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Disentanglement and decoherence by open system dynamics
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The destruction of quantum interference, decoherence, and the destruction of entanglement both appear to
occur under the same circumstances. To address the connection between these two phenomena, we consider the
evolution of arbitrary initial states of a two-particle system under open system dynamics described by a class
of master equations which produce decoherence of each particle. We show that all initial states become
separable after a finite time, and we produce the explicit form of the separated state. The result extends and
amplifies an earlier result of Didsi. We illustrate the general result by considering the case in which the initial
state is an Einstein-Podolsky-Rosen statewhich both the positions and momenta of a particle pair are
perfectly correlated This example clearly illustrates how the spreading out in phase space produced by the
environment leads to certain disentanglement conditions becoming satisfied.
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I. INTRODUCTION shown by Simon that the condition is both necessary and

Much effort has recently been devoted to understandin .uff|C|ent for_the case'when the Wigner functlon.of a bipar-
the properties of entangled quantum states. This effort i§t€ system is Gaussiapt]. Duan et al. [5] considered a
largely driven by the emerging field of quantum Computa_dlﬁerent necessary and sufficient condition for the separabil-
tion, and in particular, the desire to manipulate entangledty of bipartite Gaussian states based on the variances of a
states in a practically useful way. However, another reasofilass of pairs of commuting Einstein-Podolsky-Rosen-like
why the study of entanglement is of interest concerns théEPR-like) operatorgof which x;—x, andp;+p, are an ex-
guestion of emergent classicality from quantum theory. Enample. (See Ref[6] for a discussion of the connection be-
tanglement represents the possibility of correlations whichween these conditionsThere are undoubtedly more condi-
are greater than those anticipated in classical theories. Henaigns for Gaussian states.
any account of emergent classicality must explain how en- A closely related idea is that of entanglement-breaking
tanglement is lost. The explanation of this is in fact reasonmaps. This is a ma@ acting on a subsysterA such that
ably simple and is closely related to decoherence, the dg41,® ®)(T') is separable for all choices of stdfeon A® B,
struction of interference. The purpose of this paper is taand for all finite-dimensional choices &f A theorem given
discuss the destruction of entanglement in some simple sy®y Horodecki and Shor then states that a rdajs entangle-

tems and its connection to decoherence. ment breaking if and only if it has the Holevo form,
A state of a bipartite system is said to be separdbte
disentangleylif it may be written in the form D(p) = 2 RTr(Fyp), 3
k
p=2pip @ pp, (1)
1

whereF are a set of positive-operator-valued measures and
) ] Ry are a set of density operators which are independept of
wherep;=0 [1]. Such a state describes essentially classicgl7_g]. Note that this result refers to the dynamics of one of
correlations and can never violate Bell's inequalities. How-the supsystems only. What is particularly interesting about
ever, it turns out to be surprisingly d|_ﬁ|cuI'F to dptermme, IN this type of map is that they naturally appear in the open
general, whether a state may be written in this form. Peregystem master equations of the type frequently used in deco-
[2] made the very useful observation that a separghie-  herence studies. In particular, Did4i0] has recently consid-

mains a density operator under the operation of partial transsred the open system dynamics described by the master
pose(transposition of one subsystem onlylence, a neces- gquation

sary condition for separability is that density operator

properties are preserved under partial transpose. This condi- 0 D

tion was shown by Horodecki to be sufficient in the case of p= ﬁ[H’p] ﬁZ[X’[X’p]]' (4)

2x 2 and 2x 3 dimensiong3], but generally not otherwise. _ ) ] _ _
In the case of continuous variables the Peres-Horodecki con-Nis equation describes a particle coupled to a heat bath in

dition has a useful expression in terms of Wigner functionsthe limit of high temperature and negligible dissipation, and
where Eq.(1) becomes is the simplest equation used to describe decoherence. If we

write the solution to this equation as
WI(P1, X1, P2, X0) = E piM(pllxl)\A,?(pZyxz)- (2
i pe=D(po), 5

The Peres-Horodecki condition is then thatp;,x;,p,,Xs) then Di6si has shown that this map becomes entanglement
remains a Wigner function undgs,——p,. It has been breaking after sufficient time has passed for Ehiainction to
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positive [10]. The time taken for this to happen is typically entangled with the environment, thereby diminishing their
very short and is essentially the same as the time scale rentanglement with each other.
quired for decoherence. Although what is particularly inter- The aim of this paper is to investigate the destruction of
esting is that complete disentanglement occurs after a finitentanglement through interacting with an environment, ex-
time, unlike decoherence which, in the usual view of it, istending and elaborating the earlier result of Di@€,11 and
asymptotic in time(See also the similar result by Diosi for others[13,14.
spin systems in Refl1].) In Sec. Il we consider the dynamics of a particle coupled
It is not hard to see that both decoherence and diserto an environment, concentrating on dynamics of the form
tanglement tend to be produced under the same circun{4). This is reasonably standard material but we write it in a
stances. A simple illustration of that fact is as follows. Con-form which is most useful for studying disentanglement. In
sider first a one-particle system in an initial superpositionSec. Ill, we consider the evolution of bipartite systems under

state the dynamics of Sec. Il. We show that an arbitrary initial
state achieves the explicitly separated fof@ after finite
W) =9+ o) ®)  time. In Sec. IV, we consider the evolution of the EPR state
and thus with density operator in the presence of an environment. This simple example
gives a clear picture of how the various separability condi-
p =X+ [X Bl + [ X + | )| (7)  tions come to be satisfied as a result of interacting with the

Suppose now it is subject to evolution according to the masEnVironment. We summarize and conclude in Sec. V.

ter equation4), with solution written in the form of Eq(5).
It is generally known that, if the initial staté) is a super- II. EVOLUTION IN THE PRESENCE
position of localized position states, evolution according to OF AN ENVIRONMENT
Eq. (4) tends to kill the off-diagonal terms. That is, we have
Before considering the evolution of entangled states in the
O(|y)(#]) =0 (8)  presence of a thermal environment, it is useful to consider

after a typically very short time. This means that the densit)firSt the _simplest case Of. a singlg particle coupled o a th?“
operator becomes essentially indistinguishable from the evdp_al environment in t_he limit of high temperature and negli-
lution of the mixed initial state gible dissipation, with no external potential. The master
' equation(4) for the density matrixp(x,y) is
I = + . 9
p' =Pyl + )¢l 9 ( Fo P

D
W_a_yz> -ﬁ(x—Y)ZP, (14)

dp ik
This is the simplest account of decoherence of a single par- ot = m
ticle coupled to an environment.
Now suppose we consider a two-particle system in thevhere D=2mykT. In the Wigner representation, the corre-
entangled state, sponding Wigner function

(W) =[g) @ [¢h) + [ 1) ® |2) (10)
with density operator
p =) (al ® [ (ol + [g )1 ® [1h2)(b))

+ )] @ | o) (ol + [ (1] @ |do)(s].  (11) oW = - pIwW + DaZ—V\z/. (16)
at  max = ap

Wip == f dse'“””pﬁp(w Sex- %5) (15)

obeys the equation

If we now let both particles evolve according to the dynam-
ics ® ® @, we find that once again the off-diagonal terms goFollowing Ref.[15], this equation may be solved in the form
away, so for example,

O(|gy)(hy]) =0 (12) Wt(p,x):f dpedXoK (P, X,t|Po, X0, 0 Wo(Po o), (17)

and the density operator becomes indistinguishable from thayhere K(p, x,t|py, %o, 0) is the Wigner function propagator,
obtained by the initial state, and is given by

p = )| ® [hX (ol + |p1X | @ [do)(¢pal,  (13) K=exd- a(p—pa) = BX—Xe) = €(p = Pe)) (X=X ],

which is separable. Hence, the mechanism that destroys in- (18
terference also destroys entanglement. wherep, andx; denote the classical evolution fropg, X, to

Another way to see why coupling to an environment will ., =" cl cl :
destroy entanglement is to appeal to the fact that the property
of entanglement has an exclusive qualit?]. SupposeA is Pot
entangled withB. Then if B becomes entangled with a third Pei=Por X =Xot m (19
party C it diminishes its entanglement witA. Hence an
environment coupling to one or both of the two particles in(For convenience, we ignore exponential prefactors unless
an entangled state will cause one or both of them to becommecessary.The coefficientse, B, and e are given by
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1 3’ 3m 1
“ov PToe T pe (20 f dpdx W, (P.X)W,,(p.x) = Z— Tr(p1pa),  (28)
In fact, the general form of the propagatd®) can be used Which is clearly always positive. For example, tQefunc-
to describe the most general type of linear dynamics—tion, which is always positive, is obtained in this way by
arbitrary environment temperatures, non-negligible dissipasmearing with a minimum uncertainty Wigner function. In
tion and the inclusion of a harmonic oscillator potential—for this notation the propagatiof21) of the Wigner function is
suitable choices ofy, B, €, andpg, Xy [15]. More general

o

dynamics are considered in another pad. Wi(2) = f d’z'g(z-z"; AWY(Z'). (29
With the simple change of variableg— xo—pgt/m we
may write, For the free particle without dissipation considered above we
have
V\lt(p,X)=fdpod><o exp— a(p = Ppo) = B(X~Xo) ~ €(p~ o) ( 2 t/m ) (
A=Dt 30
, t/m 2t%3n?
X (X = X0) W (Po.Xo), (21) m
and therefore
where
Dxt*
W5(Po,Xo) = Wo(Po,Xo = Pot/m). (22) A= 3m?’ (3Y)

This simple transformation is a linear canonical transformashowing that the Wigner function tends to spread out with
tion, which corresponds to a unitary transformation of thetime.

initial state, soWj, is still a Wigner function. For decoher-  Using the above description of the dynamics, it is straight-
ence and disentanglement, the important aspects of the evtgrward to compute the variances wfand p after a timet.
lution are contained in the convolution with the exponentialThey are

function. Following Diosi and Kiefef17], it is now very

2 _ 2
useful to introduce the notation (Ap); = 2Dt +(Ap)p, (32
p , 2Dt S22 5
z= (x) (23) (Ax); = ane "’ (Ap)oﬁ + EU(X, p) + (AX)g, (33
and also to introduce a class of Gaussian phase space furthere
tons, a(x,p) = 3P+ pR) — (R)(P) (34)
9(z;C) = exp(- 32'C'z). (24)  evaluated in the initial state.
The 2x 2 matrix C is positive definite andC| denotes its
determinant. The phase space functgia;C) is a Wigner Ill. EVOLUTION OF BIPARTITE STATES IN THE
function if and only if PRESENCE OF AN ENVIRONMENT
52 Consider now the case of a two-particle system in an ini-
IC| = 2 (25 tially entangled state. The two particles are not coupled to

each other, but are each separately coupled to a thermal en-
vironment, as described in the preceding section.

For our two-particle system, the Wigner evolution equa-
tion for the Wigner functiodM(p, Xy, P2, %) =W(z1,2,) is

(This is essentially the uncertainty principlé useful result
is the simple convolution property,

fdzzg(zl—z;C)g(z—zz;B)=g(zl—22,C+ B). (26) Mz_&M_&M+D&2_W+D(92_W_ (35)
gt maxg max, Jp:  Jps
We can use these (_Saussians to compute smeared Wigngfis equation may again be solved using propagdioith
functions by convolution, the unitary part removed, as in EqR1) and (22)]. The
two-particle Wigner function at timeis then given by
W(z) = f d%2'g(z-z';C)WZ’). (27)
Wi(z3,25) = f d*210°2,0(21 - 21 A)9(22 = 25, AW (21, 25),

Then it follows that the smeared Wigner function will be (36)

positive if and only if Eq.(25) holds. This is because the

smeared Wigner function is then equal to the overlap of twavhere the matriXA is given by Eq.(30). We will show that

Wigner functions, for which we have the result this evolves into the explicitly separable for(®) after suf-
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ficient time has elapsed. The key idea is to write the mafrix of this time scale was reportgavithout explicit detail$ in
in the propagator as Refs.[10,17], but we can extend this analysis in a small way.
We also need to compare the calculation with a result of the
A=Ayt B, (37) following section, so we give some of the details.
whereA,, is the matrix of variances for a minimum uncer- ~ Since the calculation involves a small numerical calcula-
tainty Wigner function(whose explicit form will be given tion, it is useful to define dimensionless variables, x, de-

below). We use the convolution propertg6) to write fined by
Aim\Y2_
9(z1-21;A) = f d°210(z1 ~21;B)0(z1 - 23;Au)  (38) t:<3) 4 (43)
and similarly withg(z,—z;;A). On the right-hand side, the _ 1a—
second Gaussian is a Wigner function becaésg|=%2/4. p=(AmD)™p, (44)
The first Gaussian with variance matr& will also be a 3\ 14
Wigner function if and only if X = <_D> X (45)
72 m
Bl =|A- Ayl = ik (39 In these dimensionless variables, we now take the matrix
A4 to be
We may now write the two-particle Wigner function at time —
tas o2 12
A= =] (46)
12 03?2

_ 25 25" 5. TP > _
(40) grounds that this gives a particularly robust evolution for
certain sets of initial statd4.8]. For the moment, we leave

where it general. The conditiori39) now becomes
~ _ 1 2 — 1
Wo(z1,2) :f &?zd°2y9(z; - 21;A199(22 :—;3 - §§2 tt-2= 0, (47)
=25, A1) Wo(21,2) (41)  wheres=02/12. The time at which this condition becomes

atisfied may be estimated by plotting the function in

aple for various values o$. For the choices5=12 we
haves=1, and it is straightforward to then show that the
the condition is satisfied for values bfyreater than about
1.39. This means

and is positive, as explained above. This is the desired resu
The Wigner function at timeé is of the separable forrf2) as
long as the matriXB satisfies Eq(39). This is because the
two Gaussians in Eq40) are Wigner functions if Eq(39)
holds, and the smeared Wigner functids, is positive and
corresponds to the term in Eq. (2). fim\2

We may also compare with the closely related result of t=19 o/ (48)

Diosi [10], who showed that a one-particle system achieves

the entanglement-breaking for8) after finite time, and in agreement with Ref$10,17. (The factor of 2 is included
hence cannot be entangled with anything else. Tracing ovdiecause Refd.10,17] usedD/2 to denote what we denote
particle 2 in Eq.(40), we obtain by D.)

However, if we tune the value ofy to make the time
scale as short as possible, then numerical experiments show
that the optimal value is abost 0.9 which gives the slightly
~ shorter time scale,
whereW, is the smeared Wigner function of the one-patrticle 2
system. This is clearly the Wigner transform of an expres- t=> 1.95<ﬁ_m> _ (49)
sion of the form(3) because first, the Gaussigfz,—2z;;B)

Wi(zy) :f d’z9(z; _Z;B)VVO(Z_l)v (42)

2D
is a class of Wigner functions independent of the initial statel_hiS improvement is clearly insignificant, but it does, how-

so corresponds 18, and secondi, is aQ function so is of  ever, show that the Dibsi-Kiefer choice is very nearly
the desired form TFp) with F, taken to be a coherent qptimg.

state projector. Hence we completely agree with Didsi’s

resul't. H'owever, this re_sult takes Diosi's result furth'er in IV THE EPR STATE
that it gives the explicitly separated form of the disen-
tangled state. Although the above results show disentanglement for gen-

Consider now the time scale on which the disentangleeral initial states, it is of interest to look in detail at a par-
ment condition(39) becomes satisfied, where the mattixs  ticular entangled state to see exactly how the entanglement
given by Eqg.(30) and Ay, is still to be chosen. Calculation goes away. We therefore consider the entangled state first
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introduced by Einstein, Podolsky, and Ro$&#]. Instead of 5 5 h2 ) 5 %2
the two canonical pairp;,x; andp,,x, it is very useful to OXTp = OQOKZ (57
use instead the rotated coordinates,

which is different to Eq(55). In particular, the first of these

— L _ ; : "

X=X1=%, K=3(p1=P2), (500 relations will not be satisfied whety and o are chosen to
be very small, which is the EPR case. This is generally the

Q=(x +X%p), P= %(p1+ D,). (51)  case for entangled states—they fail to remain Wigner func-

tions under interchange &f andK because they are then too
This is a canonical transformation, with the new canonicaktrongly peaked in phase space and violate the uncertainty
pairs beingK,X and P,Q. However, we also have the im- principle.
portant relations, To watch the destruction of entanglement, we will work
with the disentanglement condition put forward by Dugn
[X,P]=0, [QK]=0. (52)  al. [5], rather than the Peres-Horodecki condition. They

This simple observation is the basis of the EPR state, since Wrote down a class of necessary and sufficient conditions for

S a Gaussian state to be disentangled. In terms of dimension-
means we may choose a representation in wKieimdP are . —— = = ) i
definite. In fact, EPR defined the state less variableX, X, P,Q [defined as in Eqg43)—(45)], one
of those conditions is

W(X,P) = 8(X)8(P). (53

. . . . . (AX)?+ 4(AP) = 2. (58)
This state is not strictly normalizable. We therefore instead

consider Gaussian states which may be made arbitrarily closgnis is clearly not satisfied for the EPR initial std), but
to this state. In particular, we consider a Gaussian statgj s of interest to see how it becomes satisfied under evolu-

which, in the rotated coordinates has Wigner function tion in the presence of an environment. The key point here is
) ) 5 ) that the condition(58) means that the state is reasonably
K_X_P _Q d out in ph d this ph ding i
WK XPQ=exg-—5-—5-—5-—>|. spread out in phase space, and this phase space spreading is
20& 20‘5< 20p 204 precisely what evolution in the presence of an environment

(54) produces, so we expect that the condition will become satis-
fied after a short period of time.

The widthsoy andop may be chosen to be arbitrarily small,  In the presence of an environment, the initial state will
but for this to be a Wigner function, the remaining widths evolve according to Eq35). However, since the regularized
must satisfy EPR state(54) factors in terms of the rotated coordinates
) ) (50) and(51), it is more useful to use those, and in terms of
fi fi them, the Wigner equation is
2 1
O-IZ(G-XZ Z, 0%0‘%2 Z (55) 9 q

IW__2POW_KIW AW W

(Because the_ tran_sformation f_rom the original_ coqrdinates to ot maQ m ax + DaPZ + DaKZ' (59
rotated ones is a linear canonical transformation, it preserves

Wigner function properties, so the conditions to be a Wignelnterestingly, the dynamics also factors in the rotated vari-
function have the same form as in the Orlglnal Coordlnates.atﬂes and is essentia”y the same as the Sing]e-partic]e dy_

As an aside, we remark that Bell has noted that Gaussiafamics. Using Eq¥32) and(33), it is then easily seen that
states have a positive Wigner function, and therefore have

hidden_ variable ipterpretation, so cannot violate Bell's in- (AP)E:ZDHUE,, (60)
equalities[20]. This perhaps suggests that they do not have
any significant entanglement properties. This is, however, in 3
terms of observables local in phase space quantities. It has 2_ 8Dt ioz 2, 2

) ' ! (AX); + Wt°+ o%. (62)
been pointed out that there are other observables, in particu- 3m? n?
lar, the parity operator, in terms of which Gaussian states do _ _ _ - _
violate Bell's inequalitie$21]. Hence it is of interest to study Inserting these expressions in the conditi@s), we find

entanglement of Gaussians. that, in dimensionless variables, it is satisfied as long as
In terms of the variableg50) and (51), the Peres-

Horodecki[2—4] condition for disentanglement is the condi- §f3 +ACE + 8T+ 1 =92 (62)

tion thatW(K, X, P, Q) must remain a Wigner function when 4c '

P andK are interchanged, that is,
Here, c is the dimensionless form afsz and we have used

2 2 2 2 . L . . .
KX, P.Q)= exp<— P X K &) (56) _the unc_:ertamtyop)2r|_r10|ple to eliminate. The interesting case
202 20% 205 202Q is that in whichoy, is very S'm'a”., but we cannot set it to zero
because then would be infinite. We have also se$=0,
is a Wigner function. The conditions for this to be a Wignerwhich represents the most extreme ca®@¥e can do this
function are because)é, its conjugate width, does not appear.
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The polynomial in Eq(62) may be plotted using Maple dissipation, a potential, and also to include interactions be-
for various values ot. We have found from these plots that tween the particles which will then compete with the disen-
for all values ofc the condition becomes satisfied for valuestangling effects of the environment. This is considered in

of t greater than about 0.19, that is, for another papef16].
12 As previously noted10,11, it is striking that complete
t= 0.27<h_m> _ (63) disentanglement is achieved in finite time, whereas the inter-
2D ference terms in the density matrix tend to take infinite time

This is the time after which the EPR state becomes disento completely go away. That is, one is inclined to say that

. " o R complete decoherence takes an infinite time. Although note
tangled, according the conditidf8). This time is actually a that the word “decoherence” is used in a variety of different
lot shorter than the time scald9), hence is safely consistent
with the general result. The time scai9) is the time for ways. -

B ' i . This perhaps suggests that the exact vanishing of the off-
any initial state to become disentangled whereas the time,.

scale(63) is only for the EPR state. This actually indicates agonal terms in the density matrix is perhaps too strong a

. condition for determining when a quantum system is essen-
that the EPR state is perhaps not a very entangled state, t?glly classical. It is, for example, often suggested that posi-
least in terms of phase space variables.

tivity of the Wigner function is a useful condition character-
izing quasiclassicality, because this then means that the one-
V. DISCUSSION particle system is a hidden variables theory. Significantly, the
We have shown, in a variety of different ways, how openWigner function typically becomes positive after a finite time
system dynamics destroys entanglement in a system considft OPen system dynamics. Hence, a reasonable meaning to
ing of two entangled particles. Entanglement is destroyed bfttach to the word decoherence is that it is the situation under
the same mechanism that destroys interference. In particulai/hich prediction for all variables may be described by a
we have shown that, under a simple open system dynamicgldden variables theory. These ideas will be explored in fu-
any initial two-particle state achieves the explicitly disen-turé publications. See Refi22] for related discussions.
tangled form Eq(2) after a short, finite time. We illustrated
this general result with the particular case of the EPR state.
The dynamics employed here are those of the free particle
coupled to a bath of oscillators, in the limit of negligible  We are very grateful to Lajos Di6si for useful conversa-
dissipation. It is of interest to extend the analysis to includgions. P.D. was supported by PPARC.
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