
Disentanglement by dissipative open system dynamics

P. J. Dodd*
Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

(Received 10 December 2003; published 12 May 2004)

This paper investigates disentanglement as a result of evolution according to a class of master equations
which include dissipation and interparticle interactions. Generalizing an earlier result of Diósi, the time taken
for complete disentanglement iscalculated(i.e., for disentanglement from any other system). The dynamics of
two harmonically coupled oscillators is solved in order to study the competing effects of environmental noise
and interparticle coupling on disentanglement. An argument based on separability conditions for Gaussian
states is used to arrive at a set of conditions on the couplings sufficient for all initial states to disentangle for
good after a finite time.
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I. INTRODUCTION

Entanglement—the fact that not all density matrices can
be written as

r1&2 = o
i

piri
1

^ ri
2, s1d

with pi a probability distribution—has become one of the
most notable differences between classical and quantum me-
chanics. What at first sight seems a rather technical differ-
ence, lies underneath all “no local hidden-variables” theo-
rems which help set quantum mechanics firmly apart from
classical mechanicssRefs. f1,2gd. More recently, entangle-
ment has come to be regarded as a resource on which all
essentially quantum technologies are basedsquantum com-
putation, cryptography, etc., see, e.g., Ref.f3gd. An under-
standing of how entanglement comes to be destroyed by in-
teraction with an environment is therefore important not only
to explaining how the classical world emerges from an un-
derlying quantum one, but also to understanding and control-
ling the effects of noise, which make quantum technologies
such a practical challenge.

In Ref. [4], a theorem was proved categorizing completely
disentangling maps. We call a completely positive trace pre-
serving map

M:BsHd → BsHd s2d

completely disentangling if

M ^ 1N:BsH ^ CNd → BsH ^ CNd s3d

hasM ^ 1Nsr1&2d disentangled for all density matricesr1&2

PBsH ^ CNd and for all positive integersN. Ruskai f4g
showed thatM is completely disentangling if, and only if,

Msrd = o
k

trsmkrdmk, s4d

with hmkj a positive operator-valued measuresPOVMd and
mk density matrices.

Diósi has taken advantage of this to show that certain
markovian open-system evolutions result in a map of this
form after a certain finite time[5]. This finite-time
environment-induced effect at first seems quite strange when
compared with the more familiar asymptotic environment-
induced decoherence effects of similar time scale. But it
should be noted that separable density matrices form a con-
vex, finite-volume region within the space of all density ma-
trices. If the equilibrium state is separable, we expect the
evolution to “suck” states towards it along smooth trajecto-
ries which, at a certain time, pass into the separable region
around the equilibrium state. This picture makes clearer how
disentanglement occurs in finite time, whereas decoherence,
where states are sucked smoothly towards a stable submani-
fold of measure zero(the states diagonal in the relevant ba-
sis), can only be achieved asymptotically.

In Ref. [6] Diósi and Kiefer showed that the Wigner func-
tion evolution

] W

] t
= −

p

m

] W

] q
+ Dpp

]2W

] p2 s5d

results in a positiveP function after a finite time. Diósi used
essentially the same technology to show that this evolution is
also completely disentangling after a finite time. The positive
P function result itself implies a disentanglement result if we
consider the obvious extension of Eq.s5d to an N-particle
system: a positiveP function is a classical probability distri-
bution over thesseparabled coherent-state projectors. The
complete disentanglement result is stronger however, and
also gives disentanglement on the symmetricN-particle sys-
tem.

This paper is an elaboration and continuation of Ref.[7],
and is designed to be read in conjunction with it. In Ref.[7],
the relation between decoherence and disentanglement was
discussed and a new technique, based on separability criteria
for Gaussian states, used to compute the finite-time disen-
tanglement of general states in a bipartite system, when
evolved, according to Eq.(5). The evolution of an EPR-like
(EPR, Einstein-Podolsky-Rosen) state was solved and used
to illustrate how the separability criteria came to be satisfied.
In this paper we first focus on extending Diósi’s argument
regarding the complete disentanglement of a single system to*Electronic address: peter.dodd@imperial.ac.uk
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more general, dissipative evolutions. In particular we will be
interested in evolutions which are of Lindblad form, i.e.,

dr

dt
= − ifH,rg + o

k

s2Lk
†rLk − LkLk

†r − rLkLk
†d, s6d

with nonzero dissipation. Then we will also go on to apply
the technique of Ref.f7g to a harmonically coupled pair of
particles, where there is competition between the coupling,
which can generate entanglement, and the environmental in-
fluence, which tends to destroy it. We will concentrate on
determining conditions which guarantee that the environ-
ment wins.

The layout of this paper is as follows. Below, in Sec. II,
we extend Diósi’s complete disentanglement result, analyz-
ing a more general and realistic evolution. For a specific
choice of Lindblad operator, we compute the complete dis-
entanglement time scale for high temperatures relative to the
dissipation. In Sec. III, we then go on to consider the open
system evolution of bipartite systems where the particles are
coupled. Complete disentanglement results cannot be imme-
diately applied to this situation because the interaction will
tend to generate new entanglement between subsystems. We
will use a different method, based on the recent separability
criteria for Gaussian states, which explicitly produces a de-
composition of the state into separable states. In Sec. IV, we
conclude and make some remarks about the role of entangle-
ment destruction in explaining classical behavior.

II. DIÓSI ANALYSIS FOR A GENERAL DISSIPATIVE
MASTER EQUATION

We start with the following Markovian(quantum Fokker-
Planck) master equation for the Wigner function

] W

] t
= −

p

m

] W

] q
+ mv2q

] W

] p
+ 2g

] spWd
] p

+ Dqq
]2W

] q ] q

+ Dpp
]2W

] p ] p
+ 2Dqp

]2W

] q ] p
. s7d

This describes a harmonic oscillator interacting with an en-
vironment whose effects can be well approximated by white
noise. In practice, this is true fairly generically of commonly
encountered environments at high temperatures.

It can be shown(see, e.g., Ref.[8]) that this master equa-
tion is of Lindblad form if, and only if, the diffusion matrix
D, defined by

D = SDqq Dqp

Dqp Dpp
D s8d

is positive and

det D ù
g2

4m2 . s9d

In analyzing this master equation, we will make much use of
the Fourier transform

W=E d2z̄

s2pd2W̄sz̄deikz,hz̄l, s10d

where

ka,bl = aTb s11d

is the standard Euclidean inner product,

h = S 0 1

− 1 0
D s12d

and

z̄= Sq̄

p̄
D , s13d

and similarly without “bars.”

The Fourier transformW̄ obeys the equation

] W̄

] t
=

p̄

m

] W̄

] q̄
− q̄mv2] W̄

] p̄
+ 2gq̄

] W̄

] q̄
− z̄TD̄z̄W̄, s14d

with

D̄ = S Dpp − Dqp

− Dqp Dqq
D , s15d

which we can solve by characteristics.

A. Specialization to the free case,v=0

Diósi’s argument is given in Ref.[7]. Here, we explain the
argument as we go, forv=0, but consideringgÞ0. The
calculations for the casevÞ0 are contained implicitly in the
section below on coupled systems. We do not pursue Diósi’s
analysis in detail for this case because, as noted below, os-
cillating terms destroy the monotonicity of disentanglement
and therefore make an analytical treatment much harder.

The gist of the argument is to show that, by smearing
things out in phase space, the propagator for the evolution
quickly results in a positiveP function. This ability of open-
system dynamics to smear out the negative parts of phase-
space quasidistributions has been studied before with regard
to treating them as genuine probability distributions in
pseudoclassical circumstances. Here, the crucial observation
is that a map which always results in states with positiveP
function is a completely disentangling map, of the form(4).
All this is accessible because the propagators are Gaussian in
form, meaning the calculations can be carried through ex-
plicitly, and because the properties of Gaussian states are
well understood.

We start with the evolution written in the form

] W̄

] t
=

p̄

m

] W̄

] q̄
+ 2gq̄

] W̄

] q̄
− z̄TD̄z̄W̄, s16d

which is equivalent to

P. J. DODD PHYSICAL REVIEW A 69, 052106(2004)

052106-2



dW̄sz̄t,td
dt

= − z̄t
TD̄z̄tW̄sz̄t,td, s17d

where the equations for the characteristics are

dq̄t

dt
= −

p̄t

m
− 2gq̄t,

dp̄t

dt
= 0. s18d

Since this set of equations is linear and Markovian we can
write

z̄t = Etz̄, s19d

whereEt is a family of matrices affecting the evolution as a
one-parameter group. We easily find

Et = 11 − S1 − e−2gt

2gm
D

0 1
2 . s20d

Setting

mt =E
0

t

dtEt
TNEt, s21d

we then can solve as

W̄sz̄,td = W̄fEtsEt
−1zd,tg = W̄sz̄−t,0dexpf− kz̄−t,mtz̄−tlg.

s22d

Taking the inverse Fourier transform, for the original Wigner
function we have

Wsz,td =E d2z̄

s2pd2W̄sz̄−t,0dexpf− kz̄−t,mtz̄−tlgeikz,hz̄l

=E d2z̄

s2pd2 E d2z8e−ikz8,hz̄−tlWsz8,0deikz,hz̄l

3expf− kz̄−t,mtz̄−tlgeikz,hz̄l

=E d2z8E d2z̄

s2pd2udetsEtduexpfikhTEt
Thz− z8,hz̄lg

3expf− kz̄,mtz̄lgW0sz8d. s23d

We will not be so interested in the evolution of the argument,
nor the normalizing prefactors, which take care of them-
selves. The middle Fourier transform can be carried out to
give the propagator as

E d2z̄

s2pd2exp ikz,hz̄lexp −kz̄,mtz̄l

=E d2z̄

s2pd2exp −Kz̄+ i
mt

−1

2
hz,mtSz̄+ i

mt
−1

2
hzDL

3e−s1/4dkhz,mt
−1hzl

=
1

2pÎdet mt

expS−
1

4
kz,hTmt

−1hzlD , gs2hTmthd.

s24d

The notationgsSd denoting a normalized Gaussian with co-
variance matrixS. In short then

Wtszd = gs2hTmthd * W0shTEt
Thzdudet Etu, s25d

where * means convolution.
We calculate 2hTmth to be given by

2hTmth = 21DppS4gt + 4e−2gt − e−4gt − 3

16g3m2 D + 2DqpS2gt + e−2gt − 1

4g2m
D + Dqqt DppS2gt + e−2gt − 1

4g2m
D + Dqqt

DppS2gt + e−2gt − 1

4g2m
D + Dqqt Dppt 2 . s26d

We will now need the fact that theP function and Wigner
function are related by

Wszd = gsC1/4d * Pszd, s27d

with

C1/4 =1
1

Î2Dppm

1

2

1

2
ÎDppm

2
2 . s28d

Because of the convolution of Gaussians factors,swhere it
makes sensed we have

Ptszd = gs2hTmth − C1/4d * W0shTEt
ThzdudetEtu, s29d

and as for Wigner functions

Wr * Ws = trsrsd ù 0, s30d

the P function will be ù0 if gs2hTmth−C1/4d is a Wigner
function. In two dimensions this is true if, and only ifsRef.
f9gd,

dets2hTmth − C1/4d .
1
4 . s31d

This positivity of theP function manifests the density matrix
as a probability distribution over coherent state projectors,
which is therefore of the forms4d.
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For long times(i.e., once the exponentials and constants are negligible), we have

2hTmth − C1/4 , 21SDpp
t

16g3m2 + 2Dqp
t

4g2m
+ DqqtD SDpp

t

4g2m
+ DqqtD

SDpp
t

4g2m
+ DqqtD Dppt 2 . s32d

Due to cancellations, the determinant is

22detsDdt2 . 0, s33d

provided the master equation is Lindbladfby Eq. s9dg. Thus
it is clear that we have complete disentanglement in finite
time. Exact determination of the time scale requires numeri-
cal methods.

The limit of no dissipation:g\0

The limit g→0 allows comparison with Diósi’s calcula-
tion. One finds

2hTmth → 2Dt + 21
Dpp

3m2t3 +
Dqp

m
t2

Dpp

2m
t2

Dpp

2m
t2 0 2 , s34d

which, allowing for differences in notation, is the same as in
Ref. f6g and givesffor a master equation of the forms5d, i.e.,
for Dqq=Dqp=0g the disentanglement time scale as calcu-
lated there:

t* < 1.97Î m

2Dpp
. s35d

B. A particular choice of Lindblad operator

We consider the “minimally invasive” modification that
results in an evolution equation of Lindblad form, and which
satisfies the fluctuation-dissipation theorem(see, e.g., Ref.
[10]). This means we take the Lindblad operator to be

L = Î4mkTx+ igÎ 1

4mkT
p, s36d

resulting in a master equation with

Dpq = 0,

Dpp = 2mkTg,

Dqq =
g

8mkT
. s37d

This equation has been used in the study of realistic models,
such as the quantum Brownian motion model in certain re-
gimes(e.g., Ref.[11]). Diósi’s criterion

dets2hTmth − C1/4d ù
1
4 s38d

becomes

det1S2Dpp
4gt + 4e−2gt − e−4gt − 3

16g3m2 + 2Dqqt −
1

Î2Dppm
D SDpp

2gt + e−2gt − 1

2g2m
+ Dqqt −

1

2
D

SDpp
2gt + e−2gt − 1

2g2m
+ 2Dqqt −

1

2
D 2Dppt −ÎDppm

2
2 ù

1
4 s39d

reducing to

FFSkT

g
D2

sgtd −
1

4
SkT

g
D3/2G + sgtd2 − S1

4
Î g

kT
+ 2ÎkT

g
D

3sgtd − SkT

g
D2

Q2 + SkT

g
DQ ù 0 s40d

or, better,

F

4sgt0d3s4t − 1d − S2 +
1

4
sgt0d2Dt + sgt0d2t2 −

Q2

sgt0d4 +
Q

sgt0d2

ù 0, s41d

with

t =
t

t0
s42d

and

F = 4sgt0dt + 4e−2gt0t − e−gt0t − 3,

P. J. DODD PHYSICAL REVIEW A 69, 052106(2004)

052106-4



Q = 2sgt0dt + e−2gt0t − 1, s43d

where we have introduced a decoherence time scalet0 given
by

t0 =
1

ÎgkT
. s44d

The decoherence time scale—the time taken for reductions
of e−1 in quantities measuring the progress of
decoherence—is significant because, for reasons discussed in
Ref. f7g and as found in practice, disentanglement and deco-
herence occur on comparable time scales. Decoherence is
generally more familiar and has been better studied than en-
tanglement breakingshowever see Refs.f12,13gd, and so it is
of interest to compare the two time scales by using the ratio
t.

If we are at “high” temperatures, i.e., with respect to the
damping (or put differently, if decoherence occurs much
more quickly than damping, as is the case for situations of
emergent classicality):

gt0 =Î g

kT
! 1, s45d

we can conjecture a solution to the above equation in the
form of a power series insgt0d. To second order we have

F = sgt0ds− 3td + sgt0d2st2d, s46d

Q = sgt0d2s2t2d, s47d

which yields the complete disentanglement timet* sas a
fraction of the decoherence timed

t* = 1
4 − 25

48sgt0d2. s48d

This then represents the time scale for this system to become
completely disentangled, i.e., disentangled from all other iso-
lated systems.This particular form shows that damping does
not affect the overall behavior, and in this regime shortens
the time scale for its occurrence. The result is not directly
comparable with Eq.s35d because of the distinct choice ofD.

If the damping is extremely strong, a better result may be
obtained by using Eq.(33) directly to estimate the time scale.

III. DISENTANGLEMENT OF COUPLED SYSTEMS

In this section we consider the separation of two harmoni-
cally coupled particles, each in interaction with an environ-
ment. Without the coupling the particles might evolve ac-
cording to(say)

] W

] t
= −

p1

m1

] W

] q1
+ Dpp

]2W

] p1
2 −

p2

m2

] W

] q2
+ Dpp

]2W

] p2
2 . s49d

The “reduced” Wigner function for particle 1 would then
evolve exactly according to Eq.s5d. By the disentanglement
results above, the particle-1 Wigner function would have to
be completely disentangled after a finite time. In particular,
this means that the full Wigner function for particles 1 and 2
separates. As observed above, the results on complete disen-

tanglement specialize to results onN-partite separation, un-
less the particles are coupled in some way.

In this section therefore, we consider the case of two par-
ticles which are allowed to “talk” to each other via a har-
monic potential.(More general potentials being considerably
more difficult to treat.) A potential can act to build up corre-
lations between each party and can countermand some of the
disentangling effects of environmental noise.

Once we allow the particles’ oscillating modes, we must
abandon all hopes of simple analytic expressions estimating
disentanglement times. Graphs of quantities describing the
level of entanglement now will have “wobbles” in them, in
addition to any simple overall trends. The precise disen-
tanglement times will depend in detail on the relationship
between parameter values, which determine the size and
phase of the wobbles. What is more, there is no reason to
think that the coupling could not allow the pair of particles to
resurrect their entanglement(in fact, see Ref.[13]). We
therefore content ourselves with determining conditions on
the couplings that guarantee disentanglement between the
pair for good, after a finite time, without worrying about the
precise details and timings of the separation.

A. The evolution

We will use the “capital,” rotated coordinate system given
by

Q̄1 =
1
Î2

sq̄1 + q̄2d,

Q̄2 =
1
Î2

sq̄1 − q̄2d,

P̄1 =
1
Î2

sp̄1 + p̄2d,

P̄1 =
1
Î2

sp̄1 − p̄2d, s50d

or

Z̄ =
1
Î2

S12 12

12 − 12
Dz̄: = Rz̄. s51d

The differential equations relevant to the method of charac-
teristics are

dQ̄1

dt
= −

P̄1

m
− 2gQ̄1,

dQ̄2

dt
= −

P̄2

m
− 2gQ̄2,

dP̄1

dt
= mV2Q̄1,
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dP̄2

dt
= s2mv2 + mV2dQ̄2: = mV82Q̄2, s52d

wherev is the frequency of the interparticle coupling andV
the strength of the well.

The 1 and 2 evolutions then decouple and take the same
form:

d

dt
Z̄ = S− 2g − m−1

mv2 0
DZ̄. s53d

This decoupling will allow us to pursue most of the calcula-
tions in the “dashed” and “undashed” sectors in two dimen-
sions, and in parallel. Where we use the same notation at
both the 232 and 434 level, we intend it to be understood
that the 434 matrix is block diagonal and made up from the
dashed and undashed matrices of the same name.

Solving this differential equation we get

Et =1e−gtScosat +
g

a
sin atD − e−gtsin at

ma

mV2e−gtsin at

a
e−gtScosat +

g

a
sin atD 2 ,

s54d

wherea=ÎV2−g2

The diffusion matrix remains the same in the rotated co-
ordinates. We will take the diffusion coefficient matrix to be
diagonal, having in mind eventually to use the minimal Lind-
blad values as above. We obtain

mt =E
0

t

dtEt
TSD1 0

0 D2
DEt =E

0

t

dte−2gtSa b

b c
D = SA B

B C
D ,

s55d

where

a =
D1

2
S1 +

g2

a2D +
D2m

2V4

2a2 +
D1g

a
sin 2at

+ cos 2atFD1

2
S1 −

g2

a2D −
D2m

2V4

2a2 G ,

b = S D1g

2ma2 −
D2mV2g

2a2 DS− 1 −
a

g
sin 2at + cos 2atD ,

c =
D1

2m2a2 +
D2

2
S1 +

g2

a2D +
D2g

a
sin 2at

+ cos 2atFD2

2
S1 −

g2

a2D −
D1

2m2a2G , s56d

and

A = FD1

2
S1 +

g2

a2D +
D2m

2V4

2a2 G1 − e−2gt

2g
+

D1g

2aV2

3sa − ae−2gtcos 2at − ge−2gtsin 2atd+ FD1

2
S1 −

g2

a2D
−

D2m
2V4

2a2 Gg − ge−2gtcos 2at + ae−2gtsin 2at

2V2 ,

B = S D1g

2ma2 −
D2mV2g

2a2 DSe−2gt − 1

2g

−
asa − ae−2gtcos 2at − ge−2gtsin 2atd

2gV2 D ,

C = F D1

2m2a2 +
D2

2
S1 +

g2

a2DG1 − e−2gt

2g
+

D2g

2aV2

3sa − ae−2gtcos 2at − ge−2gtsin 2atd + FD2

2
S1 −

g2

a2D
−

D1

2m2a2Gg − ge−2gtcos 2at + ae−2gtsin 2at

2V2 . s57d

With all this, we have

WtsZd = gMt
* W0setZdudetEtu, s58d

where

et = hTEt
Th, s59d

and

Mt = 2hTmth. s60d

B. Showing separation

Now that we have solved for the evolution, how are we to
address the issue of separation? Simple, general criteria for
separability of states are notoriously difficult to come by.
There are three notable exceptions:H=C2 ^ C2, H=C2 ^ C3,
and, embedded withinH=L2sRd ^ L2sRd, the class of Gauss-
ian states. Separation criteria for gaussian states come in a
variety of flavors(see Ref.[14] and for relations between
them Ref. [15]); we shall use the particularly simple one
from the paper of Duanet al. In terms of our rotated coor-
dinate system, this criterion reads: a Wigner functiongsSd is
separable if, and only if,

S11 + S44 ù 1,

S22 + S33 ù 1. s61d

Separation criteria for Gaussian states will be useful to us
because the propagators for our evolution are Gaussian. In
words: if, after a certain time, we can take off part of the
propagator and use it to smear the initial Wigner function
positive, andstill be left over with a Gaussian that separates,
our evolution will be a separating one. In symbols:
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WtsZd
udetEtu

= gMt
* W0setZd = :et

*sgMt
* W0dsZd

= sge−tMte−t
T * et

*W0dsZd = sge−tMte−t
T −C * gC * et

*W0dsZd,

s62d

which means we can examine to see whethers1d the Gauss-
ian ge−tMte−t

T −C separates,s2d we can simultaneously chooseC
such thatgC* et

*W0ù0.
If we can do both these things, thenWtszd separates. It

will be of the form

o
a

paE d2z18d
2z28psz18,z28dWa

s1dsz1 − z18dWa
s2dsz2 − z28d,

s63d

where

p = gC * et
*W0udet Etu, s64d

and thesnot necessarily discreted sum overa describes the
separation of the statege−tMte−t

T −C.

C. Calculations relevant to separation

Pursuing our second point, it is straightforward to see that

gC * et
*W0 = et

*sgetCet
T * W0d, s65d

so that this will beù0 if getCet
T is a Wigner function. When is

getCet
T a Wigner function? The “capital” or rotated coordinate

system will be used unless otherwise stated. If we have a
GaussiangM with

M = Sm 0

0 m8
D , s66d

and the matricesm andm8 give rise to 232 Gaussians each
of which is a Wigner function, thengM is Wigner. We know
that this is the case if

m+
i

2
h ù 0,

m8 +
i

2
h ù 0, s67d

which in two dimensions is equivalent to

det mù
1
4 ,

det m8 ù
1
4 , s68d

as long as the traces are positive.
In our chosen coordinate system, the relevant matrices

may be taken to be block diagonal. The majority of the cal-
culations then follow along in two dimensions. We pickC
block diagonal such that

etCet
T = C0, s69d

with C0 positive enough to give a Wigner function, i.e.,

detC0 = 1
4 s70d

in both the dashed and undashed sectors. ThusgetCet
T is a

Wigner functionby construction.
Consistent with this, we must now address our first point.

We wantge−tMte−t
T −C to be a separable Wigner function. First,

we must check if it is a Wigner function. This will turn out to
be the difficult condition to satisfy, in the sense that the sepa-
ration criterion, while messy to check, follows on trivially if
ge−tMte−t

T −C does become a Wigner function. We work at the
level of the 232 blocks again

We want

detse−tMte−t
T − Cd = detE−t

2 detf2mt − shC0hTdg

= e4gtdetf2mt − shC0hTdg ù
1
4 . s71d

We choose

hC0hT = SmÎgkT 1/2

1/2 1/2mÎgkT
D s72d

and for reasons explained above, declare ourselves only in-
terested in the asymptotics, and conditions guaranteeing
finite-time termination of entanglement. Therefore we throw
away any term containinge−2gt. We also proceed withD1
and D2 chosen as in the “minimal” Lindblad case above.
This means

A ,
D1sV4 + 3g2V2 − 4g4d

4gV2sV2 − g2d
+

D2m
2V2

4g
+ Ose−2gtd

=
mkTsV4 + 3g2V2 − 4g4d

2V2sV2 − g2d
+

mV2

32kT
+ Ose−2gtd,

B ,
m2V2D2 − D1

2mV2 + Ose−2gtd =
g

16kT
−

kTg

V2 + Ose−2gtd,

C ,
D1

4m2gV2 +
D2sV4 + 3g2V2 − 4g4d

4gV2sV2 − g2d
+ Ose−2gtd

=
kT

2mV2 +
sV4 + 3g2V2 − 4g4d
32mkTV2sV2 − g2d

+ Ose−2gtd. s73d

So, ignoring termsOse−2gtd,

detf2mt − shC0hTdg

= r1S 1

16
r1 + T1

−2 −
1

2
T2

−1 +
1

162T1
2 −

1

16
T2D −

1

32

T1T2

r2

−
r2

T1T2
−

1

82T2
4 − 4

r2
2

T1
2 +

1

2
r2

2, s74d

where

r1 =
sV4 + 3g2V2 − 4g4d

sV2 − g2dV2 ,

r2 =
g

V
,
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T1 =
V

kT
,

T2 =Î g

kT
. s75d

If Eq. (74) (consisting of various dimensionless comparisons
between the constants present) is positive definite, our
Wigner condition will be satisfied on a time scale set byg. It
is not transparent which regimes this will be positive in, but
at high temperatures, the important term is

SkTg

V2 D2S sV4 + 3g2V2 − 4g4d
g2sV2 − g2d

− 4D
= stosc/tdecd4S sV4 + 3g2V2 − 4g4d

g2sV2 − g2d
− 4D , s76d

with tdec= t0 andtosc=V−1. This will be positive if the system
is underdamped, i.e.,V2.g2.

Note. If the particles are both sitting in a harmonic well,
this condition will need to be satisfied for bothV andV8.

We must now check that separability will also occur.
Above, Eq.(61), we stated the Duanet al. criteria for sepa-
rability. Note that one could equally usehShT instead ofS.
Applying this toge−tMte−t

T −C, we become interested in

he−tsMt − C0de−t
T hT = E−t

T f2mt − shC0hTdgE−t. s77d

Now

kQ1,2
2 + P2,1

2 lgE−t
T f2mt−shC0hTdgE−t

= ksE−t
T XdTm1,2sE−t

T Xdlg
2mt8−shC0hTd
s232d + ksE−t

T8X8dTm2,1sE−t
T8X8dlg

2mt8−shC08hTd
s232d

= trhE−t
T m1,2E−tf2mt − shC0hTdgj + trhE−t

T8m1,2E−t8 f2mt8 − shC08h
Tdgj = :s1,2d + s1,2d8, s78d

where

m1 = S1 0

0 0
D ,

m2 = S0 0

0 1
D ,

XT = :sXT,X8Td, s79d

and everything is still block diagonal.

E−t
T m1E−t = e2gt1 Scosat −

g

a
sin atD2 sin at

ma
Scosat −

g

a
sin atD

sin at

ma
Scosat −

g

a
sin atD Ssin at

ma
D2 2 s80d

and

E−t
T m2E−t = e2gt1 SmV2sin at

a
D2

−
mV2sin at

a
Scosat −

g

a
sin atD

−
mV2sin at

a
Scosat −

g

a
sin atD Scosat −

g

a
sin atD2 2 . s81d

In fact

trsE−t
T m1,2E−tNd = v1,2

T Nv1,2, s82d

wherev1,2 are the vectors given by the first and second col-
umns ofE−t read upwards. This means that

trhE−t
T m1E−tf2mt − shC0hTdgj

= e2gtuTS 1 0

− g/a 1/ma
Df2mt − shC0hTdgS1 − g/a

0 1/ma
Du

s83d

and
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trhE−t
T m2E−tf2mt − shC0hTdgj

= e2gtuTS 0 1

− mV2/a − g/a
Df2mt − shC0hTdg

3S0 − mV2/a

1 − g/a
Du, s84d

whereuT=scosat ,sin atd, a Euclidean unit vector. This is
still a mess, but this form allows us to see that, as long as
we satisfy Eq.s74d .0 sthe Wigner conditiond, the sepa-
rability condition will come to be satisfied on a time scale
set most importantly byg.

D. The case ofg=0

We now consider the case ofg=0. For g=0 and a diag-
onal diffusion matrix, we can proceed as above with much
simplified equations. We find

A = SDpp

2
+

Dqqm
2V2

2
Dt + SDpp

2
−

Dqqm
2V2

2
Dsin Vt

2V
,

B = 0,

C = S Dpp

2m2V2 +
Dqq

2
Dt + SDqq

2
−

Dpp

2m2V2Dsin Vt

2V
. s85d

The requisite conditions will obviously come to be satisfied
after a finite time, guaranteed byD.0: the propagator
spreads out in a linear way and the evolution is

Et = 1 cosVt −
sin Vt

mV

mV sin Vt cosat
2 , s86d

which clearly does not stopE−t
T mtEt from coming to satisfy

the separability criteria.

IV. DISCUSSION

Given the similarity between the results in Secs. II and
Sec. III it is probably worth summarizing and discussing in
what ways they are related. In Sec. II, we considered the
evolution of a system according to Eq.(7). We showed that
after a finite time, the map effecting the evolution came into
the form

Msrd = o
k

trsmkrdmk, s87d

which meant that system had become disentangled from all
other systems. What happens if the system of interest is itself
composite? If we imagine that ther in Eq. s87d is actually a
state onA^ B, then we could enquire about the form ofthe
reduced state onA after such an evolution. Let us expand the
initial stater as

r = o
i j

pi jri
A

^ r j
B, s88d

wherehpi jj are not necessarily positive. Then we have

trBMsrd = o
k

trAftrBsmkrdgtrBmk

= o
kij

trAfri
Api jstrBmkr j

BdgtrBmk. s89d

The map governing the evolution oftrBr will therefore not
usually be of the completely disentangling form unlessr is
factored in the first place.

An exception to this is if the systemsA and B do not
interact, in the sense that their evolution map takes the fac-
tored formM =MA ^ MB. This is the case, for instance, when
the couplingv of Sec. III vanishes, as in Eq.(49). When this
happens there are closed equations governing the evolution
of each subsystem, and they each result in a completely dis-
entangling evolution. In particular then, systemsA and B
must disentangle. Seen in this context, the point of Sec. III
was to investigate how much coupling between two systems
spoils their disentanglement by a noisy environment. The
answer to the question is essentially that it does not, at least
for the conditions of interest for emergent classicality.

Of course, Sec. III also illustrated how the technology
devised to test for separability in Gaussian states can be used
to investigate dynamical disentanglement in bipartite sys-
tems for quite general states.

All this has further confirmed expectations that uncon-
trolled environmental interactions are highly destructive to
entanglement in quantum systems. That this destruction oc-
curs(and occurs quickly) is not surprising given our experi-
ence of decoherence in such systems, and since entanglement
relies on the superposition principle for its existence. It is
interesting though, that by contrast with decoherence,
entanglement—even withall isolated systems—can be
wiped out totally after a finite time. When the entangled
systems are allowed to interact with each other, the situation
is less simple as the interaction can help to rebuild lost en-
tanglement. However, in certain regimes(i.e., for certain re-
gions in the space of temperature, damping coefficients,
etc.), the entanglement between the systems will still be to-
tally destroyed after a finite time.

Although it may be of practical interest to know about the
effects of environmental interactions on entangled systems
(so as to avoid it in quantum technologies), in investigating
these questions we have been primarily interested in emer-
gent classical behavior. Entanglementis an inherently quan-
tum phenomenon, and so it is encouraging to find an efficient
mechanism by which it is rapidly destroyed in the systems of
our everyday experience. But to what extent, and in what
sense, is the absence of entanglement necessary for a system
to admit a classical description? Entanglement between two
systemsA and B certainly means that we cannot hope to
describe their correlations in a classical way. For example, if
they remain entangled under evolution, we would not expect
to find decoherent histories which refer to each system sepa-
rately. In the situations where we normally try to explain the
existence of a classical description, however, there is not
normally this clean division into definite subsystems. Given
a gas of particles in a box, what sort of entanglement prop-
erties do we need to destroy in order to be able to describe it
classically? There is no quantitative answer to this as yet.
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But a picture hinted at here is that we would like the sub-
systems which we refer to by the coarse-grained observables
of classical interest to disentangle. For instance, suppose we
were interested in local number, energy, and momentum den-
sities: nsxd, hsxd and psxd (see, e.g., Ref.[16]). Near equi-
librium, we expect to be able to describe the system by states
which are approximate eigenvectors ofn, h, andp. What we
mean is that there should be no entanglement with respect to

these indices in order for us to be able to find a classical
description.
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