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We investigate the gauge invariance of the leading logarithmic radiative correction to the two-photon decay
width in hydrogenlike atoms. It is shown that an effective treatment of the correction using a Lamb-shift
“potential” leads to equivalent results in both the length and velocity gauges provided all relevant correction
terms are taken into account. Specifically, the relevant radiative corrections are related to the energies that enter
into the propagator denominators, to the Hamiltonian, to the wave functions, and to the energy conservation
condition that holds between the two photons; the form of all of these effects is different in the two gauges, but
the final result is shown to be gauge invariant, as it should be. Although the actual calculation only involves
integrations over nonrelativistic hydrogenic Green functions, the derivation of the leading logarithmic correc-
tion can be regarded as slightly more complex than that of other typical logarithmic terms. The dominant
radiative correction to the 2S two-photon decay width is found to be −2.020 536sa /pdsZad2 lnfsZad−2g in units
of the leading nonrelativistic expression. This result is in agreement with a length-gauge calculation[S. G.
Karshenboim and V. G. Ivanov, e-print physics/9702027], where the coefficient was given as −2.025s1d.
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I. INTRODUCTION

The two-photon decay of the metastable 2S level in
atomic hydrogen and hydrogenlike systems is a rather in-
triguing physical phenomenon; it was first investigated by
Göppert-Mayer a long time ago[1,2]. The transition involv-
ing two quanta limits the lifetime of the metastable 2S reso-
nance, at least for low and medium nuclear charge numbers
Z. By contrast, the highly suppressed magnetic dipole tran-
sition to the 1Sground state has a negligible influence on the
decay width[3]. In this article, we evaluate the dominant
self-energy radiative correction to the two-photon process.
We recall here the known leading-order result[4–7]

t−1 < G0 = 8.229Z6 s−1 = 1.310Z6 Hz. s1d

For ionized heliumsZ=2d, rather accurate experimental veri-
fications of this result exist[8–10]. Due to its metastability,
the 2S level in hydrogenlike systems is one of the most ac-
curately defined resonances found in nature. Indeed, it is this
very property—the small natural linewidth—which has made
possible the high-resolution two-photon spectroscopy of the
1S−2S transition[11–16].

The fully relativistic quantum electrodynamic formalism
is intricate when applied to bound-state problems[17–20],
but it is often possible to gain a rather good understanding of
quantum electrodynamic(QED) radiative corrections to a
particular process if one uses a simplified, nonrelativistic
QED (NRQED) Lagrangian that contains effective operators
which then lead to the perturbations that have to be evaluated
(see, e.g.,[21,22]). Of course, the main difficulty of any
bound-state calculation, which is the separation of the two
energy scales(scale of binding energy and the energy/mass
scale of the free particles), persists in the effective approach.
It is necessary to also specify cutoff prescriptions; the artifi-
cially introduced scale-separation parameters then cancel at

the end of the calculation[21–24]. An elucidating discussion
of the latter point can be found in[25] (Chap. 123) and in
[26] (Chap. 11.4, p. 493).

Within nonrelativistic quantum electrodynamics(also re-
ferred to as NRQED; see[19,20]), one has the choice be-
tween two different forms of the interaction Hamiltonian: the
“length” (Yennie) and the “velocity” (Coulomb) gauges.
There are certain intriguing issues involved with the gauge
invariance in the dynamical nonrelativistic atom-light inter-
action. Indeed, in order to prove gauge invariance for dy-
namical processes, it is in many cases necessary to carefully
consider the gauge transformation of the atomic wave func-
tion in addition to the transformation of the fields. Otherwise,
non-gauge-invariant results are obtained off resonance
[27–29]. In the current situation of radiative corrections to
the two-photon decay width, we will show that it is possible
to ignore the transformation of the wave function: the two-
photon decay width, including the radiative corrections, is
invariant under a “hybrid” gauge transformation[28] which
involves only the fields, but ignores the gauge transformation
of the wave function. In general, the choice of the gauge and
the interpretation of physical operators have to be considered
very carefully in time-dependent problems(see[30], p. 268
and Refs.[27–29]).

The gauge invariance of the two-photon decay rate and of
the radiative corrections to this effect can be regarded as
slightly problematic, partly because the integration over the
photon energy is restricted to a finite interval. By contrast,
the gauge invariance of the low-energy part of the one-loop
self-energy shift, in an effective NRQED treatment, holds
only because one may drop terms whose divergence, for
large photon frequency, is stronger than logarithmic(this is
explained in Sec. 3 of Ref.[23]); in this case gauge invari-
ance would be violated over finite intervals of the virtual
photon frequency. It has been one of the main motivations
for the current paper to study related questions.
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This article is organized as follows: In Sec. II, the leading
nonrelativistic contribution to the two-photon decay rate is
discussed, together with its relation to the NRQED two-
photon self-energy. In Sec. III, the leading logarithmic radia-
tive correction to the two-photon decay rate is formulated;
the discussion is based on a perturbation with an effective
potential. Explicit expressions are derived in Secs. IV and V
for the length and velocity gauges, respectively. Gauge in-
variance is proved in Sec. VI. Numerical results are pre-
sented in Sec. VII. Conclusions are drawn in Sec. VIII. All
derivations are presented in some detail, for the sake of
transparency.

II. LEADING-ORDER TWO-PHOTON DECAY RATE

The decay width of a bound system may be understood
naturally as the imaginary part of the self energy[31]. In-
deed, the(negative) imaginary part of the self-energy is just
G /2, whereG is the decay width. We discuss the derivation
of the two-photon width based on this concept, within non-
relativistic quantum electrodynamics[32].

The formulation of the two-loop self-energy problem
within the context of NRQED has been discussed in[33]. We
denote bypj the Cartesian components of the momentum
operatorp=−i¹. The expression for the two-loop self-energy
shift reads[33,34]

DENRQED= − S 2a

3pm2D2E
0

e1

dv1v1E
0

e2

dv2v2HKpi 1

H − E + v1
pj 1

H − E + v1 + v2
pi 1

H − E + v2
pjL

+
1

2
Kpi 1

H − E + v1
pj 1

H − E + v1 + v2
pj 1

H − E + v1
piL+

1

2
Kpi 1

H − E + v2
pj 1

H − E + v1 + v2
pj 1

H − E + v2
piL

+Kpi 1

H − E + v1
piS 1

H − E
D8

pj 1

H − E + v2
piL−

1

2
Kpi 1

H − E + v1
piLKpjS 1

H − E + v2
D2

piL −
1

2
Kpi 1

H − E + v2
piL

3KpjS 1

H − E + v1
D2

piL− mKpi 1

H − E + v1

1

H − E + v2
piL −

m

v1 + v2
Kpi 1

H − E + v2
piL

−
m

v1 + v2
Kpi 1

H − E + v1
piLJ . s2d

All of the matrix elements are evaluated on the reference
state uwl, for which the nonrelativistic Schrödinger wave
function is employed. The expression for the two-photon de-
cay width [Eq. (4) below] now follows in a natural way as
the imaginary part generated by the sum of the first three
terms in curly brackets in Eq.(2). Specifically, the poles are
generated uponv2 integration by the propagator

1

H − E + v1 + v2
= o

w8

uw8lkw8u
E8 − E + v1 + v2

s3d

at v2=E−E8−v1. Alternatively, this condition may be ex-
pressed asE−E8=v1+v2 and represents the energy conser-
vation condition for the two-photon decay. The imaginary
part generated by the first three terms in curly brackets of the
energy shift(2) is thus seen to yield the two-photon decay
width [35].

In view of the above discussion and in agreement with
Shapiro and Breit(Ref. [4], Eq. (3)), the nonrelativistic ex-
pression for the two-photon decay widthG0 in the caseuwl
= u2Sl and uw8l= u1Sl reads

G0 =
4

27

a2

p
E

0

vmax

dv1v1
3v2

3UKw8Uxi 1

H − E + v2
xiUwL

+Kw8Uxi 1

H − E + v1
xiUwLU2

, s4d

where v2=vmax−v1 and vmax=E−E8 is the maximum en-
ergy that any of the two photons may have. When comparing
this expression to Eq.(2) of [36], it should be noted that the
quantityy ibid. represents a scaled photon energy. The Ein-
stein summation convention is used throughout this article.
Note the identity[27,37]

Kw8U pi

m

1

H − E + v1

pi

m
UwL+Kw8U pi

m

1

H − E + v2

pi

m
UwL

=− v1v2m
2HKw8Uxi 1

H − E + v1
xiUwL

+Kw8Uxi 1

H − E + v2
xiUwLJ , s5d

which is valid at exact resonancev1+v2=E−E8. This iden-
tity permits a reformulation of the problem in the velocity-
gauge as opposed to the length-gauge form.
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III. RADIATIVE CORRECTIONS

We consider a hydrogenlike atom and employ natural
units with "=e0=c=1. In order to analyze the radiative cor-
rection to the two-photon decay width, one could write down
all Feynman diagrams which contribute to the process and
start evaluating them. However, a much more economical
understanding into the problem can be gained by considering
an approach inspired by effective field theory or nonrelativ-
istic quantum electrodynamics[19,20], in which the leading
effect due to radiative photons is described by an effective
Lamb-shift potential[38,39]

dVLamb=
4

3
asZadlnfsZad−2g

ds3dsrd
m2 . s6d

In this work we will consider a “standard normalized pertur-
bative local potential”[40]

dV =
psZad

m2 ds3dsrd. s7d

which is related todVLamb by a simple prefactor:

dVLamb=
4

3

a

p
lnfsZad−2gdV. s8d

The corrections to the Hamiltonian, to the energy, and to
the wave function, incurred by the perturbative potential(7),
read as follows:

E → E + dE, s9ad

dE = kwudVuwl, s9bd

H → H + dV, s9cd

uwl → uwl + udwl, s9dd

udwl = S 1

E − H
D8

dVuwl s9ed

The standard potential(7) leads to a “normalized” energy
shift with unit prefactors:

dEsnSd =
sZad4m

n3 . s10d

IV. LENGTH GAUGE

According to Eq.(4), the two-photon decay rateG0 of the
metastable 2S state is given by

G0

A
=E

0

vmax

dv1v1
3v2

3z2, s11d

where we use the definition

A =
4

27

a2

p
, s12d

as well asv2;E2S−E1S−v1 andvmax;E2S−E1S. The quan-
tity z is given by

z = z1 + z2, s13ad

z1 =K1SUxi 1

H − E2S+ v1
xiU2SL , s13bd

z2 =K1SUxi 1

H − E1S− v1
xiU2SL . s13cd

The perturbation(9) leads to the following replacements,
which include the first-order corrections to the various quan-
tities that are relevant to the 2S decay width:

E1S→ E1S+ dE1S, dE1S= k1SudVu1Sl,

E2S→ E2S+ dE2S, dE2S= k2SudVu2Sl,

u1Sl → u1Sl + S 1

E1S− H
D8

dVu1Sl,

u2Sl → u2Sl + S 1

E2S− H
D8

dVu2Sl,

v2 → v2 + dv2, dv2 = dE2S− dE1S. s14d

The latter correction ensures that a perturbed energy conser-
vation condition is fulfilled:

v1 + v2 + dv2 = E2S− E1S+ sdE2S− dE1Sd, s15d

i.e., that the two-photon frequencies add up to the perturbed
transition frequency.

The first-order self-energy correctiondG to the two-
photon decay rate may be expressed as

dG

B
= 2E

0

vmax

dv1v1
3v2

3zdz + 3dv2E
0

vmax

dv1v1
3v2

2z2,

s16d

where the correctiondz is the sum of six terms,

dz = o
j=1

6

dz j , s17d

to be defined as follows, and the second term on the right-
hand side of Eq.(16) is due to perturbed energy conservation
condition. The quantityB may be inferred from Eqs.(4), (7),
and (8) as

B =
16

81

a3

p2 lnfsZad−2g. s18d

The termsdz1 anddz2 are related to energy perturbations to
the matrix elements,
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dz1 =K1SUxiS 1

H − E2S+ v1
D2

xiU2SLk2SudVu2Sl,

s19ad

dz2 = k1SudVu1SlK1SUxiS 1

H − E1S− v1
D2

xiU2SL ,

s19bd

whereas the termsdz3,4,5,6are perturbations to the initial and
final-state wave functions:

dz3 =K1SUxi 1

H − E2S+ v1
xiS 1

E2S− H
D8

dVU2SL ,

s19cd

dz4 =K1SUxi 1

H − E1S− v1
xiS 1

E2S− H
D8

dVU2SL ,

s19dd

dz5 =K1SUdVS 1

E1S− H
D8

xi 1

H − E2S+ v1
xiU2SL ,

s19ed

dz6 =K1SUdVS 1

E1S− H
D8

xi 1

H − E1S− v1
xiU2SL .

s19fd

V. VELOCITY GAUGE

We now discuss the evaluation of radiative corrections in
the velocity gauge, where the interaction Hamiltonian is
given by

H8int = − e
p ·A

m
+ e2 A2

2m2 . s20d

According to Eqs.(4) and(5), the leading-order decay rate in
the velocity gauge is

G80

A
=E

0

vmax

dv1v1v2j2, s21d

whereA is defined in Eq.(12), v2;E2S−E1S−v1 andvmax
;E2S−E1S. The quantityj is the sum of two terms:

j = j1 + j2, s22ad

where

j1 =K1SU pi

m

1

H − E2S+ v1

pi

m
U2SL ,

j2 =K1SU pi

m

1

H − E1S− v1

pi

m
U2SL . s22bd

Gauge invariance of the leading-order decay rate[see Eqs.
(11) and (21)]

G0 = G80 s23d

immediately follows from Eq.(5); this equation may be re-
written in a compact form as

j = − v1v2 z. s24d

Equation(24) may be proven easily by repeated application
of the commutator relation(s)

pi

m
= ifH − E2S+ v1,x

ig = ifH − E1S− v1,x
ig. s25d

Now the first-order correction to the two-photon decay
rate, in the velocity gauge, is

dG8

B
= 2E

0

vmax

dv1v1v2jdj + dv2E
0

vmax

dv1v1j2, s26d

where the prime denotes the velocity-gauge form of the cor-
rection andB is defined in Eq.(18). We desire to show that
dG =dG8.

The correctiondj finds a natural representation as the sum
of eight terms:

dj = o
j=1

8

dj j . s27d

In analogy to Eqs.(19a) and (19b), dj1 and dj2 are energy
perturbations:

dj1 =K1SU pi

m
S 1

H − E2S+ v1
D2pi

m
U2SLk2SudVu2Sl,

s28ad

dj2 = k1SudVu1SlK1SU pi

m
S 1

H − E1S− v1
D2pi

m
U2SL .

s28bd

The termsdj3,4,5,6 are perturbations to the initial and final-
state wave functions:

dj3 =K1SU pi

m

1

H − E2S+ v1

pi

m
S 1

E2S− H
D8

dVU2SL ,

s28cd

dj4 =K1SU pi

m

1

H − E1S− v1

pi

m
S 1

E2S− H
D8

dVU2SL ,

s28dd

dj5 =K1SUdVS 1

E1S− H
D8pi

m

1

H − E2S+ v1

pi

m
U2SL ,

s28ed
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dj6 =K1SUdVS 1

E1S− H
D8pi

m

1

H − E1S− v1

pi

m
U2SL .

s28fd

Finally, dj7,8 are due to the seagull term:

dj7 = −
3

m
K1SUS 1

E2S− H
D8

dVU2SL , s28gd

dj8 = −
3

m
K1SUdVS 1

E1S− H
D8U2SL . s28hd

VI. PROOF OF GAUGE INVARIANCE

Here, we merely present the results of the analysis carried
out in detail in the Appendix. Indeed, using Eqs.
(A1a)–(A1f), as well as Eqs.(A2a) and(A2b), we obtain the
compact relation

dj = − v1v2dz − dv2v1z. s29d

In view of this relation, we can rewrite Eqs.(16) and (26)
using Eq.(29):

dG8

B
= 2E

0

vmax

dv1v1v2jdj + dv2E
0

vmax

dv1v1j2

=2E
0

vmax

dv1v1v2s− v1v2zdf− v1v2dz − dv2v1zg

+ dv2E
0

vmax

dv1v1
3v1

2z2

=2E
0

vmax

dv1v1
3v2

3 zdz + s2 + 1ddv2E
0

vmax

dv1v1
3v1

2z2

=
dG

B
. s30d

This proves the gauge invariancedG =dG8 of the logarithmic
radiative corrections to the two-photon decay rate of the
metastable 2S state in hydrogenlike systems. The gauge in-
variance of the leading-order decay ratesG0=G08d has been
indicated in Eq.(23).

VII. NUMERICAL RESULTS

Leading order.We recall that, according to Eq.(4), the
well-known leading-order nonrelativistic effectG0 is of the
order ofa2sZad6. The result for the two-photon decay width
of the metastable 2S state is

G0 = 0.001 318 222a2sZad6m. s31d

This translates into

G0 = 8.229 351 997Z6 s−1 s32ad

=1.309 742 049Z6 Hz. s32bd

Radiative correction.In view of Eqs.(7) and(8), the leading

logarithmic radiative correctiondG is of the order of

dG , a3sZad8 lnfsZad−2gm, s33d

i.e., of relative orderasZad2 lnfsZad−2g with respect toG0. In
the length gauge, the relevant expression fordG can be found
in Eq. (16). [For clarity, we would like to indicate that the
correctiondv2 occurring in the expression(16) is defined in
Eq. (14), the quantityz can be found in Eq.(13), and the
termsdzi si =1, . . . ,6d are defined in Eq.(19).] In the velocity
gauge, the relevant expression fordG8 can be found in Eq.
(26), with the dji si =1, . . . ,8d being defined in Eq.(28).

According Eqs.(16) and(26), bothdG as well asdG8 find
a natural representation as the sum of two terms, the first of
which summarizes the perturbations to the matrix elements
and the second is a consequence of the perturbed energy
conservation condition for the transition. Gauge invariance
dG =dG8 has been shown in Sec. VI, yet it is instructive to
observe that there are indeed considerable cancellations
among the two contributions todG anddG8. Specifically, we
have from the first and second terms on the right-hand sides
Eqs.(16) and (26), respectively,

dG

G0
= s29.542 − 31.562d

a

p
sZad2 lnfsZad−2g, s34d

dG8

G80
= s8.500 − 10.521d

a

p
sZad2 lnfsZad−2g. s35d

(The cancellations appear to be typical for radiative correc-
tions to decay rates; this has recently been observed in con-
nection with radiative corrections to theone-photon decay of
P states[41].)

The final result for the leading logarithmic correction to
the decay width of the metastable 2S state is

dG

G0
=

dG8

G0
= − 2.020 536

a

p
sZad2 lnfsZad−2g. s36d

The calculation ofdz anddj involves expressions analogous
to those encountered in[40]. In [36], the coefficient has been
given as −2.025s1d, which is in agreement with the current
calculation.[There is a misprint in the overall sign of the
correction as given in the abstract of[36]; one should follow
the sign indicated in Eq.(8) ibid.]

The result(36), converted to hertz and/or inverse seconds,
reads

dG = − 3.2733 10−7Z8 lnf1372Z −2g Hz s37ad

=− 2.0573 10−6Z8 lnf1372Z −2g s−1. s37bd

For low Z, the highly suppressedM1 one-photon decay 2S
→1S is numerically smaller than the radiative correction
(37) to the two-photon decay(see Refs.[42–46]) because it
lacks the large logarithm:

GM1 = 2.4963 10−6Z10 s−1. s38d

All results indicated in this article forG anddG relate to the
metastable 2S state; however, the approach may easily be
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generalized to the two-photon decay of other states.

VIII. CONCLUSIONS

In the current investigation, the derivation of the leading
radiative correction to the two-photon decay width of the
metastable 2Sstate in hydrogenlike atoms has been based on
the effective “radiative potential”(6) discussed in Sec. III. It
has been shown that the gauge invariance of the corrections
holds due to the interplay of corrections to the transition
matrix elements on the one hand and corrections due to per-
turbed energy conservation conditions on the other hand
[first and second terms on the right-hand sides of Eqs.(16)
and(26), respectively]. The corrections to the transition ma-
trix elements are again divided into corrections to the wave
function(these were referred to as thed terms in[36]) and to
the energies that enter into the propagator denominators,
which were termedf in the length-gauge calculation[36].
The length- and velocity-gauge forms of the correction are
discussed in Secs. IV and V. The gauge invariance of the
radiative correction holds(even) on the level of the effective
treatment as implied by the radiative potential(6), as shown
in Sec. VI. All derivations are presented in some detail, for
clarity and transparency. The numerical evaluation in Sec.
VII follows immediately.

There are two more results of the current paper, probably
of rather minor importance, which should only briefly be
mentioned: first of all, the relativistic result(without radia-
tive corrections) for the decay rate atZ=1 has previously
been indicated as 8.229s−1 [47–50], whereas in[4], the(non-
relativistic) result has been indicated as 8.226±0.001 s−1.
The current investigation[Eq. (32)] confirms that the dis-
crepancy has been due to a certain overestimation of the
numerical accuracy in the early nonrelativistic calculation
[4], not due to a conceivable large relativistic shift. Second,
the discussion in Sec. II clarifies that the concept of a decay
width as an imaginary part of a self-energy[31] generalizes
to the two-loop self-energy shift, in which case the imaginary
part gives rise to the two-photon decay width.

The leading-order nonrelativistic contribution to the two-
photon decay width is of the order ofa2sZad6mc2 (see Sec.
II ). The self-energy radiative correction to the two-photon
decay is of the order ofa3sZad8 lnfsZad−2gmc2, as discussed
in Sec. VII, with explicit results indicated in Eqs.(36) and
(37). It would be interesting to evaluate also the constant
term of relative orderasZad2. This term supplements the
logarithm evaluated here which is of relative order
asZad2 lnfsZad−2g. According to our experience, in bound-
state calculations, the nonlogarithmic, constant term has an
opposite sign as compared to the leading logarithm, and its
magnitude is 2–3 times larger than the coefficient of the
logarithm. This is true for radiative corrections[41] as well
as Lamb-shift effects[51,52].

One should note a rather general interest in various in-
triguing details related to the two-photon decay process,
which are not restricted to the search for conceivable parity
admixtures to the 2S state(see, e.g.,[53,54]). Although ac-
curate measurements of integrated decay rates are difficult
[55], there is some hope that in low-Z and middle-Z ionic

systems, experiments will eventually profit from the possi-
bilities offered by electron-beam ion traps, especially when
combined with conceivable x-ray lasers that could be used in
order to excite the trapped ions into the metastable states.

Finally, we recall that accurate measurements of the two-
photon decay width test the 2S state for parity-violating 2P
admixtures and can therefore be used as a test for a conceiv-
able electron or nuclear(electric) dipole moment or for in-
teractions via “anapole” or “pseudocharge” currents[56–58].
One particularly interesting investigation on hydrogenlike
Ar17+, with an elucidating discussion of the issues related to
parity admixtures, has been given in[59].
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APPENDIX: RELATIONS AMONG MATRIX ELEMENTS

In this appendix, we present in detail the relations needed
for the proof of the identity(29). For dj1 as defined in Eq.
(28a), we have

K1SU pi

m
S 1

H − E2S+ v1
D2pi

m
U2SL

= − v1v2K1SUxiS 1

H − E2S+ v1
D2

xiU2SL+ sv2 − v1d

3K1SUxi 1

H − E1S+ v1
xiU2SL + k1Suxixiu2Sl.

sA1ad

We notice the termdz1 emerge on the right-hand side[see
Eq. (19a)]. The corresponding relation fordj2 reads

K1SU pi

m
S 1

H − E1S− v1
D2pi

m
U2SL

= − v1v2K1SUxiS 1

H − E1S− v1
D2

xiU2SL + v1 − v2

3K1SUxi 1

H − E1S− v1
xiU2SL + k1Suxixiu2Sl.

sA1bd

For dj3, the following relation is useful:
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K1SU pi

m

1

H − E2S+ v1

pi

m
S 1

E2S− H
D8

dVU2SL
= − v1v2K1SUxi 1

H − E2S+ v1
xiS 1

E2S− H
D8

dVU2SL
− v2K1SUxi 1

H − E2S+ v1
xiU2SLk2SudVu2Sl

+K1SUxisH − E2S+ v2dxiS 1

E2S− H
D8

dVU2SL
− k1Suxixiu2Slk2SudVu2Sl. sA1cd

For dj4, we have

K1SU pi

m

1

H − E1S− v1

pi

m
S 1

E2S− H
D8

dVU2SL
= − v1v2K1SUxi 1

H − E1S− v1
xiS 1

E2S− H
D8

dVU2SL
− v1K1SUxi 1

H − E1S− v1
xiU2SLk2SudVu2Sl

+K1SUxisH − E1S− v2dxiS 1

E2S− H
D8

dVU2SL
− k1Suxixiu2Slk2SudVu2Sl. sA1dd

The termdj5 may be reformulated according to

K1SUdVS 1

E1S− H
D8pi

m

1

H − E2S+ v1

pi

m
U2SL

= − v1v2K1SUdVS 1

E1S− H
D8

xi 1

H − E2S+ v1
xiU2SL

+ v1k1SudVu1SlK1SUxi 1

H − E1S− v1
xiU2SL

+K1SUdVS 1

E1S− H
D8

xisH − E1S− v1dxiU2SL

− k1SudVu1Slk1Suxixiu2Sl. sA1ed

Finally, we have, fordj6,

K1SUdVS 1

E1S− H
D8pi

m

1

H − E1S− v1

pi

m
U2SL

= − v1v2K1SUdVS 1

E1S− H
D8

xi 1

H − E1S− v1
xiU2SL

+ v2k1SudVu1SlK1SUxi 1

H − E1S− v1
xiU2SL

+K1SUdVS 1

E1S− H
D8

xisH − E2S+ v1dxiU2SL
− k1SudVu1Slk1Suxixiu2Sl. sA1fd

However, the relations(A1a)–(A1f) are not yet sufficient in
order to proceed with the proof of gauge invariance. We also
need

K1SUxifsH − E1Sd + sH − E2SdgxiS 1

E2S− H
D8

dVU2SL
=

3

m
K1SUS 1

E2S− H
D8

dVU2SL + k1Suxixiu2Slk2SudVu2Sl,

sA2ad

K1SUdVS 1

E1S− H
D8

xifsH − E1Sd + sH − E2SdgxiU2SL
=

3

m
K1SUdVS 1

E1S− H
D8U2SL + k1SudVu1Slk1Suxixiu2Sl.

sA2bd

We notice that(the negative of) the seagull terms(28g) and
(28h) emerge.
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