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Self-energy correction to the two-photon decay width in hydrogenlike atoms
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We investigate the gauge invariance of the leading logarithmic radiative correction to the two-photon decay
width in hydrogenlike atoms. It is shown that an effective treatment of the correction using a Lamb-shift
“potential” leads to equivalent results in both the length and velocity gauges provided all relevant correction
terms are taken into account. Specifically, the relevant radiative corrections are related to the energies that enter
into the propagator denominators, to the Hamiltonian, to the wave functions, and to the energy conservation
condition that holds between the two photons; the form of all of these effects is different in the two gauges, but
the final result is shown to be gauge invariant, as it should be. Although the actual calculation only involves
integrations over nonrelativistic hydrogenic Green functions, the derivation of the leading logarithmic correc-
tion can be regarded as slightly more complex than that of other typical logarithmic terms. The dominant
radiative correction to theRtwo-photon decay width is found to be —2.020 686m)(Za)? IN[(Za) 2] in units
of the leading nonrelativistic expression. This result is in agreement with a length-gauge calciBat®n
Karshenboim and V. G. Ivanov, e-print physics/970Z02there the coefficient was given as —2.0B5

DOI: 10.1103/PhysRevA.69.052118 PACS nuniber12.20.Ds, 31.30.Jv, 06.20.Jr, 31.1p.

I. INTRODUCTION the end of the calculatiof21-24. An elucidating discussion

f the latt int be f di Chap. 12 di
The two-photon decay of the metastabl& Rvel in F26] (ecr?as.rlpfld? pc.aArj%e ound ife5] (Chap. 123 and in

atomic hydrogen and hydrogenlike systems is a rather in- ithin nonrelativistic quantum electrodynamicaso re-
triguing physical phenomenon; it was first investigated byferred to as NRQED; sefl9,20), one has the choice be-
Goppert-Mayer a long time add,2]. The transition involv-  tween two different forms of the interaction Hamiltonian: the
ing two quanta limits the lifetime of the metastabl® 2so-  “length” (Yennie and the “velocity” (Coulomb gauges.
nance, at least for low and medium nuclear charge numberphere are certain intriguing issues involved with the gauge
Z. By contrast, the highly suppressed magnetic dipole traninvariance in the dynamical nonrelativistic atom-light inter-
sition to the B ground state has a negligible influence on theaction. Indeed, in order to prove gauge invariance for dy-
decay width[3]. In this article, we evaluate the dominant namical processes, it is in many cases necessary to carefully
self-energy radiative correction to the two-photon processconsider the gauge transformation of the atomic wave func-

We recall here the known leading-order regdi-7)] tion in addition to the transformation of the fields. Otherwise,
non-gauge-invariant results are obtained off resonance
71=T1y=8.22%%s1=1.31@° Hz. (1)  [27-29. In the current situation of radiative corrections to

. _ . . the two-photon decay width, we will show that it is possible
For ionized heliumZ=2), rather accurate experimental veri- 14 jgnore the transformation of the wave function: the two-

fications of this result exisi8—10. Due to its metastability, photon decay width, including the radiative corrections, is
the 2S level in hydrogenlike systems is one of the most ac-invariant under a “hybrid” gauge transformatif®8] which
curately defined resonances found in nature. Indeed, it is thigivolves only the fields, but ignores the gauge transformation
very property—the small natural linewidth—which has madeof the wave function. In general, the choice of the gauge and
possible the high-resolution two-photon spectroscopy of the¢he interpretation of physical operators have to be considered

1S-2S transition[11-14. very carefully in time-dependent probler(see[30], p. 268
The fully relativistic quantum electrodynamic formalism and Refs[27-29).
is intricate when applied to bound-state problejhg—24, The gauge invariance of the two-photon decay rate and of

but it is often possible to gain a rather good understanding othe radiative corrections to this effect can be regarded as
guantum electrodynami¢QED) radiative corrections to a slightly problematic, partly because the integration over the
particular process if one uses a simplified, nonrelativistigpghoton energy is restricted to a finite interval. By contrast,
QED (NRQED) Lagrangian that contains effective operatorsthe gauge invariance of the low-energy part of the one-loop
which then lead to the perturbations that have to be evaluatesklf-energy shift, in an effective NRQED treatment, holds
(see, e.g.[21,22). Of course, the main difficulty of any only because one may drop terms whose divergence, for
bound-state calculation, which is the separation of the twdarge photon frequency, is stronger than logarithiitigs is
energy scalegscale of binding energy and the energy/massexplained in Sec. 3 of Ref23)); in this case gauge invari-
scale of the free particlgspersists in the effective approach. ance would be violated over finite intervals of the virtual
It is necessary to also specify cutoff prescriptions; the artifiphoton frequency. It has been one of the main motivations
cially introduced scale-separation parameters then cancel &r the current paper to study related questions.
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This article is organized as follows: In Sec. Il, the leading  II. LEADING-ORDER TWO-PHOTON DECAY RATE

nonrelativistic contribution to the two-photon decay rate is
discussed, together with its relation t.o the N.RQED tW_O'naturaIIy as the imaginary part of the self eneigy]. In-
photon self-energy. In Sec. Ill, the leading logarithmic rad'a'deed, thenegative imaginary part of the self-energy is just

tive correction to the two-photon decay rate is formulated;rlz, whereT is the decay width. We discuss the derivation

the discussion is based on a perturbation with an effectivgys the two-photon width based on this concept, within non-
potential. Explicit expressions are derived in Secs. IV and Vrelativistic quantum electrodynami¢32].

for the length and velocity gauges, respectively. Gauge in- The formulation of the two-loop self-energy problem
variance is proved in Sec. VI. Numerical results are prewithin the context of NRQED has been discussefBBi. We

sented in Sec. VII. Conclusions are drawn in Sec. VIII. All denote byp' the Cartesian components of the momentum
derivations are presented in some detail, for the sake afperatop=-iV. The expression for the two-loop self-energy

transparency. shift reads[33,34
o cenen ] e A R e P T E Yt @y H-E+ap
+1 | 1 j 1 J. 1 i+} | 1 j 1 j 1 |
2 pH—E+w1pH—E+w1+w2pH—E+w1p 2 pH—E+w2pH—E+w1+w2pH—E+w2p
gt pi< 1 )'p,- SRRAN RIS S pj(;)zpi Lyt
H-E+w, \H-E/ "H-E+w, 2\"H-E+aw, H-E+aw, 2\  H-E+w,

X J(;)Zi_mi 1 1 iy__m 1 i
P H-E+w; P pH—E+a)1H—E+a)2p W+ W, pH—E+w2p

m i 1 i
- p p

wtw,\ H-E+w;

The decay width of a bound system may be understood

2a
AENRQED: - m

(2)

All of the matrix elements are evaluated on the reference
state |¢), for which the nonrelativistic Schrodinger wave
function is employed. The expression for the two-photon de-
cay width[Eq. (4) below] now follows in a natural way as
the imaginary part generated by the sum of the first three
terms in curly brackets in Eq2). Specifically, the poles are
generated upow, integration by the propagator

1

X———x
H-E+w, ‘P>
2

: (4)

4 o2 [“max

“277ly <‘D
+ <Pr xi 1 Xi‘(P
H_E+(,01

where wy,=wna— ®1 and oy, =E—E’ is the maximum en-
ergy that any of the two photons may have. When comparing
this expression to Eq?2) of [36], it should be noted that the
quantityy ibid. represents a scaled photon energy. The Ein-
stein summation convention is used throughout this article.

Note the identity[27,37
¢>+ <tp’ <P>

:

dwlwiwg

Io

1 _ o' X'l
H—E+w1+w2 <P/ E'—E+w1+w2

()

P 1

Py )
MH-E+ w,m

MH—E+w,m

at w,=E—-E’ - w,. Alternatively, this condition may be ex-

pressed aE-E’'=w;+w, and represents the energy conser- __ ) iy 1 o

vation condition for the two-photon decay. The imaginary @192 ?1"H- E+w, 4

part generated by the first three terms in curly brackets of the

energy shift(2) is thus seen to yield the two-photon decay + <<p’ x‘;x‘ (p>}, (5)
width [35]. H-E+w,

In view of the above discussion and in agreement with

Shapiro and BreitRef. [4], Eq. (3)), the nonrelativistic ex-
pression for the two-photon decay widll in the casd¢)
=29 and|¢’)=[1S) reads

which is valid at exact resonanes + w,=E—E’. This iden-
tity permits a reformulation of the problem in the velocity-
gauge as opposed to the length-gauge form.
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Ill. RADIATIVE CORRECTIONS 4 o2
A=z ——, (12
We consider a hydrogenlike atom and employ natural 27 @
units with=e,=c=1. In order to analyze the radiative cor-
rection to the two-photon decay width, one could write down
all Feynman diagrams which contribute to the process an

as well asw,=E,g—E 15— w1 and wy,=E,>s—E s The quan-
th { is given by

start evaluating them. However, a much more economical =4+, (139
understanding into the problem can be gained by considering
an approach inspired by effective field theory or nonrelativ- .
istic quantum electrodynami¢49,2q, in which the leading 4 1S N _Er X2S), (13b)
effect due to radiative photons is described by an effective 28T @1
Lamb-shift potentia[ 38,39
3) L <1S X 28>. (130
Neams= sa(Zainlza 220 g H-Bismax
The perturbation(9) leads to the following replacements,
In this work we will consider a “standard normalized pertur- Which include the first-order corrections to the various quan-
bative local potentialT40] tities that are relevant to theS2lecay width:
(Za) Eis— Eis* 015 0E15=(1§6V|19),
N=—7-89

2 (r). (7)
Exs— Epst 0Eps,  0Ep5=(296V|29),

which is related todV, ,,, by @ simple prefactor:

4 |1S>—>|1S>+( - ) V|19),
Neamo= 5 I(Za) ZJoV. ®) BisH
3
The corrections to the Hamiltonian, to the energy, and to 29 — 29 +( 1 ),b\/|28>,
the wave function, incurred by the perturbative poten(fra) os— H
read as follows:
+ = - .
E_LE+ 5E, (9a) Wy — Wy 5(1)2, 5(,02 5E25 5Els (14)
The latter correction ensures that a perturbed energy conser-
vation condition is fulfilled:
SE =(¢|oV]g), (9b)
w1+ 0y + 0wy = Exs— Eyg+ (9Bps— OEsg), (15
H—H+V, (90) i.e., that the two-photon frequencies add up to the perturbed
transition frequency.
lo) — |@) +[5¢), (9d) The first-order self-energy correctiodl’ to the two-
photon decay rate may be expressed as
1 ST ®max 3 3 ®Wmax 3 2.
|6¢) = E-hH bVI ®) (9¢) 5 =2 do, w303l + 36w, dojwiwil?,
0 0
The standard potentigl7) leads to a “normalized” energy (16)

shift with unit prefactors: where the correctiod? is the sum of six terms,

(Za)4

SE(n9 = (10

6
8= 8¢, (17
j=1

to be defined as follows, and the second term on the right-
IV. LENGTH GAUGE hand side of Eq(16) is due to perturbed energy conservation

According to Eq(4), the two-photon decay raf&, of the condition. The quantityd may be inferred from Eqg4), (7),

metastable 8 state is given by and(8) as
16a
r “max In[(Za)~? 18
KO = f do, w303, (11) = g1z Mzl (18)
0
The termsé; and 8, are related to energy perturbations to
where we use the definition the matrix elements,
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8¢, = <1s

8¢, =(156V]| 1s>< 1S

28><2$ V|29,
(193
)
(19b
whereas the termé&(; 4 5 gare perturbations to the initial and
final-state wave functions:

2
I
H- EZS+ w1

i< 1 )2 i
X\ ———— | X
H- ElS_ w1

: 1 . 1 !
8¢3=\ 1S|x x'( ) oV|2S),
H_Ezs+ w1 EZS_H
(190
8¢,=1 18| 1 xi< ! )Ia\/ 2S
4 H_E]_S_(.Ul EZS_H ’
(19d
1 ! 1 .
ol5=\ 1S b\/( )X' x2S/,
Eis—H/ H-Extwo;
(199
1 " 1 .
8g=\ 1S b\/( )x‘ X[2S).
E]_S_H H—Els—wl
(19)

V. VELOCITY GAUGE

We now discuss the evaluation of radiative corrections in
the velocity gauge, where the interaction Hamiltonian is

given by

A A2
M= —e" =+ &
m

pwcl (20

According to Egs(4) and(5), the leading-order decay rate in

the velocity gauge is
o _

A (21)

®max 2
dwiwiwy¢°,
0

whereA is defined in Eq(12), w,=Eys—E15~ @, and wmay
=E,s—E;s The quantity¢ is the sum of two terms:

E=&4+ &, (223
where
i 1 i
§1=<1S‘B—B‘28>,
mH_E25+ wlm
P 1 pi‘
=\1S|————2S). 22b
52 < ‘mH_Els_wlm ( )

Gauge invariance of the leading-order decay fate Egs.
(11) and(21)]

PHYSICAL REVIEW A69, 052118(2004

FO = F,() (23)
immediately follows from Eq(5); this equation may be re-
written in a compact form as

E=~wiwy (. (24)
Equation(24) may be proven easily by repeated application
of the commutator relatigs)

P i[H-Ey+w,X]=i[H-Eg- w,X]. (25

Now the first-order correction to the two-photon decay
rate, in the velocity gauge, is
51"/ wmax wm
B =2 dwiwiw,E0€ + Sw,

0 0

axdwlwlfz, (26)

where the prime denotes the velocity-gauge form of the cor-
rection andB is defined in Eq(18). We desire to show that
or=ar'.

The corrections¢ finds a natural representation as the sum
of eight terms:

8
SE= 2, 8¢, (27)
=1

In analogy to Eqs(19a and (19b), 8¢, and 6¢, are energy
perturbations:

pi 2pi
551: 18‘5(@) ;1‘25 <236\/|28>,
(283
_ N O
5§Z_<1Sav|1s><1s‘ m<H_Els_wl) m‘zs>.
(28b)

The termsédé; 4 5 g are perturbations to the initial and final-
state wave functions:

pi 1 pi 1 ’
s¢;=( 1S| = = 8v|2s),
mH—E23+ wlm Ezs_H

(280

pi 1 p| 1 ’
se,={ 1| = = &V
mH_ElS_(Ulm EZS_H

5&5 = <1S

M

)/pi 1 pi
ElS_ H
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1 Ipi 1 pi
sts=1{ 1S| oV = Elos).
ElS_H mH_E]_S_wlm

(28f)

Finally, 6; g are due to the seagull term:

3 1 '
557——;]<1S‘<EZS_H> b\/‘ZS>, (289

55——3 1sav< 1 )
8~ m ElS_H

VI. PROOF OF GAUGE INVARIANCE

2s> . (28h)

PHYSICAL REVIEW A 69, 052118(2004

logarithmic radiative correctionl” is of the order of

8T ~ a®(Za)® IN[(Za)?m, (33

i.e., of relative order(Za)? In[(Za) 2] with respect td,. In

the length gauge, the relevant expressionsloican be found

in Eq. (16). [For clarity, we would like to indicate that the

correctionéw, occurring in the expressiofi6) is defined in

Eqg. (14), the quantityl can be found in Eq(13), and the

termség;(i=1, ...,0 are defined in Eq19).] In the velocity

gauge, the relevant expression f@r’ can be found in Eq.

(26), with the 8¢,(i=1, ...,8 being defined in Eq(28).
According Eqs(16) and(26), bothdI" as well asdl™’ find

a natural representation as the sum of two terms, the first of

which summarizes the perturbations to the matrix elements

and the second is a consequence of the perturbed energy

Here, we merely present the results of the analysis carriegonservation condition for the transition. Gauge invariance
out in detail in the Appendix. Indeed, using EGS. sT =T’ has been shown in Sec. VI, yet it is instructive to

(Ala)HAlf), as well as Eq9A2a) and(A2b), we obtain the

compact relation
0= = w1wy8( — Swom1 (. (29

In view of this relation, we can rewrite EqEl6) and (26)
using Eq.(29):

oI “max “max
? = Zf dw1w1w2§5§+ 5&)2f dw1w1§2
0 0

:Zf dw; 01 0x(— w1020)[~ w280 = Swyw, L]
0

Pmax 3 2.
+ Sw, dw;wiwil
0

®max Pmax
ZZJ dwlwiwg L6+ (2 + 1)6(1)2[ dwlwfwig"z
0 0

:%_ (30)

This proves the gauge invariané€ = I"’ of the logarithmic
radiative corrections to the two-photon decay rate of th
metastable 8 state in hydrogenlike systems. The gauge in-
variance of the leading-order decay rd&i&=1I";) has been

indicated in Eq(23).

VIl. NUMERICAL RESULTS

Leading order.We recall that, according to Eq4), the
well-known leading-order nonrelativistic effety, is of the

order of a®(Za)®. The result for the two-photon decay width

of the metastable 2state is

I',=0.001 318 222%(Za)°m. (31)

This translates into
I'p=8.229351997°s! (32a
=1.309 742 048° Hz. (32b)

Radiative correctionln view of Eqgs.(7) and(8), the leading

observe that there are indeed considerable cancellations
among the two contributions t@" and éI"’. Specifically, we
have from the first and second terms on the right-hand sides
Eqgs.(16) and(26), respectively,

% = (29.542 - 31.560 (Z&)2I[(Za) 2], (34)

0 a

oI’ a -

T =(8.500- 10.521—(Za)? IN[(Z&) 2] (35)
v

0

(The cancellations appear to be typical for radiative correc-
tions to decay rates; this has recently been observed in con-
nection with radiative corrections to tleme photon decay of
P states[41].)
The final result for the leading logarithmic correction to

the decay width of the metastabl& &tate is

X 202053 ZaIN(Za)?). (30

FO FO T

The calculation of6 and 6¢ involves expressions analogous

do those encountered [AQ]. In [36], the coefficient has been

given as —2.024.), which is in agreement with the current
calculation.[There is a misprint in the overall sign of the
correction as given in the abstract[86]; one should follow
the sign indicated in Eq8) ibid.]

The result(36), converted to hertz and/or inverse seconds,
reads

S=-3.273x 10’28 In[137Z %] Hz (374

=-2.057x 10%28In[137Z %] s . (37b)

For low Z, the highly suppresselll one-photon decay
—1S is numerically smaller than the radiative correction
(37) to the two-photon decagsee Refs[42—-44) because it

lacks the large logarithm:
Iy =2.496% 105710571, (38)

All results indicated in this article for and I relate to the
metastable 3 state; however, the approach may easily be
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generalized to the two-photon decay of other states. systems, experiments will eventually profit from the possi-
bilities offered by electron-beam ion traps, especially when
combined with conceivable x-ray lasers that could be used in
order to excite the trapped ions into the metastable states.

In the current investigation, the derivation of the leading Finally, we recall that accurate measurements of the two-
radiative correction to the two-photon decay width of thephoton decay width test theSxstate for parity-violating P
metastable g state in hydrogenlike atoms has been based omadmixtures and can therefore be used as a test for a conceiv-
the effective “radiative potential’6) discussed in Sec. Ill. It able electron or nuclegelectrig dipole moment or for in-
has been shown that the gauge invariance of the correctiorigractions via “anapole” or “pseudocharge” currei®s-59.
holds due to the interplay of corrections to the transitionOne particularly interesting investigation on hydrogenlike
matrix elements on the one hand and corrections due to peAr'™, with an elucidating discussion of the issues related to
turbed energy conservation conditions on the other hangarity admixtures, has been given[&9].
[first and second terms on the right-hand sides of ELf.
and(26), respectively. The corrections to the transition ma-
trix elements are again divided into corrections to the wave ACKNOWLEDGMENTS
function (these were referred to as tHeerms in[36]) and to o . ) )
the energies that enter into the propagator denominators, The author acknowledges elucidating discussions with
Wh|Ch were termed in the |ength_gauge Ca|cu|atiq|36]_ Holger Gies and W|Ihe|m Becker on questions I’e|ated to the
The |ength_ and Ve|ocity_gauge forms of the correction aredauge invariance and |nS|ghth| conversations with KrZySZtOf
discussed in Secs. IV and V. The gauge invariance of th&achucki regarding quantum electrodynamic effects in bound
radiative correction holdgeven on the level of the effective Systems. The author wishes to thank Gordon Drake for very
treatment as implied by the radiative potentid), as shown helpful remarks. Sabine Jentschura is acknowledged for care-
in Sec. VI. All derivations are presented in some detail, forfully reading the manuscript. The stimulating atmosphere at
clarity and transparency. The numerical evaluation in Secthe National Institute of Standards and Technology has con-
VIl follows immediately. tributed to the completion of this project.

There are two more results of the current paper, probably
of rather minor importance, which should only briefly be
mentioned: first of all, the relativistic resultvithout radia- ~ APPENDIX: RELATIONS AMONG MATRIX ELEMENTS
tive correction$ for the decay rate aZ=1 has previously _ _ . . .
been indicated as 8.229" [47-50, whereas irf4], the(non- In this appendix, we p(esent in detail the rel_atlon_s needed
relativistio result has been indicated as 8.226+0.001s O the proof of the identity29). For &¢, as defined in Eq.
The current investigatiofiEq. (32)] confirms that the dis- (289, we have
crepancy has been due to a certain overestimation of the
numerical accuracy in the early nonrelativistic calculation ‘ pi( 1 >2pi ‘ZS>

m

VIIl. CONCLUSIONS

[4], not due to a conceivable large relativistic shift. Second,
the discussion in Sec. Il clarifies that the concept of a decay
width as an imaginary part of a self-enerf1] generalizes
to the two-loop self-energy shift, in which case the imaginary
part gives rise to the two-photon decay width. <

x\ 1S

M\ H - Eys+ v

=~ Wiy 1S

23>+ ((,!)2 - (1)1)

Xi(;)zxi

H-Exstw;
The leading-order nonrelativistic contribution to the two- i 1 i iy

photon decay width is of the order af(Za)®mc® (see Sec. “H- Eis+ wlx 28> +ASX[29).

II). The self-energy radiative correction to the two-photon (Ala)

decay is of the order of*(Za)® In[(Za)~?Imc, as discussed

in Sec. VII, with explicit results indicated in Eqé36) and

(37). It would be interesting to evaluate also the constani/Ve notice the termd/; emerge on the right-hand sidsee

term of relative ordera(Za)2. This term supplements the Ed.(19a]. The corresponding relation fat, reads

logarithm evaluated here which is of relative order

a(Za)? In[(Za)™2]. According to our experience, in bound- < ‘ p 1 2
1S —( ) —1|2S
H - Els_ w1

state calculations, the nonlogarithmic, constant term has an

opposite sign as compared to the leading logarithm, and its m

m

magnitude is 2-3 times larger than the coefficient of the B i 1 2 i
logarithm. This is true for radiative correctiof$l] as well =~ w105\ 1S|X H-E;o— o, X|2S) + w1~ w;
as Lamb-shift effect$51,57.

One should note a rather general interest in various in- i 1 i i
triguing details related to the two-photon decay process, ><<1S X —Els—wlx 25 ) +(19xx[29).

which are not restricted to the search for conceivable parity (A1b)
admixtures to the @ state(see, e.g.[53,54). Although ac-

curate measurements of integrated decay rates are difficult

[55], there is some hope that in lo#-and middleZ ionic  For 6&;, the following relation is useful:
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‘ 1 o1y - (19 6V|19)(19x'X!|2S). Ale
<1S’g g( )W‘ZS> (18 VI19(ASXX |29 (ALe)
MH = Ezs+ oM\ Exs—H Finally, we have, forsé,
= 1S|x ! x‘( ! ),b\/‘ZS i i
=—wWw I Al |
172 H_EZS+ w1 EZS_H ls‘ é\/( 1 ) E 1 B‘ZS
< ElS_H mH—ElS—wlm
- w,{ 1S|X X 2s><235v|2s> 1 \'. 1 _
H-Exs+ oy = — w05\ 1S 6\/( ) X X' |2S
Eis—H H-Eis—w;

) ) 1 !
X'(H — Esg+ wy)X oV|2S
( 2S wz) ( Ejo— H) ‘ >

+<1S

+ wy(196V|19 1S|X HCE x2S
~ (19%'X[2S)(25 8V|29). (Alc) 187 91
For 6¢,, we have + <1s‘ a\/( E H) X(H = Epg+ @)X 2s>
. . 1S
p' 1 p' 1 ' i
18| — = V|2 —-(196V|19(19x'X|2S). (A1f)
mH_Els_wlm Ezs_H

_ 1 ! However, the relationgAla)—(Alf) are not yet sufficient in
X oV|2S

XI . . .
H - Ejs- g (Ezs_ H order to proceed with the proof of gauge invariance. We also

== (1)1(1)2< 1S

need
- w1< 1S|X———X 2s><23 V|29 Y
15~ 41 <1s X[(H = Ey9 + (H - EZS)]xi< ) av‘ 2s>
) : 1 ! Exs—H
+<1S XI(H_Els_wz)XI<E —H) b\/‘25> 3 ’
b 25 =—<1s‘ ( ) a\/‘ 2s> +(19xX1|29)(29 6V 29),
- (19xX|29)(25 6V|2S). (A1d) m Exs—H

The terméés may be reformulated according to (A23)

1y 1 ¢ ,
1S| oV — —12S 1 . _
< (E]_S_H> mH_E25+ wlm > <1S‘ é\/(E H) XI[(H_E15)+(H_E23)]XI
1S™

)

1 ' 1 i '
=— 3 1 o
“’1"’2<1S‘ o Ere- H) e 25> =—<1S a\/( ) 2S> + (1S SVI1S(ISKK2S).
m ElS_ H

_ 1 _
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