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in the joint quantum state of the electron and ion, and to Einstein-Podolsky-Rosen localization. Experimental
observation of such packet-narrowing effects is suggested via coincidence registration by two detectors, with a
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entanglement, is shown to occur in the case of photodissociation of molecules.
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I. INTRODUCTION

Photoionization of atoms has been treated repeatedly in
both weak and strong fields(see, for example,[1] and [2]).
Most often in the theoretical analysis of these processes it is
assumed that the atomic center of mass has a given and well
defined positionrW0 and that the atomic mass is infinitely
large. Obviously, neither of these two assumptions is rigor-
ously true. In this work we consider photoionization of an
atom with a single valence electron and with the relative
electron-ion motion and the atomic center-of-mass motion
described by wave functions with finite widths, both before
and after ionization. Such a formulation of the problem gives
rise to some interesting questions related to the entanglement
of electron-ion quantum states.

Entanglement of quantum states is of fundamental interest
and is also closely related to questions arising in photoion-
ization because the fragmentation process that occurs in
photoionization is a concrete realization of the one used by
Einstein, Podolsky, and Rosen(EPR) [3] to illustrate Ein-
stein’s ideas regarding the limitations of quantum theory. By
definition, entanglement means nonfactorization of a two-
particle wave function. Mathematically, for such a function
the degree of entanglement can be compactly characterized
by the Schmidt number[4], denotedK=fTrsr2dg−1, wherer
is the reduced density matrix of either one of the two par-
ticles under consideration. For background on Schmidt-based
analysis, a number of overviews exist[5,6]. In this work we
will take a different approach and show that electron-ion
entanglement in the process of photoionization is closely re-
lated to the evolving spatial wave-packet structures of the
electron and ion wave packets.

For experimental investigation of electron-ion entangle-
ment, and for clarification of entanglement physics in the
photionization process, we demonstrate the value of making
and comparing results from both coincidence(conditioned)

and single-particle(unconditioned) observations. In the coin-
cidence scheme the electron and ion positions are assumed to
be registered simultaneously by two different detectors, and
only joint signals from both detectors are recorded. For ex-
ample, given the fixed ion detector positionrWi, one scans the
electron detector positionrWe and thus obtains the structure of
the electron wave packet as a function ofrWe as seen in coin-
cidence. In the single-particle scheme only the electron de-
tector is used, and the nature of the electron wave packet is
determined as a function ofrWe, irrespective ofrWi. The differ-
ence between the results of such scans(i.e., of measurements
of packet widths) is a straightforward experimental measure
of nonseparability, i.e., of entanglement.

Specifically, to characterize this difference in a quantita-
tive fashion, we will use the ratioR of the wave-packet
widths found in the single-particle and coincidence schemes.
There will be two such ratiosRe andRi for electron and ion
and they will be shown to be equal in situations of interest,
allowing us to putRe=Ri ;R, and the parameterR will be
referred to as the entanglement parameter. Compared to the
Schmidt correlation coefficientK the parameterR describes
more detailed time-evolving features of entangled quantum
states. In particular, in the coordinate picture that we use
here, changes in the parameterR occur because of spreading
of electron and ion wave packets after ionization. The time
evolution of Rstd efficiently separates two significantly dif-
ferent entanglement regimes. For factorized two-particle
states, when there is no entanglement, bothK and R take
their minimal values equal to 1. ForR.1 the quantum state
under consideration must be entangled, i.e., nonfactorized.
But this statement cannot be inverted: there is a special kind
of entangled quantum state, in whichR=1. All these situa-
tions are described below for photoionization, and we briefly
discuss similar issues for dissociation of a diatomic molecule
and explain the most significant differences in the results.

In contrast to other treatments of fragmentation or
“breakup” [7], the coordinate-picture wave-packet analysis
gives an alternative view of entanglement and reveals addi-
tional channels for achieving high degrees of entanglement.
In addition to the entanglement parameterR we also identify
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“control parameters” for comparison with those that have
been advanced in previous studies of both photon-atom[8,9]
and photon-photon[10,11] wave functions, and through con-
ditional localization our approach is related to formal photo-
nic analogs[12] of the EPR discussion and also diatomic
breakup as a route to matter wave entanglement[13].

II. PHOTOIONIZATION

Let an atom, originally in its ground state, be photoion-
ized by a light field

EWstd = EW0 sinsvtd, s1d

where"v. uE0u andE0 is the ground state energy. It should
be noted that by using the dipole approximation and ignoring

the termkW ·rW in the argument in Eq.(1) we are ignoring all

recoil effects due to absorption of the photon momentum"kW.
This approximation is quite reasonable, because there is an-
other much stronger mechanism giving rise to recoil. In the
process of photoionization an atomic electron acquires an
energy,"v and hence a momentum,Îm"v, and the ion
gets the same momentum(with the opposite sign), and this
momentum is much larger than"k="v /c. This is in contrast
to the problems of entanglement in spontaneous photon
emission of excited atoms and Raman scattering[8].

To describe such a process with atomic recoil and with an
initial wave-packet distribution of the atomic center of mass,
let us begin from the Schrödinger equation for two
particles—electron and ion—in the field. Traditionally, to
separate variables in such an equation, we use the relative
sreld and center-of-masssc.m.d position and momentum vec-
tors [14]

rWrel = rWe − rWi , rWc.m.=
merWe + mirWi

M
,

s2d

pW rel =
mipWe − mepW i

M
, pWc.m.= pWe + pW i ,

whererWe and rWi are the electron and ion position vectors,pWe
=−i"] /]rWe andpW i =−i"] /]rWi are their momenta, andme and
mi are their masses, withM =me+mi. It is worth noting that
the “mixed” coordinate-momentum variable pairsrWrel and
pWc.m., as well asrWc.m. andpW rel, each have zero commutator. For
example,frWrel,pWc.m.g=0. For this reason one can call them
EPR pairs, recalling the famous discussion of Einstein, Pod-
olsky, and Rosen[3].

The Schrödinger equation takes the form

i"
] C

] t
= HpWc.m.

2

2M
+

pW rel
2

2m
−

e2

r rel
+ erWrel ·EW 0 sinsvtdJ C , s3d

where m=memi /M is the reduced mass. Because we have
made the dipole approximation, the variablesrWrel andrWc.m. in
Eq. (3) are separated, and its solution is a product of func-
tions depending on these two variables separately:

CsrWrel,rWc.m.,td = Cc.m.srWc.m.,td 3 CrelsrWrel,td, s4d

where the equations of motion ofCc.m.srWc.m.,td and
CrelsrWrel,td are

i"
] Cc.m.

] t
=

pWc.m.
2

2M
Cc.m. s5d

and

i"
] Crel

] t
= HpW rel

2

2m
−

e2

r rel
+ erWrel ·EW0 sinsvtdJCrel. s6d

We note that the factorization shown in Eq.(4) is far from
the same as factorization in the particle variablesrWe and rWi.
That is, the electron and ion are quantum entangled in the
state given in Eq.(4).

Let us assume that the initial atomic center-of-mass wave
function is given by a Gaussian wave packet with width
Drc.m.

s0d :

Cc.m.srWc.m.,t = 0d =
1

s2pd3/4fDrc.m.
s0d g3/2 expS−

rWc.m.
2

4fDrc.m.
s0d g2D .

s7d

Then, as is well known[2], the time-dependent solution of
Eq. (5) has the form of a spreading wave packet such that

uCc.m.srWc.m.,tdu2 =
1

s2pd3/2fDrc.m.stdg3 expS−
rWc.m.

2

2fDrc.m.stdg2D ,

s8d

whereDrc.m.std is the time-dependent width of the center-of-
mass wave packet(8),

Drc.m.std = HfDrc.m.
s0d g2 +

"2t2

4M2fDrc.m.
s0d g2J1/2

< 5Drc.m.
s0d , t ! tspr

sc.m.d

"t

2M D rc.m.
s0d , t @ tspr

sc.m.d s9d

and tspr
sc.m.d is its spreading time,tspr

sc.m.d=2MfDrc.m.
s0d g2/". At t

@ tspr
sc.m.d the widthDrc.m.std grows linearly and the velocity of

spreading is given byvspr
sc.m.d=" /2M D rc.m.

s0d .
Under the conditions of interest here, the solution of Eq.

(6) is only a little bit more complicated. The initial wave
function of the relative motion is taken to be the hydrogen
ground state 1s wave function

CrelsrWrel,t = 0d = c1s ; R10sr reldY00, s10d

whereR10sr reld is the hydrogen radial wave function for the
principal quantum numbern=1 and angular momentuml
=0, andY00=1/Î4p is the spherical function forl =ml =0.

We assume a sufficiently high photon energy"v to ignore
bound-bound transitions. Then the time-dependent wave
function obeying Eq.(6) can be presented in the form
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CrelsrWrel,td = C0stdc1s + e−ivtE
0

`

dE CEstdcEp, s11d

wherecEp is the field-free wave function of the continuous
spectrum withl =1, ml =0:

cEpsrWreld = RE1sr reldY10scosureld, s12d

in which RE1sr reld is the radial wave function for energyE
and angular momentuml =1, Y10=Î3/4p cosurel, andurel is

the angle between the vectorsEW0 and rWrel.
With multiphoton processes ignored, the equations of mo-

tion for the probability amplitudesC0std and CEstd in the
rotating-wave approximation, following directly from Eq.
(6), are given by

i"Ċ0std − E0 C0std = −E
0

`

dE
dW0E ·EW0

2
CEstd, s13ad

i"ĊEstd − sE − "vdCEstd = −
dWE0 ·EW0

2
C0std, s13bd

wheredWE0=sdW0Ed* are the bound-free dipole matrix elements
of the atom, and we consider the case of a pulse with rect-
angular envelope, which means that the interaction is turned
on suddenly att=0.

With the help of adiabatic elimination of the continuum
[2], Eq. (13a) can be reduced to a much simpler form:

i"Ċ0std − sE0 − i"gIdC0std = 0, s14d

in which the amplitude decay rategI is half the Fermi golden
rule rate of ionization:

2gI ;
dwI

dt
=

2p

"
UkEu

dW ·EW0

2
u0lU

E=E0+v

2

. s15d

The solution satisfying the initial conditionC0s0d=1 is

C0std = expS−
i

"
E0t − gItD . s16d

With this function substituted into the right-hand side of Eq.
(13b), the equation forCEstd can be easily solved to give,
with the initial conditionCEs0d=0

CEstd =
1

2

dWE0 ·EW0

E − E0 − "v + igI

3HexpF− S iE0

"
+ gIDtG − expF− iSE

"
− vDtGJ .

s17d

At times t@gI
−1 bothC0std in Eq. (16) and the first exponen-

tial term in Eq.(17) vanish. As a result the wave function
Crel describing relative motion takes the form

CrelsrWrel,td =
− Î3

4Îp
cosurelE

0

`

dE RE1sr reld

3expS−
i

"
EtD dWE0 ·EW0

E − E0 − "v + i"gI
. s18d

We assume that the laser frequencyv and hence the energy
E,E0+"v are high enough so that the radial function
RE1sr reld is approximated by the well known high-energy
field-free expression for the Coulomb radial wave function
[14]:

RE1srd <Î2m

pk

1

"r
cosSkr +

1

ka0
lns2krd + d1D , s19d

wherek=Î2mE/" ,d1 is the Coulomb scattering phase forl
=1, anda0="2/me2 is the Bohr radius.

When the photoelectrons have energy far above the con-
tinuum threshold, we have"gI !E,E0+v. In this way the
lower limit of the integration overE in Eq. (18) can be re-
placed by −̀ . The energyE is approximated byEp;E0
+"v in all the preexponential factors except the denominator
on the right-hand side of Eq.(18). Also, both the scattering
phased1 and logarithmic term in the argument of cosine in
Eq. (19) are neglected, and the factork in the productkr is
expanded in powers ofE−Ep, viz. k<kp+sE−Epd /"v, where
kp=Î2mEp /" and v=Î2Ep /m="kp /m is the velocity of the
relative motion. Then the integral overE can be evaluated by
the residue method, giving

Crel =
iÎ6

4Î"v
sdWEp0 ·EW0d expS− i

Ept

"
+ ikpr relD

3
cosurel

r rel
expF− gISt −

r rel

v
DGusvt − r reld. s20d

This equation describes a spherical wave packet inr rel with
an angular modulation determined by the factor cosurel,
propagating in the direction of growingr rel with velocity v,
and having a sharp edge atr rel=vt and an exponentially fall-
ing tail at r rel,vt. The radial width of the wave packet(20)
is v /2gI.

III. FURTHER EVOLUTION OF THE RELATIVE-MOTION
WAVE FUNCTION

Although we have assumed that the timet exceeds the
total ionization timest.gI

−1d, Eq. (20) still describes the
initial stage for the relative-motion wave-packet evolution
after ionization. In this sensev /2gI is the initial width of the
relative-motion wave packetuCrelu2, which we denote by
Dr rel

s0d;v /2gI. This width can change later due to dispersion.
To describe such a spreading effect, we can extend our series
expansion of the functionksEd up to second order inE
−Ep :k<kp+sE−Epd /"v−sE−Epd2/2"mv3. This gives rise
to an additional factor in the integral over the energy
E:exph−i E2r rel/2"mv3j. To keep the possibility of integra-
tion by the residue method, we have to use the Fourier trans-
formation of this factor:
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expH− i
E2r rel

2"mv3J =Î mv3

2pi"r rel
E

−`

`

dt

3expH i

"
FEt +

mv3t2

2r rel
GJ .

With this representation we first carry out the integration
overE (by the residue method) and then the one overt. The
result is

uCrelsr rel,tdu2 =
3

16p D r rel
s0d

cos2 urel

r rel
2 expS r rel − vt

Dr rel
s0d D

3U1 − ErfFÎ i

2
SÎz

2
−

i
Îz

r rel − vt

Dr rel
s0d DGU2

,

s21d

where Erf is the error function, and we have defined

z ;
"r rel

vmsDr rel
s0dd2 ;

r rel

vtspr
, s22d

so that tspr
sreld=msDr rel

s0dd2/" is the spreading time of the
relative-motion wave packet. As the value ofuCrelu2 is con-
centrated aroundr rel<vt, by puttingr rel<vt in the definition
of the parameterz, we getz= t / tspr

sreld. In this form the meaning
of z is obvious: it is the time after ionization measured in
units of the spreading time of the relative-motion wave
packet. In Figs. 1(a) and 1(b) the functionuCrelu2 is plotted in
its dependence onr;sr rel−vtd / D r rel

s0d at small and largez’s,
respectively.

In the small-spreading regimesz!1d uCrelu2 returns to the
form of Eq. (20), but with additional oscillations on the left
wing and a slightly smoothed right wing as compared to the
step function jump of Eq.(20). In the large-spreading regime
sz@1d uCrelu2 approaches a Lorentzian shape:

uCrelu2 =
3

8p2

cos2 urel

r rel
2

Dr relstd

sr rel − vtd2 +
1

4
fDr relstdg2

, s23d

where

Dr relstd = z D r rel
s0d =

t

tspr
D r rel

s0d = vsprt s24d

and yspr; D r rel
s0d / tspr=" /mD r rel

s0d. Altogether, at small and
large z, the time-dependent width of the relative-motion
wave packet is given by

Dr relstd =5Dr rel
s0d =

y

2gI
, t ! tspr

sreldsz ! 1d,

ysprt =
"t

m D r rel
s0d =

2"gI

my
t, t @ tspr

sreldsz @ 1d.

s25d

In spite of clear differences between the Gaussian center-of-
mass (8) and relative-motion(20),(21),(23) wave packets,
their widths behave similarly in their dependence ont: they
start from initial valuesDrc.m.

s0d andDr rel
s0d, and at times longer

than the corresponding spreading times bothDr relstd and
Drc.m.std grow linearly. In both cases the spreading time is
proportional to the squared initial size, and the velocity of
spreading is inversely proportional to the initial size. The
only qualitative difference is the mass: the total massM ap-
pears in the center-of-mass wave function, but the relative-
motion wave packet depends on the reduced massm.

The relation between the center-of-mass and relative-
motion wave-packet widths can change with time due to dif-
ferent spreading velocities of these wave packets. This
makes the time evolution of the electron-ion wave function
rather complicated, and this problem will be discussed sepa-
rately in Sec. V.

IV. LOCALIZATION OF THE ELECTRON-ION WAVE
PACKET AND ENTANGLEMENT

In accord with Eq.(4), the product of the wave functions
given in Eqs.(8) and(21) determines the total wave function
of the ion-electron system. It should now be considered as a
function of ion and electron position vectors

CsrWe,rWi,td = Cc.m.SmerWe + mirWi

M
,tD 3 CrelsrWe − rWi,td,

s26d

showing that bothC and its squared absolute value are not
factorable in the individual particle coordinatesrWe and rWi.
Such nonfactorization defines quantum particle entanglement
of the electron and ion.

FIG. 1. The relative-motion probability densityuCrelu2 (21) in
dependence onr=sr rel−vtd / D r rel

s0d at (a) z=0.01 and(b) z=20.
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We will proceed by examining the relationship of en-
tanglement to the ratio of widths

hstd ;
Drc.m.std
Dr relstd

s27d

where the timet is taken as a parameter. Note that in our
treatmenthstd is constrained only by momentum and energy
conservation(e.g., we ignore final-state electron-ion Cou-
lomb effects). HereDrc.m.std is of kinematic origin whereas
Dr relstd is due to the dynamics of the ionization process. We
will see thathstd acts as a useful control parameter for en-
tanglement of the two-particle system.

In cases of two-particle fragmentation or “breakup,” as in
photoionization, and where significant further interaction is
absent, measures of entanglement can be related to a series
of spatial localization measurements. Such a connection to
potential experiments was not treated in earlier studies of
photon-atom or photon-photon breakup processes like spon-
taneous photon emission with atom recoil[8,9] or parametric
down-conversion[10,11], but is related to the measurement-
induced localization and entanglement discussed recently in
a very different context by Rauet al. [15].

Now we focus on measurements appropriate for seeing
entanglement. We need to distinguish coincidence and non-
coincidence(single-particle) measurements, which have their
theoretical counterparts in conditional and nonconditional
probability distributions. For an example of a single-particle
measurement, the electron probability distribution is mea-
sured regardless of the ion position(or vice versa). In con-
trast, a coincidence measurement assumes that a distribution
of electron positions is registered while the ion detection
position is kept at a given(constant) location(or vice versa).
The difference between the results of coincidence and single-
particle schemes of measurements is illustrated by Fig. 2. In
this picture, in one dimension, we shade the region in which
the joint probability densityuC srWe,rWi ,tdu2 is significant. In the
left plot the sharp leading edge of the theta function in Eq.
(20) is apparent, with its long exponential tail, and one also

sees the more abrupt Gaussian cutoff on the sides. A purely
schematic view of the same thing is shown in the right plot,
where artificially sharp dashed-line borders are introduced
and are supposed to be determined by the localization zones
of the relative-motion and center-of-mass wave functions.

Consider first an examination of the electron wave packet
by the coincidence-scheme method, for a given ion coordi-
nate xi =const. The normalized measure of its width,
Dxe/ D r relstd, will be given by the distance between the
points markeda andb. In contrast, the single-particle width
takes into account the contributions from all possible differ-
ent xi’s. Thus a suitable measure of the single-particle width
of the electron wave packet is given by the distancecd. It is
obvious that the electron packet is relatively highly localized
whencd@ab. Correspondingly, a horizontal line through the
shaded region would provide a normalized measure ofDxi,
etc. From this sketch we formulate two conditions simulta-
neously necessary for the entanglement parameter to be
large: a high aspect ratio of the shaded area and a diagonal
angle between the dashed lines restricting the wave-packet
localization zones and the coordinate axesxe and xi. The
high-aspect-ratio condition means that one of the two wave
packets(“c.m.” or “rel” ) is much wider than the other one.

Reflection shows that this is achieved by a very thin
packet inxi −xe space, e.g., any slightly smoothed version of
the limit casedsxi −kxed for a finite k, and the normalized
relative information gain is well expressed by the ratio of
single to coincidence widths. One can also see that a sketch
corresponding to Fig. 2, but for independent particles, has
dashed lines that are horizontal and vertical, in which case all
xi’s predict exactly the sameDxe, and vice versa.

Mathematically, single-particle probability densities are
given by Eq.(26) integrated over eitherrWi or rWe:

PesrWe,td =E drWiu C srWe,rWi,tdu2 s28d

or

FIG. 2. The density distribution of the one-dimensional equivalent ofuC u2 given in Eq.(26), wherexe andxi are the one-dimensional
electron and ion coordinates. The left picture corresponds toCc.m. andCrel of Eq. (26) given by Eqs.(8) and(21), with rWe andrWi substituted
by xe andxi. In the right pictureCc.m. andCrel are modeled by sharp-edged flat functions, with boundaries of their localization regions shown
by the dashed lines. The difference between the single-particle and coincidence-scheme widths of the electron wave packets is illustrated by
the difference between thecd andab distances in the right picture. This difference and the value of the entanglement parameter are seen to
be large for a large aspect ratio of the shaded region. We have usedme/mi =0.2,h=0.5, andgIt=4 for illustration.

PACKET NARROWING AND QUANTUM ENTANGLEMENT… PHYSICAL REVIEW A 69, 052117(2004)

052117-5



PisrWi,td =E drWeu C srWe,rWi,tdu2. s29d

Such distributions reveal no entanglement effects because all
the information about the position of one of the particles is
lost completely when the two-particle probability density is
integrated overrWi or rWe. However,Pe andPi do serve a nor-
malization role, as we explain later.

Let Dre
ssd and Dr i

ssd be the widths of the single-particle
electron and ion wave packets, where, for example,uD re

ssdu2
=kurWeu2l− ukrWelu2, with

krWel =E drWe rWe PesrWe,td

=EE drWe drWi rWe u C srWe,rWi,tdu2

= krWc.m.l +
mi

M
krWrell s30d

and

kurWeu2l =E drWe re
2 PesrWe,td =EE drWe drWi re

2 u C srWe,rWi,tdu2

=KUrWc.m.+
mi

M
rWrelU2L = kurWc.m.u2l + 2

mi

M
krWc.m.lkrWrell

+
mi

2

M2kurWrelu2l. s31d

Note that we have used the relationrWe=rWc.m.+mi /MrWrel and
changed the integration variables to the center-of-mass and
relative coordinates. Then Eqs.(30) and (31) yield the
single-particle measures

dre
ssd ;

Dre
ssd

Dr relstd
=Îh2std + Smi

M
D2

, s32d

and, similarly,

dr i
ssd ;

Dr i
ssd

Dr relstd
=Îh2std + Sme

M
D2

. s33d

Note that the relative-motion wave packet widthDr relstd
plays the role of a natural normalization factor for both
single-particle and coincidence-scheme(see below) electron
and ion wave-packet widths. Divided byDr relstd, these
widths become dimensionless, and they are denoteddre,i

ssd and
dre,i

scd.
In the coincidence scheme of measurements the overall

width of the distribution(26) with respect torWe at a fixedrWi is
given by the smaller ofsM /medD rc.m.std andDr relstd, which
is well represented by a simple formula for the coincidence
measures:

dre
scd ;

Dre
scd

Dr relstd
<

hstd
Îh2std + sme/Md2

. s34d

The expression in Eq.(34) is appropriate when we are in one
of the extreme casessM /medD rc.m.std@ D r relstd or !D r relstd.

As shown later in this section, these limits correspond to the
high-entanglement regimes of main interest, and we do not
need to bother too much about the details of the intermediate
region. Similarly, at a givenrWe, the widths of uCc.m.u2 and
uCrelu2 with respect torWi are correspondinglysM /midD rc.m.std
andDr relstd. Therefore the overall width ofuC u2 at a givenrWe

is the smaller ofsM /midD rc.m.std andDr relstd, corresponding
to the formula

dr i
scd ;

Dr i
scd

Dr relstd
<

hstd
Îh2std + smi/Md2

. s35d

It is clear now howhstd of Eq. (27) serves as a “control
parameter” for both coincidence widths. Plots ofdre

ssd and
dre

scd as a function ofh are shown in Fig. 3(a) whereas graphs
of dr i

ssd anddr i
scd are shown in Fig. 3(b). Note that we use in

these graphs an artificial value of the electron to ion mass
ratio me/mi =0.1 so as to show more clearly the difference
between the two curves forh,1. However, all the qualita-
tive conclusions from these pictures remain the same for a
more realistic value of this ratiome/mi ,10−4. One of these
conclusions is that we always havedre,i

ssd.dre,i
scd.

The ratios of single-to-coincidence electron and ion wave-
packet widths,dre

ssd /dre
scd anddr i

ssd /dr i
scd, can be considered as

a measure of entanglement, as remarked at the beginning of
this section. These ratios can be referred to as the electron
and ion entanglement parameters in the form

Re ;
dre

ssd

dre
scd and Ri ;

dr i
ssd

dr i
scd . s36d

Entanglement is large ifRe@1 and/orRi @1. If Re<1 and
Ri <1, there is little or no entanglement at all.

FIG. 3. Electron(a) and ion (b) wave-packet widths in the
schemes of single-particle and coincidence measurements with
me/mi =0.1.
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By using Eqs.(32)–(35), we can find a useful form for the
ratios, whenRe<Ri, which we will denote simplyR and
refer to as the entanglement parameter:

R;Îh +
1

h
Smi

M
D2Îh +

1

h
Sme

M
D2

, s37d

which is plotted in Fig. 4. Compared to the Schmidt correla-
tion coefficientK the parameterR describes more detailed
time-evolving features of entangled quantum states. In par-
ticular, in the coordinate picture that we use here, changes in
the parameterR occur because of spreading of electron and
ion wave packets after ionization. The relation(37) is actu-
ally valid only whenh@1 or h!me/mi, and these are the
regions whereR is a good model forRe and Ri, andR@1.
Even thoughRe and Ri may not be exactly the same in the
zoneme/M ,h,1, they both have values around unity,Re
,Ri ,1. This is a very specific region, in which the electron-
ion state is entangled in accordance with the general expres-
sion for the total wave function(4), but entanglement does
not manifest itself in terms ofR, i.e., in terms of the coinci-
dence vs single-particle measurements.

The asymptotic behaviors ofR in three different regions
of hstd are particularly noteworthy:

Region 1,h !
me

M
!

mi

M
: R,

memi

M2

Dr relstd
Drc.m.std

, S m

M
D 1

hstd
;

s38d

Region 2,
me

M
! h !

mi

M
: R, 1; s39d

Region 3,
me

M
!

mi

M
! h: R, hstd. s40d

Note that the minimal value of the entanglement parameter
(36) is equal to 1,Rmin=1, and it is achieved athstd
=Îm /M.

V. TIME EVOLUTION OF PACKET WIDTHS
AND ENTANGLEMENT PARAMETER

In Figs. 3 and 4 both the electron and ion wave-packet
widths and the entanglement parameters are shown, for fixed
t, in their dependence on the control parameter defined ear-
lier:

hstd =
Drc.m.std
Dr relstd

. s41d

However, we can use the same pictures to show the evolution
of the widthsDrestd andDr istd and the entanglement param-
eter defined in Eq.(37). To do this, we have to learn how
hstd changes with time.

The two typical cases of significantly different behavior
are illustrated in Figs. 5 and 6. Parts(a) and (b) of these
figures show the time dependence of the widthsDrc.m.std and
Dr relstd themselves and of their ratio, which equalshstd. A
key feature ofhstd is its strong dependence on the initial
sizes of the center-of-mass and relative-motion wave pack-
ets,Drc.m.

s0d andDr rel
s0d, or in other words, on the initial value of

the control parameterhs0d;h0. Depending on its initial

FIG. 4. Plot of the entanglement parameterR as a function of
hstd with me/mi =0.1; hp is the stability point(42) at which hstd
;const=Îm /M. The insets give the corresponding plots of the one-
dimensional analoguCsxe,xi ,tdu2 from Fig. 2. The axes of the three
insets have been rescaled so as to show the details more clearly. The
regions where the entanglement parameter is large are clearly seen
to correspond to a large aspect ratio of the shaded areas.

FIG. 5. (a) shows the time-dependent widths of the center-of-
mass and relative-motion wave packets, in units ofDr rel

s0d, and (b)
shows the control parameterhstd. We have takenh0=0.05 and
me/M =0.1.
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value,h is either rising as shown in Fig. 5(a) or falling as in
Fig. 6(b). The border between these two regimes is given by
h0=hp, where

hp ;Îm

M
. s42d

If h0=hp, the center-of-mass wave packet spreads faster
and eventually becomes wider than the relative-motion wave
packet, although initiallyDrc.m.

s0d ! D r rel
s0d. In this case the con-

trol parameterhstd is a monotonically growing function oft,
as in Fig. 5(b). On the contrary, ifh0.hp, the center-of-mass
wave packet spreads more slowly than the relative-motion
wave packet. Although initially the center-of-mass packet
can be either narrower or wider than the relative-motion
packet, at very larget the relative-motion packet becomes
wider than the center-of mass packet. This gives rise to a
falling function hstd shown in Fig. 6(b). In both cases
(h0,hp and h0.hp) the ranges of variation of the param-
eter hstd are finite. At very long timeshstd has the
asymptotic value

h → h` ;
m

M

1

h0
, s43d

which follows directly from the definition ofh (41) and Eqs.
(9) and (25) for the widthsDrc.m.std andDr relstd. In the case
h0=hp the parameterhstd does not depend on time at all:
hstd=consts=hp=h0=h`d.

By finding the evolution regimes for the control parameter
hstd, we can also draw definite and interesting conclusions
on the evolution of the entanglement parameterR defined in
Eq. (37). Directly from Eq.(37) one can easily see that for an
arbitrary value ofh the entanglement parameter obeys the
relation

RS 1

h

m

M
D ; Rshd. s44d

The initial and final values ofh are connected with each
other by exactly the same substitution as used in Eq.(44),
and we see that the initial and final values of the entangle-
ment parameter must be equal:

R0 ; R` = Rst → `d. s45d

This equality is valid identically for all values ofh0. If h0 is
located in one of the high-entanglement regions of Fig. 4,
h0!m /M as in Eq.(38), or h0@1 as in Eq.(40), the final
value ofh is in the opposite of these two high-entanglement
regions,h`@1 or h`!m /M.

Thus we see thatRstd starts from a large valueR0, falls to
R,1, and then grows again to the same value from which it
started. Physically such an evolution means that initially one
of the wave packetsCrel or Cc.m. is much wider than the
other one, and for this reason the entanglement-induced nar-
rowing of the packets measured in the coincidence scheme is
large. Then, as the narrower wave packet spreads faster, they
will become approximately of the same width, andR de-
creases. Finally, when the initially narrower but faster-
spreading wave packet outstrips the initially wider but
slower-spreading one, the relation between their widths re-
verses, and this returns us to the initial case of a large
entanglement-induced narrowing of the packets measured in
coincidence.

The difference between the casesh0!m /M and h0@1
concerns only the direction of evolution, respectively, to the
right or to the left on theh axis in Fig. 4. If the initial value
of the parameterh is located in the small-entanglement re-
gion defined in Eq.(40), wherem /M ,h,1, all the conclu-
sions about the direction of evolution and about the relation
between the initial and final values ofR remain valid. How-
ever, in this caseR remains at the order of 1 at all timest. If
h0=hp, we find simply the constant valueRstd;1.

VI. EXPERIMENTAL CONSIDERATIONS

The discussion as given so far does not treat some ele-
ments that will come into play in experimental tests. In order
to bring them into focus briefly, we show in Fig. 7 what can
be called experimentally realistic zones. We have plotted the
region where the relative probability distribution is nonzero.
It has a three-dimensional aspect that we do not need to show
because it is axially symmetric about the polarization axis of
the ionizing light beam, taken as the vertical axis here. It is
not spherically symmetric because of the dipole character of

photoionization contained in the factordWEp0·EW0 in Eq. (20).
The crescent-shaped shaded areas indicate the regions where
the relative-motion wave functionuCrelsrWedu2 is relatively
large.

Taking the time evolution of the relative wave function to
be strictly limited by the step functionusvt−r reld, as in Eq.
(20), we will here consider the ion position to define the
origin of polar coordinatessr i ;0d, in which case a circle of
radius re=vt limits the range of the electron coordinate at

FIG. 6. The same as in Fig. 5 but withh0=0.5.
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time t. The relative coordinate probability distribution
uCrelsrWedu2 is of course not uniform inside this circle, so we
have drawn the boundary on whichuCrelu2 equals 1

3 of its
maximum value, shown as the two sectors with crescent
shape. However, the probable position of the electron is also
influenced by the c.m. wave functionuCc.m.u2. In the figure
the sizes of the black-spot regions show the ranges of elec-
tron positions given byuCc.m.srWedu2 for different positions of
the center of mass, which are indicated by crosses.

The figure has many variations, and the sizes of the cres-
cent andDre zones change in time, as our formulas indicate.
The overall shapes will remain the same, and a generic high-
entanglement experiment will be one that ensures overlap

between a small black-spot region and a high-probability
portion of one of the crescent regions(near the circle bound-
ary). Higher count rates with reduced values of the entangle-
ment parameterR will be associated with increased size of
the black-spot region.

VII. PHOTODISSOCIATION

It is easy to see that very similar results will arise in a
treatment of photodissociation of molecules. Here we remark
briefly on some of the differences. Let us assume that we
consider a diatomic molecule undergoing dissociation. There
will be a relevant dissociation rategD, which can be substi-
tuted for thegI governing ionization, and just as for the atom
there will be an initial localization of the molecular center of
mass. Then the main differences from the ionization example
arise because the mass ratio of the fragments is much closer
to 1. Compared to the case of photoionization, whereme
!mi, the massesM1 and M2 of the photodissociation frag-
ments obeyM1,M2.

Given this, the relative-motion velocity after dissociation
v,Îv /m is significantly smaller than in the case of ioniza-
tion, vmol,Îv /M. The main difference between photoion-
ization and photodissociation results concerns the region
m /M ,hstd,1 of intermediate values ofDrc.m.std in Fig. 4
whereR,1. ForM1=M2= 1

2M this region degenerates into a
single pointhstd= 1

2 =hp [Eq. (42)]. The entanglement param-
eterR is large at bothhstd,hp andhstd.hp. To show more
clearly the difference between photoionization and photodis-
sociation, we plot in the right picture of Fig. 8 both molecu-
lar and atomic entanglement parameters in their dependence
on lnshd, with the electron to ion mass ratio taking a realistic
valueme/mi ,10−4. This picture shows that if in the case of
photoionization there is a rather large region of intermediate
values ofh where the entanglement parameter is not large,
R<1, in the case of photodissociation of a molecule the
entanglement parameter is large practically at anyh except
the one pointh=hp.

In its dependence on timet the control parameterhstd
changes in a way similar to that described above for photo-
ionization: hstd grows if initially it is small sh0,hpd and
falls if large sh0.hpd. The final value of the control param-
eter h` is related toh0 by Eq. (43), which takes the form
h`=1/s4h0d. As shown previously, the initial and final val-
ues of the time-dependent parameterRstd are equal to each
other,R0=R`. At h0=hp both the control parameterhstd and
the parameterRstd are constant with timet : hstd;h0 and

FIG. 7. Sketch showing relative influences ofuCrelu2 anduCc.m.u2
on experimental measurements of localization. The ion is taken as
the origin of coordinates, and Eq.(20) shows that a circle of radius
re=vt limits the range of the electron coordinate. The crescent-
shaped shaded areas are the regions where the wave functionuCrelu2
is relatively large(one-third of the maximum or more) at a given
time t, and the sizes of the black spots indicate the widths ofuCc.m.u2
for three different electron positions where experiments might be
done. In each case a cross marks the corresponding center of mass.
The black spots can take different sizes relative to the size of the
shaded area depending on the value of the control parameterhstd,
as defined in Eq.(41). A large value of the entanglement parameter
R is obtained forrWe located where there is a well-localizeduCc.m.u2
(i.e., a small black spot) combined with a large value ofuCrelu2. In
the case when the black spot is located far outside the shaded area
there is no overlap betweenuCrelu2 and uCc.m.u2 and the total wave
function vanishes.

FIG. 8. Entanglement parameterR for two
dissociating molecular fragments withM1=M2

(left) and the same dissociation curve plotted vs
lnshd on the right, where the corresponding
photoionization curve is included for comparison,
with its very different mass ratiomi =104me.
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Rstd;1. This is the only case when there is no evolution of
the entanglement parameter. In all other casessh0Þhpd the
entanglement parameter is large initially, drops to the value
R=1 at sucht that giveshstd=hp, and then grows until it
reaches its initial valueR0.

VIII. CONCLUSION

We have evaluated the space-time behavior of the joint
quantum state of an ion and electron following photoioniza-
tion. Neglect of the incident photon momentum and of the
final-state Coulomb interaction means that the evolution of
the state, and thus of the entanglement between the two par-
ticles, is constrained only by free-particle two-body momen-
tum and energy conservation. This evolution provides a cal-
culable illustration of the situation involving massive
particles sketched in the famous paper of Einstein, Podolsky,
and Rosen[3]. We have obtained expressions for the
entanglement-induced wave-packet narrowing that occurs,
and have indicated how entanglement can be identified ex-
perimentally and quantitatively. To do this we introduced the
entanglement parameterR, the ratio between the
entanglement-free wave-packet width and the coincidence
wave-packet width. This is effectively the degree of en-
tanglement when entanglement is large, a relation to be ex-
amined further in a separate investigation[16]. We gave ex-

pressions forR in terms of ionization rate and packet-
spreading velocity, which are of course themselves
determined by underlying parameters such as atomic bound-
free dipole moments, relative electron and ion masses, ion-
izing field strength, etc. It was shown thatR depends in a
simple way on the basic control parameterh
= D rc.m.std / D r relstd, and can be much larger than unity in two
limits, whenh@1 and alsoh!1. The same formalism can
be applied equally well to photodissociation of a diatomic
molecule. For realistic physical values of the relevant param-
eters, in a typical example of atomic photoionization,R is
not very large because of the extreme discrepancy between
mi andme, but for photodissociation of a diatomic molecule,
where the fragment masses can be approximately equal,R
can be substantially increased.
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