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The position and momentum space information entropies, of the ground state of the Pöschl-Teller potential,
are exactly evaluated and are found to satisfy the bound obtained by Beckner, Bialynicki-Birula, and Myciel-
ski. These entropies for the first excited state, for different strengths of the potential well, are then numerically
obtained. Interesting features of the entropy densities, owing their origin to the excited nature of the wave
functions, are graphically demonstrated. We then compute the position space entropies of the coherent state of
the Pöschl-Teller potential, which is known to show revival and fractional revival. Time evolution of the
coherent state reveals many interesting patterns in the space-time flow of information entropy.
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I. INTRODUCTION

Information entropy plays a crucial role in astrongerfor-
mulation of the uncertainty relations. The information theo-
retic uncertainty relations were first conjectured by Everett
[1] and Hirschman[2] in 1957, and proved by Bialynicki-
Birula and Mycielski, and independently by Beckner[3].
From the general properties of the Fourier transform, it was
proved that Spos+Smomù1+ln p. Here, Spos=
−edxucsxdu2 lnucsxdu2 and Smom=−edpuc̃spdu2 lnuc̃spdu2 are
the position and momentum space entropies, respectively. In
a D-dimensional space, the right-hand side of the above in-
equality contains a multiplicative factorD. The above equa-
tion, known in the literature as Beckner, Bialynicki-Birula
and Mycielski (BBM) inequality, captures the physical fact

that localizeducsxdu2 leads to a diffuseduc̃spdu2 and vice
versa. It should be emphasized that, thoughSpos andSmomare
individually unbounded, their sum is bounded from below. It
is interesting to point out that, the above mentioned inequal-
ity was discovered by Everett in the context ofmany worlds
interpretationof quantum mechanics. A framework for de-
riving uncertainty relations of the above type, between gen-
eral dynamical variables, not necessarily canonically conju-
gate ones, have been given recently[4–9]. A more general
formulation of information theoretic uncertainty relations,
which incorporates a pair of arbitrary quantum measure-
ments, including both projective and single measurements
have also been given[10].

The need to go beyond the Heisenberg type uncertainty
relations arises because of the fact that the key assumption in
its derivation, of finite dispersions for the two canonically
conjugate variables, fails to hold for certain quantal prob-
lems. A few examples for which these dispersions are pa-
tently divergent are discussed in Refs.[11,12].

These entropies lead to new and stronger version of the
Heisenberg uncertainty relations. Using a variational in-
equality, relating entropy and standard deviation for an arbi-
trary one dimensional variableA [3,13,14]: SsAdø

1
2

+ lnsÎ2pDAd and the BBM inequality, one can derive
Heisenberg type uncertainty relations. Apart from the above-
mentioned shortcomings, these relations, are also not very
reliable, when conjugate variables are discrete and the corre-
sponding Hilbert space is finite dimensional. These entropies
have been quite useful for characterizing quantum entangle-
ment, since the von Neumann entropyS=−Trhr̂lnr̂j, for the
reduced density operators, is often difficult to calculate. For
the sake of completeness, it should be mentioned that there
exist various type of entropy functionals in the literature to
characterize different classes of functions[15]. Various prop-
erties of quantum mechanical entropy and its classical coun-
terparts have been elucidated in Refs.[16–18]. As is clear,
the single-particle distribution densities, measuring the
spread of the wave functions in coordinate and momentum
spaces, define their respective entropies. Interestingly, in the
density functional theory of Hohenberg and Kohn, the single
particle densities also completely characterize a many-body
system[19].

The analytical determination of position and momentum
space entropies have been carried out only for a few quantum
mechanical systems. For the simple harmonic oscillator, the
entropies were exactly calculated for the ground state, in
both, coordinate and momentum space, for which the BBM
inequality is saturated[20]. For an arbitrary state, the entro-
pies were determined approximately, using asymptotic val-
ues of the entropy of the orthogonal Hermite polynomials.
The entropy integralsePn

2sxdlnPn
2sxddmsxd, for several or-

thogonal polynomialsPn’s having suitable measures, have
been recently studied, from which the asymptotic expres-
sions for the information entropies for large values ofn, have
been obtained forD dimensional harmonic oscillator and
Coulomb problems[21]. Information entropy of neutral at-
oms[22,23], in the Thomas-Fermi theory, also manifests in a
universal form, analogous to the one given in Ref.[3]. Infor-

*Email address: atre@prl.ernet.in
†Email address: cnkumar@pu.ac.in
‡Email address: prasanta@prl.ernet.in

PHYSICAL REVIEW A 69, 052107(2004)

1050-2947/2004/69(5)/052107(6)/$22.50 ©2004 The American Physical Society69 052107-1



mation entropies in various contexts, e.g., mathematical
physics, mathematics, information theory, chemical physics
and other areas of physics, have been extensively analyzed in
recent times[12,24–39].

The present article is devoted to the study of the informa-
tion entropies of the Pöschl-Teller(PT) family of potentials.
These potentials widely appear in the analysis of soliton
bearing nonlinear equations, e.g., Bose-Einstein condensates

and in quantum problems on curved background[40–42]. In
the following section, we first consider the hyperbolic PT
potential and evaluate the position and momentum space en-
tropies exactly for the ground state, for a range of potential
strengths. For the first excited state, we calculate these en-
tropies, numerically, which is shown to satisfy the bound
obtained by Bialynicki-Birula and Mycielski. Some interest-
ing features of the entropy densities are then graphically
demonstrated. In the third section, we compute the position
space entropy densities of the coherent states of the trigono-
metric PT potential, which exhibits revival and fractional
revival, due to interference effects. Under time evolution
these densities reveal interesting patterns in the space-time
flow of information entropy. We conclude in the last section
after pointing out various future directions of work in this
area.

II. INFORMATION ENTROPY FOR PÖSCHL-TELLER
SYSTEMS

We begin with the Schrödinger equation for hyperbolic
Pöschl-Teller potential, which is reflectionless and admitsn
bound states for integer values ofn (in units "=2m=1),

F−
d2

dx2 −
nsn + 1d

4
sech2S x

2
DGcsndsxd = Ecsndsxd. s1d

The normalized ground state eigenfunction is given by

c0
sndsxd =

1

Î2BS1

2
,nDsechnS x

2
D , s2d

whereBs 1
2 ,nd is the beta function.

Using the definition of position space entropy, after a
lengthy but straightforward calculation, we obtain the ana-
lytical expression:

Spos= − s2n − 1dln 2 + ln BS1

2
,nD + 2nfCs2nd − Csndg,

s3d

whereC is the digamma function. Forn=1 and 2, the posi-
tion space entropy has the valuesSpos=2 and 10

3 − ln 6, re-
spectively.

The corresponding momentum space entropies can be
evaluated by first obtaining the momentum space ground
state wave functions, which are the Fourier transforms of the
corresponding position space wave functions:

c0
sndspd = A 2nBSn

2
+ ip,

n

2
− ipD . s4d

For n=1, c0spd=Îp /2sechsppd and theSmom can be easily
evaluated,

Smom= −E
−`

`

2c0
2spdln c0spddp= 2 − lns2pd,

and the corresponding BBM inequality reads

FIG. 1. Plots of the position space entropy densities for the
ground state of hyperbolic Pöschl-Teller potential for(a) n=1, (b)
n=3, and(c) n=5.
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Spos+ Smom= 4 − ln 2p ù 1 + lnspd.

For higher values ofn, evaluation of momentum space en-
tropies is quite cumbersome, instead we plot entropy densi-
ties for both position and momentum space. As shown in
Figs. 1 and 2, it is interesting to notice that, the position
entropy-density plots, develop a dip at its peak as we in-

crease the value of the parametern; exactly contrary behav-
ior is observed in their momentum space counterparts. As
seen in Fig. 3, for the ground state, asn increases, the BBM
inequality tends to be saturated. Physically, for increasingn,
the depth of the potential increases and it increasingly re-
sembles the oscillator potential, which saturates the above
inequality.

We now proceed to evaluate the position space entropies
of the first excited state. The corresponding wave function
for the potentialVsxd reads

c1
sndsxd = N sechn−1S x

2
DtanhS x

2
D for n ù 2, s5d

where N=1/Î2fBs 1
2 ,n−1d−Bs 1

2 ,ndg is the normalization
constant.

For n=2, Spos=2.23472 and for generaln the behavior of
the position space information entropy is depicted in Fig. 2.
Table I, depicts the BBM inequality for the first excited state
as a function ofn. One sees that as the value ofn increases
the sum of the entropies tends towards a saturation value
higher than the ground state value.

III. ENTROPY DENSITIES FOR COHERENT STATES
OF THE TRIGONOMETRIC PÖSCHL-TELLER

POTENTIAL

Quantum systems with eigenspectra depending quadrati-
cally on a quantum numbern are known to show revival and
partial revivals in time evolution of corresponding wave
packets. These quantum carpet structures have been studied
quite extensively[43]. There have been suggestions to use
the revival structure for obtaining a factorization algorithm
[44]. The possibility of realizing PT type of potentials in
atomic systems such as BEC, through optical means, makes
the study of time evolution of these systems more interesting
[45]. It should be pointed out that perturbation of BEC on a
soliton or cnoidal wave type solitary train background are
known to satisfy the hyperbolic or trigonometric PT

FIG. 2. Plots of the momentum space entropy densities for the
ground state of hyperbolic Pöschl-Teller potential for(a) n=1, (b)
n=3, and(c) n=5.

FIG. 3. The plot depicting the variation of sum of position and
momentum space entropies with respect to potential parametern.
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Schrödinger equations[41]. In the following we study the
time evolution of the information entropy density for an an-
nihilation operator coherent state of the trigonometric PT
potential[46]. The fact that, coherent structure like laser is
an annihilation operator eigenstate and the coherent manipu-
lation of atoms, possibly with optical means is being increas-
ingly considered seriously, may make these analyses useful.
The trigonometric case has been chosen deliberately, since it
has an infinite number of bound states as compared to the
hyperbolic one, which makes the construction of the coher-
ent states straightforward.

We consider here the Hamiltonian of symmetric Pöschl-
Teller (SPT) potential(in the units"=2m=1),

H = −
d2

dy2 +
a2rsr − 1d
cos2sayd

, s6d

with eigenvalues and eigenfunctions, in the variablex
=sinsayd,

En
SPT= a2sn + rd2,

cn
SPTsxd = F asn!dsn + rdGsrdGs2rd

ÎpGsr + 1/2dGsn + 2rd
G1/2

s1 − x2dr/2Cn
rsxd.

s7d

Recently based on a dynamical SU(1,1) algebra, an anni-
hilation operator coherent state, was constructed for this sys-
tem: K−ug. =gug., hereK− is the annihilation operator of
the SU(1,1) algebra[46]. The coordinate space realization of
this coherent state is given by

x̃SPTsx,gd = Nsgd−1o
n=0

` F Gs2rdGsr + 1/2dÎp

asn!dsn + rdGsrdGs2r + nd
G1/2

3gncn
SPTsxd. s8d

As already pointed out in the beginning of this section,
the quadratic nature of the spectra of SPT potential leads to
the possibility of revival and fractional revival in this quan-
tum system due to subtle interference effects. Keeping in
mind, the fact that in the realistic situations the complete
span of the wave functions may not be available, we study
the time evolution of position space entropy densities for

FIG. 4. Contour plots, depict-
ing time evolution of position
space entropy densities for the
coherent states trigonometric
Pöschl-Teller potential for(a) n
=5,g=10 and (b) n=5,g=30.
Darkness displays a low and
brightness a high functional value.

TABLE I. Table for BBM inequality for the first excited state of the hyperbolic Pöschl-Teller potential.

n Spos Smom Spos+Smom 1+ln p n Spos Smom Spos+Smom 1+ln p

2 2.23472 0.722555 2.95728 2.1447 8 1.0971 1.63508 2.73217 2.1447

3 1.7988 1.0384 2.8372 2.1447 9 1.02621 1.70025 2.72646 2.1447

4 1.56242 1.22799 2.7904 2.1447 10 0.96409 1.7579 2.72199 2.1447

5 1.40082 1.36474 2.76556 2.1447 11 0.908807 1.80958 2.71839 2.1447

6 1.27825 1.47193 2.75018 2.1447 12 0.859009 1.85643 2.71544 2.1447

7 1.1796 1.56013 2.73973 2.1447 13 0.81371 1.89926 2.71297 2.1447
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various values ofn, i.e., the number of states, interfering and
constituting the resultant coherent wave packet. It should be
mentioned that the time evolution of this entropy density
arises due to the time evolution of the individual states that
constitute the coherent state. Since the entropy density of the
coherent state at any timet is calculated by taking the modu-
lus square of these states, it depends on time. The effect of
change of coherence parameterg on the same is also ana-
lyzed. These are depicted in the Figs. 4 and 5. One finds
dramatic changes in the carpet structure of the entropy den-
sities in space and time. One observes rich tapestrylike struc-
tures, where one can manipulate the valleys and ridges of the
entropy density in space and time. It is interesting to observe
that, as we increase the value of coherence parameterg,
keepingn fixed at some value, the various ridges come close
together and form a continuous structure. These patterns be-
come sharper for the higher values ofn.

IV. CONCLUSIONS

In conclusion, we have studied the information entropies
of a class of quantum systems belonging to the Pöschl-Teller
family of potentials. Exact results, for the position space en-
tropies of the ground and first excited states of the hyperbolic
Pöschl-Teller potential were obtained, for a range of poten-
tial strengths. The expression for momentum space entropy

was obtained analytically for the ground state and numeri-
cally computed for the first excited state. It was found that,
these entropies satisfy the Beckner, Bialynicki-Birula and
Mycielski inequality. The entropy densities for the above
cases were depicted graphically, for demonstrating the en-
tropy distribution in the well. For the trigonometric case,
after investigating the entropies associated with the eigen-
states, we studied the time evolution of entropy density for
the coherent state[46]. The intricate carpet structure shows
the richness of this quantum system, which needs to be ex-
plored further. It should be noted that, coherent states are
being envisaged for the storage of quantum information.
Pöschl-Teller potential manifests in quantum problems on
curved background[42], as also in nonlinear integrable mod-
els with soliton solutions like, KdV equation[40]. In light of
this, the physical relevance of the information entropies com-
puted here, needs further study. We hope to come back to
some of these questions in future.
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FIG. 5. Contour plots, depict-
ing time evolution of position
space entropy densities for the
coherent states trigonometric
Pöschl-Teller potential for(a) n
=5,g=15 and (b) n=30,g=15.
Darkness displays a low and
brightness a high functional value.
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