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The destruction of quantum interference, decoherence, and the destruction of entanglement both appear to
occur under the same circumstances. To address the connection between these two phenomena, we consider the
evolution of arbitrary initial states of a two-particle system under open system dynamics described by a class
of master equations which produce decoherence of each particle. We show that all initial states become
separable after a finite time, and we produce the explicit form of the separated state. The result extends and
amplifies an earlier result of Diósi. We illustrate the general result by considering the case in which the initial
state is an Einstein-Podolsky-Rosen state(in which both the positions and momenta of a particle pair are
perfectly correlated). This example clearly illustrates how the spreading out in phase space produced by the
environment leads to certain disentanglement conditions becoming satisfied.
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I. INTRODUCTION

Much effort has recently been devoted to understanding
the properties of entangled quantum states. This effort is
largely driven by the emerging field of quantum computa-
tion, and in particular, the desire to manipulate entangled
states in a practically useful way. However, another reason
why the study of entanglement is of interest concerns the
question of emergent classicality from quantum theory. En-
tanglement represents the possibility of correlations which
are greater than those anticipated in classical theories. Hence,
any account of emergent classicality must explain how en-
tanglement is lost. The explanation of this is in fact reason-
ably simple and is closely related to decoherence, the de-
struction of interference. The purpose of this paper is to
discuss the destruction of entanglement in some simple sys-
tems and its connection to decoherence.

A state of a bipartite system is said to be separable(or
disentangled) if it may be written in the form

r = o
i

piri
A

^ ri
B, s1d

wherepi ù0 f1g. Such a state describes essentially classical
correlations and can never violate Bell’s inequalities. How-
ever, it turns out to be surprisingly difficult to determine, in
general, whether a state may be written in this form. Peres
f2g made the very useful observation that a separabler re-
mains a density operator under the operation of partial trans-
posestransposition of one subsystem onlyd. Hence, a neces-
sary condition for separability is that density operator
properties are preserved under partial transpose. This condi-
tion was shown by Horodecki to be sufficient in the case of
232 and 233 dimensionsf3g, but generally not otherwise.
In the case of continuous variables the Peres-Horodecki con-
dition has a useful expression in terms of Wigner functions,
where Eq.s1d becomes

Wsp1,x1,p2,x2d = o
i

piWi
Asp1,x1dWi

Bsp2,x2d. s2d

The Peres-Horodecki condition is then thatWsp1,x1,p2,x2d
remains a Wigner function underp2→−p2. It has been

shown by Simon that the condition is both necessary and
sufficient for the case when the Wigner function of a bipar-
tite system is Gaussianf4g. Duan et al. [5] considered a
different necessary and sufficient condition for the separabil-
ity of bipartite Gaussian states based on the variances of a
class of pairs of commuting Einstein-Podolsky-Rosen-like
(EPR-like) operators(of which x1−x2 andp1+p2 are an ex-
ample). (See Ref.[6] for a discussion of the connection be-
tween these conditions.) There are undoubtedly more condi-
tions for Gaussian states.

A closely related idea is that of entanglement-breaking
maps. This is a mapF acting on a subsystemA such that
s1A ^ FdsGd is separable for all choices of stateG on A^ B,
and for all finite-dimensional choices ofB. A theorem given
by Horodecki and Shor then states that a mapF is entangle-
ment breaking if and only if it has the Holevo form,

Fsrd = o
k

RkTrsFkrd, s3d

whereFk are a set of positive-operator-valued measures and
Rk are a set of density operators which are independent ofr
f7–9g. Note that this result refers to the dynamics of one of
the subsystems only. What is particularly interesting about
this type of map is that they naturally appear in the open
system master equations of the type frequently used in deco-
herence studies. In particular, Diósif10g has recently consid-
ered the open system dynamics described by the master
equation

ṙ =
i

"
fH,rg −

D

"2†x,fx,rg‡. s4d

This equation describes a particle coupled to a heat bath in
the limit of high temperature and negligible dissipation, and
is the simplest equation used to describe decoherence. If we
write the solution to this equation as

rt = Fsr0d, s5d

then Diósi has shown that this map becomes entanglement
breaking after sufficient time has passed for theP function to
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positive f10g. The time taken for this to happen is typically
very short and is essentially the same as the time scale re-
quired for decoherence. Although what is particularly inter-
esting is that complete disentanglement occurs after a finite
time, unlike decoherence which, in the usual view of it, is
asymptotic in time.sSee also the similar result by Diósi for
spin systems in Ref.f11g.d

It is not hard to see that both decoherence and disen-
tanglement tend to be produced under the same circum-
stances. A simple illustration of that fact is as follows. Con-
sider first a one-particle system in an initial superposition
state

uCl = ucl + ufl s6d

and thus with density operator

r = uclkcu + uclkfu + uflkcu + uflkfu. s7d

Suppose now it is subject to evolution according to the mas-
ter equations4d, with solution written in the form of Eq.s5d.
It is generally known that, if the initial states6d is a super-
position of localized position states, evolution according to
Eq. s4d tends to kill the off-diagonal terms. That is, we have

Fsuclkfud < 0 s8d

after a typically very short time. This means that the density
operator becomes essentially indistinguishable from the evo-
lution of the mixed initial state,

r8 = uclkcu + uflkfu. s9d

This is the simplest account of decoherence of a single par-
ticle coupled to an environment.

Now suppose we consider a two-particle system in the
entangled state,

uCl = uc1l ^ uc2l + uf1l ^ uf2l s10d

with density operator

r = uc1lkc1u ^ uc2lkc2u + uc1lkf1u ^ uc2lkf2u

+ uf1lkc1u ^ uf2lkc2u + uf1lkf1u ^ uf2lkf2u. s11d

If we now let both particles evolve according to the dynam-
ics F ^ F, we find that once again the off-diagonal terms go
away, so for example,

Fsuc1lkf1ud < 0 s12d

and the density operator becomes indistinguishable from that
obtained by the initial state,

r = uc1lkc1u ^ uc2lkc2u + uf1lkf1u ^ uf2lkf2u, s13d

which is separable. Hence, the mechanism that destroys in-
terference also destroys entanglement.

Another way to see why coupling to an environment will
destroy entanglement is to appeal to the fact that the property
of entanglement has an exclusive quality[12]. SupposeA is
entangled withB. Then if B becomes entangled with a third
party C it diminishes its entanglement withA. Hence an
environment coupling to one or both of the two particles in
an entangled state will cause one or both of them to become

entangled with the environment, thereby diminishing their
entanglement with each other.

The aim of this paper is to investigate the destruction of
entanglement through interacting with an environment, ex-
tending and elaborating the earlier result of Diósi[10,11] and
others[13,14].

In Sec. II we consider the dynamics of a particle coupled
to an environment, concentrating on dynamics of the form
(4). This is reasonably standard material but we write it in a
form which is most useful for studying disentanglement. In
Sec. III, we consider the evolution of bipartite systems under
the dynamics of Sec. II. We show that an arbitrary initial
state achieves the explicitly separated form(2) after finite
time. In Sec. IV, we consider the evolution of the EPR state
in the presence of an environment. This simple example
gives a clear picture of how the various separability condi-
tions come to be satisfied as a result of interacting with the
environment. We summarize and conclude in Sec. V.

II. EVOLUTION IN THE PRESENCE
OF AN ENVIRONMENT

Before considering the evolution of entangled states in the
presence of a thermal environment, it is useful to consider
first the simplest case of a single particle coupled to a ther-
mal environment in the limit of high temperature and negli-
gible dissipation, with no external potential. The master
equation(4) for the density matrixrsx,yd is

] r

] t
=

i"

2m
S ]2r

] x2 −
]2r

] y2D −
D

"2sx − yd2r, s14d

where D=2mgkT. In the Wigner representation, the corre-
sponding Wigner function

Wsp,xd =
1

2p"
E dje−si/"dpjrSx +

1

2
j,x −

1

2
jD s15d

obeys the equation

] W

] t
= −

p

m

] W

] x
+ D

]2W

] p2 . s16d

Following Ref.f15g, this equation may be solved in the form

Wtsp,xd =E dp0dx0Ksp,x,tup0,x0,0dW0sp0,x0d, s17d

whereKsp,x,tup0,x0,0d is the Wigner function propagator,
and is given by

K = expf− asp − pcld − bsx − xcld − esp − pcldsx − xcldg,

s18d

wherepcl andxcl denote the classical evolution fromp0, x0 to
time t,

pcl = p0, xcl = x0 +
p0t

m
. s19d

sFor convenience, we ignore exponential prefactors unless
necessary.d The coefficientsa, b, ande are given by
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a =
1

Dt
, b =

3m2

Dt3
, e = −

3m

Dt2
. s20d

In fact, the general form of the propagators18d can be used
to describe the most general type of linear dynamics—
arbitrary environment temperatures, non-negligible dissipa-
tion and the inclusion of a harmonic oscillator potential—for
suitable choices ofa, b, e, and pcl, xcl f15g. More general
dynamics are considered in another paperf16g.

With the simple change of variablesx0→x0−p0t /m we
may write,

Wtsp,xd =E dp0dx0 expf− asp − p0d − bsx − x0d − esp − p0d

3sx − x0dgW08sp0,x0d, s21d

where

W08sp0,x0d = W0sp0,x0 − p0t/md. s22d

This simple transformation is a linear canonical transforma-
tion, which corresponds to a unitary transformation of the
initial state, soW08 is still a Wigner function. For decoher-
ence and disentanglement, the important aspects of the evo-
lution are contained in the convolution with the exponential
function. Following Diósi and Kieferf17g, it is now very
useful to introduce the notation

z = Sp

x
D s23d

and also to introduce a class of Gaussian phase space func-
tions,

gsz;Cd = exps− 1
2zTC−1zd . s24d

The 232 matrix C is positive definite anduCu denotes its
determinant. The phase space functiongsz;Cd is a Wigner
function if and only if

uCu ù
"2

4
. s25d

sThis is essentially the uncertainty principle.d A useful result
is the simple convolution property,

E d2zgsz1 − z;Cdgsz − z2;Bd = gsz1 − z2,C + Bd. s26d

We can use these Gaussians to compute smeared Wigner
functions by convolution,

W̃szd =E d2z8gsz − z8;CdWsz8d. s27d

Then it follows that the smeared Wigner function will be
positive if and only if Eq.s25d holds. This is because the
smeared Wigner function is then equal to the overlap of two
Wigner functions, for which we have the result

E dpdx Wr1
sp,xdWr2

sp,xd =
1

2p"
Trsr1r2d, s28d

which is clearly always positive. For example, theQ func-
tion, which is always positive, is obtained in this way by
smearing with a minimum uncertainty Wigner function. In
this notation the propagations21d of the Wigner function is

Wtszd =E d2z8gsz − z8;AdW08sz8d. s29d

For the free particle without dissipation considered above we
have

A = DtS 2 t/m

t/m 2t2/3m2D s30d

and therefore

uAu =
D2t4

3m2 , s31d

showing that the Wigner function tends to spread out with
time.

Using the above description of the dynamics, it is straight-
forward to compute the variances ofx and p after a timet.
They are

sDpdt
2 = 2Dt + sDpd0

2, s32d

sDxdt
2 =

2

3

Dt3

m2 + sDpd0
2 t2

m2 +
2

m
ssx,pd + sDxd0

2, s33d

where

ssx,pd = 1
2kx̂p̂ + p̂x̂l − sx̂dkp̂l s34d

evaluated in the initial state.

III. EVOLUTION OF BIPARTITE STATES IN THE
PRESENCE OF AN ENVIRONMENT

Consider now the case of a two-particle system in an ini-
tially entangled state. The two particles are not coupled to
each other, but are each separately coupled to a thermal en-
vironment, as described in the preceding section.

For our two-particle system, the Wigner evolution equa-
tion for the Wigner functionWsp1,x1,p2,x2d=Wsz1,z2d is

] W

] t
= −

p1

m

] W

] x1
−

p2

m

] W

] x2
+ D

]2W

] p1
2 + D

]2W

] p2
2 . s35d

This equation may again be solved using propagatorsfwith
the unitary part removed, as in Eqs.s21d and s22dg. The
two-particle Wigner function at timet is then given by

Wtsz1,z2d =E d2z18d
2z28gsz1 − z18;Adgsz2 − z28;AdW08sz18,z28d,

s36d

where the matrixA is given by Eq.s30d. We will show that
this evolves into the explicitly separable forms2d after suf-
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ficient time has elapsed. The key idea is to write the matrixA
in the propagator as

A = A1/4 + B, s37d

whereA1/4 is the matrix of variances for a minimum uncer-
tainty Wigner functionswhose explicit form will be given
belowd. We use the convolution propertys26d to write

gsz1 − z18;Ad =E d2z̄1gsz1 − z̄1;Bdgsz̄1 − z18;A1/4d s38d

and similarly withgsz2−z28 ;Ad. On the right-hand side, the
second Gaussian is a Wigner function becauseuA1/4u="2/4.
The first Gaussian with variance matrixB will also be a
Wigner function if and only if

uBu = uA − A1/4u ù
"2

4
. s39d

We may now write the two-particle Wigner function at time
t as

Wtsz1,z2d =E d2z̄1d
2z̄2gsz1 − z̄1;Bdgsz2 − z̄2;BdW̃0sz̄1,z̄2d,

s40d

where

W̃0sz̄1,z̄2d =E d2z18d
2z28gsz̄1 − z18;A1/4dgsz̄2

− z28;A1/4dW08sz18,z28d s41d

and is positive, as explained above. This is the desired result.
The Wigner function at timet is of the separable forms2d as
long as the matrixB satisfies Eq.s39d. This is because the
two Gaussians in Eq.s40d are Wigner functions if Eq.s39d
holds, and the smeared Wigner functionW̃0 is positive and
corresponds to the termpi in Eq. s2d.

We may also compare with the closely related result of
Diósi [10], who showed that a one-particle system achieves
the entanglement-breaking form(3) after finite time, and
hence cannot be entangled with anything else. Tracing over
particle 2 in Eq.(40), we obtain

Wtsz1d =E d2z1gsz1 − z̄1;BdW̃0sz̄1d, s42d

whereW̃0 is the smeared Wigner function of the one-particle
system. This is clearly the Wigner transform of an expres-
sion of the forms3d because first, the Gaussiangsz1− z̄1;Bd
is a class of Wigner functions independent of the initial state

so corresponds toRk, and second,W̃0 is aQ function so is of
the desired form TrsFkrd with Fk taken to be a coherent
state projector. Hence we completely agree with Diósi’s
result. However, this result takes Diósi’s result further in
that it gives the explicitly separated form of the disen-
tangled state.

Consider now the time scale on which the disentangle-
ment condition(39) becomes satisfied, where the matrixA is
given by Eq.(30) andA1/4 is still to be chosen. Calculation

of this time scale was reported(without explicit details) in
Refs.[10,17], but we can extend this analysis in a small way.
We also need to compare the calculation with a result of the
following section, so we give some of the details.

Since the calculation involves a small numerical calcula-
tion, it is useful to define dimensionless variablest̄ , p̄, x̄, de-
fined by

t = S"m

D
D1/2

t̄, s43d

p = s"mDd1/4p̄, s44d

x = S "3

mD
D1/4

x̄. s45d

In these dimensionless variables, we now take the matrix
A1/4 to be

A = Ss0
2/Î2 1/2

1/2 s0
−2/Î2

D . s46d

Referencesf10,17g made the particular choices0
2=Î2 on the

grounds that this gives a particularly robust evolution for
certain sets of initial statesf18g. For the moment, we leave
it general. The conditions39d now becomes

1

3
t̄ 3 −

2

3
st̄2 + t̄ −

1

s
ù 0, s47d

wheres=s0
2/Î2. The time at which this condition becomes

satisfied may be estimated by plotting the function in
Maple for various values ofs. For the choices0

2=Î2 we
haves=1, and it is straightforward to then show that the
the condition is satisfied for values oft̄ greater than about
1.39. This means

t ù 1.97S"m

2D
D1/2

, s48d

in agreement with Refs.f10,17g. sThe factor of 2 is included
because Refs.f10,17g usedD /2 to denote what we denote
by D.d

However, if we tune the value ofs0 to make the time
scale as short as possible, then numerical experiments show
that the optimal value is abouts=0.9 which gives the slightly
shorter time scale,

t ù 1.95S"m

2D
D1/2

. s49d

This improvement is clearly insignificant, but it does, how-
ever, show that the Diósi-Kiefer choice is very nearly
optimal.

IV. THE EPR STATE

Although the above results show disentanglement for gen-
eral initial states, it is of interest to look in detail at a par-
ticular entangled state to see exactly how the entanglement
goes away. We therefore consider the entangled state first
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introduced by Einstein, Podolsky, and Rosen[19]. Instead of
the two canonical pairsp1,x1 and p2,x2 it is very useful to
use instead the rotated coordinates,

X = x1 − x2, K = 1
2sp1 − p2d, s50d

Q = sx1 + x2d, P = 1
2sp1 + p2d. s51d

This is a canonical transformation, with the new canonical
pairs beingK ,X and P,Q. However, we also have the im-
portant relations,

fX,Pg = 0, fQ,Kg = 0. s52d

This simple observation is the basis of the EPR state, since it
means we may choose a representation in whichX andP are
definite. In fact, EPR defined the state

CsX,Pd = dsXddsPd. s53d

This state is not strictly normalizable. We therefore instead
consider Gaussian states which may be made arbitrarily close
to this state. In particular, we consider a Gaussian state,
which, in the rotated coordinates has Wigner function

WsK,X,P,Qd = expS−
K2

2sK
2 −

X2

2sX
2 −

P2

2sP
2 −

Q2

2sQ
2 D .

s54d

The widthssX andsP may be chosen to be arbitrarily small,
but for this to be a Wigner function, the remaining widths
must satisfy

sK
2sX

2 ù
"2

4
, sP

2sQ
2 ù

"2

4
. s55d

sBecause the transformation from the original coordinates to
rotated ones is a linear canonical transformation, it preserves
Wigner function properties, so the conditions to be a Wigner
function have the same form as in the original coordinates.d

As an aside, we remark that Bell has noted that Gaussian
states have a positive Wigner function, and therefore have
hidden variable interpretation, so cannot violate Bell’s in-
equalities[20]. This perhaps suggests that they do not have
any significant entanglement properties. This is, however, in
terms of observables local in phase space quantities. It has
been pointed out that there are other observables, in particu-
lar, the parity operator, in terms of which Gaussian states do
violate Bell’s inequalities[21]. Hence it is of interest to study
entanglement of Gaussians.

In terms of the variables(50) and (51), the Peres-
Horodecki[2–4] condition for disentanglement is the condi-
tion thatWsK ,X,P,Qd must remain a Wigner function when
P andK are interchanged, that is,

W̃sK,X,P,Qd = expS−
P2

2sK
2 −

X2

2sX
2 −

K2

2sP
2 −

Q2

2sQ
2 D s56d

is a Wigner function. The conditions for this to be a Wigner
function are

sX
2sP

2 ù
"2

4
, sQ

2 sK
2 ù

"2

4
, s57d

which is different to Eq.s55d. In particular, the first of these
relations will not be satisfied whensX andsP are chosen to
be very small, which is the EPR case. This is generally the
case for entangled states—they fail to remain Wigner func-
tions under interchange ofP andK because they are then too
strongly peaked in phase space and violate the uncertainty
principle.

To watch the destruction of entanglement, we will work
with the disentanglement condition put forward by Duanet
al. [5], rather than the Peres-Horodecki condition. They
wrote down a class of necessary and sufficient conditions for
a Gaussian state to be disentangled. In terms of dimension-

less variablesK̄ ,X̄, P̄,Q̄ [defined as in Eqs.(43)–(45)], one
of those conditions is

sDX̄d2 + 4sDP̄d2 ù 2. s58d

This is clearly not satisfied for the EPR initial states54d, but
it is of interest to see how it becomes satisfied under evolu-
tion in the presence of an environment. The key point here is
that the conditions58d means that the state is reasonably
spread out in phase space, and this phase space spreading is
precisely what evolution in the presence of an environment
produces, so we expect that the condition will become satis-
fied after a short period of time.

In the presence of an environment, the initial state will
evolve according to Eq.(35). However, since the regularized
EPR state(54) factors in terms of the rotated coordinates
(50) and(51), it is more useful to use those, and in terms of
them, the Wigner equation is

] W

] t
= −

2P

m

] W

] Q
−

2K

m

] W

] X
+ D

]2W

] P2 + D
]2W

] K2 . s59d

Interestingly, the dynamics also factors in the rotated vari-
ables and is essentially the same as the single-particle dy-
namics. Using Eqs.s32d and s33d, it is then easily seen that

sDPdt
2 = 2Dt + sP

2 , s60d

sDXdt
2 =

8

3

Dt3

m2 +
4

m2sK
2 t2 + sX

2 . s61d

Inserting these expressions in the conditions58d, we find
that, in dimensionless variables, it is satisfied as long as

8

3
t̄ 3 + 4ct̄2 + 8t̄ +

1

4c
ù 2. s62d

Here,c is the dimensionless form ofsK
2 and we have used

the uncertainty principle to eliminatesX
2. The interesting case

is that in whichsX
2 is very small, but we cannot set it to zero

because thensK
2 would be infinite. We have also setsP

2 =0,
which represents the most extreme case.sWe can do this
becausesQ

2 , its conjugate width, does not appear.d
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The polynomial in Eq.(62) may be plotted using Maple
for various values ofc. We have found from these plots that
for all values ofc the condition becomes satisfied for values
of t̄ greater than about 0.19, that is, for

t ù 0.27S"m

2D
D1/2

. s63d

This is the time after which the EPR state becomes disen-
tangled, according the conditions58d. This time is actually a
lot shorter than the time scales49d, hence is safely consistent
with the general result. The time scales49d is the time for
any initial state to become disentangled whereas the time
scales63d is only for the EPR state. This actually indicates
that the EPR state is perhaps not a very entangled state, at
least in terms of phase space variables.

V. DISCUSSION

We have shown, in a variety of different ways, how open
system dynamics destroys entanglement in a system consist-
ing of two entangled particles. Entanglement is destroyed by
the same mechanism that destroys interference. In particular,
we have shown that, under a simple open system dynamics,
any initial two-particle state achieves the explicitly disen-
tangled form Eq.(2) after a short, finite time. We illustrated
this general result with the particular case of the EPR state.

The dynamics employed here are those of the free particle
coupled to a bath of oscillators, in the limit of negligible
dissipation. It is of interest to extend the analysis to include

dissipation, a potential, and also to include interactions be-
tween the particles which will then compete with the disen-
tangling effects of the environment. This is considered in
another paper[16].

As previously noted[10,11], it is striking that complete
disentanglement is achieved in finite time, whereas the inter-
ference terms in the density matrix tend to take infinite time
to completely go away. That is, one is inclined to say that
complete decoherence takes an infinite time. Although note
that the word “decoherence” is used in a variety of different
ways.

This perhaps suggests that the exact vanishing of the off-
diagonal terms in the density matrix is perhaps too strong a
condition for determining when a quantum system is essen-
tially classical. It is, for example, often suggested that posi-
tivity of the Wigner function is a useful condition character-
izing quasiclassicality, because this then means that the one-
particle system is a hidden variables theory. Significantly, the
Wigner function typically becomes positive after a finite time
in open system dynamics. Hence, a reasonable meaning to
attach to the word decoherence is that it is the situation under
which prediction for all variables may be described by a
hidden variables theory. These ideas will be explored in fu-
ture publications. See Ref.[22] for related discussions.
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