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The position and momentum space information entropies, of the ground state of the Pdschl-Teller potential,
are exactly evaluated and are found to satisfy the bound obtained by Beckner, Bialynicki-Birula, and Myciel-
ski. These entropies for the first excited state, for different strengths of the potential well, are then numerically
obtained. Interesting features of the entropy densities, owing their origin to the excited nature of the wave
functions, are graphically demonstrated. We then compute the position space entropies of the coherent state of
the Pdschl-Teller potential, which is known to show revival and fractional revival. Time evolution of the
coherent state reveals many interesting patterns in the space-time flow of information entropy.
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[. INTRODUCTION These entropies lead to new and stronger version of the
Heisenberg uncertainty relations. Using a variational in-

mullr;?(;:]nztf'ct)ﬂ eeﬂﬂgg%aﬁﬁysr;;trigﬁfl .1%': mfgronr:ggérrt}‘eo_equality, relating entropy and standard deviation for an arbi-
y ' grary one dimensional variableA [3,13,14: SA) <3

retic uncertainty relations were first conjectured by Everet — : . .
y J y +In(v2wAA) and the BBM inequality, one can derive

[1] and Hirschmari2] in 1957, and proved by Bialynicki- . . )
Birula and Mycielski, and independently by Beckni@i. Heisenberg type uncertainty relations. Apart from the above-

From the general properties of the Fourier transform, it wadnéntioned shortcomings, these relations, are also not very
proved that  Syos* Smom™ 1+ . Here Spos™ reliable, when conjugate variables are discrete and the corre-

~ ~ sponding Hilbert space is finite dimensional. These entropies
—JdX ‘Z’(?(Nz Injg()[* and Spon —fdp|z/;(p)|_2 InfyAp)[? are hgve begen quite uzeful for characterizing quantum entanpgle—
the p(_)smon. and momentum space entroples, respectlvely: 'ﬁ‘1ent, since the von Neumann entra®y—Tr{pinp}, for the
a D-dimensional space, the right-hand side of the above inzeq,ceq density operators, is often difficult to calculate. For
gquallty contams a multlpllcatlve factd. The.abO\_/e equa- ihe sake of completeness, it should be mentioned that there
tion, known in the literature as Beckner, Bialynicki-Birula oyt v arious type of entropy functionals in the literature to
and Mycielski(BBM) inequality, captures the physical fact .\,.4cterize different classes of functidas). Various prop-
that localized|y(x)|* leads to a diffusedy(p)|> and vice erties of quantum mechanical entropy and its classical coun-
versa. It should be emphasized that, thoGgh andS,,mare  terparts have been elucidated in Rgfs6-19. As is clear,
individually unbounded, their sum is bounded from below. Itthe single-particle distribution densities, measuring the
is interesting to point out that, the above mentioned inequalspread of the wave functions in coordinate and momentum
ity was discovered by Everett in the contextrofiny worlds  spaces, define their respective entropies. Interestingly, in the
interpretation of quantum mechanics. A framework for de- density functional theory of Hohenberg and Kohn, the single
riving uncertainty relations of the above type, between genparticle densities also completely characterize a many-body
eral dynamical variables, not necessarily canonically conjusystem[19].
gate ones, have been given recerjdy-9. A more general The analytical determination of position and momentum
formulation of information theoretic uncertainty relations, space entropies have been carried out only for a few quantum
which incorporates a pair of arbitrary quantum measuremechanical systems. For the simple harmonic oscillator, the
ments, including both projective and single measurementsntropies were exactly calculated for the ground state, in
have also been givefi0]. both, coordinate and momentum space, for which the BBM
The need to go beyond the Heisenberg type uncertaintjnequality is saturatef0]. For an arbitrary state, the entro-
relations arises because of the fact that the key assumption jiles were determined approximately, using asymptotic val-
its derivation, of finite dispersions for the two canonically ues of the entropy of the orthogonal Hermite polynomials.
conjugate variables, fails to hold for certain quantal prob-The entropy integrals Pﬁ(x)lnPﬁ(x)d;L(x), for several or-
lems. A few examples for which these dispersions are pathogonal polynomialsP,’s having suitable measures, have
tently divergent are discussed in Reff$1,12. been recently studied, from which the asymptotic expres-
sions for the information entropies for large valuespfiave
been obtained foD dimensional harmonic oscillator and

*Email address: atre@prl.ernet.in Coulomb problemg21]. Information entropy of neutral at-
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0.40 ; ; - and in quantum problems on curved backgro{#@-47. In
the following section, we first consider the hyperbolic PT
(a) potential and evaluate the position and momentum space en-
0.30 | . tropies exactly for the ground state, for a range of potential

strengths. For the first excited state, we calculate these en-
tropies, numerically, which is shown to satisfy the bound
X020 | ] obtained by Bialynicki-Birula and Mycielski. Some interest-
ing features of the entropy densities are then graphically
demonstrated. In the third section, we compute the position
space entropy densities of the coherent states of the trigono-

0.10 metric PT potential, which exhibits revival and fractional
revival, due to interference effects. Under time evolution
these densities reveal interesting patterns in the space-time

0.00, == 50 ) 50 70.0 flow of infqrmation en.tropy. We cor_mlude in the last ;ectipn

X after pointing out various future directions of work in this
area.

0.40

(b) [l. INFORMATION ENTROPY FOR POSCHL-TELLER
050 | SYSTEMS
We begin with the Schrédinger equation for hyperbolic
Pdschl-Teller potential, which is reflectionless and admits
%o,zo s 1 bound states for integer values mfin unitszZ=2m=1),
d®> nn+1 X
_ & )secﬁ(—) V) =EgV(x). (1)
010 | dx® 4 2
The normalized ground state eigenfunction is given by
0.00 : - ' Mgy = L X
“210.0 5.0 0.0 5.0 10.0 o (X) = —=—==—=sechl| |, 2
X 1 2
2B 5,n

0.40 : : :
whereB(%,n) is the beta function.

(¢) Using the definition of position space entropy, after a

0.30 | . lengthy but straightforward calculation, we obtain the ana-
lytical expression:

X020 ] =~ (2n-Din2+InB| 2.0 + 20[w(2n) - w
» Spos=~(2n=1Dn 2+In B Z,n |+ 2n[¥(2n) - ¥ (n)],
3

010 whereW is the digamma function. For=1 and 2, the posi-
tion space entropy has the valuggs=2 and %)—In 6, re-
spectively.

0.00, 5 50 0.0 50 10.0 The corresponding momentum space entropies can be

X evaluated by first obtaining the momentum space ground

- . state wave functions, which are the Fourier transforms of the
FIG. 1. Plots of the position space entropy densities for the

ground state of hyperbolic Pdschl-Teller potential far n=1, (b) corresponding position space wave functions:

n=3, and(c) n=5. n n

B“)(p)=A2”B(5+ip,§—ip)- (4)

mation entropies in various contexts, e.g., mathematical -

physics, mathematics, information theory, chemical physic&or n=1, y(p) =/ 2seclimp) and theS,,,can be easily

and other areas of physics, have been extensively analyzed évaluated,

recent timeg12,24-39. .
The present article is devoted to the study of the informa- _ 2 5

tion entropies of the Péschl-Telle@PT) family of potentials. Stom= fx 2¢45(p)In ¢r(p)dp=2 - In(27),

These potentials widely appear in the analysis of soliton

bearing nonlinear equations, e.g., Bose-Einstein condensatesd the corresponding BBM inequality reads
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FIG. 3. The plot depicting the variation of sum of position and
momentum space entropies with respect to potential parameter

crease the value of the parameterexactly contrary behav-
ior is observed in their momentum space counterparts. As
seen in Fig. 3, for the ground state,ragcreases, the BBM
inequality tends to be saturated. Physically, for increasing
the depth of the potential increases and it increasingly re-
sembles the oscillator potential, which saturates the above
inequality.

We now proceed to evaluate the position space entropies
of the first excited state. The corresponding wave function
for the potentiaV(x) reads

#V(x) =N secﬁ‘l<g)tanl‘()—2(> for n=2, (5

where N=1/\2[B(},n-1)-B(},n)] is the normalization
constant.

Forn=2, §,,c=2.23472 and for generalthe behavior of
the position space information entropy is depicted in Fig. 2.
Table I, depicts the BBM inequality for the first excited state
as a function oh. One sees that as the valueroincreases
the sum of the entropies tends towards a saturation value
higher than the ground state value.

IIl. ENTROPY DENSITIES FOR COHERENT STATES
OF THE TRIGONOMETRIC POSCHL-TELLER
POTENTIAL

Quantum systems with eigenspectra depending quadrati-

FIG. 2. Plots of the momentum space entropy densities for th&€ally on a quantum numberare known to show revival and

ground state of hyperbolic Pdschl-Teller potential far n=1, (b)

n=3, and(c) n=5.

Soost Smom=4 —In 2= 1 +In(m).

partial revivals in time evolution of corresponding wave
packets. These quantum carpet structures have been studied
quite extensively{43]. There have been suggestions to use
the revival structure for obtaining a factorization algorithm
[44]. The possibility of realizing PT type of potentials in

For higher values oh, evaluation of momentum space en- atomic systems such as BEC, through optical means, makes
tropies is quite cumbersome, instead we plot entropy densihe study of time evolution of these systems more interesting
ties for both position and momentum space. As shown if45]. It should be pointed out that perturbation of BEC on a
Figs. 1 and 2, it is interesting to notice that, the positionsoliton or cnoidal wave type solitary train background are
entropy-density plots, develop a dip at its peak as we inknown to satisfy the hyperbolic or trigonometric PT
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TABLE I. Table for BBM inequality for the first excited state of the hyperbolic Péschl-Teller potential.

n %os Som Spos"'Snom 1+inm n %os Som Spos+ Som l+In

2 2.23472  0.722555 2.95728 2.1447 8 1.0971 1.63508 2.73217 2.1447
3 1.7988 1.0384 2.8372 2.1447 9 1.02621  1.70025 2.72646 2.1447
4 156242  1.22799 2.7904 2.1447 10 0.96409 1.7579 2.72199 2.1447
5
6
7

1.40082 1.36474 2.76556 2.1447 11 0.908807 1.80958 2.71839 2.1447
1.27825 1.47193 2.75018 2.1447 12 0.859009 1.85643 2.71544 2.1447
1.1796 1.56013 2.73973 2.1447 13 0.81371  1.89926 2.71297 2.1447

Schradinger equationgtl]. In the following we study the ST a(n)(n+ p)L(p)L(2p)
time evolution of the information entropy density for an an- ~ ¥n (x) = ol (o+ 1/2T(n + 2

nihilation operator coherent state of the trigonometric PT L (p )I'(n+2p)
potential[46]. The fact that, coherent structure like laser is (7)
an annihilation operator eigenstate and the coherent manipu-

lation of atoms, possibly with optical means is being increasy; avion operator coherent state, was constructed for this sys-
ingly considered seriously, may make these analyses usefl{ m:K_|y> =+y>, hereK_ is the annihilation operator of

The trig(_)n(_)metric case has been chosen deliberately, Sincetﬁe SU1,1) algebral46]. The coordinate space realization of
has an infinite number of bound states as compared to trﬁzﬂs cohérent state is given by

hyperbolic one, which makes the construction of the coher-
ent states straightforward. o
We consider here the Hamiltonian of symmetric Poschl-  Joo4(x,y) = N(y)™>,

1/2
] (1 -x3)P2Ch(x).

Recently based on a dynamical @) algebra, an anni-

T2p)l(p+ 12w |2

Teller (SPT) potential(in the unitsz=2m=1), o L a(n)(n+p)I'(p)I'(2p +n)
X SPT, ) 8
@ -1 PR ®)
H=- @ + co(ay) ' (6) As already pointed out in the beginning of this section,

the quadratic nature of the spectra of SPT potential leads to
the possibility of revival and fractional revival in this quan-
tum system due to subtle interference effects. Keeping in
mind, the fact that in the realistic situations the complete
span of the wave functions may not be available, we study

with eigenvalues and eigenfunctions, in the variable
=sin(ay),

SPT_ 2 2 . . o I
Ey =a(n+p)s, the time evolution of position space entropy densities for
(a)
1w — e — — -
os IV T N - - e e
. P efeaYeS e e
-0.5¢ - - — - - .
: FIG. 4. Contour plots, depict-
-1t - D G s S - ing time evolution of position
0 0.2 0.4 ey 0.6 0.8 1 space entropy densities for the
ime coherent states trigonometric
(b) Pdschl-Teller potential fora) n
- . . . . - =5,y=10 and (b) n=5,y=30.
I U S N T Darkness disp|ays a low and
sk o brightness a high functional value.
X of 1
B
A A A -
-1k : : A h .
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FIG. 5. Contour plots, depict-
-1t — — ——— — - ing time evolution of position
0 0.2 0.4 £1 0.6 0.8 1 space entropy densities for the
LIS coherent states trigonometric
(b) Pdschl-Teller potential fora) n

=5,y=15 and (b) n=30,y=15.

13 3 o , 5 Darkness displays a low and
5Ek brightness a high functional value.
M 0
-0.5
-1t

various values ohf, i.e., the number of states, interfering and was obtained analytically for the ground state and numeri-
constituting the resultant coherent wave packet. It should beally computed for the first excited state. It was found that,
mentioned that the time evolution of this entropy densitythese entropies satisfy the Beckner, Bialynicki-Birula and
arises due to the time evolution of the individual states thaMycielski inequality. The entropy densities for the above
constitute the coherent state. Since the entropy density of theases were depicted graphically, for demonstrating the en-
coherent state at any tinteés calculated by taking the modu- tropy distribution in the well. For the trigonometric case,
lus square of these states, it depends on time. The effect affter investigating the entropies associated with the eigen-
change of coherence parameteon the same is also ana- states, we studied the time evolution of entropy density for
lyzed. These are depicted in the Figs. 4 and 5. One findthe coherent statp46]. The intricate carpet structure shows
dramatic changes in the carpet structure of the entropy derthe richness of this quantum system, which needs to be ex-
sities in space and time. One observes rich tapestrylike struglored further. It should be noted that, coherent states are
tures, where one can manipulate the valleys and ridges of tHeeing envisaged for the storage of quantum information.
entropy density in space and time. It is interesting to observ@dschl-Teller potential manifests in quantum problems on
that, as we increase the value of coherence parameter curved backgroun{42], as also in nonlinear integrable mod-
keepingn fixed at some value, the various ridges come closeels with soliton solutions like, KdV equatigd0]. In light of
together and form a continuous structure. These patterns b#his, the physical relevance of the information entropies com-
come sharper for the higher valuesrof puted here, needs further study. We hope to come back to
some of these questions in future.
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