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We present a strategy to empirically determine the internal and control Hamiltonians for an unknown
two-level system(black box) subject to various(piecewise constant) control fields when direct readout by
measurement is limited to a single, fixed observable.
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Accurate determination of the dynamics of physical sys-
tems and their response to external(control) fields is crucial
for many applications, especially quantum information pro-
cessing(QIP). Quantum process tomography(QPT) is a gen-
eral procedure to identify the unitary(or completely positive)
processes acting on a system by experimentally determining
the expectation values of a complete set of observables[1].

However, QPT is only a partial solution in many cases.
One problem is the assumption that one can experimentally
determine the expectation values of a complete set of observ-
ables or at least perform arbitrary single qubit measurements
for a register ofn qubits. However, most QIP proposals rely
on a single readout process—i.e., measurement in one basis.
For example, qubits encoded in internal electronic states of
trapped ions[2] or neutral atoms[3] are read out by quantum
jump detection via a cycling transition[4]. In solid-state sys-
tems based on Cooper-pair boxes[5], Josephson junctions
[6], or electrons in double-well potentials[7], final readout is
via charge localization using single-electron transistors[8] or
similar devices. Finally, solid-state architectures based on
electron or nuclear spin qubits[9] are expected to be limited
to sz measurements via spin-charge transfer.

Generally, one assumes that a single projective measure-
ment per qubit is sufficient since arbitrary one-qubit mea-
surements can be realized by performing a local unitary
transformation before measuring to achieve a change of ba-
sis. However, implementing these basis changes requires ac-
curate knowledge of the dynamics of each individual qubit
and its response to control fields in the first place. Yet in
particular for solid-state qubits[5–7,9,10], it is difficult to
predict the actual dynamics of a qubit precisely based on
computer models and theory alone, since they may be sensi-
tive to fabrication variance and even vary from one qubit to
the next as a result. We address this problem of system iden-
tification with a single fixed measurement basis and present a
general strategy to identify the internal and control Hamilto-
nians for a qubit subject to a number of piecewise constant
controls using a single fixed readout process. We can then
bootstrap this process to implement QPT.

Although the technique may be adapted to dissipative sys-
tems, in this paper we assume Hamiltonian evolution for the

purpose of identifying the dynamics relevant for the imple-
mentation of local unitary operations—i.e., decoherence
times much greater than the gate operation times—which is
crucial for systems of interest in QIP. The system evolution
is thus governed by a unitary operatorUst ,t0d, via rstd
=Ust ,t0drst0dUst ,t0d†, whererstd is the system density op-
erator, andUst ,t0d satisfies the Schrödinger equation

i " sd/dtdUst,t0d = HffstdgUst,t0d, s1d

whereH is the Hamiltonian of the system. The case of inter-
est is whenH depends on external fieldshfmj, which we can
control. Assuming the fields are sufficiently weak and act
independently,H has the form

Hffstdg = H0 + o
m=1

M

fmstdHm, s2d

whereH0 is the free evolution Hamiltonian andHm for m.0
describes the interaction of the system with fieldfm. Each
Hm can in turn be expanded in terms of the Lie algebra
generators—for a two-level system, the Pauli matricess j for
j P hx,y,zj:

2Hm = dm0I + dmxsx + dmysy + dmzsz. s3d

Thus we need to determine the real constantsdmx, dmy, and
dmz for m=0,1, . . . ,M sthe dm0 can be ignored since they
result only in an unobservable global phase factord.

Geometrically, we can represent the state of the system by
its Bloch vectorsstd=ssx,sy,szdT wheresj =Trfs jrstdg. If the
system satisfies Eqs.(1)–(3), its Bloch vector evolves

s.std = SR0 + o
m=0

M

fmstdRmD sstd, s4d

whereRm are the real antisymmetric rotation generators,

Rm = 1 0 dmz − dmy

− dmz 0 dmx

dmy − dmx 0
2 , s5d

andR=R0+om=1
M fmRm generates a rotation about*Electronic address: sgs29@cam.ac.uk
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d = d0 + o
m=1

M

fmdm, s6d

with dm=sdmx,dmy,dmzdT for m=0,1, . . . ,M. If fmstd varies
in time then so doesd. If it is piecewise constant, having
fixed valuesfm for t0ø tø t1, thensstd for tP ft0,t1g rotates
about the fixed axisd, whereidi is the rotation frequency,

and the unit vectord̂=s1/id i dd specifies the rotation axis.
This allows us to give an explicit formula for the trajectory
of sstd with ss0d=s0:

ssatd=s0 cosat + d̂ss0 · d̂ds1 − cosatd + ss0 3 d̂dsinat

=fI cosat + As1 − cosatd + B sinatgs0, s7d

where the rotation angle isat=astd=idist− t0d and

A =
1

212 sin2 u cos2 w sin2 u sins2wd sins2udcosw

sin2 u sins2wd 2 sin2 u sin2 w sins2udsinw

sins2udcosw sins2udsinw 2 cos2 u
2

B = 1 0 cosu − sinu sinw

− cosu 0 sinu cosw

sinu sinw − sinu cosw 0
2

and the unit vectord̂ is expressed in spherical coordinates,

d̂=ssinu cosw ,sinu sinw ,cosudT.
Without loss of generality we shall assume that we can

initialize the system in the states0= u0l=s0,0,1dT with re-
spect to the measurement basis and that we can experimen-
tally determine the value of thez component of the Bloch
vector z=kszl by repeated measurements. Inserting the ex-
pressions forA andB into Eq.(7), a rotation about the axisd
by the angleat=idist− t0d transforms the initial states0 into
ssatd whosez component is

zsatd = cossatdsin2 u + cos2 u. s8d

zsatd is constant exactly ifu=0. Otherwise, it oscillates and
with minimum zmin=cos2 u−sin2 u=coss2ud for cossatd=
−1 or at=s2n+1dp sfor some integernd. Hence, if uÞ0,

FIG. 1. Rotation about axisd and observablezsatd. The expec-
tation value of the measurement operator will oscillate sinusoidally,
amplitude and frequency are directly related to the declination and
length of the vector representing the applied Hamiltonian. FIG. 2. Bloch sphere and arrangement of rotation axes. We can

define the relative angular displacement of the vectorsdk represent-
ing applied Hamiltonians with respect to a reference vectordr

sÞzaxisd.

FIG. 3. Identification ofidi and u for d=d0

+ f2
s10dd2. Shown is simulated data ford0+2

s10d for

f2
s10d=0.5. The top graph is used to estimate the

rotation frequency using the discrete Fourier
transform, the bottom left plot shows the Fourier
transform, and the bottom right plot the magnifi-
cation of the region of interest as well as the pa-
rabola that provides the best least-squares fit to
the data.

SCHIRMER, KOLLI, AND OI PHYSICAL REVIEW A 69, 050306(R) (2004)

RAPID COMMUNICATIONS

050306-2



then we can experimentally findidi andu by determining
tmin=p / idi and zmin sFig. 1d.

For a single rotation it is sufficient to determineidi andu
and setw=0. For multiple rotations about different axesdk,
however, we must also determine the relative azimuthal
angleswk=wk8−wr8 with respect to a fixed reference axisdr
(Fig. 2). The reference axis should have a vertical tilt angle
ur P fp /4 ,3p /4g and we shall focus on this case in this
paper.1 Having determinedidi andu of the axes and chosen
a suitable reference axisdr, we can initialize the system in
the states1=scosb ,sinb ,0dT by rotatings0 about the axisdr

by ar =cos−1hfcoss2urd+1g / fcoss2urd−1gj, where b=tan−1f
−Î−2 coss2urdsecurg. Rotatings1 by various anglesa about
the axis dk then giveszsad=Cs1−cosad+D sina with C
=1/2 sins2ukdcosswk−bd and D=sinuk sinswk−bd or,
equivalently,

zsad = g sinsa + dd − g sind, s9d

whereC=g sind and D=g cosd. Hence, we can obtainw
from experimental data forzsad by finding d and g.

To determine the evolution of the system subject to the
several external fields we choose several field strengths
fm

s,d s,=1, . . . ,Ld for each controlfm sm=1, . . . ,Md and com-
pute the rotation axes

d0+m
s,d = d0 + fm

s,ddm s10d

by finding u0+m
s,d and id0+m

s,d i for all control settings, choosing
a reference axis, and determining all the relative azimuthal
anglesw0+m

s,d using the strategy outlined above. Then we plot
the x, y, andz components ofd0+m

s,d for ,=1,2, . . . ,L versus
the field strengthsfm

s,d for each field and fit a straight line to
each set of data points. The vertical axis intercepts of the
lines then give thex, y, andz components ofd0, and their
slopes determine thex, y, andz components ofdm.

To evaluate our strategy and find the best ways to extract
the information from noisy data we use computer simula-
tions. We choose various sets of Hamiltonians, use the pro-
posed strategy to identify them, and compare these results
with the actual values. Experiments are simulated by com-
puting individualsz measurements ofsstd according to Eq.
(7), generatingN pseudorandom numbersrnP f0,1g, where
N is the number of times the experiment is repeated, and
taking the result of thenth measurementMn to be 1 if
rn, s1+zd /2 and 0 otherwise. To account for measurement
errors we introduce a symmetric error probabilityhP f0,1g
indicating the frequency of erroneous measurement results—
i.e., registering 1 when we should have measured 0 and vice
versa. This is achieved by choosing anotherN random num-
bersenP f0,1g and changingMn to 1−Mn wheneveren,h.
Finally, we setkszl=−1+s2/Ndon=1

N Mn.
We illustrate our Hamiltonian identification strategy in de-

tail with a specific test system:

2H0=0.2sx + 0.1sz, 2H1 = sx + 0.9sy + 0.1sz,

2H2=0.2sx + 0.9sz. s11d

This Hamiltonian may arise, for instance, for a charge qubit
[7] consisting of two quantum dots sharing a single electron,
and two voltage gatesB and S, intended to enable us to
change the potential barrier between them and induce asym-
metries in the double-well potential. The measurement basis
statesu0l andu1l are the localized ground states of the charge
in either of the two dots, and projective measurements onto
them can be performed via a single-electron transistor placed
next to one of the dots.H0 indicates some tunneling between
the dots when no control voltages are applied to the gates
and a slight potential asymmetry, which might be due to
imperfect placement of the donor impurities.H1 induces tun-
neling between the dots as desired but also induces a slight
potential asymmetry, which might occur if the electrode was
placed slightly off center.H2 produces the desired energy
level shift but also increases tunneling slightly.

The first step towards identifying the HamiltoniansH0, H1
and H2 involves finding the rotation frequenciesid0i as
well asid0+1

s,d i, id0+2
s,d i and the anglesu0, u0+1

s,d , u0+2
s,d for several

gate voltagesf1
s,d and f2

s,d. We do this by applying each gate
voltage for various periods of timetj and finding zstjd
=kszstjdl (Fig. 3). An estimate of the rotation frequencyv is
obtained by taking the discrete Fourier transform ofzstjd
−s1/Jdo j=1

J zstjd and identifying its maximum. We then esti-
mate the timetp=p /v whenzsatd is expected to assume its
first minimum, acquire(circa 150) additional data points for

1If all axes haveu¹ fp /4 ,3p /4g, then all we can do is map the
initial states0 to the state closest to the equatorial plane by ap /2
rotation about the most horizontal axis and proceed in a similar
manner as above. However, the resulting expressions will be more
complicated, and the accuracy ofw will diminish whens1 is close to
s0, but such a system would be a poor candidate for a qubit.

FIG. 4. Identification ofw for d=d0+ f2
s10dd2. The pointsp are a

coarse sampling of the curve from which the first axis crossing can
be estimated(red circle). This then gives estimates of the turning
pointsamin

est andamax
est which can be refined by resampling(dots) in

their vicinity and fitting a parabola(red curves). From this we de-
termine the verticessamin,zmind and samax,zmaxd.
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tP f0.85tp ,1.15tpg, and determine the minimumzmin by fit-
ting aparabolato these data points;u=1/2 cos−1szmind. This
proved to be considerably more accurate for noisy data than
fitting a function of the form of Eq.(8) to the data points and
reading off the frequency and minimum from this curve di-
rectly.

Next we determine the anglesw0+m
s,d relative to the refer-

ence axis, chosen to bed0 here. In all of the following ex-
periments the system is initialized in states1

=scosb ,sinb ,0dT by applying a suitable rotation about the
reference axis. In our case the states0 is rotated tos1 by
letting it evolve freely for<8.1379 time units, yieldingb
<−1.0489. We then apply each fieldfm

s,d for various times to
achieve rotations by various anglesa (Fig. 4). This yields the
parametersg=1/2szmax−zmind andd=p−1/2samin+amaxd in
Eq. (9) from which we can obtainw, e.g., by settingD
=g cosd andw=−b−sin−1fD /sinsudg whereu is the vertical
tilt angle of the rotation axis determined in the previous step.

Finally, having determined all the relevant parameters of
the rotation axes, we convert the data to Cartesian coordi-
nates and plot thex, y, andz components ofd0+m

s,d for each
field fm as a function offm

s,d (Fig. 5). From the straight line
fitting, we can then estimate the Hamiltonians.

In conclusion, we have presented a stepwise procedure to
determine the dynamical response of a Hamiltonian two-
level quantum system to control fields when we only have
access to measurements in a single fixed basis. This over-
comes a weakness in the assumptions of QPT and thus en-
ables us to bootstrap the procedure to estimate parameters for
systems consisting of arrays of qubits. Numerical results in-
dicate that the procedure is fairly robust for the Hamiltonians
of physical interest. Extensions of the procedure to higher-
dimensional or dissipative systems may be possible.
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FIG. 5. Identification of the components ofd0 anddm. Typical
simulated experimental run for the system defined by Eq.(11) and
the estimated components ofd for different field settings. Shown
are the best straight line fit(dashed lines) and the actual values
(solid line). Note the excellent agreement between the actual values
and the best fit obtained. A typical run of the program yieldedd0

=s0.1987,0.0064,0.0992dT, d1=s0.9859,0.9122,0.1149dT, d2

=s0.2081,0.0170,0.8957dT; i.e., the Hilbert-Schmidt norm errors
idm

est−dm
acti were less than 3%(0.0066, 0.0238, 0.0193 form

=0,1,2,respectively).
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