possibilities for the ancilla qubit. One is from
+13), and the period in the argument register is|00 1) to |10 1) with 50% probability and the other is from
q/r=64, whereq=256. With the PQC, the resulting state |01 0) to |11 0) also with 50% probability. For a single
is  p=[(|1)+]7)+[4)+[13)]([00]+[01]+[10]+[11])[[(|0)  molecule, there will be only one transition, either the first or
+|16)+[32)+|48))], where the square bracketed quantitiesthe second. For a logical molecule, both transitions will oc-
denote the corresponding density operator, €.@0] and cur. Half of the molecules will ex_perience transitighO D
[(|2)+|7)+---)]. Upon measurement, four transitions from —|10 1) and the other half will go through transition
the n, register appear, and this is equivalent to running thd® 1 9—|1 1 0. We should see two transitions, each with an
algorithm with six qubits four times. But for the PQC opera- nténsity ofNg/2 times of that from a single molecule.

tion of Shor’s algorithm, there is a restriction ot it should (3) When there are more components in the superposed
not be large, otherwise the Fourier transformatiomjrgu- state of the working qubits, say., there will beN, transition

bits will not achieve the desired destructive interference. lines in the ancilla qubit spectrum with a reduced intensity,
Ne/N. times of that for a single molecule. Then the mini-

mum number of moleculeblg for a logical molecule is to
makeNg/N, times of the transition from a single molecule
detectable in experiments. In quantum algorithMsis usu-
ally very small, for instance, it is equal to 1 in the Grover
algorithm. Thus the minimum number of molecules in a logi-
In reality, some number, sa)g, of molecules has to be cal molecule is only a multiple of the minimum number of
used as a logical molecule. A logical molecule can be viewednolecules producing a detectable transition signal when each
as the minimum number of molecules that acts as a singlmolecule makes the same transition.
guantum computer. Then a molecule in the preceding discus- (4) According to Laddet al. [4], Ng is of the order of
sion should be understood as a logical molecule. The numbed(10°) for present-day technology. With the development of
of logical molecules in an EQC iblg/Ng, whereNs is the  technology, this number could be further reduced. But it is
total number of molecules in the ensemble. In practice, amportant to note that this number is more or less a constant
NMR EQC contains a large number of molecules, sa¥.10 for quantum algorithms, for instance the Grover algorithm,
Though with effective pure state technique, the number oknd it scales more or less as a constant with the number of
molecules contributing to quantum computation is reducedqubits in the molecule. For example, if the apparatus can
there are still 1&. This is much more than that needed for adetect the simultaneous transition offIfolecules, then for
logical molecule. Thus in ensemble quantum computatiorGrover algorithm with three qubits we neecPIfolecules as
with effective pure state technique, it is possible to see the logical molecule unit, and with ten qubits we need the
effect of repetition parallelism. Indeed, it has been pointedsame number of molecules as a logical molecule unit. As this
out that in ensemble quantum computation, unsorted datarumber is more or less fixed, to utilize the benefit of the
base search can be faster than Grover algor[@Bhby trad-  classical parallelism discussed in our paper, one can simply
ing space resources with time resources, a reflection of thadd more molecules in the ensemble as long as it is feasible
repetition parallelism. In implementing the PQC, effectivein the experiment. A logical molecule is in fact a suben-
pure state technique can also be used to preparajsthm semble of molecules in the same pure state. Hence the dif-
+1 qubits in pure state. ference between a single molecule and a logical molecule is
A logical molecule is in fact a subensemble of moleculesessentially the difference between a single molecule and an
in the same pure state. Hence the difference between a singédsemble of molecules in the same pure state, which has
molecule and a logical molecule is essentially the differencéreen discussed in the literatures. The minimum number of
between a single molecule and an ensemble of molecules imolecules required for a logical molecule depends on the
the same pure state. The minimum number of molecules raneasurement sensitivity.
quired for a logical molecule depends on the measurement (5) From this discussion, we see that as long as each
sensitivity. In the following, we explain the differences be- component in an ensemble can be detected, there is no need

V. IMPLEMENTATION WITH REALISTIC NMR
ENSEMBLES AND THE NOTION
OF A LOGICAL MOLECULE
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for the number of molecules in each component to be equadifference in the outcome for the PQC. In the first interpre-
This property makes the parallel quantum computing flexibleation, because a molecule in an ensemble is in a definite

in practical implementation. guantum state, it remains in a definite quantum pure state
during the process of computation. For example, if there are
VI. DISCUSSION AND SUMMARY 2" molecules in an ensemble and each molecule is in a dif-

) . ferent computational basis statpg,---i,), wheren is the

The PQC uses mixed state in general. One can take agymber of qubits in each molecule, then the ensemble is
vantage of this to mak_e a full use of the qubit resources ir}epresented by density matrix proportional to"a<2" unit
EQC. In the Cleve-Divincenzd15] and the Schulman- matrix. In each state, there is a molecule in that state. In the
Vazirani [16] algorithms,O(n) qubits are prepared in pure gecond interpretation, each molecule in an ensemble itself is
state while some qubif©(+n) in Ref.[15] andO(n) in Ref.  not in a pure quantum state at a given instant. For instance,
[16]] have to be in the completely mixed state and be disfor an ensemble with 2molecules described by the same
carded. In the PQC, these qubits can be reused. This givesuait density matrix, at a given instant each molecule has 1/2
natural criteria for dividingn into n; and n,. We can use probability to be in one of 2 computational basis states.
these discarded qubits as theregister. This increases con- There is some probability that some computational state is
siderably the number of qubits usable in an EQC. not occupied by any molecules in the ensemble at some in-

As is common to all NMR ensemble computing schemesstant. However, when the number of molecules in the en-
the effective pure statf2,3] ensemble quantum computing semble is much larger tharf,2then it is certain that every
and the Liouville space computing?2], the PQC uses the computational basis state is occupied by some molecules. In
free decay signals for the measurement, hence the PQC rghis case, the two different interpretations of the mixed state
quires a sensitivity that is exponential in the number of qu{eads to identical results. For realistic NMR ensemble, there
bits. The difference between the effective pure stateare huge numbers of molecules in an ensemble, and the num-
ensemble-quantum-computing scheme and the Liouvillger of qubits is much small compared to this number. Hence
space computing and the PQC in the aspect of measuremetife two different interpretations of a mixed state do not affect
is that some transitions are suppressed in the effective put@e parallel quantum computing mode we proposed. It is
state quantum computing, only one or a few spectral lines argorth pointing that there are still different views about the
retained, while in the Liouville space computing and theinterpretation of mixed state, and these are closely related to
PQC nearly all transition lines are collected. To recognize théundamental issues in quantum mechanics. For instance, the
computing result, it is necessary to identify the frequency offirst postulate in quantum mechanics reads “the state of the
the transition spectral lines. There are altogetden@mber  particle is represented by a vectgit)) in a Hilbert space”
of transitions, hence it scales exponentially with the numbe[zg]_ Mixed state(or ensemblgis introduced in quite a num-
of qubitsn. ber of textbooks, for instance, by Shanka®] and Ka[30].

It is worth pointing that there are different interpretations\yhether a mixed state is only a mathematical tool for de-
of the density matrix for a mixed state. In this work and ourscribing a quantum system with insufficient information or it
previous work[14,18,2§, we have used the ensemble aver-js indeed a physical state, and how good a mixed state de-
age definition, which is called proper mixed state, byscribes a NMR ensemble are interesting questions and need

d’Espgnat[27]. In this interpretation, in a given instant, the further attention. These issues need heavy involvement and
state of a molecule in an ensemble is in a definite quantunye |eave it to a separate publication.

state. But if we take an average over all the ensembles, an
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