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We introduce quantum states associated with single phase space points in the Wigner formalism for finite-
dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a
procedure for a direct practical observation of the Wigner functions for states and transformations without
inversion formulas.
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I. INTRODUCTION

In recent times there has been an increasing interest in the
practical determination of states and transformations[1,2].
Most of these practical procedures are based on the represen-
tation of quantum objects by functions on the classical phase
space of the problem, specially the Wigner function[3–12].

Despite its classical resemblance, it is known that the
Wigner function can take negative values, so this is not a true
probability distribution and its practical determination re-
quires more or less indirect procedures. Among them, the
ones that require less inversion formulas are based on the
fact that the Wigner function can be measured as an expec-
tation value for each point in phase space[13]. In this regard,
it is also worth pointing out that the square of the Wigner
function is positive, so it can be measured as a probability
distribution. This can be accomplished in quantum optics by
mixing at a beam splitter the field state under investigation
with its complex conjugate in the quadrature representation
and measuring suitable quadratures of the output fields[14].

The occurrence of negative values of the Wigner function
can be charged to a single fact: within the Wigner-Weyl
operator-function correspondence there is no quantum state
corresponding to a single point of the phase space. Given the
relevance of the Wigner function we examine this issue fur-
ther looking for quantum states as close as possible to be the
quantum counterpart of a point of the classical phase space.
Among other consequences this provides practical proce-
dures approaching a direct observation of the Wigner func-
tion.

In Sec. II we recall basic formulas related to the Wigner
function for states and transformations. In Sec. III we exam-
ine the quantum operators corresponding to phase space
points and their representation by quantum states. In Sec. IV
we apply this approach to the most relevant examples of
Wigner function for finite-dimensional spaces.

II. WIGNER FUNCTION FOR STATES
AND TRANSFORMATIONS

The Wigner functionWsVd for a stater can be defined
as [3–10]

WsVd = trfrDsVdg, s2.1d

wherer is the density matrix representing the quantum state
in the Hilbert space, the parameterV designates the points of
the associated classical phase space, andDsVd is a family of
operators(phase space point operators). The inverse of the
above correspondence is of the form

r =E dVWsVdDsVd, s2.2d

for a suitable measure in phase spacedV.
Similarly, we can assign a Wigner functionUsV8 ,Vd to

an input-output transformation[11,12]

rout = o
k

UkrinUk
†, s2.3d

relating the Wigner functionsWoutsV8d, WinsVd associated
with the output and input statesrout, rin, respectively,

WoutsV8d =E dVUsV8,VdWinsVd, s2.4d

being

UsV8,Vd = o
k

trfDsV8dUkDsVdUk
†g. s2.5d

Formulas for the inverse of Eq.(2.5) are also available but
will not be necessary for this work[15].

III. PHASE SPACE POINT STATES

From the above expressions we can infer thatDsVd is the
quantum operator associated with the classical phase space
point V in the Wigner formalism. While classically a single
point in phase space is a legitimate state, its operator coun-
terpartDsVd is not in general a quantum state. This is be-
cause in generalDsVd is not positivefDsVd,0g, and is not
normalizedftrDsVdÞ1g. Positiveness and normalization are
two necessary conditions for an operator to be a density ma-
trix, according to the statistical interpretation of the quantum
theory.

In order to look for a suitable connection between the
phase space point operators and quantum states we may di-
agonalizeDsVd for eachV*Electronic address: alluis@fis.ucm.es

PHYSICAL REVIEW A 69, 052112(2004)

1050-2947/2004/69(5)/052112(5)/$22.50 ©2004 The American Physical Society69 052112-1



DsVd = o
,

l,sVduV,,lkV,,u, s3.1d

whereuV ,,l are the eigenvectors andl,sVd the eigenvalues.
Among other applications, this decomposition provides prac-
tical procedures to determineWsVd andUsV8 ,Vd based on
the generation and detection of the statesuV ,,l, since they
can be expressed as

WsVd = o
,

l,sVdkV,,uruV,,l,

UsV8,Vd = o
k,,,m

l,sVdlmsV8dukV8,muUkuV,,lu2. s3.2d

This strategy has been already proposed and carried out ex-
perimentally for a single mode of the electromagnetic field,
being uV ,,l displaced number states[13]. Note that the lack
of positiveness of the Wigner function is reflected on the fact
that l,sVd can be negative[16].

The above decomposition(3.1) would also serve to deter-
mine quantum states closer toDsVd as the eigenvectors with
the maximum eigenvalue, for example. This idea will be pur-
sued elsewhere. In this work we pretend to go a step further
looking for statesrV embodying all the operatorDsVd, in-
stead of being determined only by part of its spectrum.

For infinite-dimensional Hilbert spaces it seems that there
is no way of avoiding the two difficultiesDsVd,0 and
trDsVdÞ1 simultaneously, so we will focus on finite dimen-
sional spaces. In such a case the two difficulties can be
solved at once in the form

rV =
1

NlsVd + hsVdtrDsVd
fhsVdDsVd + lsVdINg,

s3.3d

whereN is the dimension of the Hilbert space,hsVd is a real
scalar,IN is the identity, andlsVdù−lminsVd, beinglminsVd
the minimum eigenvalue ofhsVdDsVd. It is clear thatrV is
always a legitimate density matrixrV=rV

† , rVù0, and
trrV=1. We can appreciate that the solution is not unique
since differenthsVd, lsVd can be used at convenience. This
freedom may be used, for example, to impose thatrV should
be as close as possible to a pure state.

By inverting Eq.(3.3) expressingDsVd in terms ofrV it is
possible to express the Wigner function for any stater as
being proportional to the overlap trsrrVd

WsVd =
msVd
hsVd

trsrrVd −
lsVd
hsVd

, s3.4d

where msVd=NlsVd+hsVdtrDsVd. This implies that the
Wigner function can be directly determined without using
inversion formulas as being proportional to a measurement
with statistics given by the overlap trsrrVd.

After Eq. (2.5) a similar relation can be derived for
UsV8 ,Vd involving both the generation and detection of the
statesrV, rV8. In a recent work it has been shown that the
very same scheme that serves to detectrV also serves to

generate it[11]. Therefore, the determination ofUsV8 ,Vd
can be regarded as a double measuring scheme.

IV. EXAMPLES

In what follows we particularize the above analysis to two
representatives of the most relevant Wigner functions for
finite-dimensional systems: continuous[5–8] and discrete
[9,10]. Dealing with finite-dimensional systems it can be
helpful to regard them as representing an abstract angular
momentumj =sN−1d /2, using the eigenvectorsu j ,ml of the
componentjz as a suitable orthonormal basis. As an illustra-
tive particular example we will focus always on two modes
of the electromagnetic field, where the subspaces with fixed
total photon number have finite dimension. In this case, the
role of the angular momentum is played by the Stokes op-
erators and the correspondence between theu j ,ml basis and
the photon-number basis can be expressed as

U j =
n1 + n2

2
,m=

n1 − n2

2
L = un1 = j + mlun2 = j − ml,

s4.1d

where un1lun2l are number states withn1 and n2 photons in
the corresponding mode.

A. SU(2) Wigner function

We first consider the operator-function correspondence
when the phase space is a sphere so thatV=su ,fd, whereu
and f are the polar and azimuthal angles, respectively. The
most relevant proposals that used this phase space were in-
troduced in Refs.[5,6]. Their equivalence is recalled in the
Appendix. For definiteness, we follow the notation in
Ref. [6]

D jsVd = o
m,m8=−j

j

Zm,m8
j sVdu j ,mlk j ,m8u, s4.2d

with

Zm,m8
j sVd =

Î4p

2j + 1o
,=0

2j

Î2, + 1k j ,,;m,m8 − mu j ,m8l

3Y,,m8−msVd, s4.3d

where k j1, j2;m1,m2u j ,ml are the Clebsch-Gordan coeffi-
cients andY,,msVd the spherical harmonics.

By construction there is covariance under SU(2) transfor-
mationsRsVd

D jsVd = RsVdD js0dR−1sVd. s4.4d

For our example of a two mode-field, the SU(2) transforma-
tions are all the lossless energy conserving transformations,
such as lossless beam splitters and phase plates. The above
property allows us to focus on the pointV=0 without loss of
generality. It can be easily seen thatD js0d is diagonal in the
u j ,ml basis
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D js0d = o
m=−j

j

Zm,m
j s0du j ,mlk j ,mu, s4.5d

where the eigenvaluesZm,m
j s0d are

Zm,m
j s0d = o

,=0

2j
2, + 1

2j + 1
k j ,,;m,0u j ,ml. s4.6d

For the lowest values ofj we have

Z1/2s0d = S 1.36

− 0.36
D, Z1s0d = 1 1.57

− 0.72

0.15
2 , s4.7d

where the componentZj ,j
j is at the top of the vectors. Using

the correspondence(3.3) we see that the phase space point
staterV=0 is also diagonal in theu j ,ml basis. In Fig. 1 we
have represented the eigenvalues of the eigenvectorsu j ,ml as
a function ofm for rV=0 with j =10, hs0d=1 and minimum
value forls0d. Incidentally, for all the values ofj examined
we have observed that the larger eigenvalue ofDsVd corre-
sponds to the eigenvectorRsVdu j ,m= jl. Accordingly, the
pure state with a larger overlap withDsVd would be the
SU(2) coherent stateRsVdu j ,m= jl. This establishes an inter-
esting connection between the Wigner function and the Q
function on the sphere[17].

Focusing on our optical example, a relevant conclusion of
these results is that a direct and complete determination of
the Wigner function can be carried out simply by photon
number detection after a controllable beam splitter. This is
because of the correspondence(4.1) between thej , m vari-
ables and the number of photons and the implementation of
SU(2) transformationsRsVd by beam splitters.

B. Discrete Wigner function

A continuous phase space is a highly redundant represen-
tation for a finite-dimensional space. If we are interested in
removing redundancies we can restrict the domain of defini-
tion of the above functions to a finite set of points[18].
Maybe a more consistent approach considers a Wigner-Weyl
operator-function correspondence formulated from the very
beginning on a discrete and finite set of points(which tends
to be continuous in the classical limit) [9,10]. We focus on
the operator-function correspondence introduced in Ref.
[10], where the phase space is made ofN3N points as the

product of the spectra of the two conjugate variables:
jz and azimuthal anglef. In this case,V=sm,sd, with
m,s=−j ,−j +1, . . . ,j , and

DsVd =
1

2j + 1 o
k,,=k0,,0

k0+2j ,,0+2j

eigk,,e−i2psks+,md/s2j+1dEkF,,

s4.8d

wherek,, ,k0,,0 are integers,gk,, constant phases, andE, F
are unitary operators

F = ei2p jz/s2j+1d, E = eif, s4.9d

wheref represents here the azimuthal angle operator

f = o
s=−j

j

fsu j ,fslk j ,fsu, s4.10d

whose eigenvectors and eigenvalues are

u j ,fsl =
1

Î2j + 1
o

m=−j

j

e−imfsu j ,ml, fs =
2p

2j + 1
s.

s4.11d

Unfortunately there is no simple expression for the constant
phasesgk,,, which otherwise are not unique[10].

Let us examine in some detail two cases of lower dimen-
sionality j =1/2,1. For j =1/2 (dimension two) a possible
and simple choice for the parameters isk0=,0=0 so that
k,,=0,1 and gk,,=pk, /2. The kernelDsVd can be ex-
pressed as

DsVd =
1

2
I2 − 2mssx + ssy + msz, s4.12d

wheres j are the Pauli matrices. Performing the equivalence
(3.3) with hsVd=1 and minimumlsVd we get that therV

are the SU(2) coherent states(expressed in the photon num-
ber basisun1lun2l)

um,sl = eifm,ssin
um,s

2
u0lu1l + cos

um,s

2
u1lu0l, s4.13d

with

um,s = u0sm+ 1
2d − sp − u0dsm− 1

2d,

fm,s = ms1 − 4sd
p

2
, s4.14d

being tanu0=Î2. These states can be easily generated and
detected since they are the action of a beam splitter on a
single photon.

For the casej =1 (actually for any oddj) there is a choice
for the phasesgk,, that allow us to write the phase space
point operators in a simple and useful form

DsVd = EmF†sDs0dFsE†m, s4.15d

with

FIG. 1. Eigenvalues ofrV=0 corresponding to the eigenvectors
u j ,ml as a function ofm for j =10, hs0d=1 and minimumls0d.
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Ds0d = o
m=−j

j

u j ,− mlk j ,mu. s4.16d

As before, let us focus first on the caseDs0d and later we will
consider the rest of points as a result of the action of the
operatorEmF†s.

In this case, the simplest relation ofDs0d with a quantum
state is of the form[with ls0d=−hs0d]

Ds0d = I3 − 2uV0lkV0u, s4.17d

where(referring again to the photon number basisun1lun2l)

uV0l =
1
Î2

su2lu0l − u0lu2ld. s4.18d

This state is rather popular in quantum optics, specially in
the area of multiparticle interference[19]. It can be easily
generated when two photons impinge simultaneously on the
two input ports of a symmetrical beam splitter. The process
of detection(i.e., the projection onuV0l) can be performed
by detecting the presence or absence of coincidences of two
photodetectors placed at the outport ports of a symmetrical
beam splitter[19].

Finally, until the end of the paper we consider the imple-
mentation of the rest of phase space point operators forV
Þ0 as the action of powers ofE andF on the vectoruV0l.
The operatorF is very simple to implement in quantum op-
tics becausejz=sa1

†a1−a2
†a2d /2 andF is simply a phase shift.

Concerning the action ofEm with m= ±1 we have

uV1l = EuV0l =
1
Î2

s− u1lu1l + u0lu2ld,

uV−1l = E−1uV0l =
1
Î2

su1lu1l − u2lu0ld. s4.19d

In order to generate and detect these states we propose a
method involving the coupling of the two field modes with
an auxiliary two-level system(a two-level atom for instance)
expanded by the orthonormal statesu± l. The coupling is of
the form

H = − "hsu + lk+ u − u− lk− uda†Ua, s4.20d

where

a = Sa1

a2
D, U = S g0 + g3, g1 − ig2

g1 + ig2, g0 − g3
D , s4.21d

being h and g j, j =0, . . . ,3, constants. This coupling repre-
sents a beam splitter controlled by the state of the auxiliary
system, and can be easily achieved in practice via the non-
resonant interaction of the field modes with a two-level
atom. A suitable initial state for the two-level system is

uw+l =
1
Î2

su + l + u− ld. s4.22d

After an interaction timet such thatht=1 we get

e−itH/"u1lu1luw+l =
1
Î2

se2ig0uc+lu + l + e−2ig0uc−lu− ld,

s4.23d

where, in the photon number basis,

uc+l = Î2rt u2lu0l − Î2r* t* u0lu2l + sutu2 − ur u2du1lu1l,

uc−l = − Î2rt* u2lu0l + Î2r* tu0lu2l + sutu2 − ur u2du1lu1l,

s4.24d

being

t = cosg + i
g3

g
sin g, r =

g2 + ig1

g
sin g, s4.25d

andg=Îg1
2+g2

2+g3
2 [20]. The target states(4.19) are gener-

ated by detecting whether the output auxiliary system is in
the states

uw±l =
1
Î2

su + l ± u− ld, s4.26d

provided that the coupling parameters verify thatg0=3p /8,
argstd=3p /4, argsrd=p /2, ut u =cosq, and ur u =sin q, with
q=p /8. In such a case

kw±ue−itH/"u1lu1luw+l =
1

2
se2ig0uc+l ± e−2ig0uc−ld ~ uV±1l.

s4.27d

This shows how the statesuV±1l can be generated. Concern-
ing their detection(i.e., the measurement of the projection on
uV±1l) the same procedure above leads us to

kw±uk1uk1ueitH/"uw+l ~ kV±1u. s4.28d

Therefore, we have to couple the two-mode field to the aux-
iliary system prepared in the stateuw+l and the coupling must
be given by the replacement ofg j →−g j in Eqs. (4.20) and
(4.21). After the coupling we perform theuw±l measurement
on the auxiliary system and a joint photon detection in the
field modes.

This completes the practical procedure to measure the dis-
crete Wigner function forj =1 and to generate and detect the
corresponding phase space point states.

V. CONCLUSIONS

We have shown that for finite-dimensional spaces there
are quantum states that can be regarded as suitable counter-
parts of the points of the classical phase space. Theses states
define a procedure to measure the Wigner function at each
point of the phase space independently. This applies both to
the Wigner functions of states and transformations. We have
illustrated these ideas applying them to two definitions of the
finite-dimensional Wigner functions on different phase
spaces: discrete and continuous.
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APPENDIX: SU(2) WIGNER FUNCTION EQUIVALENCE

Here we show that the SU(2) Wigner function introduced
in Ref. [5] coincides with the approach introduced in Ref.
[6]. Further equivalences between Wigner functions can be
found in Ref.[8].

The phase space point operatorsDsVd are introduced in
Ref. [5] as

DsVd = o
m,m8=−j

j

o
k=0

2j

o
q=−k

k

s− 1d j−mÎ2k + 1S j k j

− m q m8
D

3Yk,qsVdu j ,m8lk j ,mu, sA1d

where the term in parentheses is a 3j symbol. The desired
equivalence is proved once we notice that

S j k j

− m q m8
D = s− 1d2j+kS j k j

m8 q − m
D

=
s− 1d3j+m

Î2j + 1
k j ,k;m8,qu j ,ml. sA2d

Note that Refs.[5] and [6] use a slightly different definition
for dV,

dV =Î2j + 1

4p
sin ududf, dV =

2j + 1

4p
sin ududf,

sA3d

respectively.
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