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Quantum phase space points for Wigner functions in finite-dimensional spaces
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We introduce quantum states associated with single phase space points in the Wigner formalism for finite-
dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a
procedure for a direct practical observation of the Wigner functions for states and transformations without
inversion formulas.
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. INTRODUCTION W(Q) = tr pA(Q)], (2.1)
In recent times there has been an increasing interest in thgherep is the density matrix representing the quantum state
practical determination of states and transformatifh&].  in the Hilbert space, the parameferdesignates the points of

Most of these practical procedures are based on the represefie associated classical phase space i) is a family of
tation of quantum Ob]eCtS by functions on the classical phasgperators(phase space point Operatprg'he inverse of the

space of the problem, specially the Wigner funct{8r12]. above correspondence is of the form

Despite its classical resemblance, it is known that the
Wigner function can take negative values, so this is not a true _
probability distribution and its practical determination re- p_fdQW(Q)A(Q)’ 22
quires more or less indirect procedures. Among them, th ) )
ones that require less inversion formulas are based on tH8" & suitable measure in phase spate ,
fact that the Wigner function can be measured as an expec- Similarly, we can assign a Wigner functiéf((2’,Q) to
tation value for each point in phase sp#t8]. In this regard, &n iNput-output transformatiofil,12
it is also worth pointing out that the square of the Wigner =S Upp Ul 2.3
function is positive, so it can be measured as a probability Pout= - kPin“k: ’
distribution. This can be accomplished in quantum optics by
mixing at a beam splitter the field state under investigatiorrelating the Wigner function®V,,(£2’), W,,({2) associated
with its complex conjugate in the quadrature representatiomwith the output and input statgg,, pin, respectively,
and measuring suitable quadratures of the output fidlds

The occurrence of negative values of the Wigner function W, {(Q) :J dQU(Q, Q)W (Q), (2.9
can be charged to a single fact: within the Wigner-Weyl
operator-function correspondence there is no quantum Stan'eing
corresponding to a single point of the phase space. Given the
relevance of the Wigner function we examine this issue fur- U ,Q) = > t{AQ)UAQ)U]]. (2.5
ther looking for quantum states as close as possible to be the K

quantum counterpart of a point of the classical phase space

Among other consequences this provides practical procéformulas for the inverse of E@2.5) are also available but

dures approaching a direct observation of the Wigner funcWill not be necessary for this workL5].

tion.
In Sec. Il we recall basic formulas related to the Wigner
function for states and transformations. In Sec. Il we exam- Ill. PHASE SPACE POINT STATES
ing the quant_um operators_ corresponding to phase space From the above expressions we can infer thé®) is the
points and thelr representation by quantum states. In Sec. | uantum operator associated with the classical phase space
we apply th|_s appro_ag:h to the most relevant examples g oint Q) in the Wigner formalism. While classically a single
Wigner function for finite-dimensional spaces. point in phase space is a legitimate state, its operator coun-
terpartA(Q)) is not in general a quantum state. This is be-
Il. WIGNER FUNCTION FOR STATES cause in general() is not positive[ A(Q2) <0], and is not
AND TRANSFORMATIONS normalized[trA(Q) # 1]. Positiveness and normalization are
two necessary conditions for an operator to be a density ma-

The Wigner functionW(Q2) for a statep can be defined trix, according to the statistical interpretation of the quantum

as[3-10 theory.
In order to look for a suitable connection between the
phase space point operators and quantum states we may di-
*Electronic address: alluis@fis.ucm.es agonalizeA(Q) for each()
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AQ) =D N(Q)]Q, 00, €], (3.1 generate it[11]. Therefore, the determination of(Q',Q)
¢ can be regarded as a double measuring scheme.
where|(),¢) are the eigenvectors angd({2) the eigenvalues.
Among other applications, this decomposition provides prac- IV. EXAMPLES
tical procedures to determin&((2) and2/(Q2',€)) based on In what follows we particularize the above analysis to two
the generation and detection of the std@s¢), since they representatives of the most relevant Wigner functions for
can be expressed as finite-dimensional systems: continuoyi5—8] and discrete
[9,10]. Dealing with finite-dimensional systems it can be
W(Q) :g A (Q)Q, €]p|Q, €), helpful to regard them as representing an abstract angular

momentumj=(N-1)/2, using the eigenvectofs, m) of the
componeni, as a suitable orthonormal basis. As an illustra-
UQ Q)= X A QOALQHQ, MUJQ, €)% (3.2  tive particular example we will focus always on two modes
k,¢,m of the electromagnetic field, where the subspaces with fixed

This strat has b read d and ied out total photon number have finite dimension. In this case, the
IS strategy has been already proposed and carried out €gs o ¢ the angular momentum is played by the Stokes op-

perimentally for a single mode of the electromagnetic ﬁeld’erators and the corres : :

. . pondence betweerjtms) basis and
bemg|Q,€> displaced nqmber stat§$3]_. Note that the lack the photon-number basis can be expressed as

of positiveness of the Wigner function is reflected on the fact

that\,() can be negativ§l6]. o+, N, —n, . _

The above decompositigi8.1) would also serve to deter- 1= > M= 2 = =j+mny=j-m,
mine quantum states closer &d()) as the eigenvectors with
the maximum eigenvalue, for example. This idea will be pur- (4.1)

sued elsewhere. In this work we pretend to go a step furth
looking for statesp, embodying all the operatak((), in-
stead of being determined only by part of its spectrum.
For infinite-dimensional Hilbert spaces it seems that there _ _
is no way of avoiding the two difficulties\(Q) <0 and A. SU(2) Wigner function

trA(Q) # 1 simultaneously, so we will focus on finite dimen- e first consider the operator-function correspondence
sional spaces. In such a case the two difficulties can b@hen the phase space is a sphere sofat6, ¢), whered

%here|nl>|n2) are number states with, andn, photons in
the corresponding mode.

solved at once in the form and ¢ are the polar and azimuthal angles, respectively. The
1 most relevant proposals that used this phase space were in-
= (Q)AQ) + NIy, troduced in Refs[5,6]. Their equivalence is recalled in the
PO7 NA@Q) + W(Q)UA(Q)M YA+ M) Appendix. For definiteness, we follow the notation in

(3.3 Ref.[6]

whereN is the dimension of the Hilbert spacg((2) is a real _ : 4 o
scalar|ly is the identity, anch () = -\ ,in(€2), being\,in(Q) A= X Z‘m‘m,(Q)|j,m><J,m’|, (4.2
the minimum eigenvalue off(Q)A(Q). It is clear thatp, is mm'=-j
always a legitimate density matri;oQ:p;g, pa=0, and  ith
trpo=1. We can appreciate that the solution is not unique
— i

since differentn(2), A\(Q2) can be used at convenience. This Var

freedom may be used, for example, to impose thashould 2 ()= ——— > 20+ 1(j,;mm’ = m|j,m’)
be as close as possible to a pure state. 21+ Li=o

By inverting Eq.(3.3) expressing\({2) in terms ofp, it is XY mrem(€Y), (4.3
possible to express the Wigner function for any statas ’
being proportional to the overlap(fipq) where (jq,jo;my,my|j,m) are the Clebsch-Gordan coeffi-

cients andY, ,(€2) the spherical harmonics.
W(Q) = mtr( ppa) — @ (3.4) By construction there is covariance under(3)uransfor-
7(€2) 7(€2) mationsR(Q)

where w(Q)=NA(Q)+n(Q)trA(Q). This implies that the A(Q) = RIO)AI(O)R Q). (4.4)

Wigner function can be directly determined without using

inversion formulas as being proportional to a measuremerfor our example of a two mode-field, the @YJtransforma-

with statistics given by the overlap(pipg). tions are all the lossless energy conserving transformations,
After Eqg. (2.5 a similar relation can be derived for such as lossless beam splitters and phase plates. The above

U’ ,Q) involving both the generation and detection of the property allows us to focus on the poiit=0 without loss of

statespq, pg:. In a recent work it has been shown that thegenerality. It can be easily seen thg{0) is diagonal in the

very same scheme that serves to dejggtalso serves to |j,m) basis
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o . " b product of the spectra of the two conjugate variables:
= 0.08F . i, and azimuthal anglep. In this case,Q0=(m,s), with
g 0.06}+ . m,s=-j,-j+1,...,j, and
O -----l.' . .
.8b 0.041 . 1 kot2.lot2
m 3 " A(Q) = . eiVkvfe_izw(ks*em)/(sz'l)EkF(,

002 l u T ( ) 2] + 1 k,(:EkO,(fO

l b ]
0 -5 0 5 10 (4.8

wherek, € kg, € are integersy, , constant phases, artfj F
FIG. 1. Eigenvalues opq-o corresponding to the eigenvectors are unitary operators
lj,m) as a function ofm for j=10, 7(0)=1 and minimum\(0). F o g2nidev)  Eo g 4.9

. I ) _ where ¢ represents here the azimuthal angle operator
A0 = X Z}, (0], mij.ml, (4.5
m=-j

j
¢=2 &di ¢ b, (4.10
=i

where the eigenvalueg, (0) are

2j . .
_ 20+1 | ) whose eigenvectors and eigenvalues are
20 =2 m(l,f;m, 0[j,m. (4.6 ,
=0 J | . ~ 1 EJ: _im¢s| . > B 20
For the lowest values df we have o = \2) + Loy errLm,  é= 2j + 1>
1.57 (4.1)
1/2 — 1 —| = . . .
Z7H0) = (_ 0.36>’ Z(0)=| -0.72], (4.7 Unfortunately there is no simple expression for the constant
0.15 phasesy ¢, which otherwise are not uniqu&0].

Let us examine in some detail two cases of lower dimen-
sionality j=1/2,1. Forj=1/2 (dimension tw a possible
and simple choice for the parameterskis=¢;,=0 so that
k,€=0,1 and y,=wké/2. The kernelA(Q)) can be ex-
pressed as

where the componerilf}’j is at the top of the vectors. Using
the correspondena@.3) we see that the phase space point
statepg-q is also diagonal in théj,m) basis. In Fig. 1 we
have represented the eigenvalues of the eigenvelgtons as

a function ofm for pg-g with j=10, 7#(0)=1 and minimum
value forA(0). Incidentally, for all the values gf examined 1
we have observed that the larger eigenvalua@®) corre- A(€) = S, — 2msy + Soy + Mo, (4.12
sponds to the eigenvectd®(Q))|j,m=j). Accordingly, the

pure state with a larger overlap with(Q2) would be the whereo; are the Pauli matrices. Performing the equivalence
SU(2) coherent stat®(Q))|j,m=j). This establishes an inter- (3.3 with »(Q)=1 and minimumA(Q) we get that thep,
esting connection between the Wigner function and the @re the Si) coherent stateg@expressed in the photon num-

function on the sphergl7]. ber basign;)|n,))

Focusing on our optical example, a relevant conclusion of
these results is that a direct and complete determination of Im,s) :ei‘i’m,ssinai’s|o>|1> + cosai‘s\1>|0>, (4.13
the Wigner function can be carried out simply by photon 2 2

number detection after a controllable beam splitter. This is .
because of the corresponden@el) between thg, m vari- with

ables and the number of photons and the implementation of 0, .= O(m+2) = (7= G)(m—2)
SU(2) transformationsR(Q2) by beam splitters. msT TN 2 0 2

_ a
B. Discrete Wigner function bms= m(1 - 45)51 (4.14

A continuous phase space is a highly redundant represen- .

tation for a finite-dimensional space. If we are interested inbemg tagp=2. These states can be easily generated and

removing redundancies we can restrict the domain of definigemeted since they are the action of a beam splitter on a

tion of the above functions to a finite set of poirftsd]. single photon.'_ . .
Maybe a more consistent approach considers a Wigner-We¥(I)rFt?];thi;2§@_ 1 gﬁgtu;lgvcog% ?/\Clircijt)e t?ﬁge Ii:sghgc:ce
operator-function correspondence formulated from the ver){) int P t e A I d ful § P P
beginning on a discrete and finite set of poifwhich tends oint operators in a simple and usetul form

to be continuous in the classical linit9,10.. We focus on A(Q) = E"FTSA(0)FSE™, (4.15
the operator-function correspondence introduced in Ref.

[10], where the phase space is madd\of N points as the with
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j ) 1 ) :
A(0)= X [j,—myj,m. (4.16) e D)D) ¢,y = 3@2 10 y,)| +) + €720 gy - ),
m=-j '

4.23
As before, let us focus first on the cas€) and later we will ( )

consider the rest of points as a result of the action of thavhere, in the photon number basis,
operatorE™FTs,

In this case, the simplest relation 4f0) with a quantum |y = \2rt[2)[0) = V2r t']0)]2) + ([t]2 = [r]D)]1)]1),
state is of the formwith N\(0)=-7(0)]
A(0) = 13— 2/QX Q) (4.17) i) = =\2rt"[2)[0) + V2r't|0)[2) + (|t = [r|3)]|1)|1),

(4.24)

where(referring again to the photon number basig|n,))

1 being

|Qo>=T§(|Z>|O>_|O>|Z>)- (4.18
\\

V3. +iy |
t=COSy+IE’Sln'y, r=usmy, (4.29
Y Y

This state is rather popular in quantum optics, specially in

the area of multiparticle interferend&9]. It can be easily and y= \m [20]. The target state&t.19) are gener
==\ 1 2 3 . . =

gengrated when two photons. impinge S|mL_1Itaneoust on thgted by detecting whether the output auxiliary system is in
two input ports of a symmetrical beam splitter. The Procesg, o ctates

of detection(i.e., the projection o)) can be performed
by detecting the presence or absence of coincidences of two 1
photodetectors placed at the outport ports of a symmetrical lps) = ?(| +)+|-)), (4.26
beam splitte19]. V2

Finally, until the end of the paper we consider the imple-
mentation of the rest of phase space point operatorg)for
#+0 as the action of powers & andF on the vectorQ).
The operatofF is very simple to implement in quantum op-
tics becausg,=(ala,-a}a,)/2 andF is simply a phase shift. _ 1 .
Concerning the action d&™ with m=+1 we have (a]e ™ 1)|1)]@,) = 5(e2'70|¢+) + e 270[y)) o [(yg).

provided that the coupling parameters verify thgt 37/8,
arg(t)=3w/4, ardr)=m/2, |t|=cos®, and |r|=sin 9, with
9=m/8. In such a case

1
0 =El09 = S (= [DID +[0)2), (4.27)

This shows how the staté€.,) can be generated. Concern-
ing their detectiorgi.e., the measurement of the projection on
(D|1) - [2)[0)). (4.19 |Q.1)) the same procedure above leads us to

({12 ) o ( Q. (4.28
In order to generate and detect these states we propose a
method involving the coupling of the two field modes with Therefore, we have to couple the two-mode field to the aux-
an auxiliary two-level syster(a two-level atom for instange iliary system prepared in the stdte,) and the coupling must
expanded by the orthonormal states. The coupling is of be given by the replacement ¢f ——v; in Egs.(4.20 and
the form (4.21). After the coupling we perform thge,) measurement
on the auxiliary system and a joint photon detection in the
H=—fin(|+)+| - |- X-ata, (4.20  field modes.
This completes the practical procedure to measure the dis-
crete Wigner function foj=1 and to generate and detect the

a + 7y, —i corresponding phase space point states.
a=<al)' u:<7’o Y3 N 72>’ (4.21)
2

i+

1Q-p) =EQg) = -
V2

where

Yitiva, Y~ s
V. CONCLUSIONS
being » and y;, j=0,...,3, constants. This coupling repre- S _
sents a beam splitter controlled by the state of the auxiliary We have shown that for finite-dimensional spaces there
system, and can be easily achieved in practice via the norre quantum states that can be regarded as suitable counter-

resonant interaction of the field modes with a two-levelparts of the points of the classical phase space. Theses states
atom. A suitable initial state for the two-level system is  define a procedure to measure the Wigner function at each

point of the phase space independently. This applies both to

1 the Wigner functions of states and transformations. We have
)= Sd RAdal (4.22 illustrated these ideas applying them to two definitions of the
finite-dimensional Wigner functions on different phase
After an interaction timer such thatyr=1 we get spaces: discrete and continuous.
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APPENDIX: SU(2) WIGNER FUNCTION EQUIVALENCE

Here we show that the SB) Wigner function introduced

in Ref. [5] coincides with the approach introduced in Ref.
[6]. Further equivalences between Wigner functions can be =

found in Ref.[8].
The phase space point operat&v)) are introduced in
Ref. [5] as
2k

NOESD> 22(—1)Jm’2k+1(J ko )

m q n

mm’=—j k=0 a=
XYk,q(Q)“ ’ m, ><J 1m| ’ (Al)

where the term in parentheses is psymbol. The desired
equivalence is proved once we notice that

PHYSICAL REVIEW A 69, 052112(2004

ko
m g nm

gl K )
J =22 (m, <

(_ )SJ+m

V2j +

!

(A2)

Note that Refs[5] and[6] use a slightly different definition
for dQ,

2 +1 2 +1
d0 = v/ 2 sin edodg, do =2
47 4

respectively.

sin 6d6d¢,

(A3)
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