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We present a strategy to empirically determine the internal and control Hamiltonians for an unknown
two-level system(black bo® subject to variougpiecewise constantontrol fields when direct readout by
measurement is limited to a single, fixed observable.
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Accurate determination of the dynamics of physical sys-purpose of identifying the dynamics relevant for the imple-
tems and their response to extergadntrol) fields is crucial ~mentation of local unitary operations—i.e., decoherence
for many applications, especially quantum information pro-times much greater than the gate operation times—which is
cessingQIP). Quantum process tomograpt@PT) is a gen-  crucial for systems of interest in QIP. The system evolution
eral procedure to identify the unitafgr completely positive  is thus governed by a unitary operatbk(t,t,), via p(t)
processes acting on a system by experimentally determiningu(t'to)p(to)u(t,to)‘r, wherep(t) is the system density op-

the expectation values of a complete set of observdtiles erator, andJ(t,ty) satisfies the Schrédinger equation
However, QPT is only a partial solution in many cases.

One problem is the assumption that one can experimentally i 7 (d/dDU(t,te) = HIFO U (L L), (1)
determine the expectation values of a complete set of observ-

ables or at least perform arbitrary single qubit measuremenighereH is the Hamiltonian of the system. The case of inter-
for a register ofn qubits. However, most QIP proposals rely est is wherH depends on external field$,,}, which we can

on a single readout process—i.e., measurement in one basigntrol. Assuming the fields are sufficiently weak and act
For example, qubits encoded in internal electronic states ghdependentlyH has the form

trapped iong2] or neutral atom$§3] are read out by quantum

jump detection via a cycling transitigd]. In solid-state sys- M
tems based on Cooper-pair boxgg, Josephson junctions H[f(t)]=Hy+ > fn(OHm, (2
[6], or electrons in double-well potentidlg], final readout is m=1

via charge localization using single-electron transisf8t®r

similar devices. Finally, solid-state architectures based Opévhere_ltjo IS rt]he_free ev_olutlofn Ir-]|amllt0n|an ?"ﬁ.‘;‘” T;Oh
electron or nuclear spin qubifS] are expected to be limited escribes the Interaction of the system with f "d ac
to o, measurements via spin-charge transfer. H,, can in turn be expanded in terms of the Lie algebra

Generally, one assumes that a single projective measurgpnerator§—for a two-level system, the Pauli matriegfor
ment per qubit is sufficient since arbitrary one-qubit mead € ;Y2

surements can be realized by performing a local unitary _
transformation before measuring to achieve a change of ba- 2Hm = Aol + A0 + Omy0ry + U7 )

sis. However, implementing these basis changes requires agp, ;s we need to determine the real constaks dp,, and

curate knowledge of the dynamics of each individual qubitd for m=0 1 M (the d,,, can be ignored since they
mz 1,

and its response to control fields in the first place. Yet inresult only in an unobservable global phase factor
particular for solid-state qubitf5-7,9,10, it is difficult to Geometrically, we can represent the state of the system by
predict the actual dynamics of a qubit precisely based OMts Bloch vectors(t):(&,sy,sz)T wheres; = Tr{a;p(t)]. If the

computer r_nod_els ano_l theory alone, since they may be S.en%i/stem satisfies Eqé6l)—(3), its Bloch vector evolves
tive to fabrication variance and even vary from one qubit to '

the next as a result. We address this problem of system iden- M

tification with a single fixed measurement basis and present a s(t) = (Ro +> fm(t)Rm) s(t), (4)
general strategy to identify the internal and control Hamilto- m=0

nians for a qubit subject to a number of piecewise constant

controls using a single fixed readout process. We can thewhereR;, are the real antisymmetric rotation generators,
bootstrap this process to implement QPT.

Although the technique may be adapted to dissipative sys- 0 Onz  —dmy
tems, in this paper we assume Hamiltonian evolution for the R,=|-dn, O Amx |, (5)
Oy —dmx O
*Electronic address: sgs29@cam.ac.uk and R:R0+Em=1mem generates a rotation about
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FIG. 1. Rotation about axid and observable(«;). The expec-
tation value of the measurement operator will oscillate sinusoidally,

1>
amplitude and frequency are directly related to the declination and )
length of the vector representing the applied Hamiltonian. FIG. 2. Bloch sphere and arrangement of rotation axes. We can
define the relative angular displacement of the veal@nepresent-
M ing applied Hamiltonians with respect to a reference vector
#zaxis).
d=do+ S Tt ©
m=1
0 cos) —sindsing
With dy=(dy, Oy, G for m=0,1, ... M. If f.(t) varies B=| -cos# 0 siné cose
in time then so doesl. If it is piecewise constant, having sin@sing —-sinfcose 0

fixed valuesf, for ty<t=<t,, thens(t) for t € [ty,t;] rotates
about the flxed axigl, where|/d|| is the rotation frequency, and the unit vectod is expressed in spherical coordinates,

and the unit vectod=(1/||d|))d specifies the rotation axis. d=(sin #cose,sindsine,cose)T.
This allows us to give an explicit formula for the trajectory  Without loss of generality we shall assume that we can
of s(t) with s(0)=sy: initialize the system in the statg=|0)=(0,0,)" with re-

spect to the measurement basis and that we can experimen-
tally determine the value of the component of the Bloch

S(a)=% oSy + d(Sp - d)(1 — cosay) + (s X d)sin vector z=(o,) by repeated measurements. Inserting the ex-

=[l cosa; + A(1 — cosa;) + B sin a;]sy, (7 pressions foA andB into Eq.(7), a rotation about the axis
by the anglea,=||d||(t—to) transforms the initial stats, into

where the rotation angle is,=a(t)=|d||(t-to) and S(ay) whosez component is
Z( ) = cogay)sir? 6+ co 6. (8)

1 2 _sz 9?032 ¢ sm? 05|n_(2<p) s_|n(20)c.os,o Z(«y) is constant exactly i#=0. Otherwise, it oscillates and
A= > sin? #sin(2¢) 2 sir? Osir’ ¢ sin(26)sing with minimum z.,;,=cos 6-sir? §=cog26) for coga)=
sin(20)cose  sin(26)sin ¢ 2cog 0 -1 or &,=(2n+1)7 (for some integem). Hence, if 6#0,

o6k ‘ ] o ] FIG. 3. Identification of|d|| and ¢ for d=d,

A ‘ 19 (10
Y WY Y Y , T ‘ +f5 "d,. Shown is simulated data f010+2 for

. . f(zlo):O.S. The top graph is used to estimate the
0 50 - o unit 100 150 rotation frequency using the discrete Fourier
ime (arb. units, .
¢ ) transform, the bottom left plot shows the Fourier

oosk o 08y transform, and the bottom right plot the magnifi-
lldi %11 = 0.63 . R : . :
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FIG. 4. Identification ofp for d:d0+f(210)d2. The points+ are a
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di) =do+£9d,, (10)
by finding Bffjm and||d8?m|| for all control settings, choosing

a reference axis, and determining all the relative azimuthal
angIeSgofffm using the strategy outlined above. Then we plot
thex, y, andz components oﬂg?m for €=1,2,... L versus

the field strengthsfﬁf) for each field and fit a straight line to
each set of data points. The vertical axis intercepts of the
lines then give the, y, andz components ofl,, and their
slopes determine the y, andz components ofl ...

To evaluate our strategy and find the best ways to extract
the information from noisy data we use computer simula-
tions. We choose various sets of Hamiltonians, use the pro-
posed strategy to identify them, and compare these results
with the actual values. Experiments are simulated by com-
puting individual o, measurements af(t) according to Eq.

(7), generatingN pseudorandom numberge [0, 1], where
N is the number of times the experiment is repeated, and
taking the result of then” measuremenM, to be 1 if

coarse sampling of the curve from which the first axis crossing cam < (1+z)/2 and 0 otherwise. To account for measurement
be estimatedred circlg. This then gives estimates of the turning errors we introduce a symmetric error probabilify [0, 1]

points St and afe, which can be refined by resampliridots in

their vicinity and fitting a parabolé&ed curves From this we de-
termine the vertice$amin, Zmin) anNd (¥max Zmax -

then we can experimentally finftl| and ¢ by determining
tminz'”'/”d” and Znmin (Fig- D).

For a single rotation it is sufficient to determijdi| and 6
and setp=0. For multiple rotations about different axdg

however, we must also determine the relative azimuthal

anglese,= ¢, — ¢, with respect to a fixed reference axds

(Fig. 2). The reference axis should have a vertical tilt angle
0, €[ml4,3w/4] and we shall focus on this case in this

paper: Having determinedd|| and 6 of the axes and chosen
a suitable reference axi, we can initialize the system in
the states; =(coss,sinB,0)" by rotatings, about the axisl,
by a,=cosY{[cog26,)+1]/[cog26,)-1]}, where B=tar’[
—\—2 co426,)sech,]. Rotatings, by various anglesx about
the axisdy then givesz(a)=C(1-cosa)+D sina with C
=1/2sin26)cod¢—pB) and D=singsin(¢—p) or,
equivalently,

Z(a) = ysin(a+ 8) — ysin 4, (9)

whereC=1ysiné and D=y cosé. Hence, we can obtaip
from experimental data foz(«) by finding & and y.

indicating the frequency of erroneous measurement results—
i.e., registering 1 when we should have measured 0 and vice
versa. This is achieved by choosing anotNelandom num-
berse, €[0,1] and changingv,, to 1-M, wheneverg,< 7.
Finally, we set{o,)=—-1+(2/N)=N_ M,

We illustrate our Hamiltonian identification strategy in de-
tail with a specific test system:

2He=0.20; + 0.1, 2H;= 0+ 0.90, + 0.1,

2H,=0.20, + 0.90,. (12)

This Hamiltonian may arise, for instance, for a charge qubit
[7] consisting of two quantum dots sharing a single electron,
and two voltage gateB and S, intended to enable us to
change the potential barrier between them and induce asym-
metries in the double-well potential. The measurement basis
stated0) and|1) are the localized ground states of the charge
in either of the two dots, and projective measurements onto
them can be performed via a single-electron transistor placed
next to one of the dotdd, indicates some tunneling between
the dots when no control voltages are applied to the gates
and a slight potential asymmetry, which might be due to
imperfect placement of the donor impuritié$, induces tun-
neling between the dots as desired but also induces a slight
potential asymmetry, which might occur if the electrode was
placed slightly off centerH, produces the desired energy

To determine the evolution of the system subject to thdevel shift but also increases tunneling slightly.
several external fields we choose several field strengths The first step towards identifying the Hamiltoniadg, H

f;f) (¢=1,... L) for each controf,,,(m=1,... M) and com-
pute the rotation axes

Yf all axes haved & [7/4,3m/4], then all we can do is map the
initial statesy to the state closest to the equatorial plane by/a

and H, involves finding the rotation frequencidsly| as
well as|dy) ), U?‘(QZ” ar&c}i the anglesp, o), 05)?_2 for several
gate voltaged,”’ andf,’. We do this by applying each gate
voltage for various periods of timé¢ and finding z(t;)

=(o(t))) (Fig. 3). An estimate of the rotation frequenayis

rotation about the most horizontal axis and proceed in a similantaineci by taking the discrete Fourier transformz(f)
manner as above. However, the resulting expressions will be more (1/3)Zj-,z(t;) and identifying its maximum. We then esti-

complicated, and the accuracy @will diminish whens; is close to
So, but such a system would be a poor candidate for a qubit.

mate the timd,.=#/w whenz(«,;) is expected to assume its
first minimum, acquirgcirca 150 additional data points for
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Next we determine the anglqagﬂ)m relative to the refer-
ence axis, chosen to lak here. In all of the following ex-
periments the system s initialized in states;
=(cosp,sinB,0)" by applying a suitable rotation about the
reference axis. In our case the staeis rotated tos; by
letting it evolve freely for=8.1379 time units, yielding3
~-1.0489. We then apply each fieﬂﬁ) for various times to
achieve rotations by various anglesFig. 4). This yields the
parametersy=1/2(zax=Zmin) @and 6=7—1/2(amin* dmay) iN
Eqg. (9) from which we can obtainp, e.g., by settingD

=ycosé and p=-B-sin[D/sin(#)] whered is the vertical
tilt angle of the rotation axis determined in the previous step.
o * Finally, having determined all the relevant parameters of
the rotation axes, we convert the data to Cartesian coordi-
nates and plot the, y, andz components oﬂgﬂ)m for each
field f,, as a function oﬂ‘E? (Fig. 5. From the straight line
fitting, we can then estimate the Hamiltonians.

In conclusion, we have presented a stepwise procedure to

the estimated components dffor different field settings. Shown determine the dynamical response of a Hamiltonian two-
are the best straight line fidashed linesand the actual values |€Vel quantum system to control fields when we only have
(solid line). Note the excellent agreement between the actual value8CCeSS to measurements in a single fixed basis. This over-
and the best fit obtained. A typical run of the program yieldgd comes a weakness in the assumptions of QPT and thus en-
=(0.1987,0.0064,0.099%  d;=(0.9859,0.9122,0.1149 d, ables us to bootstrap the procedure to estimate parameters for
=(0.2081,0.0170,0.895% i.e., the Hilbert-Schmidt norm errors Systems consisting of arrays of qubits. Numerical results in-
[dS3-d2°)| were less than 39%¢0.0066, 0.0238, 0.0193 fom dicate that the procedure is fairly robust for the Hamiltonians
=0,1,2,respectively. of physical interest. Extensions of the procedure to higher-
dimensional or dissipative systems may be possible.

=== =P — =@ -0 - @-——@ =B —--H-=--9
0 0.1 0.2 0.3 04 0.5
f2 (arb. units)

FIG. 5. Identification of the components df andd,, Typical
simulated experimental run for the system defined by (E#). and

te[0.85,,1.18,], and determine the minimum,, by fit-
ting a parabolato these data point$)=1/2 cos%(z,). This S.G.S. and D.K.L.O. acknowledge funding from the
proved to be considerably more accurate for noisy data tha@ambridge-MIT Institute, EU grants RES@ST-2001-
fitting a function of the form of Eq(8) to the data points and 37559 and TOPQIP (IST-2001-39215 and Fujitsu.
reading off the frequency and minimum from this curve di-D.K.L.O. also acknowledges support from Sidney Sussex
rectly. College.
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