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Disentanglement by dissipative open system dynamics
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This paper investigates disentanglement as a result of evolution according to a class of master equations
which include dissipation and interparticle interactions. Generalizing an earlier result of Diési, the time taken
for complete disentanglement iscalculated., for disentanglement from any other sysjefthe dynamics of
two harmonically coupled oscillators is solved in order to study the competing effects of environmental noise
and interparticle coupling on disentanglement. An argument based on separability conditions for Gaussian
states is used to arrive at a set of conditions on the couplings sufficient for all initial states to disentangle for
good after a finite time.
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[. INTRODUCTION Didsi has taken advantage of this to show that certain
markovian open-system evolutions result in a map of this
Yorm after a certain finite time[5]. This finite-time
environment-induced effect at first seems quite strange when
compared with the more familiar asymptotic environment-
induced decoherence effects of similar time scale. But it
should be noted that separable density matrices form a con-
with p; a probability distribution—has become one of the vex, finite-volume region within the space of all density ma-
most notable differences between classical and quantum mérices. If the equilibrium state is separable, we expect the
chanics. What at first sight seems a rather technical differevolution to “suck” states towards it along smooth trajecto-
ence, lies underneath all “no local hidden-variables” theoties which, at a certain time, pass into the separable region
rems which help set quantum mechanics firmly apart fromaround the equilibrium state. This picture makes clearer how
classical mechanicéRefs.[1,2]). More recently, entangle- disentanglement occurs in finite time, whereas decoherence,
ment has come to be regarded as a resource on which allhere states are sucked smoothly towards a stable submani-
essentially quantum technologies are bagpeantum com- fold of measure zer¢the states diagonal in the relevant ba-
putation, cryptography, etc., see, e.g., H&f). An under- sis), can only be achieved asymptotically.
standing of how entanglement comes to be destroyed by in- In Ref.[6] Diosi and Kiefer showed that the Wigner func-
teraction with an environment is therefore important not onlytion evolution
to explaining how the classical world emerges from an un-
derlying quantum one, but also to understanding and control- IW poJwW PW
ling the effects of noise, which make quantum technologies 9t mag P2 5)
madq p
such a practical challenge.

In Ref.[4], a theorem was proved categorizing completelyresults in a positivé® function after a finite time. Di6si used
disentangling maps. We call a completely positive trace preessentially the same technology to show that this evolution is
serving map also completely disentangling after a finite time. The positive

P function result itself implies a disentanglement result if we
M:B(H) — B(H) 2 consider the obvious extension of E®) to an N-particle
system: a positivé® function is a classical probability distri-
bution over the(separable coherent-state projectors. The
M ® 1:B(H ® CN) — B(H ® CN) (3) complete disentanglement result is stronger however, and
also gives disentanglement on the symmdttiparticle sys-
hasM ® 1y(p*%?) disentangled for all density matricgd®?  tem.
e B(H®CN) and for all positive integerdN. Ruskai [4] This paper is an elaboration and continuation of Ref,
showed thaM is completely disentangling if, and only if, —and is designed to be read in conjunction with it. In R&f,
the relation between decoherence and disentanglement was
M(p) = >, tr( o) My, (4) discussed and a new technique, based on separability criteria
k for Gaussian states, used to compute the finite-time disen-
tanglement of general states in a bipartite system, when
evolved, according to Eq5). The evolution of an EPR-like
(EPR, Einstein-Podolsky-Rosgstate was solved and used
to illustrate how the separability criteria came to be satisfied.
In this paper we first focus on extending Didsi’'s argument
*Electronic address: peter.dodd@imperial.ac.uk regarding the complete disentanglement of a single system to

Entanglement—the fact that not all density matrices ca
be written as

P2 =2 pipi ® pf, (1)
1

completely disentangling if

with {x«,} a positive operator-valued measufOVM) and
my density matrices.
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more general, dissipative evolutions. In particular we will be d%z — -
interested in evolutions which are of Lindblad form, i.e., W=f (27 sW(2)e“, (10)
B o itHp)+ S 2Ly~ Lo~ pLil ] 6  Wwhere
gt = [Hpl+ 2 @hplic- Lk~ pbidd, - (6)
k
(aby=a'b (12)

with nonzero dissipation. Then we will also go on to apply

the technique of Ref.7] to a harmonically coupled pair of is the standard Euclidean inner product,

particles, where there is competition between the coupling,

which can generate entanglement, and the environmental in- 7= ( 0 1) (12)

fluence, which tends to destroy it. We will concentrate on -1 0

determining conditions which guarantee that the environ-

ment wins. and
The layout of this paper is as follows. Below, in Sec. I, n

we extend Didsi's complete disentanglement result, analyz- — (9

ing a more general and realistic evolution. For a specific '

choice of Lindblad operator, we compute the complete dis-

entanglement time scale for high temperatures relative to thand similarly without “bars.”

dissipation. In Sec. Ill, we then go on to consider the open The Fourier transfornw obeys the equation

system evolution of bipartite systems where the particles are

coupled. Complete disentanglement results cannot be imme- — = -~ w

(13

diately applied to this situation because the interaction will M: Eﬂ_\/—amwzﬁ+ zyaa—v_v —?B?V_V, (14)
tend to generate new entanglement between subsystems. We Jt  mdq ap Jq

will use a different method, based on the recent separability

criteria for Gaussian states, which explicitly produces a deWit

composition of the state into separable states. In Sec. IV, we

conclude and make some remarks about the role of entangle- D= ( Dpp  — qu>, (15)
ment destruction in explaining classical behavior. ~Dgp Dgq

B which we can solve by characteristics.
II. DIOSI ANALYSIS FOR A GENERAL DISSIPATIVE

MASTER EQUATION o
A. Specialization to the free casew=0

We start with the following Markoviatiquantum Fokker-

Planck master equation for the Wigner function Diosi’'s argument is given in Ref7]. Here, we explain the

argument as we go, fow=0, but consideringy# 0. The
aW p oW JW a(pW) PW calculations for the case+# 0 are contained implicitly in the
— = - —— +me’q— + 2y +Dyq section below on coupled systems. We do not pursue Didsi's
Jt maq ap ap 9444 analysis in detail for this case because, as noted below, os-
W PW cillating terms destroy the monotonicity of disentanglement
ppm *+2Dqp 9qap (7) and thergfore make an analyt?cal treatment much harder:
The gist of the argument is to show that, by smearing

This describes a harmonic oscillator interacting with an enfhings out in phase space, the propagator for the evolution

vironment whose effects can be well approximated by whitelUickly results in a positivé function. This ability of open-
noise. In practice, this is true fairly generically of commonly SyStém dynamics to smear out the negative parts of phase-
encountered environments at high temperatures. space quasidistributions has been studied before with regard

It can be showrisee, e.g., Re{8]) that this master equa- © treating them as genuine probability distributions in
tion is of Lindblad form if, and only if, the diffusion matrix pseudoclassical circumstances. Here, the crucial observation
D, defined by is that a map which always results in states with positve

function is a completely disentangling map, of the fain
(qu qu) All this is accessible because the propagators are Gaussian in

+D

(8) form, meaning the calculations can be carried through ex-
plicitly, and because the properties of Gaussian states are
well understood.

We start with the evolution written in the form

qap pp

is positive and
detDziz. (9) &W H&V_V _aw —
4m =T —— 4+ 2yq—-Z'DZW, (16)
at maq aq
In analyzing this master equation, we will make much use of
the Fourier transform which is equivalent to
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&z — ~ \a(z 72
Wizt = j S WE O~ il

dWZY e
T = - ZDaW G, (17)
where the equations for the characteristics are - &’z f o2z’ e—i(z’,nzt>w(zl 0)ei<z,7,?>
_ (2m)? ’
d_q‘ _P_ 240 = \a(z 7
dt m s xexd - (z, mz_p]e*"
21 dzz_ o TET ’
a0 =] d’z >|detEy|exdi(7'E; nz- 7', n2)]
By, (18) (2m)
dt /
xexd - (z, 12 ]Wo(Z'). (23

Slr_1ce this set of equations Is linear and Markovian we Cale will not be so interested in the evolution of the argument,
write o .

nor the normalizing prefactors, which take care of them-
selves. The middle Fourier transform can be carried out to

(19 .
give the propagator as

z=Egz

one-parameter group. We easily find

whereE; is a family of matrices affecting the evolution as a f

dz
2m2SP i(z, nz)exp —(z, w2

( 1- e‘z’“>
1 - dZZ_ . -1 - -1
E. = 2ym (20 :J (2—2exp —<z+i%7]z,ﬂt<z+i%1]z>>
0 1 )
Setting X e L
t = —L exp(— l<z Tt z)) ~ 927" wm)
Mt:fo dTEINEﬂ (21) 2mr\det 2\ T 9len 7).
(24)
we then can solve as ) . ) . )
o o o The notationg(X) denoting a normalized Gaussian with co-
W(z,t) = WME(E[ *2),t] = W(Z_,, 0)exf] - (Z_1, siZ_0)]. variance matrix%. In short then
(22 Wi(2) = g(27 u) * Wo( 7' E{ 72)|det B, (25)
Taking the inverse Fourier transform, for the original Wignerwhere * means convolution.
function we have We calculate 2" 7 to be given by
|
(47t+4e‘27t—e‘4“/‘—3> +2D (27t+e‘27‘— 1) +Dt D (27t+e‘2‘/t—1> +Dt
R pp 167°m? qp 4y’m qq- “pp 492m aq -
7 7= 2] (26)
pp 4y’m + Dot Dppt
We vyill now need the fact that the function and Wigner P2 =929 mn—-Ci) * Wo(ﬂTEtTWZ)|de'Et|, (29)
function are related by . )
and as for Wigner functions
W(2) =9(Cys) * P(2), (27)
_ W, * W, =tr(po) =0, (30)
with
the P function will be =0 if g(25"w,7—Cy/4) is a Wigner
1 1 function. In two dimensions this is true if, and only(Ref.
/2D, ;m 2 (9D,
1/4= e (28) )
% Dy det2y wn - Cua) > 3. (3D
2
This positivity of theP function manifests the density matrix

Because of the convolution of Gaussians facténdere it
makes sengewe have

as a probability distribution over coherent state projectors,
which is therefore of the forn).
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For long times(i.e., once the exponentials and constants are negljgivie have

t t t
(Dpp16y3m2 + Zqu4y2m + qut) (Dpp4yzm + qut)

277TMt77 =Cys~2 t (32
(Dppmn + qut) Dppt
I
Due to cancellations, the determinant is B. A particular choice of Lindblad operator
22det(D)t2> 0 (33) We consider the “minimally invasive” modification that

_ S results in an evolution equation of Lindblad form, and which
provided the master equation is Lindblegy Eq.(9)]. Thus  satisfies the fluctuation-dissipation theoré¢see, e.g., Ref.

it is clear that we have complete disentanglement in finitg10]). This means we take the Lindblad operator to be
time. Exact determination of the time scale requires numeri-

cal methods. — . 1
L = V4mkTx+iyy/ ——=p, 36
v Xy 4kap (36)

The limit of no dissipation: y—0 L . .
o ) ) . resulting in a master equation with
The limit y— 0 allows comparison with Diosi’s calcula-

tion. One finds Dpq=0,
Eﬂgt3 + DJ.EtZ BP_QtZ Dpp = 2ka7’
T 3m m 2m
25wy — 2Dt + 2 5 , (34
_EEtZ 0 = —7
2m Dagq 8mKT (37)

which, allowing for differences in notation, is the same as inThis equation has been used in the study of realistic models,
Ref.[6] and givedfor a master equation of the for(h), i.e.,  such as the quantum Brownian motion model in certain re-
for Dqq=Dqp=0] the disentanglement time scale as calcu-gimes(e.qg., Ref.[11]). Di6si’s criterion

lated there:

det27 '~ Cu) = ; (38)
m
te = 1.97\/ —. (35 becomes
V2D,
|
4ot +4e—gM -3 1 2 N -1
(2Dpp i +2qut—=) ( oAreTolp t—l>
16y°n? V2D, m PP 242m ad
de ’P = (39
opt+e M1 1 Dpgh o
DppZyZ—m + 2Dq t— 5 2Dppt - 5
[
reducing to (4r-1) <2+1( t)2> + (o) 02 .
T - - T - -5
4(0)° 470 T (et (o)
=0, (41)
KT)2 1<kT)3/2} <1 y kT)
O — b +(p)2=| S/ =+2y/— i
(o024 s oo (22 e2yT) i
kT)? kT t
X('}/t)—(—) @%(—)@20 (40) T=— (42)
y Y to
and
or, better, D = d(ytg) 7+ 4 M7 — g Mo — 3,
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O =2(yo)T+e M7 -1, (43)  tanglement specialize to results bhpartite separation, un-
less the particles are coupled in some way.

where we have introduced a decoherence time sggen In this section therefore, we consider the case of two par-

by ticles which are allowed to “talk” to each other via a har-
1 monic potential(More general potentials being considerably
to= 7. (44)  more difficult to treaf. A potential can act to build up corre-
VKT lations between each party and can countermand some of the

The decoherence time scale—the time taken for reductiondisentangling effects of environmental noise.
of el in quantties measuring the progress of Once we allow the particles’ oscillating modes, we must
decoherence—is significant because, for reasons discussedah@ndon all hopes of simple analytic expressions estimating
Ref.[7] and as found in practice, disentanglement and decodisentanglement times. Graphs of quantities describing the
herence occur on comparable time scales. Decoherence I@v€l of entanglement now will have “wobbles” in them, in
generally more familiar and has been better studied than erfiddition to any simple overall trends. The precise disen-
tanglement breakinghowever see Ref§12,13), and so it is tanglement times will depend in detail on .the relathnsh|p
of interest to compare the two time scales by using the rati®etween parameter values, which determine the size and
- phase of the wobbles. What is more, there is no reason to
If we are at “high” temperatures, i.e., with respect to thethink that the coupling could not allow the pair of particles to
damping (or put differently, if decoherence occurs much resurrect their entanglemeriin fact, see Ref.[13]). We
more quickly than damping, as is the case for situations otherefore content ourselves with determining conditions on

emergent classicalily the couplings that guarantee disentanglement between the
pair for good, after a finite time, without worrying about the
vy precise details and timings of the separation.
o= T <1, (45)

. . . . A.Th luti
we can conjecture a solution to the above equation in the © evolution

form of a power series ifiyty). To second order we have We will use the “capital,” rotated coordinate system given

b
@ = ()= 37) + (M) *(7), (46) ’

Q= @+ %)
0 = (1p)%(27), (47) 1T BT
which vyields the complete disentanglement time(as a

fraction of the decoherence time — 1 _

5 m Q2: TE@_ qz)a
™= — 2( M) (48) v

This then represents the time scale for this system to become — 1 -
completely disentangled, i.e., disentangled from all other iso- Py= ?@ +P2),
lated systems.This particular form shows that damping does V2

not affect the overall behavior, and in this regime shortens

the time scale for its occurrence. The result is not directly - i

comparable with Eq(35) because of the distinct choice Df P1= \E(pl P2, (50)
If the damping is extremely strong, a better result may be
obtained by using Eq33) directly to estimate the time scale. or
- 1(1, 1, \
IIl. DISENTANGLEMENT OF COUPLED SYSTEMS Z= 2\1, -1, zZ=Rz (51)

In this section we consider the separation of two harmoni-.l_he differential equations relevant to the method of charac-
cally coupled particles, each in interaction with an environ—teristics are q
ment. Without the coupling the particles might evolve ac-
cording to(say)

Q__ P, 5
IW_ oW o AW ppaW AW ot m 2%
gt magy  Papd mpag,  Paps’
The “reduced” Wigner function for particle 1 would then @__ﬁ _5
evolve exactly according to E¢5). By the disentanglement dt m 72,

results above, the particle-1 Wigner function would have to

be completely disentangled after a finite time. In particular, —

this means that the full Wigner function for particles 1 and 2 ap, _ mﬂza
separates. As observed above, the results on complete disen-  dt b
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dP; — —
d_tz = (2me? + mN?)Q,: = mQ'?Q,,

wherew is the frequency of the interparticle coupling afid

the strength of the well.

The 1 and 2 evolutions then decouple and take the same

d— (-2y -m? )—

—Z= Z. 53

dt (mw2 0 (53
This decoupling will allow us to pursue most of the calcula-
tions in the “dashed” and “undashed” sectors in two dimen-

form:

D
(52) A:|:?1<l+—2
o

PHYSICAL REVIEW A 69, 052106(2004)

72) , Do 11-e" Dy
202 2y 2a0)?

D
X (o — ae™®"cos 2t — ye 2"sin 2at)+ [f(l - fz)
o

~ DZmZQ“] y— ye 2cos 2t + ae ?'sin 2at
2a? 202 ’

sions, and in parallel. Where we use the same notation at

both the 2x2 and 4x 4 level, we intend it to be understood
that the 4x 4 matrix is block diagonal and made up from the C=

dashed and undashed matrices of the same name.
Solving this differential equation we get

) sin at
e yt(cos at + Lsin at) —-en
o Mo
E = .
sin at

mQ2e™ "

e"t(cos at + Lsin ozt)

a a

(54)

wherea=\0%-12

The diffusion matrix remains the same in the rotated co-

ordinates. We will take the diffusion coefficient matrix to be
diagonal, having in mind eventually to use the minimal Lind-

blad values as above. We obtain

t D, O t ab A B
ol o )= [l 2)=(5 €
’“L o 0,/ /% b ¢/T\B C

(59
where
D D,m’Q* D
a—f<l+£2) 22 S+ 1ysm 207
o o
y2> D,m?0*
+COoS v 1-=|- ,
T|: 2 ( o? 207
D sz
:(# D> )( 1——sm 20T+ COS ?m-)
(64
2mzl > ( é) sm 2T
a
D yz D,
+ ur| =\ 1-5 | -—=|, 56
cos { 2\" & 2m2a2] (56
and

B _ ( Dl'y _ Dszlzy)(e_zyt - 1
“\ome? 242 2y
_a(a - ae *"cos 2t - ye *'sin 2at))
27y0? ’
|: Dl Dz(l £>:| 1—e_2’yt Dz'y
e o? 2y ¥ 2002
D
X (a— a€ ?"'cos 2t — ye 2"'sin 2at) + {?2(1 - ﬁz)
o
__Dbs } y— ye 2"cos ot + ae?"'sin 20t 57
2méa? 202 '
With all this, we have
Wt(Z) = th * Wo(EtZ)|deEt| f (58)
where
&=7'El 7, (59)
and
M= 277TMt7]- (60)

B. Showing separation

Now that we have solved for the evolution, how are we to
address the issue of separation? Simple, general criteria for
separability of states are notoriously difficult to come by.
There are three notable exceptiofit=(?® C?, H=(?® (3,
and, embedded withit{ =L%(R) ® L4(R), the class of Gauss-
ian states. Separation criteria for gaussian states come in a
variety of flavors(see Ref.[14] and for relations between
them Ref.[15]); we shall use the particularly simple one
from the paper of Duaet al. In terms of our rotated coor-
dinate system, this criterion reads: a Wigner functgh) is
separable if, and only if,

2+, =

Dot 2a3=1. (62)

Separation criteria for Gaussian states will be useful to us
because the propagators for our evolution are Gaussian. In
words: if, after a certain time, we can take off part of the
propagator and use it to smear the initial Wigner function
positive, andstill be left over with a Gaussian that separates,
our evolution will be a separating one. In symbols:
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W(2) _

. deC,=1 70
o] =" Whle2) =36, (a,* Wol D 0=3 (70
t

in both the dashed and undashed sectors. 1@1{@5{ is a
= (gs_t,v,téjt* &Wo)(2) = (ge_tMteIt—C* gc* W) (2), Wigner functionby construction _ _
Consistent with this, we must now address our first point.
(62) We wantgs_t,v,tgt_c to be a separable Wigner function. First,
which means we can examine to see whetigthe Gauss- we must check if it is a Wigner function. This will turn out to
ian Je MT-c separated2) we can simultaneously choo€e  be the difficult condition to satisfy, in the sense that the sepa-

such thaigc* e:v\/o;o_ ration criterion, while messy to check, follows on trivially if
If we can do both these things, théi(z) separates. It Je_m,eT-c does become a Wigner function. We work at the
will be of the form level of the 2x 2 blocks again
We want
21 42! A 1) ! 2) _
(63 =eMdef2u, - (7Con")] = 711- (72
where We choose
=gc* e W,|detE{, 64 mpkT 172
P=0c t 0| t| ( ) 77007]T: ( 1 — (72)
and the(not necessarily discretesum overa describes the 1/2mV kT
separation of the sta@; u T -c. and for reasons explained above, declare ourselves only in-
terested in the asymptotics, and conditions guaranteeing
C. Calculations relevant to separation finite-time termination of entanglement. Therefore we throw

. o . inin@2 i
Pursuing our second point, it is straightforward to see thafWay any term containing™". We also proceed witld;
and D, chosen as in the “minimal” Lindblad case above.

Jc* &Wo = € (Dece* Wo), (65  This means
so that this will be=0 if g c.T is a Wigner function. When is _ Dy(Q*+3/0%- 4y . D,nPQ? +O(e2n)
gece @ Wigner function? The “capital” or rotated coordinate 4yQ02(Q2 - 9P 4y
system will be used unless otherwise stated. If we have a MKTQ + 31202 — 49" mQ?2 S
Gaussiargy, with = + +0(e™),
20%(0%- ) 3T
M (m 0 ) (66)
= s 20021 _
0 m B~ %22[)1 + O(e—27t) = Y _ kl;y + O(e—ZYI)'
and the matricem andm’ give rise to 2< 2 Gaussians each 2med 1T 0
of which is a Wigner function, theg,, is Wigner. We know 4 5 .
that this is the case if C~ Dy, Do+ 3Y/0% - 499 +O(E2M
i 4mPyO? 490202 - 7P
m+>7=0, KT (43207 -4y o
= om? P amkmzz-p €T (3
m + i—77 =0 67) So, ignoring term®O(e™2"),
2 1
hich in two dimensions | alent def2u; - (7Co7")]
which in two dimensions is equivalent to
) (L el L, 1) 1T
detm= g, “hl1e T TRl T @ 1T 62 T3y,
2
.
detm’ = 2, (69) —Tr—_zl_—éT‘Z‘—4_|722+%r§, (74)
112 1
as long as the traces are positive.
In our chosen coordinate system, the relevant matrice¥/here
may be taken to be block diagonal. The majority of the cal- (O + 39202 - 497
culations then follow along in two dimensions. We piCk ry= 5 >,
block diagonal such that Q%= )0
ftCGtT=C0a (69) ; _Y
with C, positive enough to give a Wigner function, i.e., 2T
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1.0 ('iv)z( (Q4+3/02- 444 4>
Lk o? Q- 9)

04+ 3/20%2- 49*
= (tosr;/tdeyl( ( ;-/2(3;22 _ )/2)47 ) - 4) ) (76)

With tgec=to andt,s.=Q 1. This will be positive if the system
AL (750 is underdamped, i.eQ?> /2.
KT Note If the particles are both sitting in a harmonic well,
this condition will need to be satisfied for both and()’.
We must now check that separability will also occur.
Above, Eq.(61), we stated the Duaet al. criteria for sepa-
If Eq. (74) (consisting of various dimensionless comparisongability. Note that one could equally usg. 5" instead ofS.
between the constants pregems positive definite, our Applying this togf—tMtht_C’ we become interested in
Wigner condition will be satisfied on a time scale setbyt T T T T
is not transparent which regimes this will be positive in, but ne-Mi=Coesn =E-[2p = (nCon) B (77)
at high temperatures, the important term is Now

2 2 =TT T Ty T Trns
(Qf .+ P2,1>gEIt[2#t_(”CMT)]E[— ((EZX) ml’Z(E_tX»g(ZiZEvaonT) +((EXX") 'my o(EZ{X"))g@x2

2u{~(nCqn")

= tr{ELmy B 20— (7Con") I} + tr{EL my E [ 2] = (nCon") 1} =:(1,2 + (1,2,  (79)

(o o)
m, =
1"\o o/’

_(o o)
m2_ O 1 )

XT=:«(XT,X'Ty, (79

where

and everything is still block diagonal.

v 2 sin at v .
cosat — —sin at cosat— —sin at
a Mo a

ELmE =e| | _ 80
R smat< y . ) <smat)2 (80
cosat - *sin at
Ma o Mo
and
(szsin at)2 mQ2sin at( v . )
—_— - ————|cosat- *sin at
o o o
ELmyE_ =" 81
e szsinat( Y ) ( Y )2 1)
——(cosat— —=sin at cosat — —sin at
o o
[
In fact tr{ELmE_[ 24 — (7Con") 1}
0 1 -
= ezytuT( o 1 )[ZMI_ (nConT)]( /y a)u
tr(ELmy B N) = v] Noy 5, (82) ~vla lma 0 lma
(83

wherev, , are the vectors given by the first and second col-
umns ofE_; read upwards. This means that and
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tr{ELME [ 24~ (7Con")]} trgM(p) = X tra[trg( ) Jtrgmy
k
0 1
=e2vtuT< ) 2p = !
-mQ%a - yla (204~ (5Com)] =D tralpfim ij(trBMkPJB)]terk- (89)
Kij
0 -mOZa Y _ _
1 -vla , (84) The map governing the evolution tifgp will therefore not

usually be of the completely disentangling form unlesis

whereu"=(cosat,sin at), a Euclidean unit vector. This is factored in the first place.
still a mess, but this form allows us to see that, as long as An exception to this is if the systems and B do not
we satisfy Eq.(74) >0 (the Wigner conditioh the sepa- interact, in the sense that their evolution map takes the fac-

rability condition will come to be satisfied on a time scale tored formM=M,® Mg. This is the case, for instance, when
set most importantly byy. the couplingw of Sec. Ill vanishes, as in E¢49). When this

happens there are closed equations governing the evolution
of each subsystem, and they each result in a completely dis-
entangling evolution. In particular then, systesand B

We now consider the case 9#0. For y=0 and a diag- must disentangle. Seen in this context, the point of Sec. Il
onal diffusion matrix, we can proceed as above with muchyas to investigate how much coupling between two systems
simplified equations. We find spoils their disentanglement by a noisy environment. The

D. The case ofy=0

2 212\ i answer to the question is essentially that it does not, at least
A= (B@ + E:’sz—ﬂ>t + (299 - M) Sl Qt, for the conditions of interest for emergent classicality.
2 2 2 2 2Q Of course, Sec. Il also illustrated how the technology
devised to test for separability in Gaussian states can be used
B=0, to investigate dynamical disentanglement in bipartite sys-
tems for quite general states.
co D . Dgyq Dy D sin Ot All this has further.confirnjed expect.ations that uncon-
“\ome02 " 2 2 2mR02) 20 (85) trolled environmental interactions are highly destructive to

entanglement in quantum systems. That this destruction oc-
The requisite conditions will obviously come to be satisfiedcurs(and occurs quicklyis not surprising given our experi-
after a finite time, guaranteed b >0: the propagator ence of decoherence in such systems, and since entanglement
spreads out in a linear way and the evolution is relies on the superposition principle for its existence. It is
interesting though, that by contrast with decoherence,

cosOt - sin (t entanglement—even withall isolated systems—can be
E.= mQ |, (86)  wiped out totally after a finite time. When the entangled
mQ sin Ot cosat systems are allowed to interact with each other, the situation

_ - _ ) is less simple as the interaction can help to rebuild lost en-
which clearly does not stoR_E; from coming to satisfy  tanglement. However, in certain regimge., for certain re-

the separability criteria. gions in the space of temperature, damping coefficients,
etc), the entanglement between the systems will still be to-
IV. DISCUSSION tally destroyed after a finite time.

Although it may be of practical interest to know about the
effects of environmental interactions on entangled systems
SO as to avoid it in quantum technologie® investigating

Given the similarity between the results in Secs. Il and
Sec. lll it is probably worth summarizing and discussing in

what ways they are related. In Sec. Il, we considered th ese questions we have been primarily interested in emer-

evolution of a system according to B). We showed that gent classical behavior. Entangleménan inherently quan-

{ahf'ée]rcoe:rgmte time, the map effecting the evolution came Intotum phenomenon, and so it is encouraging to find an efficient

mechanism by which it is rapidly destroyed in the systems of
- our everyday experience. But to what extent, and in what
M(p) % tr{pp) M (&7 sense, is the absence of entanglement necessary for a system
to admit a classical description? Entanglement between two
which meant that system had become disentangled from allystemsA and B certainly means that we cannot hope to
other systems. What happens if the system of interest is itseffescribe their correlations in a classical way. For example, if
composite? If we imagine that thein Eq. (87) is actually a  they remain entangled under evolution, we would not expect
state onA® B, then we could enquire about the form ofthe g find decoherent histories which refer to each system sepa-
reduced state oA after such an evolution. Let us expand the rately. In the situations where we normally try to explain the

initial statep as existence of a classical description, however, there is not
A B normally this clean division into definite subsystems. Given
p=2, mip| @ p, (88) o i
< P i a gas of particles in a box, what sort of entanglement prop-
: erties do we need to destroy in order to be able to describe it
where{;} are not necessarily positive. Then we have classically? There is no quantitative answer to this as yet.
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But a picture hinted at here is that we would like the sub-these indices in order for us to be able to find a classical
systems which we refer to by the coarse-grained observablekescription.

of classical interest to disentangle. For instance, suppose we

were interested in local number, energy, and momentum den-

sities: n(x), h(x) and p(x) (see, e.g., Ref{16]). Near equi- ACKNOWLEDGMENTS

librium, we expect to be able to describe the system by states The author would like to thank J.J. Halliwell and L. Didsi
which are approximate eigenvectorsrot, andp. What we  for some very useful discussions and both PPARC and the
mean is that there should be no entanglement with respect ®ritish Council for their financial support.

[1] J.S. Bell,Speakable and Unspeakable in Quantum Mechanics [9] Arvind, B. Dutta, N. Mukunda and R. Simon, Prama#,

(Cambridge University Press, Cambridge, 1987 471(1995.
[2] R.F. Werner, Phys. Rev. A0, 4277(1989. [10] H.-P. Breuer and F. Petrucciorihe Theory of Open Quantum
[3] M.A. Nielsen and _I.L. ChuangQuantqm Cpmputation and SystemgOxford Univeristy Press, Oxford, 2002
S‘.‘;”t“rgoégforma“on(camb”dge University Press, Cam- 11} 33 Halliwell and A. Zoupas, Phys. Rev. B2, 7294(1995.
rage, 290 _ [12] J. Eisert and M.B. Plenio, Phys. Rev. LeB9, 137902(2002).
4] '\fé ':gg decki, P.W. Shor, and M.B. Ruskai, Rev. Math. Phys. |, 5 ) \ “Raiagopal and R.W. Rendell, Phys. Rev.88, 022116
, 629(2003. 500

[5] L. Di6si, e-print quant-ph/0301096; L. Di6si, iRroceedings
of the Conference on Decoherence, Information, Complexit
and Entropy (DICE) edited by H.-T. Elze(Piombino, lItaly,

14] R. Simon, Phys. Rev. Lett84, 2726(2000; L.-M. Duan, G.
Giedke, J.I. Cirac, and P. Zolleihid. 84, 2722(2000); B-G.
Englert and K. Wodkiewicz, Int. J. Quantum Infl, 153

2002.

[6] L. Diési and C. Kiefer, J. Phys. /85, 2675(2002. (2003.

[7] P.J. Dodd and J.J. Halliwell, e-print quant-ph/0312068. [15] G. Giedke, Ph.D, thesis, University of Innsbru@003); avail-

[8] A. Arnold, J. Lépez, P.A. Markowich, and J. Soler, Rev. Mat. able from the website http://th-physik.uibk.ac-aggiedke.
Iberoam.(to be publisheyd [16] P. J. Dodd and J. J. Halliwell, Phys. Rev.6®, 052105(2004).

052106-10



