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The principle of complementarity is quantified in two ways: by a universal uncertainty relation valid for
arbitrary joint estimates of any two observables from a given measurement setup and by a general uncertainty
relation valid for theoptimal estimates of the same two observables when the state of the system prior to
measurement is known. A formula is given for the optimal estimate of any given observable, based on arbitrary
measurement data and prior information about the state of the system, which generalizes and provides a more
robust interpretation of previous formulas for “local expectations” and “weak values” of quantum observables.
As an example, the canonical joint measurement of positionX and momentumP corresponds to measuring the
commuting operatorsXJ=X+X8 andPJ=P−P8, where the primed variables refer to an auxiliary system in a
minimum-uncertainty state. It is well known thatDXJDPJù". Here it is shown that given thesamephysical
experimental setup and knowledge of the system density operator prior to measurement, one can make im-
proved joint estimatesXopt andPopt of X andP. These improved estimates are not only statistically closer to
X andP but further satisfyDXoptDPoptù" /4, where equality can be achieved in certain cases. Thus one can
do up to four times better than the standard lower bound(where the latter corresponds to the limit ofno prior
information). Other applications include the heterodyne detection of orthogonal quadratures of a single-mode
optical field and joint measurements based on Einstein-Podolsky-Rosen correlations.
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I. INTRODUCTION

At least four generic types of uncertainty principle can be
distinguished in quantum theory.

(i) State preparation: the quantum description of a physi-
cal system cannot simultaneously assign definite values to all
observables.

(ii ) Overlap: different physical states cannot in general be
unambiguously distinguished by measurement.

(iii ) Disturbance: measurement of one observable neces-
sarily “disturbs” other observables.

(iv) Complementarity: the experimental arrangements for
accurately defining/measuring different observables are in
general physically incompatible.

These principles are all negative in content, corresponding
to limits on what is possible in quantum mechanics. These
limits are quantified via associated uncertainty relations. As
the literature on such uncertainty relations is extensive, only
a few general remarks and indicative references will be given
here to set the context for this paper.

The “state preparation” uncertainty principle is the best
known and places limitations on classical notions of prior
knowledge(and hence predictability). The corresponding un-
certainty relations are generally expressed in terms of the
spreads of the probability distributions of different observ-
ables, the prototypical example being the textbook inequality

DXDP ù "/2 s1d

for the rms spreads of position and momentum.
The “overlap” uncertainty principle corresponds to the ex-

istence of nonorthogonal states and underlies the semiclassi-
cal notion that quantum states occupy a phase-space area of
at least 2p". It also separates quantum parameter estimation

from its classical counterpart. A corresponding uncertainty
relation is the parameter estimation bound,

dXDP ù "/2, s2d

wheredX is a measure of the error in any(covariant) esti-
mate of the amount by which a state has been displaced in
position andDP is the rms momentum spread of the state
[1–3].

The “disturbance” uncertainty principle is connected to
early statements by Heisenberg such as “every subsequent
observation of the position will alter the momentum by an
unknown and undeterminable amount”[4]. Investigation of
this principle has proceeded by examining the distribution of
one observable both before and after the measurement of
another observable and attempting to relate the disturbance
of the distribution to the accuracy of the measurement[5–7].
However, recent work by Ozawa[8,9] shows that the mo-
mentum disturbancehsPd due to a position measurement
having inaccuracyesXd can in fact satisfyesXdhsPd=0.
Hence this principle needs to be formulated more carefully,
presumably in relation to valid uncertainty relations such as
[8,9]

esXdhsPd + esXdDP + DXhsPd ù "/2. s3d

Finally, the fourth uncertainty principle above arises from
Bohr’s notion ofcomplementarity[10] and restricts the de-
gree to whichjoint information about observables can be
obtained from a single experimental setup. However, previ-
ous formulations of corresponding uncertainty relations have
only been given for special cases[6,11–17]. The most gen-
eral of these are the Arthurs-Kelly type[6,11,13,17], re-
stricted to “universally unbiased” joint measurements, and
the Martens-de Muynck type[14,16], restricted to “nonideal”
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joint measurements. For example, if a measurement appara-
tus simultaneously outputs two valuesXJ and PJ, which are
on average equal to the averages ofX and P (for all input
states), then[6,11,13]

DXJDPJ ù ". s4d

The need to findgeneral uncertainty relations quantifying
complementarity,not subject to any restrictions on measure-
ment, forms the subject of this paper.

To proceed, one first clearly needs to generalize what is
meant by a “joint measurement.” For example, neither uni-
versally unbiased nor nonideal joint measurements include
experiments that are adapted in some way to particular sub-
classes of states. Yet Bohr defended complementarity against
a number of thought experiments of this type[10], including
the famous Einstein-Podolsky-Rosen(EPR) paradox
[10,18,19]. In the latter case a joint measurement ofX andP
arises via simultaneous measurement ofX andP8, whereP8
refers to the momentum of an(correlated) auxiliary system.
Such a joint measurement does not satisfy either of the uni-
versal unbiasedness or nonideal restrictions mentioned
above.

Indeed, in trying to place fundamental limits on the infor-
mation which can simultaneously be gained about two
complementary observables, one must considerany and all
experimental setups, without restriction. The simplest and
most general possible approach will therefore be taken in this
paper: any measurement is considered to provide a joint
measurement of any two observables. The corresponding
logic is that(i) the result of a given measurement provides
information; (ii ) this information can be used to make an
estimateof any given observable; and(iii ) one may look for
universal uncertainty relations associated with such esti-
mates.

This approach solves the problem of what constitutes a
joint measurement in a very general way(all measurements
are permitted). However, there are still two possible strate-
gies that may be followed to obtain general joint-
measurement uncertainty relations. The first of these is sim-
ply to seek uncertainty relations which hold forany
estimates, good or bad, of the observables. The second strat-
egy is to throw away all the bad estimates, and only seek
uncertainty relations for estimates that make the best pos-
sible use of any prior information(after all, why make a
particular estimate if the information is available to make a
better one?). Both strategies will be followed in this paper,
and corresponding joint-measurement uncertainty relations
are given in Secs. III and IV.

Note that the strategy of making the best use of any avail-
able prior information is of some interest in its own right,
quite aside from joint measurements. For example, a mea-
surement of position does not by itself provide a very useful
basis for estimating energy. However, combining the mea-
surement result with any information available about the sys-
tem beforemeasurement(e.g., its average momentum, or its
quantum state, or its entanglement with an auxiliary system)
can lead to a significantly improved estimate. More gener-
ally, prior information helps the experimenter place the de-
tector to minimize null outcomes, and the quantum commu-

nication engineer to optimize the receiver. As emphasized by
Trifonov et al. [17], even the universally unbiased bound in
Eq. (4) is achieved only by choosing the experimental setup
in dependence on prior information about the system to be
measured(the “balance” parameterb="DX/DP in Ref. [11]
and the full polarization state in Ref.[17]).

In Sec. II a general formula is given for the best possible
estimate of an observable, based on an arbitrary measure-
ment and prior information about the state of the system.
This formula is related to and generalizes expressions for
“local expectation values”[20–22] and “weak values”
[23,24] of quantum observables. The best possible estimate
is also determined for the case in which there isno prior
information available. Examples are given for general energy
estimation and for estimation of the quadratures of a single-
mode field using optical heterodyne detection. In the latter
case the best possible estimates are related to the gradient of
the HusimiQ function.

In Sec. III a geometric uncertainty relation is given for the
optimal estimates of any two observables from arbitrary
measurement data, assuming that the state prior to measure-
ment is known. This uncertainty relation implies a trade-off
between thedispersionsof the estimates(i.e., the spreads of
the corresponding distributions) and theinaccuraciesof the
estimates(i.e., the degree to which the estimates successfully
mimic the corresponding observables). A universal lower
bound for the inaccuracy of any(possibly nonoptimal) esti-
mate is also given. For the case of heterodyne detection two
further inequalities are derived, applying to the dispersions
and to the inaccuracies of the estimates, respectively. It is
also shown that the optimal estimates resulting from a ca-
nonical joint measurement of position and momentum, on a
known state, satisfy an uncertainty relation with a lower
bound 1/4 of that in Eq.(4).

In Sec. IV auniversal joint-measurement uncertainty re-
lation is derived, valid forany estimates(optimal or other-
wise) of two observables from a given experimental setup.
The derivation shares a formal link with Ozawa’s proof of
Eq. (3) [8,9], and modification of the derivation leads to
stronger uncertainty relations such as Eq.(4) for the special
case of universally unbiased measurements. Results are ap-
plied to a discussion of the above-mentioned EPR paradox
[18] and to quadrature estimation based on prior information
about the averages of certain observables.

Some conclusions are given in Sec. V.

II. MAKING THE BEST POSSIBLE ESTIMATE

We consider an arbitrary measurementM having possible
resultshmj, and with statistics given by

psmurd = trfrMmg s5d

for a system described by density operatorr. Since the prob-
abilities must be positive and sum to unity, the operators
hMmj must be positive and sum to the unit operator, and
hence form aprobability operator measure(POM) [1,2,25].
In the interests of generality, no further restrictions or spe-
cific measurement models are assumed.
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A notation is adopted whereby a measurement, its corre-
sponding POM, and the corresponding observable quantity
are all denoted by the same scripted character, e.g.,M. Any
Hermitian operators associated with the measurement will be
denoted via related uppercase Roman characters, e.g.,Mm.

In some casesM may be equivalently described by a
Hermitian operatorM. In such a caseMm is just the projec-
tion onto the eigenspace associated with eigenvaluem of M,
andM =ommMm. If M is nondegenerate with eigenketshumlj
and the system is described by a pure stater= uclkcu, Eq. (5)
reduces to the familiar expressionpsmucd= ukmuclu2. As is
well known, however, there are many nontrivial measure-
ments that are not equivalent to some Hermitian operator
acting on the Hilbert space of the system[1,2,25].

As discussed in the Introduction, it may often be desirable
to make an estimate of some observable based on the result
of a given measurement and any available prior information.
This section is therefore concerned with answering the fol-
lowing question:for a quantum system described by density
operatorr, what is the best possible estimate one can make
of some observableA from a measurement ofM with result
m?

A. Using prior information: A special case

It is convenient, for the purpose of introducing the neces-
sary concepts, to first consider the above question in the
special case thatM andA correspond to respective Hermit-
ian operatorsM andA. This case was also considered briefly
in Ref. [26].

In particular, suppose that one seeks the best possible es-
timate ofA from the measurement of a Hermitian operatorM
having eigenketshumlj, where for simplicity it will be as-
sumed that the system is in a knownpure stateucl prior to
measurement. It follows that any estimatefsmd of A from
measurement resultM =m is equivalent to measurement of
the Hermitian operatorfsMd=omfsmdumlkmu. One may
therefore represent the estimate as

fsMd = A + Nf ,

i.e., as the sum of the operator to be estimated,A, and a
“noise operator”Nf [6,8,13].

Now, the best possible estimate will of course depend on
the criterion of optimality used to define “best possible.” One
obvious criterion is that the noise should be “small” on av-
erage, i.e., the quantity

kcuNf
2ucl = kcuffsMd − Ag2ucl = Dc„fsMd,A…2 s6d

should be small. HereDcsA,Bd : =ksA−Bd2l1/2 denotes the
statistical deviationbetween Hermitian operatorsA and B
(see also the Appendix). The best possible estimate is there-
fore defined as corresponding tothe choice of f that mini-
mizes the statistical deviation between the observable and its
estimate.

To determine this best possible estimate, note that Eq.(6)
can be rewritten as

Dc„fsMd,A…2 = kA2l + o
m

ukmuclu2fsmd2 − o
m

fsmdfkcuml

3kmuAucl + c.c.g

= kA2l − o
m

ukmuclu2FRe
kmuAucl
kmucl G2

+ o
m

ukmuclu2F fsmd − Re
kmuAucl
kmucl G2

. s7d

Only the last term depends on the estimate and is non-
negative. Hence the minimum possible statistical deviation
or “noise” corresponds to the choice[26]

fsmd = Ãoptsmucd: = Re
kmuAucl
kmucl

. s8d

A tilde is used to distinguish this quantity from an operator.
Thus, when statistical deviation is used as the criterion of

optimality, the optimal estimate ofA, from measurement re-

sult M =m on stateucl, is given byÃoptsmucd in Eq. (8). It is
only possible to make this estimate when the appropriate
prior information—the state prior to measurement—is
known. The case where no prior information is available is
considered in Sec. II C below.

The formula on the right-hand side of Eq.(8) has in fact
appeared previously in the literature in a variety of other
contexts: as the local expectation value of the operatorA
relative toM for stateucl [20–22]; as the weak value of the
operatorA relative to preselected stateucl and postselected
stateuml [23,24,27,28]; and as the “classical component” of
A with respect toM for stateucl [26,29,30]. However, only
the above “estimation” context appears to provide a robust
interpretation.

For example, the expression in Eq.(8) can be negative for
a positive operatorA, which undermines its interpretation as
either a “value” or a “classical” component ofA. In contrast,
the fact that the best possible estimate of some positive ob-
servable, from the measurement of a second incompatible
observable, can be negative on occasion merely provides a
nice signature of the difference between quantum and classi-
cal estimation theories[31] (at least in the case where statis-
tical deviation is used as the sole criterion of optimality).
While one could of course restrict attention to estimates that
fall within the eigenvalue range ofA, the estimate in Eq.(8)
still remains of fundamental interest in providing an absolute
lower bound for the statistical deviation ofany estimate. It
should be noted that, in any case, all examples considered in
this paper satisfy this restriction[with the exception of Eq.
(16) in Sec. II D].

B. Using prior information: The general case

The question posed at the beginning of this section, of
how to determine the best possible estimate of an observable
A from measurement of ageneralPOM observableM on a
system described by a known density operatorr, may now
be addressed. Clearly, it is first necessary to suitably gener-
alize in some way the criterion of optimality used in the
preceding section.
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For the case whereA corresponds to some Hermitian op-
eratorA, the generalization of statistical deviation turns out
to be quite straightforward. In particular, as discussed in the
Appendix, the natural definition of the statistical deviation
between a Hermitian operatorA and a POM observableB
;hBbj, for a given stater, is

DrsA,Bd2: = o
b

trfsA − bdrsA − bdBbg. s9d

Note that this reduces toDcsA,Bd in Eq. (6) whenB corre-
sponds to some Hermitian operatorB. As shown in the Ap-
pendix, the derivation in Eq.(7) is easily generalized to give
the optimal estimate

fsmd = Ãoptsmurd: =
trfrsMmA + AMmdg

2trfrMmg
s10d

of A from measurement resultM=m. The case whereA
doesnot correspond to a Hermitian operator is also discussed
in the Appendix.

Equation(10) clearly generalizes Eq.(8) and has several
properties worth noting. First, it follows via Eq.(5) that the
optimal estimate is alwaysunbiased, i.e.,

o
m

psmurdÃoptsmurd = trfrAg = kAl. s11d

Second, if the system is initially in some eigenstateual of A,

then Ãoptsmurd;a, independent of the actual measurement
result. Third, ifM corresponds to anideal measurement of a
Hermitian operator which commutes withA, one has the
classical repeatability property

Ãoptsmur̄d = Ãoptsmurd, s12d

wherer̄ : =om8Mm8rMm8 describes the postmeasurement en-
semble.

It is convenient to denote the physical observable associ-
ated with the optimal estimate in Eq.(10) by Aopt. Measure-
ment ofAopt is carried out by measuringM, and for resultm

attributing the outcomeÃoptsmurd to Aopt. One may refer to
Aopt as thecompatiblecomponent ofA with respect toM.
Note from Eq.(10) that compatible components form a lin-
ear algebra, i.e.,

sA + lBdopt = Aopt + lBopt.

C. No prior information

Consider now the case where there isno information
available about the state of the system prior to measurement.
The statistical deviation therefore cannot be calculated, nor
the estimates in Eqs.(8) and(10). The best possible estimate
of A from some measurementM must instead be defined via
some state-independentcriterion of optimality.

One suitable criterion is provided by a generalization of
the Hilbert-Schmidt distancedsA,Bd2=trfsA−Bd2g between
two Hermitian operators. Such a generalization,dsA,Md, for
a Hermitian operatorA and a POM observableM has re-
cently been given[32]. The estimate “closest” toA, in the

sense of minimizing this distance, follows directly as(see the
Appendix)

Ãopt
0 smd: = trfAMmg/trfMmg. s13d

The physical observable corresponding to this estimate will
be denoted byAopt

0 . Note from Eq.(10) that Aopt
0 ;Aopt in

the case thatr is a maximally mixed state, i.e.,r,1.
The estimate in Eq.(13) is typically biased—after all,

there is no prior information available aboutkAl to feed into
such an estimate. However, depending on the relationship
betweenA andM, it is possible for the estimate to be uni-
versally unbiased, as will be seen for heterodyne detection in
Sec. II D below. Further, in cases where the estimate is only
linearly biased, it is possible to trade “distance” for “bias.”
For example, if

o
m

MmtrfAMmg/trfMmg = A + r s14d

for some constantr, then a universally unbiased estimate is
obtained by replacingAopt

0 smd with Aopt
0 smd−r.

As a more general example, consider the estimate of the
spin S="s /2 of a spin-1/2 particle from a measurement re-
sult m corresponding to a general POMhMm=qms1
+s ·mdj. Here m ranges over some subsetR of the Bloch
ball, andhqmj is any probability distribution onR satisfying
omqmm=0. The best possible estimate ofS from resultm
follows from Eq.(13) as the linearly biased estimate"m /2.
The associated universally unbiased estimate is"L−1m /2,
whereL denotes the matrixomqmmmT (note that the inverse
exists providingR contains three linearly independent mem-
bers). A similar result holds on general Hilbert spaces for
trace classMm andA, with the components ofs replaced by
a linearly independent basis set of trace-free Hermitian op-
erators.

D. Example: Energy estimation

Making the best possible estimate of energy from the
measurement of various observables is considered here to
indicate the types of expressions that can arise.

First, for a particle with Hamiltonian operatorH, consider
the case where all that is known about the system is that it is
in thermal equilibrium corresponding to temperatureT. The
particle is therefore described by the density operator propor-
tional toe−bH, whereb=1/skTd. It follows from Eq.(10) that
the optimal estimate of the energy of the system, from mea-
surement resultM=m, is given by

ẼoptsmuTd = − s] /] bdln trfe−bHMmg. s15d

Thus trfe−bHMmg is a kind of generalized partition function.
For the particular example of a position measurement, on a
one-dimensional harmonic oscillator of massm and fre-
quencyv, one obtains the quadratic estimate

ẼoptsxuTd = AT + BTx2,

where AT=s1/2d"vcothsb"vd and BT

=s1/2dmv2sech2sb"v /2d. Note that in the zero-temperature
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limit this estimate reduces to the ground-state energy"v /2,
independent of the actual measurement resultx. In the clas-
sical limit "→0 the estimate reduces tos1/2dkT
+s1/2dmv2x2, i.e., to the sum of the average kinetic energy
and the potential energy(this result holds more generally).

Second, for a particle with HamiltonianH=P2/ s2md
+VsXd in a knownpure stateucl, the best possible estimate
of energy from a measurement of positionX follows from
Eq. (8) as

Ẽoptsxucd = u=Su2/s2md + Vsxd + Qsxd, s16d

wherekxucl=RexpsiS/"d andQsxd=−"2/ s2md¹2R/R is the
so-called “quantum potential”[21]. Note that Qsxd arises
here in the context of the best possible estimate of the kinetic
energy [i.e., the possibly negative quantityu=Su2/ s2md
+Qsxd], with no relation to a real potential energy.

Third, and finally, consider a single-mode optical field
with annihilation operatora and HamiltonianH="va†a. An
inefficient measurement of photon number, via a photodetec-
tor having quantum efficiencyh, corresponds to the POM
hMmshdj with number-state expansionMmshd=orum+rlkm
+r um+rCrh

ms1−hdr [16,25]. If there is no prior information
about the state of the field prior to measurement, the best
possible estimate of the energy of the field then follows from
Eq. (13) as

Ẽopt
0 smd = "vfsm+ 1d/h − 1g, s17d

using the identityor
m+rCrx

r =s1−xd−m−1. This estimate is lin-
early biased[with r =1/h−1 in Eq.(14)], with the associated
universally unbiased estimate given by"vm/h.

E. Example: Heterodyne detection

For a single-mode optical field with annihilation operator
a, the quadrature observablesX1=sa+a†d /2 and X2=sa
−a†d /2i have commutatorfX1,X2g= i /2, and hence are
analogous to the position and momentum observables of a
quantum particle(with " replaced by 1/2). In particular,X1
and X2 cannot be measured simultaneously to an arbitrary
accuracy.

However, in optical heterodyne detection, one introduces
an auxiliary image-band field with annihilation operatorb
and simultaneously measures the real and imaginary parts of
the operatora+b† [33–35], i.e., one measures the commuting
observables

X1,J = X1 + Y1, X2,J = X2 − Y2, s18d

whereY1 andY2 denote the corresponding quadratures of the
image-band field. This may be interpreted an approximate
joint measurement ofX1 and X2, subject to image-band
noise.

Clearly this joint measurement is formally equivalent to
the canonical joint measurement of positionX and momen-
tum P of a quantum particle, referred to in the Abstract,
where one introduces an auxiliary particle with correspond-
ing observablesX8 andP8 and simultaneously measures

XJ = X + X8, PJ = P − P8. s19d

This formal equivalence allows one to map results from one
context to the other.

For the general case of an uncorrelated image-band field
described by density operatorri, the measurement statistics
of heterodyne detection correspond to a continuous POM
hMaj, with Ma=p−1Dsadri8Dsad† [36]. Here a denotes the
complex eigenvaluea1+ ia2 of a+b†, Dsad denotes the
Glauber displacement operator expsaa†−a*ad, andri8 is de-
fined by

ri8: = o
m,n

umla aknus− 1dm+n
bkmuriunlb

* ,

where the subscriptsa and b refer to number states of the
signal and image-band fields, respectively.

For simplicity, attention will be restricted in what follows
to the case of a vacuum-state image-band field. For this case
ri8=ri = u0lk0u, and hence the measurement is described by
the well-known coherent-state POM[1,2,25,35], with

Ma = p−1ualkau,

and associated measurement statistics given by the HusimiQ
function

Qsad = p−1kaurual. s20d

Now, suppose first that there isno prior information avail-
able about the state of the field. The best possible estimate of
the quadratureX1, from measurement resulta, then follows
from Eq. (13) as the estimate

X̃1,opt
0 sad = kauX1ual/kaual = a1. s21d

Similarly, the best possible estimate ofX2 in the case of no
prior information is given by

X̃2,opt
0 sad = a2. s22d

Thus the best possible estimates are directly given by the
measurement resulta, i.e., they areequivalentto measure-
ment of X1,J and X2,J in Eq. (18). More generally, the best
possible estimate of a general Hermitian observablefsa,a†d,
when no prior information is available, follows from Eq.(13)
as f sndsa ,a*d, where f snd denotes the normally ordered form
of f.

The situation changes markedly when prior information
about the state of the systemis available. In particular, the
best possible estimate ofX1 for a measurement on a known
stater follows via Eq.(10) as

X̃1,optsaurd = kauX1r + rX1ual/kaurual/2

= 1
2Reha + kauarual/kaurualj. s23d

Thus the direct “no prior information” estimate,a1=Rea in
Eq. (21), provides onlyhalf of the input to the more general
estimate ofX1. The other half depends on the state and is
typically a highly nonlinear function of botha1 anda2. One
has a similar estimate
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X̃2,optsaurd = 1
2Imha + kauarual/kaurualj s24d

for the quadratureX2, where again the no prior information
estimate,a2=Im a, provides only half the input.

Further insight into these best possible estimates is gained
by expressing them solely in terms of the HusimiQ function
Qsad in Eq. (20). In particular, noting that variation with
respect toa gives

dkaurual = kauDsdad†rDsdadual − kaurual

= kaufr,a†gualda + kaufa,rgualda* , s25d

one may replacear by fa,rg+ra in Eqs. (23) and (24) to
obtain

X̃j ,optsaurd = a j + s1/4ds] /] a jdlnQ s26d

for j =1,2. Hence the best possible estimates differ signifi-
cantly from a1 and a2 precisely when the gradient of the
logarithm of the probability distribution, at the point corre-
sponding to the measurement outcome, is large.

As examples, consider the cases where the field is known
to be in a coherent stateubl and in a number stateunl. One
then finds from Eqs.(23) and(24), or equivalently from Eq.
(26),

X̃1,optsaubd + iX̃2,optsaubd = 1
2sa + bd,

X̃1,optsaund + iX̃2,optsaund = 1
2as1 + n/uau2d,

respectively.
Finally, to preview the effect of prior information on

joint-measurement uncertainty relations, the uncertainties of
the estimatesX1,opt andX2,opt will be calculated here for the
above coherent-state example. These estimates are equiva-
lent to the measurement ofsX1,J+bd /2 andsX2,J+bd /2, re-
spectively, and hence, using Eq.(18),

VarX1,opt= s1/4dVarX1,J = sVarX1 + VarY1d/4 = 1/8,

with a similar result for VarX2,opt. One therefore obtains the
uncertainty product

DX1,optDX2,opt= 1/8 s27d

for this example, which isfour timesbetter than the corre-
sponding product

DX1,JDX2,J = 1/2

for the case when no prior information about the state is
available. It will be shown in the following section that this
factor of 4 improvement is the ultimate limit.

III. UNCERTAINTY RELATIONS FOR OPTIMAL
ESTIMATES

A. Dispersion versus inaccuracy: A geometric
uncertainty relation

There are two types of contribution to the “uncertainty” of
an estimate. The first,dispersion, is related to the statistics of
the estimate itself, whereas the second,inaccuracy, is related

to how well the estimate does its job of estimating a given
observable. These two types of uncertainty are to some de-
gree complementary, and it will be seen that for optimal
estimates they are linked by a very simple uncertainty rela-
tion.

To characterize dispersion, letA f denote the observable
corresponding to a general estimate ofA from measurement
M, where outcomem of M corresponds to outcomefsmd of
A f. The statistics of the estimate are completely determined
by the statistics ofM and the choice off, and in particular
the root-mean-square deviation ofA f may be calculated in
the usual way as

sDA fd2 = o
m

psmurudfsmd2 − Fo
m

psmurdfsmdG2
, s28d

where the outcome probabilitypsmurd is given by Eq.(5).
This quantity will be used as a measure of the dispersion of
the estimate.

To characterize the inaccuracy of the estimateA f, one
requires a measureesA fd of the degree to which the estimate
differs from the observable being estimated. In particular, it
should be non-negative and vanish in the case of a perfect
estimate(i.e., A f ;A). The statistical deviation used in Eq.
(9) satisfies these properties, and hence the quantity

esA fd: = DrsA,A fd s29d

will be used as a measure of inaccuracy of the estimate. Note
from Eq. (6) that, for Hermitian observables, this measure is
just the mean deviation of the noise operator associated with
the estimate[6,8,13]. Note also that the optimal estimates of
Sec. II based on prior information about the state of the
system are precisely those estimates having the minimum
possible inaccuracy:esA fdùesAoptd.

It follows immediately from Eq.(A3) of the Appendix
that

sDAd2 = sDAoptd2 + esAoptd2, s30d

i.e., the dispersion and inaccuracy of the best possible esti-
mate form the sides of a right-angled triangle having hypot-
enuseDA. Thus there is a fundamental trade-off between
dispersion and inaccuracy, valid for any measurementM.
This trade-off may be geometrically represented by the con-
straint thatAopt lies on a circle(or hypersphere) having dia-
metrically opposed “poles”A and kAl. These poles corre-
spond to the optimal estimates forM;A (i.e., a perfect
estimate) and M;1 (i.e., a trivial estimate), respectively.
Alternatively, one may represent the trade-off by a circle of
radiusDA in the dispersion-inaccuracy plane, with zero in-
accuracy and zero dispersion corresponding to the cases
M;A andM;1, respectively.

The above geometric property, and the standard uncer-
tainty relationDADBù ukfA,Bglu /2, allows one to immedi-
ately write down a general uncertainty relation for the best
possible estimates of two Hermitian operatorsA andB from
an arbitrary POM measurementM:

fsDAoptd2 + esAoptd2g1/2fsDBoptd2 + esBoptd2g1/2 ù ukfA,Bglu/2.

s31d
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Thus, for a nonzero lower bound,one cannot make both
estimates arbitrarily accurate while making the correspond-
ing dispersions arbitrarily small, no matter what measure-
ment scheme is adopted. Note that the lower bound is
achieved if and only if the system is in a minimum-
uncertainty state ofA andB.

B. Incompatibility implies inaccuracy

One has the useful lower bound

esAoptd2 ù o
m

utrfrsAMm − MmAdgu2

4trfrMmg
s32d

for the inaccuracy of the best possible estimate. Equality
holds in the case thatr is pure andM is complete(i.e., with
Mm= umlkmu for all m), and hence in particular for the case of
heterodyne detection with pure signal and image-band fields.
Note that since the optimal estimate ofA has, by definition,
the best possible accuracy, the right-hand side of Eq.(32) in
fact provides a lower bound for the inaccuracy ofany esti-
mate ofA from M and, hence, is universal.

The lower bound is nontrivial wheneverkfA,Mmgl does
not vanish for somem, i.e., wheneverA andM are incom-
patible for stater. Hence,one can never make a perfect
estimate of one observable from the measurement of a sec-
ond incompatible observable. WhenA andM are a pair of
canonically conjugate observables, the lower bound is pro-
portional to the Fisher information ofM, and the case of
equality corresponds to an “exact uncertainty relation” forA
andM [26,29].

Equation (32) generalizes Eq.(47) of Ref. [26] (in the
context of exact uncertainty relations) and Eq.(14) in Ref.
[28] (in the context of weak values) to general POM mea-
surements M. It follows via the Schwarz inequality
utrfK†Lgu2ø trfK†KgtrfL†Lg, which gives

utrfrAMmgu2 ø trfrMmgtrfrAMmAg

for the choiceK=r1/2Mm
1/2, L=r1/2AMm

1/2. Noting the first
equality in Eq. (A3) of the Appendix, and usingsz+z*d2

=4uzu2− uz−z* u2 for z=trfrAMmg appearing in the optimal es-
timate in Eq.(10), then leads directly to Eq.(32). Equality
holds forK proportional toL and hence, in particular, for a
complete measurement on a pure state.

C. Example: Heterodyne detection

For heterodyne detection with a vacuum-state image-band
field, as discussed in Sec. II E, it will be shown that one has
the further independent inequalities

DX1,optDX2,optù 1/8, s33d

esX1,optd2 + esX2,optd2 ù 1/4, s34d

for the dispersions and the inaccuracies of the best possible
estimates. The first relation is saturated for coherent states,
and the second relation is saturated for all pure states.

Note that for the analogous case of a canonical joint mea-
surement of position and momentum as discussed in Sec.

II D (with the auxiliary system in a minimum uncertainty
state), it follows immediately from Eq.(33) that one has the
corresponding uncertainty relation

DXoptDPopt ù "/4, s35d

improving on the universally unbiased lower bound in Eq.
(4) by a factor of 4. Thus, even when one hascomplete
information about the system prior to measurement, there is
still a fundamental lower bound to the product of the disper-
sions of the optimal estimates.

To prove Eqs.(33) and (34), recall that the 232 covari-
ance matrixC for two random variablesA1 andA2 is given
by Cjk : =kAjAkl−kAjlkAkl. Hence the covariance matrixCopt

of the optimal quadrature estimates follows via Eqs.(21),
(22), and(26) as

Cjk
opt = ka jakl +

1

4
E d2aSa j

] Q

] ak
+ ak

] Q

] a j
D +

1

16
Fjk

Q

= Cjk
Q + s1/16dFjk

Q − s1/2dd jk. s36d

Here CQ is the covariance matrix for the joint-quadrature
observablesX1,J andX2,J in Eq. (18), FQ denotes the Fisher
information matrix of the HusimiQ function with [37]

Fjk
Q: =E d2aQs] lnQ/] a jds] lnQ/] akd, s37d

and integration by parts has been used to obtain the second
line.

Now, if Fj denotes the Fisher information of the marginal
distribution Qjsa jd for a j, then the Cramer-Rao inequality
from classical statistics[37] yields Fj ù1/Cjj

Q. One also has

0 øE d2aQsadfs] lnQ/] a jd − s] lnQj/] a jdg2 = Fjj
Q − Fj .

Substitution of these inequalities into Eq.(36) then yields

Cjj
opt ù Cjj

Q + 1/s16Cjj
Qd − 1/2.

Writing VarX1=gr /4, VarX2=g / s4rd, with gù1 (to satisfy
the standard uncertainty relation for the quadratures) and r
ù0, and noting from Eq.(18) that Cjj

Q=VarXj +1/4, there-
fore leads to

C11
optC22

opt ù
g3

16sg2 − 1dF g

g + r
−

1

gr + 1
G .

Minimizing the right-hand side with respect tor gives r =1;
minimizing the resulting expression with respect togù1
then givesg=1; and Eq.(33) immediately follows.

Finally, to obtain Eq.(34), note first that combining Eqs.
(20), (25), (32), and(37) gives

esX1,optd2 ù F22
Q /16, esX2,optd2 ù F11

Q /16, s38d

where equality holds for all pure states. Thus the accuracy of
the estimate of one quadrature is related to the Fisher infor-
mation of the other quadrature. Moreover, taking the trace of
Copt in Eq. (36) and using the Euclidean relation in Eq.(30),
one also has
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esX1,optd2 + esX2,optd2 = 1/2 −sF11
Q + F22

Q d/16

(giving an upper bound of half a photon for the left-hand
side). Comparison with Eq.(38) immediately yields the
known relation[37]

F11
Q + F22

Q ø 4 s39d

for the trace of the Fisher information matrix, which when
inserted back into the previous expression yields Eq.(34) as
desired.

IV. UNIVERSAL JOINT-MEASUREMENT UNCERTAINTY
RELATION

A. Arbitrary estimates

The uncertainty relation to be derived in this section ap-
plies to any estimates of two Hermitian operatorsA and B
from a general measurementM. Unlike the geometric un-
certainty relation of the preceding section, it is valid for both
optimal and nonoptimal estimates and is independent of
whether or not any prior information about the system is
available. The associated derivation may be modified to ob-
tain the more restrictive uncertainty relations satisfied by
universally unbiased estimates, such as Eq.(4).

Suppose then thatfsmd andgsmd are general estimates for
A andB, respectively, for measurement resultM=m. These
estimates thus correspond to two compatible observablesA f
andBg, measured by measuringM and for outcomem as-
signing the valuesfsmd and gsmd, respectively. It will be
shown that these estimates satisfy the universal uncertainty
relation

DA fesBgd + esA fdDBg + esA fdesBgd ù ukfA,Bglu/2.

s40d

This uncertainty relation is therefore a fundamental expres-
sion of the limitations imposed by complementarity on quan-
tum systems.

As a very simple example, suppose that one makes no
physical measurement at all, but simply estimatesA=0 and
B=0 on every occasion. Then clearly the dispersions of the
estimates vanish:DA f =DBg=0. The universal uncertainty
relation Eq.(40) then implies that the product of the inaccu-
racies of such trivial estimates isnontrivially bounded below,
i.e.,

esA fdesBgd ù ukfA,Bglu/2.

As a less trivial example, suppose that the positionX of a
quantum particle is measured and used to estimate both the
position and the momentum of the particle. It is natural to
chooseX f ;X (this is in fact theoptimalestimate, whether or
not any prior information is available). This estimate ofX is
perfectly accurate, i.e.,esXfd=0, and hence from Eq.(40)

DXesPgd ù "/2

for any corresponding estimatePg of the momentum. Note
that this is a stronger result than the corresponding geometric
uncertainty relation following from Eq.(31).

The proof of Eq.(40) proceeds via a formal trick—the
representation of the measurementM as a Hermitian opera-
tor M8 on an extended Hilbert space. This representation(a
Naimark extension) preserves the statistical deviation be-
tween observables, while allowing one to exploit algebraic
properties of Hermitian operators. Any such representation
can be used for the proof; however, the choice of a product
space representation is perhaps the simplest.

In particular, for a given POMM;hMmj one can always
(formally) introduce an auxiliary system described by some
fixed stater8 and a Hermitian operatorM8 acting on the
tensor product of the system and auxiliary system Hilbert
spaces such that the statistics ofM and M8 are identical
[1,2,25], i.e.,

psmurd = trfrMmg = trfr ^ r8Mm8 g s41d

for all density operatorsr and outcomesm, whereMm8 de-
notes the projection on the eigenspace associated with eigen-
valuem of M8. Note that this representation is used here as a
formal mathematical device only, with no physical content.

It follows immediately from Eq.(41) that the statistics of
general estimatesA f andBg are equivalent to the statistics of
the (commuting) Hermitian operatorsfsM8d and gsM8d, re-
spectively. Further, ifhus8lj denotes a complete set of kets for
the auxiliary Hilbert space, Eq.(41) yields the partial trace
relation

trr8fr8Mm8 g: = o
s8

ks8ur8Mm8 us8l = Mm. s42d

Hence, using Eqs.(A1) and (A2) of the Appendix, one has

Dr^r8sA, fsM8dd2 = kA2l + kfsM8d2l

− o
m

fsmdtrfr ^ r8sAMm8 + Mm8 Adg

= kA2l + kA f
2l − o

m

fsmd

3htrrfrAtrr8fr8Mm8 gg + c.c.j

= kA2l + kA f
2l − trfrAĀf + ĀfArg

= DrsA,A fd2 = esA fd2

and thus the representation preserves statistical deviation and
inaccuracy. WritingdA=A− fsM8d anddB=B−gsM8d, it fol-
lows that esA fd2=ksdAd2l and esBgd2=ksdBd2l and, hence,
that

ukfA,Bglu = ukffsM8d + dA,gsM8d + dBglu

ø ukffsM8d,dBglu + ukfdA,gsM8dglu

+ ukfdA,dBglu

ø 2DfsM8desBgd + 2esA fdDgsM8d

+ 2esA fdesBgd,

using the triangle inequality and the Schwarz inequality
ksK−kd2lkL2lù ukfK ,Lglu2/4 [in a manner formally similar to
Ozawa’s proof of Eq.(3) [8,9]). The last line is equivalent to
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the universal uncertainty relation in Eq.(40).
Finally, the above derivation may be modified to obtain a

stronger uncertainty relation, valid for the special case of
universally unbiasedestimates ofA andB [6,11,13]. In par-
ticular, the requirement thatkA fl=kAl, kBgl=kBl for all
statesr implies via Eq.(42) that

A = trr8fr8fsM8dg, B = trr8fr8gsM8dg.

Hence trr8fr8AgsM8dg=AB=trr8fr8fsM8dBg, implying that
kfdA,dBgl=k−fA,Bgl. Thus, with no triangle inequality be-
ing necessary, the Schwarz inequality yields

esA fdesBgd ù ukfdA,dBglu/2 = ukfA,Bglu/2. s43d

The joint uncertainty relation for universally unbiased joint
measurements of position and momentum, Eq.(4), is a
straightforward consequence of this result[6,11,13].

B. Example: EPR estimates

The notion that the properties of position and motion are
incompatible goes back nearly 2500 years to Zeno of Elea
(who resolved the issue by concluding that motion was im-
possible). However, in classical physics this notion was re-
jected due to the existence of a consistent model: one can
simultaneously define both the position and motion of a clas-
sical system by assuming that it follows a(differentiable)
continuous trajectory in configuration space. Unfortunately,
in the standard quantum formalism there are no such trajec-
tories for physical systems, and a new resolution of the issue
is needed.

In the standard interpretation of quantum mechanics, as
formulated by Heisenberg and Bohr[4,10], one takes the
view that the properties of position and motion are indeed
incompatible, in the sense of being unable to be accurately
defined or measured simultaneously, and to this extent agrees
with Zeno. However, others(most notably Einstein) have
argued that the quantum formalism is in factincompleteand
that quantum systems can in particular have simultaneously
well-defined physical values of position and momentum
[18]. It has since been shown that any such “hidden variable”
interpretation requires the existence of a mutual influence or
conspiracy between a measurement made on one system and
the values ascribed to a spacelike separated system[38–40].
Even so, it is of interest to consider the relation of the fa-
mous incompleteness argument made by Einstein, Podolsky,
and Rosen[18] to the principle of complementarity, as em-
bodied in Eq.(40).

The EPR paper considers two particles described by an
eigenket of relative position and total momentum[18].
Clearly, the position of the first particle can be estimated
precisely by a direct measurement of the position, with per-
fect accuracy:esXoptd=0. Simultaneously, the correlation be-
tween the particles allows the momentum of the first particle
to also be estimated precisely, from a measurement of the
momentum of the second particle, again with perfect accu-
racy:esPoptd=0. At first sight it thus appears that the univer-
sal joint-measurement uncertainty relation in Eq.(40) is vio-
lated by the EPR example.

To see what is happening, it is helpful to replace the non-
normalizable eigenket considered by EPR with the physical
wave function

csx,x8d = Ke−sx − x8 − ad2/4s2
e−t2sx + x8d2/4"2

eip0sx+x8d/2",

whereK is a normalization constant ands ,t!1 in suitable
units. One has

kX − X8l = a, VarsX − X8d = s2 ! 1,

kP + P8l = p0, VarsP + P8d = t2 ! 1,

and hencec is anapproximateeigenstate of the relative po-
sition and total momentum.

Suppose now thatX andP8 are simultaneously measured
as before, with measurement resultsx and p8, respectively.
The corresponding best possible estimates ofX and P then
follow via Eq. (8) as

X̃opt = x, P̃opt =
"2sp0 − p8d + s2t2p8

"2 + s2t2 < p0 − p8.

The dispersions and inaccuracies of these estimates follow
from straightforward calculation as

DXopt = s"2 + s2t2d1/2/s2td < "/s2td, esXoptd = 0,

DPopt =
u"2 − s2t2u

2ss"2 + s2t2d1/2 < "/s2sd,

esPoptd =
"t

s"2 + s2t2d1/2 < t.

Substitution into the left-hand side of the joint-measurement
uncertainty relation in Eq.(40) then gives" /2, which is
precisely equal to the value of the right-hand side—the state
is in fact a minimum joint-uncertainty state of position and
momentum(other equalities for this state are given in Ref.
[26], where the effect of wave-function collapse on optimal
estimates is also considered).

The above results support, in a quantitative manner, Bo-
hr’s defence of the consistency of complementarity with the
completeness of the standard quantum formalism[10,19].
The EPR argument in fact goes somewhat further, asserting
the physical reality of the estimated value ofP from the
measurement ofP8 and the simultaneous physical reality of
the estimated value ofX following from the alternative mea-
surement ofX8 [18]. However, precisely because these mea-
surements do not refer to a single experimental setup, such
assertions go beyond the quantum formalism and cannot be
tested via Eq.(40).

More generally, even when one has full knowledge of the
state of some system and uses this prior information to make
the best possible estimates of two complementary observ-
ables from a given experimental setup, there remains a fun-
damental trade-off between dispersion and inaccuracy—
embodied by the universal uncertainty relation in Eq.(40)—
which prevents simultaneous knowledge of the
corresponding physical properties.
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C. Example: Linear estimates

It is of interest to consider an example where one does not
know the state of the system before measurement, but does
have prior knowledge of the averages of one or more observ-
ables. While such prior information is by itself insufficient to
make an optimal estimate as per Eq.(10), it can still be taken
into account to improve on the “no information” estimate of
Eq. (13).

One method of proceeding might be to introduce some
physical principle to assign a unique state to the system that
is consistent with the given prior information and to calculate
estimates by substituting this state forr in Eq. (10). For
example, the maximum entropy principle of Jaynes could be
used for this purpose[41] [indeed the “thermodynamic” ex-
ample in Eq.(15) may be reinterpreted in this way, where the
form of the density operator corresponds to the maximum
entropy state consistent with a known prior average energy
of the system[41]].

In general, however, there are many possible physical
states consistent with given prior knowledge about certain
averages. Further, the available prior information may well
imply, for example, that the system isnot described by a
maximum entropy state(e.g., in a communication setup it
may be known that each signal is described by one of a
number of fixed pure statesuc1l , uc2l , . . . having equal aver-
age energies). It is therefore important to consider estimation
methods that use only the prior information that is available,
without requiring assumptions about the actual state of the
system. Herelinear estimates and their joint uncertainty
properties will be examined.

Consider first a detection system for a classical signals,
which is subject to uncorrelated noisen, resulting in a mea-
sured signalm=s+n. It will be assumed thatknl=0. If m is
taken as an estimate fors, the average deviation of this esti-
mate from the actual signals is quantified by

e2 = ksm− sd2l = N,

whereN denotes the noise variancekn2l.
However, one can do better if there is some prior infor-

mation about the signal statistics. For example, suppose one
knows the average values̄=ksl and the variance
S=kss− s̄d2l of the signal. Then it is straightforward to show
that the linear estimatemlin =lm+s1−lds̄ has a minimum
statistical deviation from the signals given by

elin
2 = ksmlin − sd2l = NS/sS+ Nd , e2,

corresponding to the choicel=S/ sS+Nd. The associated rms
uncertainty of this estimate follows as

Dmlin = S/sS+ Nd1/2 = s1 + N/Sd−1Dm.

Thus, use of the prior information allows not only abetter
estimate of the signal, but also a reduction in thedispersion
of the estimate of the signal. Note that for the particular case
of Gaussiansignal and noise distributions, the above linear
estimate is in fact optimal over any other estimate[42].

Consider now the canonical joint measurement of position
and momentum for a quantum particle as previously dis-
cussed, corresponding to measurement of the commuting op-
eratorsXJ=X+X8 andPJ=P−P8, where the primed variables
refer to an auxiliary particle in a minimum uncertainty state
with kX8l=kP8l=0. It will be assumed that all that is known
about the particle prior to measurement are the means and
variances ofX andP.

The observablesX, X8, and XJ=X+X8 all commute and
are therefore completely analogous to the respective classical
variabless, n, andm=s+n. It immediately follows that the
best linear estimate ofX from XJ, given knowledge ofkXl
and VarX, is equivalent to measurement of the operator
Xlin =lXJ+s1−ldkXl, with l=s1+VarX8 /VarXd−1, associ-
ated inaccuracy

esXlind = DXDX8/sVarX + VarX8d1/2,

and associated dispersion

DXlin = VarX/sVarX + VarX8d1/2 = s1 + VarX8/VarXd−1DXJ.

One similarly has an optimal linear estimatePlin obtained
from knowledge ofkPl and VarP, with analogous expres-
sions foresPlind andDPlin.

Note that there is a degree of freedom remaining, which
may be tuned for further optimality. In particular, the squeez-
ing ratioDX8 /DP8 may be chosen to minimize some suitable
cost function. For example, for a harmonic oscillator one
might choose to minimize the “inaccuracy energy”
esPlind2/ s2md+smv2/2desXlind2. However, the existence of
the universal uncertainty relation in Eq.(40) suggests the
more generic joint uncertainty cost function

J = DXlinesPlind + esXlindDPlin + esXlindesPlind.

Minimizing J with respect to the squeezing ratio leads to two
regimes. First, ifDX DPø2", then it is optimal to choose
DX8 /DP8=DX/DP, which leads to the inequality

DXlinDPlin ù f1 + "2/s4VarX VarPdg−1"/2 ù "/4,

analogous to the lower bound in Eq.(35). However, for
DX DP.2", it is optimal to choose either ofDX8 andDP8
equal to zero, corresponding to the alternativesXlin =X, Plin
=kPl andXlin =kXl, Plin =P, respectively,—i.e., not to bother
with a true joint measurement at all. A similar dichotomy of
regimes has been noted previously for the special case of
Gaussian states[43].

V. CONCLUSIONS

A general formula for the best possible estimate of one
observable from the measurement of another has been given
and applied in a number of settings. A universal joint-
measurement uncertainty relation has also been given, which
quantifies the principle of quantum complementarity for all
possible experimental setups. Describing measurements by
completely general POMs(which require only that probabili-
ties are positive and sum to unity) implies that the main
results of the paper are universally applicable and indepen-
dent of any dynamical models and interpretational issues
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concerning quantum measurement. It is also worth noting
that the use of a general POM includes the case where an
experimenter bases an estimate on the results of aplurality of
measurements, obtained by carrying out a number of(prede-
termined) consecutive physical operations(described by
“completely positive” linear maps[25]).

It has been shown that by using prior information about
the system(e.g., the state of the system in Sec. III C and the
mean and variance of certain observables in Sec. IV C) one
can improve the standard uncertainty relation for the canoni-
cal joint measurement of position and momentum by up to a
factor of 4. However, unlike the classical case, if one makes
optimal use ofcompleteinformation about the system before
measurement, one cannot do any better than this—
complementarity cannot be circumvented by the use of prior
knowledge. The principle of complementarity is similarly
consistent with respect to the properties of entangled
systems—as demonstrated in Sec. IV B, quantum correla-
tions cannot be exploited to violate the universal joint-
measurement uncertainty relation of Eq.(40).

Finally, it would be of interest to determine the best pos-
sible estimate of an observable under the imposition of fur-
ther natural restrictions. For example, one could require that
an estimate of photon number, from some general measure-
ment, minimizes statistical deviation subject to the further
constraint of being a positive integer. This would reduce the
accuracy of the estimate relative to the unconstrained case,
but has the advantage of incorporating prior information
about the possible physical values of the observable being
estimated. It would similarly be of interest to consider alter-
native characterizations of dispersion and inaccuracy(e.g.,
entropy and relative entropy).

Note added. Recently, a related paper by Ozawa has ap-
peared[45], giving an independent derivation of the univer-
sal uncertainty relation in Eq.(40).

APPENDIX

The proofs of Eqs.(10) and(13), for optimal estimates of
a Hermitian operatorA from a general measurementM, are
given here. The generalization to the optimal estimate ofany
POM observableA from measurement ofM is also dis-
cussed.

The main ingredient required is a measure of “how good”
a given estimate ofA is. For the case of two Hermitian op-
eratorsA andB, a natural measure of how well one mimics
the other, for a given stater, is given by the statistical de-
viation

DrsA,Bd2 = trfrsA − Bd2g. sA1d

This measure was used in the proof of Eq.(8) for the special
case whereM corresponds to a Hermitian operatorM. How-
ever, to consider arbitrary measurementsM it is necessary
to generalize this measure to the case where one observable
is an arbitrary POM observable.

Fortunately, the generalization of Eq.(A1) is quite
straightforward[9,32]. In particular, it is natural to define the
statistical deviation between a Hermitian operatorA and a
POM observableM=hMmj by

DrsA,Md2 = o
m

trfMmsA − mdrsA − mdg

= trfrsA − M̄d2g + trfrsM2 − M̄2dg, sA2d

whereMj : =ommjMm. This expression reduces to Eq.(A1)
for Hermitian observables. It follows directly from a natural
algebra for POM observables[32] (being the square root of
the average of the square of the “difference” of two such
observables), and has also been postulatedab initio in Ref.
[9]. It first appeared in the context of estimation of photon
number from an optical phase measurement[44].

To obtain Eq.(10), let A f denote the observable corre-
sponding to a general estimate ofA from M, where outcome
m of M corresponds to outcomefsmd of A f. The statistical
deviation betweenA f andA follows from the first equality in
Eq. (A2) as

DrsA,A fd2 = kA2l − o
m

fsmdtrfrsAMm + MmAdg

+ o
m

fsmd2trfrMmg

= kA2l − 2o
m

fsmdÃoptsmurdtrfrMmg

+ o
m

fsmd2trfrMmg

= kA2l − o
m

Ãoptsmurd2trfrMmg

+ o
m

ffsmd − Ãoptsmurdg2trfrMmg,

whereÃoptsmurd is the estimate defined in Eq.(10). The last
term is non-negative, and hence the statistical deviation is

minimized by the choicefsmd=Ãoptsmurd, as per Eq.(10).
Note that choosingA f =Aopt in the above expression, and
using Eq.(11), gives

DrsA,Aoptd2 = kA2l − kAopt
2 l

= VarA − VarAopt

= DrsA,kAld2 − DrsAopt,kAld2 sA3d

for the minimum statistical deviation.
The proof of Eq.(13) is completely analogous, where the

statistical deviation in Eq.(A2) is replaced by the general-
ized Hilbert-Schmidt distance

dsA,Md2: = o
m

trfMmsA − md2g

= trfsA − M̄d2g + trfsM2 − M̄2dg, sA4d

obtained via a natural algebra for POM observables[32].
Note that this measure is proportional to the average of the
square of the statistical deviation over all states.

Finally, it may be asked whether one can define the best
possible estimate whenA does not correspond to a Hermit-
ian operator. This is of interest, for example, if one wants to
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make the best estimate of elapsed time or optical phase from
the measurement of some observable such as position or
photon number. It turns out that the generalization of statis-
tical deviation is highly nontrivial in this case, as certain
consistency conditions must be satisfied[32]. However, for
the special case ofcompleteobservablesA andM (i.e., with
Aa= ualkau, Mm= umlkmu), which further satisfy the condition
that no two kets from the combined sethual , umlj are propor-
tional, it follows from Sec. IV of Ref.[32] that the statistical
deviation has the simple generalized form

DrsA,Md2 = trfrsA2 + M2 − ĀM̄ − M̄Ādg,

with Aj and Mj defined as above. It may be shown that the
best possible estimate ofA, from a measurement resultm of
M on a known stater, follows in this case as

Ãoptsmurd =
kmurĀ + Āruml

2kmuruml
. sA5d

However, more generally one cannot simply replaceA by Ā
in Eq. (10).
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