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Packet narrowing and quantum entanglement in photoionization and photodissociation
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The narrowing of electron and ion wave packets in the process of photoionization is investigated, with the
electron-ion recoil taken fully into account. Packet localization of this type is directly related to entanglement
in the joint quantum state of the electron and ion, and to Einstein-Podolsky-Rosen localization. Experimental
observation of such packet-narrowing effects is suggested via coincidence registration by two detectors, with a
fixed position of one and varying position of the other. A similar effect, typically with an enhanced degree of
entanglement, is shown to occur in the case of photodissociation of molecules.
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[. INTRODUCTION and single-particlgunconditionegl observations. In the coin-
.cidence scheme the electron and ion positions are assumed to

b I;hotoic;niz%tion of a;orlns hasf been tre?ted re%eztedly 'Be registered simultaneously by two different detectors, and
oth weak and strong fieldsee, for examplefl] and[2)). only joint signals from both detectors are recorded. For ex-

Most often in the theoretical analysis of these processes it i mple, given the fixed ion detector positi§none scans the

ass_umed thz.it. th? atomic center of mass has a glv_en_a_nd W%I'ectron detector position, and thus obtains the structure of
defined positionry and that the atomic mass is infinitely th

I Obvious| ther of th ) " S e electron wave packet as a functionfpfis seen in coin-
arge. Lbviously, neither ol these o assumplions IS 1gorgigence. |n the single-particle scheme only the electron de-
ously true. In this work we consider photoionization of an

) X : " tector is used, and the nature of the electron wave packet is
atom with a single valence electron and with the relativeyoiormined as a function o, irrespective of. The differ-
electron-ion motion and the atomic center-of-mass motion, \ .o wetween the results of'such sc@es, of n;easurements
described by wave functions with finite widths, both beforeOf packet widthgis a straightforward experimental measure

and after ionization. Such a formulation of the problem gives ¢ nonseparability, i.e., of entanglement.

rise to some interesting questions related to the entanglement Specifically, to characterize this difference in a quantita-

of (Iazletc:trorll-mn qtue}ntum tstatest.t is of fund tal int tive fashion, we will use the rati®R of the wave-packet
ntanglement of quantum states is of fundamental Interesg; s found in the single-particle and coincidence schemes.
_and_ is also closely related to questions arising in phot0|on_-|-here will be two such ratioR, andR, for electron and ion
Ization b_eca_luse_ the fragmentan(_)n process that occurs ‘Tnd they will be shown to be equal in situations of interest,
photoionization is a concrete realization of the one used b%lllowing us to putR,=R =R, and the parameteR will be

Em_st,euj, Podolsky,.and RO.SE{.EP.R) [3] to illustrate Ein- referred to as the entanglement parameter. Compared to the
stein’s ideas regarding the limitations of quantum theory. BYSchmidt correlation coefficierit the parameteR describes
definition, entanglement means nonfactorization of a two

. i . ""“"more detailed time-evolving features of entangled quantum
particle wave function. Mathematically, for such a function

the degree of entanglement can be compactly characteriz sgates. In particular, in the coordinate picture that we use
: re, changes in the paramefReoccur because of spreadin
by the Schmidt numbe4], denotedk =[Tr(p?)]™%, wherep 9 P P g

: ) _ ) of electron and ion wave packets after ionization. The time
is the reduced density matrix of either one of the two par

; ; . ) “evolution of R(t) efficiently separates two significantly dif-
ticles qnder consideration. For background on_Schm|dt-bas rent entanglement regimes. For factorized two-particle
analys's’ a nqmber of overviews ex|st6]. In this work WE  states, when there is no entanglement, bétland R take

will take a different approach and show that electron-lontheir minimal values equal to 1. F&> 1 the quantum state

entanglement in th_e process of photoionization is closely regqqer consideration must be entangled, i.e., nonfactorized.
lated to the evolving spatial wave-packet structures of th

; But this statement cannot be inverted: there is a special kind
electron and ion wave packets.

F . tal i tigat f electron-i tanal of entangled quantum state, in whiét=1. All these situa-
or experimental investigation of electron-ion entangi€-,ns are described below for photoionization, and we briefly
ment, and for clarification of entanglement physics in th

hotionizati d trate th I : k.ediscuss similar issues for dissociation of a diatomic molecule
photionization process, we demonstrate the value of making, y explain the most significant differences in the results.

and comparing results from both coincider(cenditioned In contrast to other treatments of fragmentation or
“breakup” [7], the coordinate-picture wave-packet analysis
gives an alternative view of entanglement and reveals addi-
*Electronic address: fedorov@ran.gpi.ru tional channels for achieving high degrees of entanglement.
"Electronic address: kwchanl@pas.rochester.edu In addition to the entanglement parame®Rawe also identify
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“control parameters” for comparison with those that have W (Frenfemst) = Vem(Femt) X Wra(Frent), (4)
been advanced in previous studies of both photon-4&&)

and photon-photofil0,11 wave functions, and through con- where the equations of motion of¥ (. ,t) and
ditional localization our approach is related to formal photo-W (f¢,t) are

nic analogs[12] of the EPR discussion and also diatomic

breakup as a route to matter wave entanglem&sit L IWem _ Pom
ot oM o™ ®)
IIl. PHOTOIONIZATION and
Let an atom, originally in its ground state, be photoion- P 2 2
ized by a light field iplorel { Pel € L E sin(wt) (V.. (6)
at 21 Tygl

&(t) = & sin(wt), (D) \We note that the factorization shown in Ed) is far from

. the same as factorization in the particle variabiggandr;.
whereiw > |Eq| and'Eo IS the_ ground state energy. It '.ShOUI.d That is, the electron and ion are quantum entangled in the
be noted that by using the dipole approximation and ignoring;. given in Eq(4).

the termk-rin the argument in Ec(1) we are ignoring all Let us assume that the initial atomic center-of-mass wave
recoil effects due to absorption of the photon momentikm  function is given by a Gaussian wave packet with width
This approximation is quite reasonable, because there is amé(_’:n_:

other much stronger mechanism giving rise to recoil. In the

process of photoionization an atomic electron acquires an R o 1 Fﬁ_m,
energy~#w and hence a momentumm#w, and the ion WYem(fem,t=0)= (2m)34Ar0 32 ex;{— 4[Ar© ]2>-

gets the same momentugwith the opposite sign and this em em
momentum is much larger thaik=fiw/c. This is in contrast ()

to the problems of entanglement in spontaneous photofnen as is well knowri2], the time-dependent solution of

emission of excited atoms and Raman scattef8jg __Eq.(5) has the form of a spreading wave packet such that
To describe such a process with atomic recoil and with an

initial wave-packet distribution of the atomic center of mass, | o 1 P2
let us begin from the Schrédinger equation for two |W¢m(Fem,t)|"= 312 3 OXP T 5. a2 )
particles—electron and ion—in the field. Traditionally, to (2m)*TArem®)] 2[Arem(1)]

separate variables in such an equation, we use the relative (8)
(rel) and center-of-mas&.m) position and momentum vec- ) ) )
tors [14] whereAr (1) is the time-dependent width of the center-of-
mass wave packégs),
> _a > o Ml + M| 2,2 112
Mel=le=ri, Tem= ) — (0) 12 't
M Arcm(t) =9 [Ar e
(2) c.m.( ) {[ c.m:l 4M2[Art(:(.)r)n]2
Lo MPe- M L L ArQ t<t™
Prei= v Pem.=Pet Pis .
M ~ At 9
——, t>tm
oM Ar@ T

wherer, andr; are the electron and ion position vectops,
=-ihdlare and pi=—|hz9/ari_are their momenta, ant and g t(sc-rm-) is its spreading timet(sf)'rm'):ZM[Arf:?r)n_]z/ﬁ. At t
m, aEe f[helr"masse_s, withl =mg+m. It is yvorth no_tlng that >t(c‘rm' the widthAr. ,(t) grows linearly and the velocity of
the “mixed” coordinate-momentum variable pairg, and sp

ina e A (c.m)_ (0)
Bem,» as well as’, ,, andp,, €ach have zero commutator. For Sprgﬁgggtgse%gﬁgit?gﬁg of_i?] /tgtl‘\g ;Atrﬁiranfé the solution of Eq
example, [Trei, Pom]=0. For this reason one can call them (6) is only a little bit more complicated. The initial wave

EPR pairs, recalling the famous discussion of Einstein, Po function of the relative motion is taken to be the hydrogen
olsky, and Rosef3].

The Schrddinger equation takes the form ground state dwave function

oV _ 5gm 6r2el & R =
i _{ t oL 1 el By sin(wt) whereRy((r,e) is the hydrogen radial wave function for the
principal quantum numben=1 and angular momenturh

where u=mgm/M is the reduced mass. Because we have=0, andYq,=1/\4 is the spherical function for=m=0.

\Prel(rrelvt = 0) = lﬂls = Rlo(rrel)YOOv (10)
L))
(9t ZM 2M I’re|

made the dipole approximation, the variabfggandr, , in We assume a sufficiently high photon enefgyto ignore
Eq. (3) are separated, and its solution is a product of funchbound-bound transitions. Then the time-dependent wave
tions depending on these two variables separately: function obeying Eq(6) can be presented in the form
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R Ciw «° _ _ \15 0
q’rel(rrelyt) = Co(t) 1//15+ e’ tfo dE CE(t) l/prr (11) \I’rel(rrelyt) = 4_/_ cos Hrelf dE |%El(rrel)
N 0
where i, is the field-free wave function of the continuous i an . 50
spectrum withi=1, m=0: xXex —gEt E—Ey—fwtifiy (18)
0 |
Yep(Tre) = Rea(1re) Y10(COS bre), (12)  We assume that the laser frequeneyand hence the energy

. ) . . ) E~Ey+thw are high enough so that the radial function
in which Rg4(r,e) is the radial waﬁve function for energ;r Rey(r,e) is approximated by the well known high-energy
and angular momentuti¥ 1, Y1=\3/4m C0S fle;, andbeiiS  figld-free expression for the Coulomb radial wave function

the angle between the vectafg andr g, [14]:

With multiphoton processes ignored, the equations of mo-
tion for the probability amplitude€y(t) and Cg(t) in the Res(r) = [2p 1 cos(kr+iln(2kr)+5> (19
rotating-wave approximation, following directly from Eg. EL K hr kag )

6), are given b — . .
© g y wherek=v2uE/#, 8, is the Coulomb scattering phase for

&, =1, anday=%°/ u€? is the Bohr radius.

CE(t) (133 When the photoelectrons have energy far above the con-
tinuum threshold, we havky, <E~Ej+w. In this way the
lower limit of the integration oveE in Eq. (18) can be re-

W placed by <. The energyE is approximated byE,=E,
L e R = +hw in all the preexponential factors except the denominator
1ACe(t) = (B~ Aw)Ce(®) = 2 Co(® (130) on the right-hand side of E@18). Also, both the scattering
phased; and logarithmic term in the argument of cosine in

wheredEo (dOE)* are the bound-free dipole matrix elements Eq. (19) are neglected, and the factoiin the productkr is

of the atom, and we consider the case of a pulse with rectexpanded in powers &-E.,, viz. k~k,+(E-E.)/fiv, where
angular envelope, which means that the interaction is turnek,=v2uE./# andv=v2E./u=%k./ u is the velocity of the

on suddenly at=0. relative motion. Then the integral ovErcan be evaluated by

With the help of adiabatic elimination of the continuum the residue method, giving

[2], Eg. (133 can be reduced to a much simpler form: A Ei
I N x 5t .
Vo=——=\dg - &) € +ik,r
rel 4Vﬁ ( E.0" 0) X% 4 | rel)

o d
|ﬁC0(t) - EO Co(t) =- f dE

ihCo(t) = (Eg = ifim)Co(t) = 0, (14

in which the amplitude decay ratg is half the Fermi golden o 89S Orel ex;{ y (t _ ;elﬂ But-r,). (20)
rule rate of ionization: el v
; This equation describes a spherical wave packetgjrwith
o = %_ 2m (15) an angular modulation determined by the factor 6gs
= at 7% E=E, ' propagating in the direction of growing with velocity v,
" and having a sharp edgefj=vt and an exponentially fall-
The solution satisfying the initial conditioBy(0)=1 is ing tail atr<wvt. The radial width of the wave packé&20)
iS 0/2’)/|.
[
Co(t) = ex%_ %Eot - ’)/|t> . (16)

Ill. FURTHER EVOLUTION OF THE RELATIVE-MOTION

With this function substituted into the right-hand side of Eq. WAVE FUNCTION
(13b), the equation forCg(t) can be easily solved to give,

) - " Although we have assumed that the timexceeds the
with the initial conditionCg(0)=0

total ionization time(t> %), Eq. (20) still describes the
initial stage for the relative-motion wave-packet evolution

el deo - &o after ionization. In this sense/ 2y, is the initial width of the
e(®) = 2E-Eo-fiw+iy relatlve-motion wave packetl |2, which we denote by
) Arrel =u/2y. This width can change later due to dispersion.
x{exp{— ('E_O ¥ %)t] - exp{— i(E - w)t] } To describe such a spreading effect, we can extend our series
h h expansion of the functiork(E) up to second order irE

(17) ~E.:k=k.+(E-E,)/fw-(E-E,)*/2huv® This gives rise
to an additional factor in the integral over the energy
At timest> v, both Cy(t) in Eq. (16) and the first exponen- E:exp{—i E2r,o/2huv3}. To keep the possibility of integra-
tial term in Eq (17) vanish. As a result the wave function tion by the residue method, we have to use the Fourier trans-
¥ describing relative motion takes the form formation of this factor:
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In the small-spreading regimé<1)| ¥ 2 returns to the
form of Eq.(20), but with additional oscillations on the left
wing and a slightly smoothed right wing as compared to the
step function jump of Eq20). In the large-spreading regime
({>1)| ¥ ,|? approaches a Lorentzian shape:

|\I’ |2_ iCOSZ erel Arrel(t) (23)
rell — )
8% r2 1
rel (rrel - Ut)2 + Z[Arrel(t)]z
i g where
2 t
0.14 | [¥eal| Argt)=2Ar9 = —A r = vept (24)
spr
0.10 and vsprzArigl)/tspr:ﬁ/MArﬁgf. Altogether, at small and
(b) (=20 large ¢, the time-dependent width of the relative-motion
0.06 | wave packet is given by
v
002 ArQ=—, t<tipl((<1),
. B |
Arg(t) =
0 —20 -10 0 10 2 * vt = — s = PN g5 ),
- - - Sp! MA rig? wv ) spr
FIG. 1. The relative-motion probability density | (21) in (25)

dependence op=(rre|—vt)/Ar£2|) at (a) £=0.01 and(b) {=20.

In spite of clear differences between the Gaussian center-of-
mass(8) and relative-motion(20),(21),(23) wave packets,

exol — i E?r el — po’ fm dr their widths behave similarly in their dependencetothey
2huv® 2mihir g J start from initial values&rff"r)n. andArigl), and at times longer
i R than the corre_sponding spreading times bmt;e|_(t) a_nd _
xexm —| Er+ Ar.m(t) grow linearly. In both cases the spreading time is
Frel proportional to the squared initial size, and the velocity of

spreading is inversely proportional to the initial size. The
With this representation we first carry out the integrationomy qualitative difference is the mass: the total miksp-
overE (by the residue methgand then the one ovet The  pears in the center-of-mass wave function, but the relative-
result is motion wave packet depends on the reduced mass
The relation between the center-of-mass and relative-
3 coS by Mrel ~ Ut motion wave-packet widths can change with time due to dif-
167 A rﬁg? rfel Arﬁg? ferent spreading velocities of these wave packets. This
- = . ) makes the time evolution of the electron-ion wave function
1-Erf \ﬁ(\_év _ l__fre| - Ut) rather complicated, and this problem will be discussed sepa-
2\ 2 7 Ar9 ' rately in Sec. V.

|q,rel(rrelat)|2 =

X

(21)

. . . IV. LOCALIZATION OF THE ELECTRON-ION WAVE
where Erf is the error fUnCtlon, and we have defined PACKET AND ENTANGLEMENT

Bl el el In accord with Eq(4), the product of the wave functions
W = ot (22) given in Eqs(8) and(21) determines the total wave function
MAAT g Spr of the ion-electron system. It should now be considered as a

o that tSSPw(ArES)Z/h is the spreading time of the function of ion and electron position vectors
relative-motion wave packet. As the value [8f,¢|? is con- .o Mgl o + MT; L.
centrated arountd, =~ vt, by puttingr,q=uvt in the definition W (e, F,t) = We ! T X Wreles b,
of the parametef, we get{zt/tg;r'). In this form the meaning

of ¢ is obvious: it is the time after ionization measured in (26)
units of the spreading time of the relative-motion waveshowing that both¥ and its squared absolute value are not
packet. In Figs. (&) and 1b) the function|W|?is plotted in  factorable in the individual particle coordinatés and f;.

its dependence opE(rrervt)/Arﬁg,) at small and larg€’s,  Such nonfactorization defines quantum particle entanglement
respectively. of the electron and ion.

¢
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N mexe"'mixl':A’cm(f)
. N M 2 Xg —xj=vt |
N N ——
N & x;=comst _ _-~-
\\ N _l_——'
YN c
ey | - - N N
= e
.E; N N
A
5 NS
Y
~ b b S -
) N \l g
0 ]
PN N AN d
-- A AN
| -~ N N
xe_xi=Vt_Ar]'el(t) \\ \\
N Y
Ay ~
N Y
MeXe + mix; _ _ Arem(r) Mo
- AY
zi/ATr91(t) zi/ATrel (t)

FIG. 2. The density distribution of the one-dimensional equivalertigf given in Eq.(26), wherex, andx; are the one-dimensional
electron and ion coordinates. The left picture correspondis;.tq andW¥,, of Eq.(26) given by Eqs(8) and(21), with r, andr; substituted
by x. andx;. In the right pictureb ,, andW¥  are modeled by sharp-edged flat functions, with boundaries of their localization regions shown
by the dashed lines. The difference between the single-particle and coincidence-scheme widths of the electron wave packets is illustrated by
the difference between the andab distances in the right picture. This difference and the value of the entanglement parameter are seen to
be large for a large aspect ratio of the shaded region. We havenydeg=0.2,%7=0.5, andy,t=4 for illustration.

We will proceed by examining the relationship of en- sees the more abrupt Gaussian cutoff on the sides. A purely

tanglement to the ratio of widths schematic view of the same thing is shown in the right plot,
where artificially sharp dashed-line borders are introduced
p(t) = Arc_m(t) (27) and are supposed to be determined by the localization zones
Arpe(t) of the relative-motion and center-of-mass wave functions.

Consider first an examination of the electron wave packet

where the timet is taken as a parameter. Note that in Ourby the coincidence-scheme method, for a given ion coordi-

treatmentz(t) is constrained only by momentum and energy e x=const. The normalized measure of its width
1 . l

;:Oomnks)e;\f{regté(;; (Gll-ig.r'e vAvre |g(?)oirse J;nﬁlﬁztrﬁfﬁffﬁéﬁﬂn&ﬁgrgﬁs& Axo/ Ar(t), will be given by the distance between the
. ) emAy o oints markedh andb. In contrast, the single-particle width
Ar(t) is due to the dynamics of the ionization process. we : Lo ; ;

'Irlel that m(t) act ful trol ter f takes into account the contributions from all possible differ-
w sl,ee a Z( Lac s as a.ulse Ut control parameter for er"entxi’s. Thus a suitable measure of the single-particle width
tangiement Of the two—.p?rtlfc e system. “breakup.” as | of the electron wave packet is given by the distaodelt is

In cases of two-particle fragmentation or “breakup,” as Ingp,iqys that the electron packet is relatively highly localized

'SWhenCd>ab. Correspondingly, a horizontal line through the

photoionization, and where significant further interaction i
absent, measures of entanglement can be related to a serigs, joq region would provide a normalized measurdsf

of spatial localization measurements. Such a connection t tc. From this sketch we formulate two conditions simulta-
potential experiments was not treated in earlier studies o ec;usly necessary for the entanglement parameter to be
photon-atom or photon-photon breakup processes like spofy qe. 4 high aspect ratio of the shaded area and a diagonal

taneous photo_n emission Wit.h atom reqsl9] or parametric angle between the dashed lines restricting the wave-packet
down-conversionj10,11], but is related to the measurement- localization zones and the coordinate axgsand x. The
| i

induced localization and entanglement discussed recently 'High—aspect-ratio condition means that one of the two wave

a very different context by Raet al. [15]. . . Backets(“c.m.“ or “rel”) is much wider than the other one.
Now we focus on measurements appropriate for seeing pefiection shows that this is achieved by a very thin

entanglement. We need to distinguish coincidence and nons, cyet inx, -, space, e.g., any slightly smoothed version of
c0|nC|d_ence(3|ngle-partlcle_ measure_ments, which have _the|r the limit cased(x,— xx,) for a finite «, and the normalized
theoretical counterparts in conditional and noncondltlonakelaﬂve information gain is well expressed by the ratio of

probability d|§[tr|ttr)]ut|or|1$.tFor an %X%?‘t)ledqfﬁbs":[].gle'f)art'desingle to coincidence widths. One can also see that a sketch
measurement, the electron probabiiity distribution 1S mea'corresponding to Fig. 2, but for independent particles, has

furetd reggrd!gss of the ion posm:gmr vice Vetrrs]at Indc.otn'—b t.dashed lines that are horizontal and vertical, in which case all
rast, a coincidence measurement assumes that a distribu Qims predict exactly the samax,, and vice versa.

g];sei:ﬁjcr:riosnkg&sgioanz]i\i é%%:::;;?ogggi (t:revi'g:\/i?;;c“on Mathematically, single-particle probability densities are
The difference between the results of coincidence and singleg—lven by Eq.(26) integrated over either; or r¢

particle schemes of measurements is illustrated by Fig. 2. In

this picture, in one dimension, we shade the region in which P (f.t) = J dF|| W (o 1)2 (28)
the joint probability density¥ (f,, F;,t)|? is significant. In the ee ' .

left plot the sharp leading edge of the theta function in Eq.

(20) is apparent, with its long exponential tail, and one alsoor
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Py 1) = f 47 W (Fui O (29

Such distributions reveal no entanglement effects because all
the information about the position of one of the particles is
lost completely when the two-particle probability density is
integrated over; or r,. However,P, and P; do serve a nor-

PHYSICAL REVIEW A 69, 052117(2004

malization role, as we explain later.

Let Ar(s) and Ar® be the widths of the single-particle

electron and ion Wave packets, where, for exam||:41e‘:_,)|2
=(IFd—[(Fe)?, with

o= [ it Pt

= [ [ ot at v o

= <Fc.m> + %<Frel> (30)

and

(Iref) = J dFe 1 Pellrt) = J j dr dFi 1 | W (e, O

N m._ |? R m._. .
= < rc.m.+ errel = <|rc.m.|2> + 2M|<rc.m><rrel>
2
m
+ M_I2<|rrel|2>- (31)

Note that we have used the relatioger, ,, +m,/Mr,, and

[ (@)
y
- or©
1
1
1
! 1 J
my /M 1 2
2
()
6" i(s)
1 -
" or, ,'(C)
1
L J
miiM 1 2
@)

FIG. 3. Electron(a) and ion (b) wave-packet widths in the
schemes of single-particle and coincidence measurements with
me/m;=0.1.

As shown later in this section, these limits correspond to the
high-entanglement regimes of main interest, and we do not
need to bother too much about the details of the intermediate
region. Similarly, at a giverr,, the widths of|¥. ,|? and
|W % with respect ta’; are correspondinglyM/m,) Ar (1)
andAr(t). Therefore the overall width df¥ |? at a givenr,

changed the integration variables to the center-of-mass arid the smaller ofM/m) Ar ,,(t) andAr (1), corresponding

relative coordinates. Then EQq$30) and (31) yield the
single-particle measures

Ar® ( )2
(8 = 2
e At o) =/ 7D+ , (32)

and, similarly,

©_ A (S) 2
o= o= N T (33)

Note that the relative-motion wave packet widlT (t)

to the formula

© Ar(© _ 7(t)
LA VA + (MM

It is clear now howz(t) of Eq. (27) serves as a “control
parameter” for both coincidence widths. PIots@rﬁ3 and
&éc) as a function ofy are shown in Fig. @) whereas graphs
of or® and &' are shown in Fig. @). Note that we use in
these graphs an artificial value of the electron to ion mass
ratio mg/m;=0.1 so as to show more clearly the difference

(35

plays the role of a natural normalization factor for both petween the two curves faj< 1. However, all the qualita-

single-particle and coincidence-sche(see below electron
and ion wave-packet widths. Divided bgr(t), these

W|(d}hs become dimensionless, and they are denﬁt@dand
é}" c

tive conclusions from these pictures remain the same for a
more realistic value of this ratim./m,~ 104 One of these
conclusions is that we always hayﬁes)> éY

The ratios of smgle -to- commdence electron and ion wave-

% the coincidence scheme of measurements the overalacket widths gr' S>/(37 ©) andéT(s /&(@ can be considered as

width of the distribution26) with respect ta’, at a fixedr; is
given by the smaller ofM/my) Ar¢ 1, (t) and Ar (1), WhICh

a measure of entanglement as remarked at the beginning of
this section. These ratios can be referred to as the electron

is well represented by a simple formula for the coincidenceand ion entanglement parameters in the form

measures:

0= AL ()
T Are® VM) +(mIM)F

(34)

and R=—-. (36)

The expression in Eq34) is appropriate when we are in one Entanglement is large iR;>1 and/orR>1. If R.=1 and

of the extreme casddi/my) Ar. (1) > Ar (1) or <Ar ().

R =1, there is little or no entanglement at all.
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ar Are(t)/Arie
3 -
1G]
2 -
R 1 Ara(t)/Ar()
1 1 1 1
0.5 1 1.5 2
t/t%D
n(c0) =2
FIG. 4. Plot of the entanglement paramefeas a function of 1.5
7(t) with meg/m;=0.1; 7. is the stability point(42) at which 7(t)
=const=/u/M. The insets give the corresponding plots of the one- 1
dimensional analo@¥(xe,;,t)|? from Fig. 2. The axes of the three
insets have been rescaled so as to show the details more clearly. The 0.5
regions where the entanglement parameter is large are clearly seen 77(0)=0 05 . . .

to correspond to a large aspect ratio of the shaded areas. ] 3 5

By using Egs(32)—(35), we can find a useful form for the FIG. 5. (a) shows the time-dependent widths of the center-of-
ratios, whenR.~R;, which we will denote simplyR and  mass and relative-motion wave packets, in units&oﬂ, and (b)

refer to as the entanglement parameter: shows the control parametej(t). We have takenn,=0.05 and
me/M=0.1.
1(m)\? 1/mg\? m
RE\/W“‘—(_') \/7l+—<—>, (37) Region 3, < % <, R~ (t). 40
7\M 7\ M g "M M 7 7(t) (40)

Note that the minimal value of the entanglement parameter
which is plotted in Fig. 4. Compared to the Schmidt correla-36) is equal to 1,R,,=1, and it is achieved atyt)
tion coefficientK the parameteR describes more detailed I\f'M/—M-
time-evolving features of entangled quantum states. In par-
ticular, in the coordinate picture that we use here, changes in

the parameteR occur because of spreading of electron and V. TIME EVOLUTION OF PACKET WIDTHS

ion wave packets after ionization. The relati8Y) is actu- AND ENTANGLEMENT PARAMETER

ally valid only when#%>1 or <m./m;, and these are the ) .

regions whereR is a good model foR, andR,, andR>1. In Figs. 3 and 4 both the electron and ion wave-packet

Even thoughR, and R may not be exactly the same in the Widths and the entanglement parameters are shown, for fixed
zonem,/M < <1, they both have values around uni,  t in their dependence on the control parameter defined ear-
~R~ 1. This is a very specific region, in which the electron- lier:
ion state is entangled in accordance with the general expres-
sion for the total wave functio), but entanglement does Arcm(t)
not manifest itself in terms dR, i.e., in terms of the coinci- Ar(t)
dence vs single-particle measurements.

The asymptotic behaviors @ in three different regions  However, we can use the same pictures to show the evolution
of #(t) are particularly noteworthy: of the widthsAr(t) andAr;(t) and the entanglement param-
eter defined in Eq(37). To do this, we have to learn how
7(t) changes with time.

7(t) = (41)

Region 1,7 < Me M. o MM Are(® (ﬁ)i The two typical cases of significantly different behavior
’ M M M2 Argm(t) M/ 5(t)’ are illustrated in Figs. 5 and 6. Paita) and (b) of these
(39) figures show the time dependence of the widihs,(t) and
Ar(t) themselves and of their ratio, which equajg). A
key feature of(t) is its strong dependence on the initial
sizes of the center-of-mass and relative-motion wave pack-
Region o Me < M R~1. (39) ets,Ar'® andAr', or in other words, on the initial value of
M M the control parameter;(0)= 7, Depending on its initial
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1
R(;ﬁ) =R(7). (44)

(@ The initial and final values ofy are connected with each
other by exactly the same substitution as used in (Ed),
05 © and we see that the initial and final values of the entangle-
Arcen (t)/Ar, .
re ment parameter must be equal:

05 1 1.5 2 Ry=R,=R(t — ). (45)
rel
b/t This equality is valid identically for all values afo. If 7, is
located in one of the high-entanglement regions of Fig. 4,
no<um/M as in Eq.(38), or 7,>1 as in Eq.(40), the final
7©=05 () vall_Je of z is in the opposite of these two high-entanglement
regions,n,.>1 or n,<<u/M.
04 ) Thus we see thaR(t) starts from a large valui,, falls to
03 | R~ 1, and then grows again to the same value from which it
Moo)=02 f === mmemeee oo started. Physically such an evolut.ion means.that initially one
of the wave packet®¥,, or V., is much wider than the
0.1 t/téf,‘il) other one, and for this reason the entanglement-induced nar-
L L L rowing of the packets measured in the coincidence scheme is
1 3 5 large. Then, as the narrower wave packet spreads faster, they
will become approximately of the same width, aRdde-
creases. Finally, when the initially narrower but faster-
spreading wave packet outstrips the initially wider but
value, 77 is either rising as shown in Fig(#® or falling as in  slower-spreading one, the relation between their widths re-
Fig. 6(b). The border between these two regimes is given byerses, and this returns us to the initial case of a large

FIG. 6. The same as in Fig. 5 but wit=0.5.

o= 7., Where entanglement-induced narrowing of the packets measured in
coincidence.
_ M The difference between the casgs<u/M and 7,>1
N = . (42) o . ;
M concerns only the direction of evolution, respectively, to the

P h ¢ K ds f right or to the left on they axis in Fig. 4. If the initial value

It 7=, the center-of-mass wave packet spreads fastef¢ e narameter is located in the small-entanglement re-

and eventually becomes wider than the relative-motion Wav@ion defined in Eq(40), whereu/M < <1, all the conclu-
initi (0 (0 i . b ! . | .

packet, although initiallyAr ;' < Ar . In this case the con-  gjons about the direction of evolution and about the relation

trol parameten(t) is a monotonically growing function df  petween the initial and final values Bfremain valid. How-

as in Fig. §b). On the contrary, ifjg> 7., the center-of-mass  ever, in this cas® remains at the order of 1 at all timesif

wave packet spreads more slowly than the relative-motion), -, we find simply the constant valtR(t) =1.

wave packet. Although initially the center-of-mass packet

can be either narrower or wider than the relative-motion

packet, at very largé the relative-motion packet becomes VI. EXPERIMENTAL CONSIDERATIONS
wider than the center-of mass packet. This gives rise to a _ _ _
falling function #(t) shown in Fig. €b). In both cases The discussion as given so far does not treat some ele-

(70< 1. and 5,> 7.) the ranges of variation of the param- Ments that will come into play in experimental tests. In order
eter 7(t) are finite. At very long timesx(t) has the 1o bring them into focus briefly, we show in Fig. 7 what can

asymptotic value be called experimentally realistic zones. We have plotted the
region where the relative probability distribution is nonzero.

wl It has a three-dimensional aspect that we do not need to show
N Mo = M% (43) because it is axially symmetric about the polarization axis of

the ionizing light beam, taken as the vertical axis here. It is
which follows directly from the definition of) (41) and Eqs.  not spherically symmetric because of the gipole character of
(9) and(25) for the widthsAr, ,(t) andAr(t). In the case  photoionization contained in the factdg o-& in Eq. (20).
1n0=17. the parametem(t) does not depend on time at all: The crescent-shaped shaded areas indicate the regions where
n(t)=const=7.=7,=7..). the relative-motion wave functiof¥ (fo)|? is relatively

By finding the evolution regimes for the control parameterlarge.
7(t), we can also draw definite and interesting conclusions Taking the time evolution of the relative wave function to
on the evolution of the entanglement param&etefined in  be strictly limited by the step functiofi(vt-r.), as in Eq.
Eq. (37). Directly from Eq.(37) one can easily see that for an (20), we will here consider the ion position to define the
arbitrary value ofzn the entanglement parameter obeys theorigin of polar coordinatesr;=0), in which case a circle of
relation radiusr.=vt limits the range of the electron coordinate at
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between a small black-spot region and a high-probability
portion of one of the crescent regiofreear the circle bound-
ary). Higher count rates with reduced values of the entangle-
ment parameteR will be associated with increased size of
the black-spot region.

VIl. PHOTODISSOCIATION

It is easy to see that very similar results will arise in a
treatment of photodissociation of molecules. Here we remark
briefly on some of the differences. Let us assume that we
consider a diatomic molecule undergoing dissociation. There
will be a relevant dissociation ratg,, which can be substi-
tuted for they, governing ionization, and just as for the atom
there will be an initial localization of the molecular center of
mass. Then the main differences from the ionization example
arise because the mass ratio of the fragments is much closer

FIG. 7. Sketch showing relative influences|¥|2 and|¥. /> to 1. Compared to the case of photoionization, wheye
on experimental measurements of localization. The ion is taken as<m,, the masse#$/, and M, of the photodissociation frag-
the origin of coordinates, and E(0) shows that a circle of radius ments obeyM; ~ M.
re=vt limits the range of the electron coordinate. The crescent- Gjven this, the relative-motion velocity after dissociation
fshapeo! shaded areas are the regions v_vhere the wave fu|nlc_;g¢¥1 v~ \m is significantly smaller than in the case of ioniza-
is relatively large(one-third of the maximum or moyeat a given tion, vyme~ Vw/M. The main difference between photoion-

timet, and the sizes of the black spots indicate the width¥gn|®  j7ation and photodissociation results concerns the region
for three different electron positions where experiments might be ,\1 n(t)<1 of intermediate values afr, ,(t) in Fig. 4
c.m. '

done. In each case a cross marks the corresponding center of mass. a1 . . .
The black spots can take different sizes relative to the size of th(¥‘ﬁ16reR~ 1. ForM;=M,=3M this region degenerates into a

shaded area depending on the value of the control paraméter ~ Single point(t)=3=17. [Eq.(42)]. The entanglement param-
as defined in Eqi41). A large value of the entanglement parameter €t€rR is large at bothy(t) < 7. and (t) > #.. To show more
R is obtained for’, located where there is a well-localizé#t, /2 clearly the difference between photoionization and photodis-
(i.e., a small black spyptcombined with a large value ¢ | In  sociation, we plot in the right picture of Fig. 8 both molecu-
the case when the black spot is located far outside the shaded arksr and atomic entanglement parameters in their dependence
there is no overlap betwedW |? and |V, ,|? and the total wave on In(7), with the electron to ion mass ratio taking a realistic
function vanishes. valuem,/m ~ 10™%. This picture shows that if in the case of
photoionization there is a rather large region of intermediate
time t. The relative coordinate probability distribution values of» where the entanglement parameter is not large,
|W,e((Fo)|? is of course not uniform inside this circle, so we R=1, in the case of photodissociation of a molecule the
have drawn the boundary on whi¢H 2 equals% of its entanglemgnt parameter is large practically at gngxcept
maximum value, shown as the two sectors with crescenf® One pointy= 7. .
shape. However, the probable position of the electron is also N its dependence on timethe control parameter(t)
influenced by the c.m. wave functigi, ,|2. In the figure changes in a way similar to that described above for photo-
the sizes of the black-spot regions show the ranges of eledonization: 5(t) grows if initially it is small (7, < 7.) and
tron positions given by, ,(F.)|? for different positions of ~ falls if large (7> 7.). The final value of the control param-
the center of mass, which are indicated by crosses. eter 7., is related ton, by Eg. (43), which takes the form
The figure has many variations, and the sizes of the cres#-=1/(47). As shown previously, the initial and final val-
cent andAr, zones change in time, as our formulas indicate ues of the time-dependent parameft) are equal to each
The overall shapes will remain the same, and a generic higiether,Ry=R... At 7= 7, both the control parametef(t) and
entanglement experiment will be one that ensures overlafhe parameteR(t) are constant with time: 7(t)= 7, and

30} R

FIG. 8. Entanglement paramet& for two
dissociating molecular fragments withl;=M,
(left) and the same dissociation curve plotted vs
In() on the right, where the corresponding
photoionization curve is included for comparison,
with its very different mass ratioy=10'm,.

7 In(7)
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R(t)=1. This is the only case when there is no evolution ofpressions forR in terms of ionization rate and packet-
the entanglement parameter. In all other casgs* 7,) the  spreading velocity, which are of course themselves

entanglement parameter is large initially, drops to the valugletermined by underlying parameters such as atomic bound-
R=1 at sucht that gives»(t)=7., and then grows until it free dipole moments, relative electron and ion masses, ion-

reaches its initial valu&,. izing field strength, etc. It was shown thBtdepends in a
simple way on the basic control parameten
VIIl. CONCLUSION =Arem(t)/ Ar(t), and can be much larger than unity in two

limits, when »>1 and alsop<<1. The same formalism can

We have evaluated the space-time behavior of the joinpe applied equally well to photodissociation of a diatomic
quantum state of an ion and electron following photoioniza-molecule. For realistic physical values of the relevant param-
tion. Neglect of the incident photon momentum and of theeters, in a typical example of atomic photoionizatiéhjs
final-state Coulomb interaction means that the evolution ohot very large because of the extreme discrepancy between
the state, and thus of the entanglement between the two pafy andm,, but for photodissociation of a diatomic molecule,
ticles, is constrained only by free-particle two-body momen-where the fragment masses can be approximately egual,
tum and energy conservation. This evolution provides a calcan be substantially increased.
culable illustration of the situation involving massive
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