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The principle of complementarity is quantified in two ways: by a universal uncertainty relation valid for
arbitrary joint estimates of any two observables from a given measurement setup and by a general uncertainty
relation valid for theoptimal estimates of the same two observables when the state of the system prior to
measurement is known. A formula is given for the optimal estimate of any given observable, based on arbitrary
measurement data and prior information about the state of the system, which generalizes and provides a more
robust interpretation of previous formulas for “local expectations” and “weak values” of quantum observables.
As an example, the canonical joint measurement of poskiand momentuni corresponds to measuring the
commuting operator¥X;=X+X" and P;=P-P’, where the primed variables refer to an auxiliary system in a
minimum-uncertainty state. It is well known thaX;AP;=#%. Here it is shown that given theamephysical
experimental setup and knowledge of the system density operator prior to measurement, one can make im-
proved joint estimateX,; and P, of X andP. These improved estimates are not only statistically closer to
X andP but further satisfyAX,,APq,=7/4, where equality can be achieved in certain cases. Thus one can
do up to four times better than the standard lower baouvitere the latter corresponds to the limitraf prior
information). Other applications include the heterodyne detection of orthogonal quadratures of a single-mode
optical field and joint measurements based on Einstein-Podolsky-Rosen correlations.
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I. INTRODUCTION from its classical counterpart. A corresponding uncertainty

] . o relation is the parameter estimation bound,
At least four generic types of uncertainty principle can be

distinguished in quantum theory. SXAP = #/2, (2)

(i) State preparation: the quantum description of a physi-
cal system cannot simultaneously assign definite values to alyhere 6X is a measure of the error in artgovarianj esti-
observables. mate of the amount by which a state has been displaced in

(i) Overlap: different physical states cannot in general bgdosition andAP is the rms momentum spread of the state
unambiguously distinguished by measurement. [1-3].

(i) Disturbance: measurement of one observable neces- The “disturbance” uncertainty principle is connected to
sarily “disturbs” other observables. early statements by Heisenberg such as “every subsequent
(iv) Complementarity: the experimental arrangements fopbservation of the position will alter the momentum by an

accurately defining/measuring different observables are i¥nknown and undeterminable amou#]. Investigation of
general physically incompatible. this principle has proceeded by examining the distribution of

These principles are all negative in content, correspondingn€ observable both before and after the measurement of
to limits on what is possible in quantum mechanics. Thes@nother observable and attempting to relate the disturbance
limits are quantified via associated uncertainty relations. A®f the distribution to the accuracy of the measureniénf).
the literature on such uncertainty relations is extensive, onlyiowever, recent work by Ozaw8,9] shows that the mo-

a few general remarks and indicative references will be givefinentum disturbancey(P) due to a position measurement
here to set the context for this paper. having inaccuracye(X) can in fact satisfye(X)»n(P)=0.

The “state preparation” uncertainty principle is the bestHence this principle needs to be formulated more carefully,
known and places limitations on classical notions of priorpresumably in relation to valid uncertainty relations such as
knowledge(and hence predictabilifyThe corresponding un- [8,9]
certainty relations are generally expressed in terms of the
spreads of the probability distributions of different observ- e(X)n(P) + e(X)AP + AX7n(P) = /2. ©)

ables, the prototypical example being the textbook inequality ginajly, the fourth uncertainty principle above arises from

Bohr’s notion ofcomplementarityf10] and restricts the de-

AXAP = #l2 (1) gree to whichjoint information about observables can be
obtained from a single experimental setup. However, previ-
for the rms spreads of position and momentum. ous formulations of corresponding uncertainty relations have

The “overlap” uncertainty principle corresponds to the ex-only been given for special casg&11-17. The most gen-
istence of nonorthogonal states and underlies the semiclassral of these are the Arthurs-Kelly typg®,11,13,17, re-
cal notion that quantum states occupy a phase-space areastficted to “universally unbiased” joint measurements, and
at least 2ra. It also separates quantum parameter estimatiothe Martens-de Muynck type 4,16, restricted to “nonideal”
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joint measurements. For example, if a measurement apparaication engineer to optimize the receiver. As emphasized by
tus simultaneously outputs two valu¥s and P;, which are  Trifonov et al. [17], even the universally unbiased bound in
on average equal to the averagesXond P (for all input  EQq. (4) is achieved only by choosing the experimental setup

state$, then[6,11,13 in dependence on prior information about the system to be
measuredthe “balance” parametdy=AAX/AP in Ref. [11]
AXAP; = Hr. (4) and the full polarization state in RefL7]).
The need to findgeneral uncertainty relations quantifying N Sec. Il a general formula is given for the best possible
complementaritynot subject to any restrictions on measure- €stimate of an observable, based on an arbitrary measure-
ment, forms the subject of this paper. ment and prior information about the state of the system.

To proceed, one first clearly needs to generalize what id'his formula is_ related to and generalizes expressions for
meant by a “joint measurement.” For example, neither uni-local expectation values’[20-23 and “weak values”
versally unbiased nor nonideal joint measurements includé23,24 of quantum observables. The best possible estimate
experiments that are adapted in some way to particular sui$ also determined for the case in which therengprior
classes of states. Yet Bohr defended complementarity again&tformation available. Examples are given for general energy
a number of thought experiments of this tyji@], including  estimation and for estimation of the quadratures of a single-
the famous Einstein-Podolsky-RosefEPR  paradox mode field using o_ptlcal h_eterodyne detection. In the Ic'_;ltter
[10,18,19. In the latter case a joint measurementXadnd P case th(aT b.est poss_lble estimates are related to the gradient of
arises via simultaneous measuremenXandP’, wherep’  the HusimiQ function. _ _ o
refers to the momentum of aieorrelated auxiliary system. In Sec. Il a geometric uncertainty relation is given for the
Such a joint measurement does not satisfy either of the unRPtimal estimates of any two observables from arbitrary
versal unbiasedness or nonideal restrictions mentionefl€asurement data, assuming that the state prior to measure-
above. ment is known. This uncertainty relation implies a trade-off

Indeed, in trying to place fundamental limits on the infor- between thalispersionsof the estimategi.e., the spreads of
mation which can simultaneously be gained about twdhe corresponding distributionsind theinaccuraciesof the
complementary observables, one must consigr and all ~ €stimatesi.e., the degree to which the estimates successfully
experimental setups, without restriction. The simplest andnimic the corresponding observable#\ universal lower
most general possible approach will therefore be taken in thigound for the inaccuracy of anpossibly nonoptimalesti-
measurement of any two observabld@he corresponding further inequalities are derived, applying to the dispersions
logic is that(i) the result of a given measurement provides@nd to the inaccuracies of the estimates, respectively. It is
information; (ii) this information can be used to make an @IS0 shown that the optimal estimates resulting from a ca-
universal uncertainty relations associated with such estiknown state, satisfy an uncertainty relation with a lower
mates. bound 1/4 of that in Eq(4).

This approach solves the problem of what constitutes a [N Sec. IV auniversaljoint-measurement uncertainty re-
joint measurement in a very general wal measurements lation is derived, valid forany estimatesoptimal or other-
are permitteyl However, there are still two possible strate- Wis€) of two observables from a given experimental setup.
measurement uncertainty relations. The first of these is sind- (3) [8,9], and modification of the derivation leads to
ply to seek uncertainty relations which hold fany  Stronger uncertainty relations such as E4).for the special
estimates, good or bad, of the observables. The second str&ase of universally unbiased measurements. Results are ap-
egy is to throw away all the bad estimates, and only seeRlied to a discussion of the above-mentioned EPR paradox
uncertainty relations for estimates that make the best pod18] and to quadrature estimation based on prior information
sible use of any prior informatioKafter all, why make a about the averages of certain observables.
particular estimate if the information is available to make a Some conclusions are given in Sec. V.
better one® Both strategies will be followed in this paper,
and corresponding joint-measurement uncertainty relations
are given in Secs. lll and IV.

Note that the strategy of making the best use of any avail- We consider an arbitrary measuremgithaving possible
able prior information is of some interest in its own right, results{m}, and with statistics given by
quite aside from joint measurements. For example, a mea-
surement of position does not by itself provide a very useful p(mlp) = tr[ pM ] (5)
basis for estimating energy. However, combining the mea-
surement result with any information available about the sysfor a system described by density opergioBince the prob-
tem beforemeasuremente.g., its average momentum, or its abilities must be positive and sum to unity, the operators
guantum state, or its entanglement with an auxiliary system{M,} must be positive and sum to the unit operator, and
can lead to a significantly improved estimate. More generhence form grobability operator measuréPOM) [1,2,25.
ally, prior information helps the experimenter place the dedn the interests of generality, no further restrictions or spe-
tector to minimize null outcomes, and the quantum commus<ific measurement models are assumed.

II. MAKING THE BEST POSSIBLE ESTIMATE
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A n_otation is adopted whereby a measurement, its corre- Dll,(f(M),A)Z: A+ (| |2 (m)2 - D fFM)[{Hm)
sponding POM, and the corresponding observable quantity m m
are all denoted by the same scripted character, &4.Any
Hermitian operators associated with the measurement will be
denoted via related uppercase Roman charactersM,g., (mAly) [?
In some cases\i may be equivalently described by a = (A% = 2, [(my)l? Rem
Hermitian operatoM. In such a cas#, is just the projec- m v
tion onto the eigenspace associated with eigenvialwé M, ) (mlAlp) |?
andM=3,mM,, If M is nondegenerate with eigenkéfs)} + 2 [(mly)[?| f(m) - RW .
and the system is described by a pure spatg/)(i, Eq.(5) m
reduces to the familiar expressigim|#)=|(m|y)|>. As is  Only the last term depends on the estimate and is non-
well known, however, there are many nontrivial measure-negative. Hence the minimum possible statistical deviation
ments that are not equivalent to some Hermitian operatopr “noise” corresponds to the choi§26]
acting on the Hilbert space of the syst¢in2,25.
As discussed in the Introduction, it may often be desirable f(m) = Agp(M4): = RM. (8)
to make an estimate of some observable based on the result P (ml )

of a given measurement and any available prior |nformat|onA tilde is used to distinguish this quantity from an operator.

This section is therefore concerned with answering the fol- Thus, when statistical deviation is used as the criterion of

lowing quesnom‘pr a quantum system d.escnbed by der]S'tyoptimality, the optimal estimate @&, from measurement re-
operatorp, what is the best possible estimate one can make

of some observablel from a measurement 0¥ with result  SUltM=mon statey)), is given byAq,(m|y) in Eq. (8). Itis
m? only possible to make this estimate when the appropriate

prior information—the state prior to measurement—is
known. The case where no prior information is available is
A. Using prior information: A special case considered in Sec. Il C below.

It is convenient, for the purpose of introducing the neces- The formula.on the_ right-hgnd side 9f E®) hgs in fact
sary concepts, to first consider the above question in th@PPeared previously in the literature in a variety of other
special case that1 and.A correspond to respective Hermit- contexts: as the local expectation value of the operator
ian operatordvl andA. This case was also considered briefly relative toM for state|y) [20-22; as the weak value of the
in Ref. [26]. operatorA relative to preselected stalg) and postselected

In particular, suppose that one seeks the best possible egtatgL:n} [23’24'27'2]‘3 and as th(; “czlassical componentl" of
timate ofA from the measurement of a Hermitian operdepr  ~* With respect tov for state[y) [26,29,3Q. However, only

having eigenketg|m)}, where for simplicity it will be as- _the above_ “estimation” context appears to provide a robust
sumed that the system is in a knoyare state|) prior to Interpretation. S .
measurement. It follows that any estimédien) of A from For gxample, the expression in &) can pe hegative for
measurement resul =m is equivalent to measurement of a positive operatoA, which undermines its interpretation as

o T either a “value” or a “classical” component Af In contrast,
the Hermitian operatorf(M)—Emf(m)|m><m|. One may the fact that the best possible estimate of some positive ob-
therefore represent the estimate as

servable, from the measurement of a second incompatible
observable, can be negative on occasion merely provides a
f(M) = A+ N, nice signature of the difference between quantum and classi-
cal estimation theorieg31] (at least in the case where statis-
i.e., as the sum of the operator to be estima#dand a tical deviation is used as the sole criterion of optimality
“noise operatorN; [6,8,13. While one could of course restrict attention to estimates that
Now, the best possible estimate will of course depend org|| within the eigenvalue range &, the estimate in Eq(8)
the criterion of optimality used to define “best possible.” Onesitill remains of fundamental interest in providing an absolute
obvious criterion is that the noise should be “small” on av-jower bound for the statistical deviation ahy estimate. It
erage, i.e., the quantity should be noted that, in any case, all examples considered in
this paper satisfy this restrictiojwith the exception of Eq.
(UUNFl) = (I[F(M) = AP|y) =D (f(M),A)2  (6)  (16) in Sec. Il D].

X(mlA[p) +c.c]

should be small. HereD,/,(A,B): =((A-B)?!2 denotes the B. Using prior information: The general case

statistical deviationbetween Hermitian operato’s and B The question posed at the beginning of this section, of
(see also the AppendixThe best possible estimate is there- how to determine the best possible estimate of an observable
fore defined as corresponding tiee choice of f that mini- 4 from measurement of generalPOM observableV on a
mizes the statistical deviation between the observable and itsystem described by a known density opergtomay now

estimate be addressed. Clearly, it is first necessary to suitably gener-
To determine this best possible estimate, note tha{@®@qg. alize in some way the criterion of optimality used in the
can be rewritten as preceding section.
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For the case wherd corresponds to some Hermitian op- sense of minimizing this distance, follows directly(ase the
eratorA, the generalization of statistical deviation turns outAppendix
to be quite straightforward. In particular, as discussed in the -
Appendix, the natural definition of the statistical deviation AJp(m): = t{ AM M ] (13
between a Hermitian operatér and a POM observabl8

—{B}, for a given state, is The physical observable corresponding to this estimate will
= bSs ’

be denoted byAJ. Note from Eq.(10) that AQ,=Agy in
2. = _ _ the case thap is a maximally mixed state, i.ep~ 1.
D,(AB)" %tr[(A b)p(A=b)By]. © The estimate in Eq(13) is typically biased—after all,
_ _ there is no prior information available abdut) to feed into
Note that this reduces 1 ,(A,B) in Eq. (6) whenB corre-  g,ch an estimate. However, depending on the relationship
sponds to some Hermitian operatrAs shown in the Ap-  petweenA and M, it is possible for the estimate to be uni-
pendix, the derivation in Eq7) is easily generalized to give yersally unbiased, as will be seen for heterodyne detection in

the optimal estimate Sec. Il D below. Further, in cases where the estimate is only
linearly biased, it is possible to trade “distance” for “bias.”
~ tlp(MpA + AMy,)] -
f(m) = mip): = 10 For example, if
of A from measurement resuti=m. The case whered % MitTAM /M) = A+ 1 14

doesnotcorrespond to a Hermitian operator is also discussed

in the Appendix. for some constant, then a universally unbiased estimate is
Equation(10) clearly generalizes Eq8) and has several obtained by replacing\?)pt(m) with Agpt(m)—r.
properties worth noting. First, it follows via E¢) that the As a more general example, consider the estimate of the
optimal estimate is alwaysnbiasedi.e., spin S=%0/2 of a spin-1/2 particle from a measurement re-
~ sult m corresponding to a general PONM,,=qq(1
2 p(mlp)Agp(mlp) = tifpA] = (A). (1) +5-m)}. Herem ranges over some subsRtof the Bloch
m

ball, and{q,,} is any probability distribution o satisfying
Second, if the system is initially in some eigenstabeof A, 2mdmM=0. The best possible estimate $ffrom resultm

then Z\opr(m|p)Ea, independent of the actual measurementfollows from Eq.(13) as the linearly biased estimaken/2.

result. Third, if M corresponds to aideal measurement of a 1 N€ associated universally unbiasTed estimaté As'm/2,
Hermitian operator which commutes with, one has the WhereA denotes the matrix,,g,mm- (note that the inverse
classical repeatability property exists providingR contains three linearly independent mem-

berg. A similar result holds on general Hilbert spaces for
Ropt(m@ :Rom(m|p), (12)  trace clasM, andA, with the components of replaced by

o a linearly independent basis set of trace-free Hermitian op-
wherep: =2 .,M,ypM,, describes the postmeasurement en-erators.

semble.
It is convenient to denote the physical observable associ-

ated with the optimal estimate in EQL0) by A, Measure- D. Example: Energy estimation

ment of A is carried out by measuringt, and for resulm Making the best possible estimate of energy from the

attributing the outcomé\opt(m|p) to A, One may refer to  measurement of various observables is considered here to

Agpt @s thecompatiblecomponent ofA with respect toM. indicate the types of expressions that can arise.

Note from Eq.(10) that compatible components form a lin-  First, for a particle with Hamiltonian operatbt, consider

ear algebra, i.e., the case where all that is known about the system is that it is

in thermal equilibrium corresponding to temperatiiteThe

(A+\B)opt= Aopt+ Mopt particle is therefore described by the density operator propor-

tional toe™”, whereg=1/(kT). It follows from Eq.(10) that
o i the optimal estimate of the energy of the system, from mea-
C. No prior information surement resuliM =m, is given by

Consider now the case where therens information ~
available about the state of the system prior to measurement. EopmT) == (/0 B)In tr[e”# M ]. (15)
The statistical deviation therefore cannot be calculated, n
the estimates in Eq$8) and(10). The best possible estimate
of A from some measuremeit! must instead be defined via
some staténdependentriterion of optimality.

One suitable criterion is provided by a generalization of
the Hilbert-Schmidt distance(A,B)2=tr[(A-B)?] between
two Hermitian operators. Such a generalizatid#, M), for
a Hermitian operatoA and a POM observablat has re- Wwhere Ar=(1/2)hwcoth(fhw) and Br
cently been giveri32]. The estimate “closest” té, in the =(1/2mw?seck(Bfiw/2). Note that in the zero-temperature

% hus tfe”"M, ] is a kind of generalized partition function.
For the particular example of a position measurement, on a
one-dimensional harmonic oscillator of mass and fre-
guencyw, one obtains the quadratic estimate

EopX|T) = Ar+ Bpé,
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limit this estimate reduces to the ground-state endrgy2, X;=X+X', P;=P-P'. (19
independent of the actual measurement resullh the clas- . .

sical limit #—0 the estimate reduces td1/2)kT This formal equivalence allows one to map results from one
+(1/2mwe, i.e., to the sum of the average kinetic energyContext to the other.

and the potential energghis result holds more generajly For the general case of an uncorrelated image—band_ field
Second, for a particle with Hamiltoniaki=P?/(2m) described by density operatpy, the measurement statistics

+V(X) in a knownpure state|), the best possible estimate of heterodyne detection correspond to a continuous POM

: ) , A
of energy from a measurement of positidnfollows from  (Mat: With M=a""D(a)p{D(a) [36]+ Flere o denotes the
Eq. (8) as complex eigenvaluex;+ia, of a+b', D(a) denotes the

Glauber displacement operator ¢xp'-a’a), andp/ is de-
Eopt(x| Y) = |VSZ/(2m) +V(x) + Q(x), (16) fined by

where(x|#)=R exp(iS/#) and Q(x)=—#2/(2m)V2R/R is the Pl = 2 Imha nl(= D™ (mlpin,

so-called “quantum potential[21]. Note thatQ(x) arises e

here in the context of the best possible estimate of the kinetivhere the subscripta and b refer to number states of the

energy [i.e., the possibly negative quantitivS?/(2m) signal and image-band fields, respectively.

+Q(x)], with no relation to a real potential energy. For simplicity, attention will be restricted in what follows
Third, and finally, consider a single-mode optical field to the case of a vacuum-state image-band field. For this case

with annihilation operatoa and HamiltoniarH =Awa’a. An p/ =pi=|0)0|, and hence the measurement is described by

inefficient measurement of photon number, via a photodetedhe well-known coherent-state POM,2,25,3%, with

tor having quantum efficiency;, corresponds to the POM i

{M(m)} with number-state expansiod (7)==,/m+r)}m Mg =7 aXal,

+1|™C,7"(1-7)" [16,28. If there is no prior information  4n4 associated measurement statistics given by the H@simi

about the state of the field prior to measurement, the bes{nction

possible estimate of the energy of the field then follows from

Eq.(13) as Q(a) = 7 Xalp|a). (20)

~0 _ _ Now, suppose first that theren® prior information avail-
Eopdm) = A (m+1)/7 - 1], (17 able about the state of the field. The best possible estimate of
using the identity, ™"C,x = (1-x)"™L, This estimate is lin- the quadrature;, from measurement result, then follows

early biasedwith r=1/7-1 in Eq.(14)], with the associated 1M Ed.(13) as the estimate
universally unbiased estimate given fhym/ .

X(l),opt(a) =(alXq|m)a]a) = a;. (21)
E. Example: Heterodyne detection Similarly, the best possible estimate X¥§ in the case of no

For a single-mode optical field with annihilation operator prior information is given by

a, the quadrature observableé =(a+a’)/2 and X,=(a %0 _ 29
-a)/2i have commutator[X;,X,]=i/2, and hence are 2.0p(@0) = 2. (22)
analogous to the position and momentum observables of @hus the best possible estimates are directly given by the
quantum particlgwith 7 replaced by 1/2 In particular,X;  measurement result, i.e., they areequivalentto measure-
and X, cannot be measured simultaneously to an arbitrarynent of X; ; and X, ; in Eq. (18). More generally, the best
accuracy. _ _ _ possible estimate of a general Hermitian observéiaea’),

However, in optical heterodyne detection, one introducesyhen no prior information is available, follows from Ed.3)
an auxiliary image-band field with annihilation operator 55 f("(4, "), wheref™ denotes the normally ordered form
and simultaneously measures the real and imaginary parts gf f.
the operatom+b' [33-3§, i.e., one measures the commuting  The situation changes markedly when prior information
observables about the state of the systeisavailable. In particular, the

B B best possible estimate of for a measurement on a known
X=Xt Yo, Xoy=X= Yo, (18) statep follows via Eq.(10) as

whereY; andY, denote the corresponding quadratures of the

image-band field. This may be interpreted an approximate Xy ol alp) = (alXap + pXala)/(alpl a2
joint measurement ofX; and X,, subject to image-band = 1Rea + (alap|a)/{a|p|a)}. (23)
noise.

Clearly this joint measurement is formally equivalent to Thus the direct “no prior information” estimate; =Re « in
the canonical joint measurement of positi¥rand momen-  Eq. (21), provides onlyhalf of the input to the more general
tum P of a quantum particle, referred to in the Abstract, estimate ofX;. The other half depends on the state and is
where one introduces an auxiliary particle with correspondiypically a highly nonlinear function of botk; and «,. One
ing observableX’ andP’ and simultaneously measures has a similar estimate
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Ly _ to how well the estimate does its job of estimating a given
X = 2Im{a + (alap| )/ 24 .
2.onl alp) = zIm{a + (alapla)/(alpla)) (24 observable. These two types of uncertainty are to some de-
for the quadratureX,, where again the no prior information gree complementary, and it will be seen that for optimal

estimate,a,=Im «, provides only half the input. estimates they are linked by a very simple uncertainty rela-
Further insight into these best possible estimates is gainetibn.
by expressing them solely in terms of the Husighfunction To characterize dispersion, let; denote the observable
Q(a) in Eq. (20). In particular, noting that variation with corresponding to a general estimatefofrom measurement
respect tox gives M, where outcomen of M corresponds to outconfém) of
Aj;. The statistics of the estimate are completely determined
Kalp|a) = (a|D(8)'pD(da)| ) = (alp|a) b)j the statistics of\ and the choice of, and in particular

:<a|[p,aT]|a>5a+<a|[a,p]|a>6a*, (25) the root-mean-square deviation g may be calculated in
. the usual way as
one may replacep by [a,p]+pa in Egs.(23) and (24) to

obtain (AA)?= p(mlp ) f(m)? - [2 p(m|p>f<m>]2, (28)

Xjoplalp) = a; + (1/4)(91d a)InQ (26) where the outcome probabilitg(ml|p) is given by Eq.(5).
for j=1,2. Hence the best possible estimates differ signifi-This quantity will be used as a measure of the dispersion of
cantly from «; and a, precisely when the gradient of the the estimate.
logarithm of the probability distribution, at the point corre-  To characterize the inaccuracy of the estimatg one
sponding to the measurement outcome, is large. requires a measur€.A;) of the degree to which the estimate

As examples, consider the cases where the field is knowdiffers from the observable being estimated. In particular, it

to be in a coherent stat@) and in a number stat@). One  should be non-negative and vanish in the case of a perfect
then finds from Eqs(23) and(24), or equivalently from Eq. estimate(i.e., A;=A). The statistical deviation used in Eqg.
(26), (9) satisfies these properties, and hence the quantity

th,opl(a‘:B) + iiz,op(aLB) = %(a + ,8): E(‘Af): = DP(A'Af) (29)

will be used as a measure of inaccuracy of the estimate. Note
;<1,op1(04n) + iiz,op{am) =1a(1+n/af?), from Eq.(6) that, for Hermitian observables, this measure is
) just the mean deviation of the noise operator associated with
respectively. _ o _ the estimatg6,8,13. Note also that the optimal estimates of
Finally, to preview the effect of prior information on gec || based on prior information about the state of the

joint-measurement uncertainty relations, the uncertainties ofystem are precisely those estimates having the minimum
the estimatest oo and A o Will be calculated here for the  ossiple inaccuracye(Ay) = e(Aqp).

above coherent-state example. These estimates are equiva-; follows immediately from Eq.(A3) of the Appendix
lent to the measurement 0K, ;+8)/2 and(X,,+B)/2, re-  hat
spectively, and hence, using Ed.8),
(AA)? = (AAOPQZ + e(Aopaz, (30
VarXy o= (1/4VarX, ;= (VarX, + VarYy)/4 = 1/8,

) o ) i.e., the dispersion and inaccuracy of the best possible esti-
with a s_lmllar result for Vak, ., One therefore obtains the mate form the sides of a right-angled triangle having hypot-
uncertainty product enuseAA. Thus there is a fundamental trade-off between

AXy oA X o= 1/8 (27) dis_persion and inaccuracy, va!id for any measuremstit
This trade-off may be geometrically represented by the con-
for this example, which igour timesbetter than the corre- straint thatA,y lies on a circle(or hyperspherehaving dia-
sponding product metrically opposed “polesA and (A). These poles corre-
AXe AXo = 1/2 spond to the optimal estimates favi =.A (i.e., a perfect
13572 estimat¢ and M =1 (i.e., a trivial estimatg respectively.
for the case when no prior information about the state isAlternatively, one may represent the trade-off by a circle of
available. It will be shown in the following section that this radiusAA in the dispersion-inaccuracy plane, with zero in-

factor of 4 improvement is the ultimate limit. accuracy and zero dispersion corresponding to the cases
M=A and M =1, respectively.
Il. UNCERTAINTY RELATIONS FOR OPTIMAL The above geometric property, and the standard uncer-
ESTIMATES tainty relationAAAB=[([A,B])|/2, allows one to immedi-
) ) ) ) ately write down a general uncertainty relation for the best
A. Dispersion versus inaccuracy: A geometric possible estimates of two Hermitian operatdrandB from
uncertainty relation an arbitrary POM measuremem:

There are two types of contribution to the “uncertainty” of 5 Py 5 21/2
an estimate. The firstlispersionis related to the statistics of [(AAop)”+ e Aop)°] 2[(AB°F") L ([ABDI2.

the estimate itself, whereas the secandgccuracy is related (3D

052113-6



PRIOR INFORMATION: HOW TO CIRCUMVENT THE.. PHYSICAL REVIEW A 69, 052113(2004

Thus, for a nonzero lower boundne cannot make both IID (with the auxiliary system in a minimum uncertainty
estimates arbitrarily accurate while making the correspond-state, it follows immediately from Eq(33) that one has the
ing dispersions arbitrarily small, no matter what measure- corresponding uncertainty relation

ment scheme is adoptedNote that the lower bound is

achieved if and only if the system is in a minimum- AXop Popt= /4, (35

uncertainty state oA andB. improving on the universally unbiased lower bound in Eq.

(4) by a factor of 4. Thus, even when one hesmplete
B. Incompatibility implies inaccuracy information about the system prior to measurement, there is
still a fundamental lower bound to the product of the disper-
sions of the optimal estimates.
) [t p(AMpm = M pA) ]2 To prove Eqs(33) and(34), recall that the X 2 covari-
€(Aop)® = > M pM,] (32) ance matrixC for two random variable#\; and A, is given
m by Cji: =(AjAQ —(A{A. Hence the covariance matrert
for the inaccuracy of the best possible estimate. Equalityf the optimal quadrature estimates follows via E¢&l),
holds in the case thatis pure andM is completg(i.e., with  (22), and(26) as
M ,,=|m)(m| for all m), and hence in particular for the case of
heterodyne detection with pure signal and image-band fields.  ~opt_ (wa) + 1 f d2a< a,ﬂ + w@) + i,:
Note that since the optimal estimate Afhas, by definition, Ik ! 4 Yo oy da 16
the best possible accuracy, the right-hand side of(&2).in _
fact provides a lower bound for the inaccuracyawiy esti- - Ci?<+ (1/16)':1%_ (1/2) G (36)
mate ofA from M and, hence, is universal. Here C? is the covariance matrix for the joint-quadrature
The lower bound is nontrivial whenevefA,M]) does  observables(; ; and X, ; in Eq. (18), FQ denotes the Fisher
not vanish for somen, i.e., wheneveA and M are incom-  information matrix of the HusimQ function with [37]
patible for statep. Hence,one can never make a perfect
estimate of one observable from the measurement (_)f a sec- FJ?(: :fdzaQ(an/(; ) (9INQIJ ey, (37)
ond incompatible observabl&/henA and M are a pair of
;23?; rf':\ell"t)c/) (ttﬁgjtllz?sa;i roilr);grrr\;igilgﬁ, (;;j , Ig\rl]vg rtr? (3 L::r;i eIS c)l?roand integration by parts has been used to obtain the second

. y . I line.
Zﬂgi\l/llty[ggrgeqsponds to an "exact uncertainty relation”Aor Now, if F; denotes the Fisher information of the marginal

Equation (32) generalizes Eq(47) of Ref. [26] (in the dlstr|but|oq Qj(e) .fof @, thgn the Cramgr-Rao inequality
context of exact uncertainty relationand Eq.(14) in Ref. from classical statisticg37] yields F;=1/Cj. One also has
[28] (in the context of weak valugso general POM mea-
surements M. It follows via the Schwarz inequality = 0< f ?aQ()[(9INQ/d a)) = (9INQy/3 ey) P = F ~ ;.
[tr[KTL]|2<tr[KTK]tr[LTL], which gives

[t pAM]? < trlpM [ pAMA]
opt Q Q) _
for the choiceK=p2M¥2 L=p?AM¥2 Noting the first G = Cj + 1(16C5) - 1/2.
equazlity in *EZQ-(A3) of the Appendix, and usingz+Z)*  \riting Varx,=r/4, VarX,= y/(4r), with y=1 (to satisfy
=4z~ |z-Z'? for z=tr[ pAM,] appearing in the optimal es- the standard uncertainty relation for the quadratueesl r

timate in Eq.(10), then leads directly to Eq32). Equality >0, and noting from Eq(18) that CJ=VarX;+1/4, there-
holds forK proportional toL and hence, in particular, for a fgre leads to

complete measurement on a pure state.

One has the useful lower bound

Q
jk

Substitution of these inequalities into E§6) then yields

e S [ r 1L ]
C. Example: Heterodyne detection 16(y -1 y+r y+1
For heterodyne detection with a vacuum-state image-banminimizing the right-hand side with respect togivesr=1;
field, as discussed in Sec. Il E, it will be shown that one hasninimizing the resulting expression with respect &= 1
the further independent inequalities then givesy=1; and Eq.(33) immediately follows.
Finally, to obtain Eq(34), note first that combining Eqs.
AX oA Xy o= 178, 33 (20), (25), (32), and(37) gives

(X op)? + €( Xy o) = 114, (34) (X1 opd? = F16, €( X op)?=F3/16,  (38)

for the dispersions and the inaccuracies of the best possiblehere equality holds for all pure states. Thus the accuracy of
estimates. The first relation is saturated for coherent statethe estimate of one quadrature is related to the Fisher infor-
and the second relation is saturated for all pure states. mation of the other quadrature. Moreover, taking the trace of

Note that for the analogous case of a canonical joint mea€in Eq. (36) and using the Euclidean relation in E§0),
surement of position and momentum as discussed in Seone also has
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e(X1’0p92+ e(;\gz'opt)Z: 1/2 _(F%Jr FzQz)/16 The proof of Eq.(40) proceeds via a formal trick—the
representation of the measuremgrtas a Hermitian opera-
(giving an upper bound of half a photon for the left-hand tor M’ on an extended Hilbert space. This representaton
sidg. Comparison with Eq.(38) immediately yields the Naimark extension preserves the statistical deviation be-
known relation[37] tween observables, while allowing one to exploit algebraic
FQ 4 EQ <4 (39) properties of Hermitian operators. Any such representation
e can be used for the proof; however, the choice of a product
for the trace of the Fisher information matrix, which when space representation is perhaps the simplest.
inserted back into the previous expression yields(B4) as In particular, for a given POMU ={M,} one can always
desired. (formally) introduce an auxiliary system described by some
fixed statep’ and a Hermitian operato¥’ acting on the
tensor product of the system and auxiliary system Hilbert

IV. UNIVERSAL JOINT-MEASUREMENT UNCERTAINTY spaces such that the statistics &t and M’ are identical
RELATION [1,2,25, i.e.,
A. Arbitrary estimates p(m|p) =tr[pM] =trlp ® p'M/] (41)

The uncertainty relation to be derived in this section ap

plies to any estimates of two Hermitian operatofsand B notes the projection on the eigenspace associated with eigen-

from a generz_il measurememl_. Unllke_ the_g_eome_trlc UN-  valuem of M. Note that this representation is used here as a
certainty relation of the preceding section, it is valid for bothf

timal and timal estimat d is ind dent Prmal mathematical device only, with no physical content.
optimal and nonoptimal estimates and IS independent of i 145 immediately from Eq(41) that the statistics of
whether or not any prior information about the system is

vailable. Th iated derivation mav be modified t bgeneral estimated; and By are equivalent to the statistics of
avaiiable. 1he associated derivation may be modilied 1o 0bg, (commuting Hermitian operator§(M’) andg(M’), re-
tain the more restrictive uncertainty relations satisfied b

Y. ; el
universally unbiased estimates, such as @, spectively. Further, if|s’)} denotes a complete set of kets for

Suppose then thdtm) andg(m) are general estimates for the quiliary Hilbert space, Eq41) yields the partial trace
A andB, respectively, for measurement resMt=m. These felation
estimates thus correspond to two compatible observaljes
and By, measured by measuringt and for outcomem as-
signing the valued(m) and g(m), respectively. It will be
shown that these estimates satisfy the universal uncertaintgence, using EqgA1) and(A2) of the Appendix, one has

for all density operatorg and outcomesn, whereM/, de-

tr, [p' M/ ]: = 2 (S'[p’M/]S') = M. (42)

S

relation
| | Dpep (A F(M")?=(A?) +(f(M")?)
AAe(By) + e(A)AB, + e(As) e(By) = [([A,BD|/2.
R =S Hmtp © p' (AM, + M/ A)]
(40 m
This uncertainty relation is therefore a fundamental expres- =(A) +(A% - f(m)
sion of the limitations imposed by complementarity on quan- f m

tum systems. .
As a very simple example, suppose that one makes no X{tr [ pAtry[p" Ml +c.ci
physical measurement at all, but simply estimaide<) and a2 2 - —
B=0 on every occasion. Then clearly the dispersions of the = (A9 + (A7) — il pAA; + ArAp]
estimates vanishAAf_:Al_S‘g:O. The universal unce_rtainty = D,,(A,Af)zz e(As)?
relation Eq.(40) then implies that the product of the inaccu-
racies of such trivial estimatesi®ntrivially bounded below, and thus the representation preserves statistical deviation and

ie., inaccuracy. WritingbA=A-f(M') and 5B=B-g(M’), it fol-
lows that e(A)?={(6A)?) and &B,)>=((6B)?) and, hence,
e(A)e(By) = [([AB])/2. that ’
As a less trivial example, suppose that the posi¥oof a - / /
quantum particle is measured and used to estimate both the [{TABD = [KLf(M") + 5A,g(M") + 5B])
position and the momentum of the particle. It is natural to < [([f(M"),8B])| + {[sA,g(M")])|
chooseX;= X (this is in fact theoptimal estimate, whether or +([5A, B))|
not any prior information is availableThis estimate oK is '
perfectly accurate, i.eg(X;)=0, and hence from Eq40) < 2Af(M")e(By) + 2e(Af)Ag(M')
AXe(Pg) = h/2 +2e(Ap)e(By),

for any corresponding estimat®, of the momentum. Note using the triangle inequality and the Schwarz inequality
that this is a stronger result than the corresponding geometriéK —k)2)(L?=[([K,L])[?/4 [in a manner formally similar to
uncertainty relation following from Eq.31). Ozawa'’s proof of Eq(3) [8,9]). The last line is equivalent to
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the universal uncertainty relation in E@O). To see what is happening, it is helpful to replace the non-
Finally, the above derivation may be modified to obtain anormalizable eigenket considered by EPR with the physical

stronger uncertainty relation, valid for the special case ofvave function

universally unbiase@stimates oA andB [6,11,13. In par- ey — a2l 2ot X242 (o

ticular, the requirement thatAq)=(A), (By=(B) for all Px,X') = Ke X~ aaomgmr e x)Tan"glpolenih,

statesp implies via Eq.(42) that whereK is a normalization constant and 7<<1 in suitable

A=tr, [p'f(M)], B=tr,[p'g(M")]. units. One has
Hence tg[p'Ag(M")]=AB=tr,[p'f(M")B], implying that (X=X')=a, VarX-X)=o¢*<1,
([6A, 6B])=(-[A,B]). Thus, with no triangle inequality be-
ing necessary, the Schwarz inequality yields (P+P")=p, VarP+P)=r<1,

e(Ag) e(By) = [([6A, sBD|/2 =|([A,B]|/2. (43)  and hencey is anapproximateeigenstate of the relative po-
sition and total momentum.

The joint uncertainty relation for universally unbiased joint  Syppose now thaX and P’ are simultaneously measured

measurements of position and momentum, B4, is @  as before, with measurement resuttand p’, respectively.

straightforward consequence of this reg#itl1,13. The corresponding best possible estimateX @fnd P then
follow via Eg. (8) as

B. Example: EPR estimates ~ ~ 72(po—p') + >72p’ ,
xopt:Xy Popt: Oﬁ2+0272 ~Po—p.

_e]'he dispersions and inaccuracies of these estimates follow
from straightforward calculation as

The notion that the properties of position and motion are
incompatible goes back nearly 2500 years to Zeno of Ele
(who resolved the issue by concluding that motion was im
possiblg. However, in classical physics this notion was re-
jected due to the existence of a consistent model: one can AXgpy= (B2 + 2 V2(27) = 1i(27),  e(Xop) =0,
simultaneously define both the position and motion of a clas-
sical system by assuming that it follows(differentiablg

2_
continuous trajectory in configuration space. Unfortunately, - M ~
. . . APopt 2 1/2 hl(20),
in the standard quantum formalism there are no such trajec- 20(h? + o?7)
tories for physical systems, and a new resolution of the issue
is needed. hr
In the standard interpretation of quantum mechanics, as €(Popd) = m =T

formulated by Heisenberg and Bol#,10, one takes the
view that the properties of position and motion are indeedSubstitution into the left-hand side of the joint-measurement
incompatible, in the sense of being unable to be accuratelyncertainty relation in Eq(40) then gives#/2, which is
defined or measured simultaneously, and to this extent agre@gecisely equal to the value of the right-hand side—the state
with Zeno. However, othergmost notably Einsteinhave s in fact a minimum joint-uncertainty state of position and
argued that the quantum formalism is in fantompleteand  momentum(other equalities for this state are given in Ref.
that quantum systems can in particular have simultaneousli26], where the effect of wave-function collapse on optimal
well-defined physical values of position and momentumestimates is also consideped
[18]. It has since been shown that any such “hidden variable” The above results support, in a quantitative manner, Bo-
interpretation requires the existence of a mutual influence okir's defence of the consistency of complementarity with the
conspiracy between a measurement made on one system agshpleteness of the standard quantum formaljdi®,19.
the values ascribed to a spacelike separated sy8m4J.  The EPR argument in fact goes somewnhat further, asserting
Even so, it is of interest to consider the relation of the fa-the physical reality of the estimated value Bffrom the
mous incompleteness argument made by Einstein, Podolsksheasurement o’ and the simultaneous physical reality of
and Roser{18] to the principle of complementarity, as em- the estimated value of following from the alternative mea-
bodied in Eq.(40). surement ofX’ [18]. However, precisely because these mea-
The EPR paper considers two particles described by agurements do not refer to a single experimental setup, such
eigenket of relative position and total momentuib8].  assertions go beyond the quantum formalism and cannot be
Clearly, the position of the first particle can be estimatedested via Eq(40).
precisely by a direct measurement of the position, with per- More generally, even when one has full knowledge of the
fect accuracye(X,) =0. Simultaneously, the correlation be- state of some system and uses this prior information to make
tween the particles allows the momentum of the first particlehe best possible estimates of two complementary observ-
to also be estimated precisely, from a measurement of thebles from a given experimental setup, there remains a fun-
momentum of the second particle, again with perfect accudamental trade-off between dispersion and inaccuracy—
racy: e(Pqp) =0. At first sight it thus appears that the univer- embodied by the universal uncertainty relation in Ef)—
sal joint-measurement uncertainty relation in ) is vio-  which  prevents simultaneous knowledge of the
lated by the EPR example. corresponding physical properties.
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C. Example: Linear estimates Consider now the canonical joint measurement of position
0atmd momentum for a quantum particle as previously dis-

Itis of interest to consider an example where one does n %ssed, corresponding to measurement of the commuting op-
know the state of the system before measurement, but do%?atorsx ~X+X' andP,=P—-P’, where the primed variables
J— J= ’

have prior knowledge of the averages of one or more observ- " S - ;
ables. While such prior information is by itself insufficient to fefer to an auxiliary particle in a minimum uncertainty state

. . ; . with (X’)=(P’)=0. It will be assumed that all that is known
make an optimal estimate as per ELQ), it can still be taken . .
into account to improve on the “no information” estimate of about the particle prior to measurement are the means and

Eq. (13). variances ofX and P.

One method of proceeding might be to introduce some The observable, X', andX,=X+X' all commute and

hvsical principle to assian a unique state to the system thﬁre.therefore completely anallogouslto the respective classical
phy P P 9 q Y variabless, n, andm=s+n. It immediately follows that the

is consistent with the given prior information and to calculate . . )
¢ b best linear estimate of from X;, given knowledge ofX)

estimates by substituting this state forin Eq. (10). For : )
example, the maximum entropy principle of Jaynes could b@"d VaX, is equivalent to measurement of the operator

used for this purposgtl] [indeed the “thermodynamic” ex- Xin=AXy+(1=A)(X), with A=(1+VaiX'/VarX)™, associ-
ample in Eq(15) may be reinterpreted in this way, where the ated inaccuracy

form of the density operator correspond_s to the maximum (X)) = AXAX'/(VarX + Varx') 2,
entropy state consistent with a known prior average energy
of the systeni41]]. and associated dispersion

In general, however, there are many possible physical B N2 , .
states consistent with given prior knowiedge about certain 2%Xin = Varx/(Varx+VarX')=== (1 + VaiX'/Varx) “AX,.
averages. Further, the available prior_ informati_on may wellone similarly has an optimal linear estima®g, obtained
imply, for example, that the system i®t described by a from knowledge of(P) and VaP, with analogous expres-
maximum entropy statee.g., in a communication setup it sjons fore(P;,,) and AP;;,.
may be known that each signal is described by one of a Note that there is a degree of freedom remaining, which
number of fixed pure statég), |¢,),... having equal aver-  may pe tuned for further optimality. In particular, the squeez-
age energieslt is therefore mpo_rtant to c_;on5|der_est|m_<';1t|0n ing ratioAX’ /AP’ may be chosen to minimize some suitable
methods that use only the prior information that is available cqst function. For example, for a harmonic oscillator one
without requiring assumptions about the actual state of th‘?ﬂight choose to minimize the “inaccuracy energy”
system. Herelinear estimates and their joint uncertainty ¢(p.)2/(2m)+(mw?/2)e(X;,)2. However, the existence of

properties will be examined. _ , the universal uncertainty relation in E40) suggests the
Consider first a detection system for a classical signal 1,51 generic joint uncertainty cost function

which is subject to uncorrelated noiseresulting in a mea-
sured signam=s+n. It will be assumed thagn)=0. If mis J = AXin€(Piin) + €Xjin) APy, + €(Xiin) €(Pyiry) -
taken as an estimate fgy the average deviation of this esti-

X . o Minimizi ith h i io |
mate from the actual signalis quantified by inimizing J with respect to the squeezing ratio leads to two

regimes. First, ifAX AP<2%, then it is optimal to choose
AX'JAP'=AX/AP, which leads to the inequality

62:<(m—3)2> =N,
AXin APy, = [1 +h2/(4VaiX VarP)] /2 = h14,

whereN denotes the noise vana_n(:ez). _ . analogous to the lower bound in E¢5). However, for

However, one can do better if there is some prior infor-Ax Ap> 2, it is optimal to choose either afX’ and AP’
mation about the signal statistics. For example, suppose ong,a| to zero, corresponding to the alternatiXes=X, Pj,
knows t2he average values=(s) and the variance -(p)andx;,=(X), P;,=P, respectively,—i.e., not to bother
S=((s-9)*) of the signal. Then it is straightforward to show yith a true joint measurement at all. A similar dichotomy of
that thelinear estimatem;,=Am+(1-\)s has a minimum  regimes has been noted previously for the special case of
statistical deviation from the signalgiven by Gaussian stateg3].

€ = (M —92 =NI(S+N) < &, V. CONCLUSIONS

corresponding to the choide=S/(S+N). The associated rms A general formula for the best possible estimate of one
uncertainty of this estimate follows as observable from the measurement of another has been given

and applied in a number of settings. A universal joint-
Amy, = S(S+N)M2= (1 +N/S)2Am. measurement unpertainty relation has also been giyen, which
quantifies the principle of quantum complementarity for all
Thus, use of the prior information allows not onlybatter ~ possible experimental setups. Describing measurements by
estimate of the signal, but also a reduction in thepersion  completely general POMsvhich require only that probabili-
of the estimate of the signal. Note that for the particular caséies are positive and sum to unjtymplies that the main
of Gaussiansignal and noise distributions, the above linearresults of the paper are universally applicable and indepen-
estimate is in fact optimal over any other estimpta]. dent of any dynamical models and interpretational issues
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concerning quantum measurement. It is also worth noting D, (AM)2= t[M, (A= m)p(A-m)]
that the use of a general POM includes the case where an P m m

experimenter bases an estimate on the resultpbfrality of _ o
measurements, obtained by carrying out a numbéprefde- =t p(A=M)?]+t[p(M?-M?)], (A2)

termined consecutive physical operationglescribed by whereMi- =S mM... This expression reduces to E@1)
=3 MM,

colrtnr[]);e;cegyéé)r? S;IE\éSvnll?rweeiitrt:];/afs[s;zr]%)brior information aboutfor Hermitian observables. It follows directly from a natural
the systeme.g., the state of the system in Sec. Ill C and thealg(:"br"j1 for POM observablgs2] (being the square root of

mean and variance of certain observables in Sec.)\dr& the average of the square of the “difference” of two such

can improve the standard uncertainty relation for the Canonigbservable)s and has also been postulatel initio in Ref.

cal joint measurement of position and momentum by up to &9]' Itt) f"?t appeare(il_ |n|thﬁ context of estimation of photon
factor of 4. However, unlike the classical case, if one makedUMPEr from an optical phase measureredi.

optimal use otompleteinformation about the system before To pbtam Eq.(10), let .Af denote the observable corre-
sponding to a general estimate/from M, where outcome

measurement, one cannot do any better than this—= S
complementarity cannot be circumvented by the use of prioFn of M corresponds to outcomiém) of Ay. The statistical

knowledge. The principle of complementarity is similarly deviation betweend; andA follows from the first equality in
consistent with respect to the properties of entangledfd- (A2) as
systems—as demonstrated in Sec. IV B, quantum correla- o n2
tions cannot be exploited to violate the universal joint- Dy(A A —<A>—%f(m)tr[p(AMm+MmA)]
measurement uncertainty relation of E40).
Finally, it would be of interest to determine the best pos- + > f(m)>2r[pM,]
sible estimate of an observable under the imposition of fur- m
ther natural restrictions. For example, one could require that

an estimate of photon number, from some general measure- = (A?) = 22 {(M)Agp(mlp)tr pM ]
ment, minimizes statistical deviation subject to the further "

constraint of being a positive integer. This would reduce the + > f(m)&rpM ]

accuracy of the estimate relative to the unconstrained case, m

but has the advantage of incorporating prior information

about the possible physical values of the observable being =(A)-2 Aopt(m|P)2tr[PMm]
estimated. It would similarly be of interest to consider alter- m

native characterizations of dispersion and inaccur@cy., + £(m) = A (ml o)t oM
entropy and relative entropy §[ (m) = Aop(mlp) FtrTpM ],

Note added. Recently, a related paper by Ozawa has ap- 5
peared[45], giving an independent derivation of the univer- whererpt(m|p) is the estimate defined in E¢LO). The last

sal uncertainty relation in Eq40). term is non-negative, and hence the statistical deviation is
minimized by the choice(m)=Ay,(m|p), as per Eq(10).
APPENDIX Note that choosing4d;=Ag in the above expression, and

. . using Eq.(11), gives
The proofs of Eqs(10) and(13), for optimal estimates of

a Hermitian operatoA from a general measuremef, are D, (A Agp)? = (A%) - <A§pt>

given here. The generalization to the optimal estimatanyf _

POM observabled from measurement ofM is also dis- = VarA - VarAqy

cussed. = Dp(A'<A>)2 =D, (Agpt (A))? (A3)

The main ingredient required is a measure of “how good”
a given estimate oA is. For the case of two Hermitian op- for the minimum statistical deviation.
eratorsA andB, a natural measure of how well one mimics  The proof of Eq.(13) is completely analogous, where the
the other, for a given statg, is given by the statistical de- statistical deviation in Eq(A2) is replaced by the general-

viation ized Hilbert-Schmidt distance
D,(A,B)?=tr{p(A-B)]. (A1) d(A M)Z =S M (A - m)?]
This measure was used in the proof of E).for the special m
case where\ corresponds to a Hermitian operatdr How- =t (A- M)z] + tr[(W _ I\WZ)] (A4)

ever, to consider arbitrary measuremens it is necessary

to generalize this measure to the case where one observalibtained via a natural algebra for POM observaljlgg.

is an arbitrary POM observable. Note that this measure is proportional to the average of the
Fortunately, the generalization of EqAl) is quite  square of the statistical deviation over all states.

straightforward9,32. In particular, it is natural to define the Finally, it may be asked whether one can define the best

statistical deviation between a Hermitian operafoand a  possible estimate whed does not correspond to a Hermit-

POM observableM ={M} by ian operator. This is of interest, for example, if one wants to
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make the best estimate of elapsed time or optical phase from
the measurement of some observable such as position or

PHYSICAL REVIEW A 69, 052113(2004

D,(A, M)2 =t p(A? + M = AM — MA],

photon number. It turns out that the generalization of statiswith A and M/ defined as above. It may be shown that the

tical deviation is highly nontrivial in this case, as certain
consistency conditions must be satisfi@®@]. However, for
the special case @ompleteobservablesd and M (i.e., with
A,=|a)(al, M,=|m)(m|), which further satisfy the condition
that no two kets from the combined dé),|m)} are propor-
tional, it follows from Sec. IV of Ref[32] that the statistical
deviation has the simple generalized form

best possible estimate of, from a measurement resuit of
M on a known state, follows in this case as

~ (mlpA + Ap|m)
(mp)=—"———— (A5)
AonlMl6) = oy

However, more generally one cannot simply replAcIeyK
in Eq. (10).
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