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A general scheme for an adiabatic geometric phase gate is proposed which is maximally robust against
parameter fluctuations. While in systems with SU(2) symmetry geometric phases are accompanied by dynami-
cal phases and are thus not robust, we show that in the more general case of an SUs2d ^ SUs2d symmetry it is
possible to obtain a nonvanishing geometric phase without dynamical contributions. The scheme is illustrated
for a phase gate using two systems with dipole-dipole interactions in external laser fields which form an
effective four-level system.

DOI: 10.1103/PhysRevA.69.050302 PACS number(s): 03.67.Lx, 32.80.Pj, 34.90.1q

A major challenge for the practical implementation of
fault-tolerant scalable quantum computing[1] is the require-
ment of single-bit and quantum gate operations approaching
a fidelity of unity up to one part in 104 [2]. As any unitary
operation on physical qubits involves the interaction with
external systems, either a very precise control or a clever
design is needed to make such operations insensitive to small
variations of external parameters. Since a universal set of
qubit operations includes arbitrary single-bit rotations, the
qubit system must depend sensitively on at least one continu-
ous external parameter, e.g., some laser phase. It is therefore
clear that not all elements of quantum computation can be
made robust with respect to external parameters. However
apart from single-bit phase rotations, this should be possible.
This has led to several proposals for adiabatic quantum com-
putation[3] using geometric or Berry phases[4]. The choice
of adiabaticevolutions removes the sensitivity to many ex-
ternal parameters at the expense of slower operations. Em-
ploying furthermoregeometric phaseswhich depend only on
the geometry of the path followed in parameter space makes
the operations tolerant with respect to parameter fluctuations.
The problem of geometric quantum computation is that non-
vanishing geometric phases are in general associated with
nonvanishing dynamical phases. The latter need to be com-
pensated in some way, which destroys the potential robust-
ness. For example, in the proposal of Joneset al. for geo-
metric quantum computation in nuclear magnetic resonance,
dynamical phases are compensated by spin-echo techniques
[5]. In the ion-trap system of Duanet al. [6] dynamical phase
shifts arise due to unavoidable ac-Stark shifts which have the
same strength as the couplings used for the implementation
of the phase gate. Also in the recent proposal of Garcia-
Ripoll and Cirac[7] to perform single- and two-bit opera-
tions with unknown interaction parameters, dynamical
phases arise in the individual steps of the operation and the
interaction parameters must be controlled over the whole
cycle in order for these phase to add up to zero.

We here show that it is possible to obtain a nonzero geo-
metric phase under conditions of exactly vanishing dynami-

cal contributions at all times when going from an SU(2)
system to a case with SUs2d ^ SUs2d symmetry. The simplest
nontrivial representation of the SUs2d ^ SUs2d symmetry is a
four-level scheme with a tripod coherent coupling[6,8,9]. An
appropriate adiabatic rotation in parameter space creates
phase shifts ofp or p /2. This approach is then applied to a
two-particle system with dipole-dipole interaction to con-
struct a phase gate.

When a system undergoes acyclic evolution the wave
function of the system remembers its motion in the form of a
phase factor. As first noted by Berry[4], one can distinguish
two contributions to the phase acquired: a dynamical part
and a geometrical part. Berry showed that when the Hamil-
tonian of the system depends on a set of parameters which
evolve adiabatically along a closed curve in the parameter
space, then the state vector that corresponds to a simple non-
degenerate eigenvalue develops a phase which depends only
on this curve. Unlike its dynamical counterpart, the geo-
metrical or Berry phase does not depend on the duration of
the interaction. The notion of a Berry phase was generalized
to the case of degenerate levels by Wilczek and Zee[10]
which involve non-Abelian operations and to general cyclic
evolutions by Aharonov and Anandan[11].

Due to their intrinsically robust nature, geometric phases
are attractive for quantum computation. Their application
however face a problem. As has been demonstrated by Rob-
bins and Berry[12] for a spin-J particle in a slowly and
cyclically changing magnetic fieldB,

H = "V · Ĵ, V = mBB/", s1d

the angular momentum stateuml sin the direction ofBd at-
tains not only a geometric phase but also a dynamical one.
To see this, let us assume thatV makes a cyclic evolution in
parameter space as shown in Fig. 1.

Starting with a magnetic-field orientation in thez direc-
tion, V is successively rotated around they, z, andx axes by
±p /2. The total solid angle in parameter space is thenp /2.
In principle, any other angle can be obtained, but this par-
ticular path can be implemented in a very robust way. The
initial state vector is assumed to be an eigenstate of Eq.(1)
with eigenvalueEm=m"V, i.e., uc0l= uJ,mz=ml. An adia-
batic cyclic evolution then leads to a state
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ucl = e−isgg+gdduc0l, s2d

wheregd is the dynamical phase

gd =E dt
Emstd

"
. s3d

The geometrical phase can be obtained from a parallel trans-
port of the adiabatic eigenstate following the rotation of the
magnetic field

Uguc0l = e−isp/2dĴx e−isp/2dĴz e−isp/2dĴyuc0l = e−isp/2dĴzuc0l,

s4d

i.e.,

gg =
p

2
m. s5d

One recognizes that an elimination of the dynamical phase
implies in general a vanishing geometric phase, since a zero
eigenstate ofH at t=0 is also an eigenstate ofUg with eigen-
value 1.

In order to have a nonvanishing geometric phase and at
the same time a vanishing dynamical one, the stateuc0l must
be an eigenstate of the initial Hamiltonian with eigenvalue 0
but should not be an eigenstate ofUg with eigenvalue 1. This
can be achieved if we consider a Hamiltonian with SUs2d
^ SUs2d symmetry rather than the simple SU(2) symmetry
of Eq. (1):

H = "V · fĴs1d − Ĵs2dg. s6d

Here the angular moments fulfill the commutation relations

fĴi
snd,Ĵj

sndg = i«i jkĴk
snd, fĴi

s1d,Ĵj
s2dg = 0, s7d

which is equivalent to the Lorentz group. Starting again with
Vs0d=s0,0,Vd and in an eigenstate of Eq.s6d, we find that
the condition for a vanishing dynamical phase reads

Huc0l = "VfĴz
s1d − Ĵz

s2dguc0l = 0, s8d

while the geometric phase is determined by

e−igguc0l = e−isp/2dsĴz
s1d+Ĵz

s2dduc0l. s9d

SincefĴz
s1d+ Ĵz

s2d , Ĵz
s1d− Ĵz

s2dg=0 there is the possibility of find-
ing a zero-eigenvalue state ofH with a geometric phase
equal to a multiple ofp /2. The existence of such a state
depends on the realization of the Hamiltonians6d, in particu-
lar on the total spinsJs1d andJs2d.

It is easy to see that the simplest possible realization is
that of two half spins, i.e.,Js1d=Js2d=1/2. If we take into
account thatV=hVx,Vy,Vzj has three independent compo-
nents, theJs1d=Js2d=1/2 realization of Eq.(6) corresponds to
a four-level scheme coupled by three coherent fields. The
spin operators can then be expressed, e.g., by the following
434 matrices:

Ĵx
s1d =

1

23
0 1 0 0

1 0 0 0

0 0 0 − i

0 0 i 0
4, Ĵx

s2d =
1

23
0 − 1 0 0

− 1 0 0 0

0 0 0 − i

0 0 i 0
4 ,

Ĵy
s1d =

1

23
0 0 1 0

0 0 0 i

1 0 0 0

0 − i 0 0
4, Ĵy

s2d =
1

23
0 0 − 1 0

0 0 0 i

− 1 0 0 0

0 − i 0 0
4 ,

Ĵz
s1d =

1

23
0 0 0 1

0 0 − i 0

0 i 0 0

1 0 0 0
4, Ĵz

s2d =
1

23
0 0 0 − 1

0 0 − i 0

0 i 0 0

− 1 0 0 0
4 ,

With this the Hamiltonians6d has the matrix form

H = 3
0 Vx Vy Vz

Vx 0 0 0

Vy 0 0 0

Vz 0 0 0
4 , s10d

which represents the tripod scheme introduced in Ref.f8g
and shown in Fig. 2, which has been discussed in the context
of a non-Abelian geometric phases in Refs.f6,9g. The rota-
tion of V in parameter space from thez direction viax to y
and back toz corresponds to a sequence of pulsesVz→Vx

FIG. 1. Cyclic evolution of the magnetic fieldV,B from z to
x to y and back to thez direction to generate geometric phase of
p /2.

FIG. 2. Left: Tripod coupling scheme representing Hamiltonian
(6) with SUs2d ^ SUs2d dynamical symmetry. Right: Pulse se-
quence to generate geometric phase without dynamical phase.
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→Vy→Vz also shown in Fig. 2. The adiabatic rotation in
parameter space with solid anglep /2 can be implemented in
a very robust way by this pulse sequence. The only require-
ments are sufficiently long pulses for adiabaticity and over-
lap of only consecutive pulses to guarantee a solid angle of
p /2. Actual shape, precise timing, and amplitude of the
pulses are irrelevant.

The orthogonal zero-eigenvalue states of the interaction

Hamiltonian at the initial timesĴz
s1d− Ĵz

s2dducl=0 are obviously
levels u2l and u3l. Their coherent superpositionss1/Î2d
3fu3l± i u2lg are also eigenstates ofĴz

s1d+ Ĵz
s2d with eigenvalues

±1. After the sequence of four pulses these states acquire a
geometric phase shift ofgg= 7p /2, while there is no dy-
namical phase shift. Applying the pulse sequence twice leads
to a geometric phase ofgg=p. The latter is also true if the
initial state is levelu2l. Although u2l is not an eigenstate of
Ug it is an eigenstates ofUg

2 with eigenvalue −1. The last
case can also be understood in a much simpler way. If ini-
tially state u2l is populated, the double pulse sequenceVz
→Vx→Vy→Vz→Vx→Vy→Vz corresponds to three suc-
cessive population transfers via stimulated Raman adiabatic
passage[13]. In this process the state vector is rotated ac-
cording to u2l→−u4l→ + u3l→−u2l, thus acquiring a robust
phase shift ofp.

The use of geometric phases in the tripod scheme of Fig.
2 for single-qubit operations was considered by Duan, Cirac,
and Zoller in Ref.[6]. We now show that a similar scheme
can be used to create a robust phase gate between two qubits.
Here it is important that all states that will be temporarily
occupied are energetically degenerate to avoid uncontrollable
phase shifts if the interaction parameters are not precisely
known. To this end we consider two systems with a level
structure as shown in Fig. 3 with an interaction of the form

H = H0 + Hdd + Hint, s11d

H0 = m o
i=1,2

ualiikau, s12d

Hdd = − "jualAAkau ^ ualBBkau, s13d

Hint = "Vxsual11kbu + H.c.d + "Vysual11kdu + H.c.d

+ "Vzsual22kbu + H.c.d. s14d

j represents the strength of the interaction between the spins
in the internal stateual. An interaction Hamiltonian of type
s14d could, e.g., be realized with a pair of atoms with states
ual being Rydberg levels with a large permanent dipole mo-
ment f14g. Also a realization in NMR systemsf15g is fea-
sible. In each of the two systems a single qubit is encoded as
indicated in Fig. 3:

fu0l,u1lgA ; fucl,ublgA, fu0l,u1lgB ; fucl,ualgB.

In order to implement a robust phase gate, the interaction
shall generate a geometric phase shift ofp of stateubal with-
out dynamical phases at all times.

In the lower part of Fig. 3 the dressed-state energy dia-
gram of the system corresponding to the free HamiltonianH0
and the dipole-dipole interactionHdd are shown. Without co-
herent coupling, i.e.,Vi ;0 the qubit statesucal andubal will
acquire a phasee−imt, while the other two statesuccl andubcl
remain constant. The phasee−imt is without consequence,
since it can easily be compensated by local operations if the
energy splittingm is known very well. No precise knowledge
of the interaction parametersVi is required for this. It is also
sufficient to know the dipole-dipole shiftj only approxi-
mately in order to tune the fields close to resonance with
uaal. If j is sufficiently large the coupling between the states
ubal, udal, anduabl with the lower-lying statesudbl and ubbl
can be disregarded. In this case there is a tripod coupling
with energetically degenerate statesubal, udal, anduabl and a
sequence of overlapping pulsesVz→Vx→Vy→Vz→Vx
→Vy→Vz will lead to a geometric phase shiftubal→
−uabl→ udal→−ubal. Since the statesubal, udal, anduabl are
degenerate and the interactionHint has SUs2d ^ SUs2d sym-
metry, there is no dynamical phase at any time of the pro-
cess. Therefore temporal fluctuations of the field amplitudes
and the dipole-dipole shift will not affect the phase gate. It
should be noted that the degeneracy of the lower states in the
tripod scheme is important however, since the exact time
which the system spends in the three states depends on the
details of the interaction and is in general not known pre-
cisely.

As can be seen from Fig. 3 the off-resonant coupling of
ubal, udal, and uabl with the lower statesudbl and ubbl can
give rise to real transitions and ac-Stark dynamical phases.
To avoid real transitions into the lower manifold of states
uju@ uVi

maxu is required. The ac-Stark induced phase shift is
negligible if uVi

maxu2T/ uju!1, whereT is the characteristic
time of the process. These conditions combined read

uVi
maxu

uju
!

uVi
maxu2

uju
T ! 1. s15d

It should be noted that the dipole-dipole shiftj is here an
independent parameter and can in principle be chosen very
large without affecting the resonant couplings. This is in
contrast to the proposal of Ref.f6g where the ac-Stark shifts

FIG. 3. System of two interacting spin systems. Top: Spectrum
without dipole-dipole interaction.Vx, Vy, andVz denote coherent
couplings. Bottom: Spectrum of two-particle states with dipole-
dipole interaction of strengthj. Frequencies of coherent fields are
chosen such that the statesubal, udal, uabl, and uaal form a closed
tripod system. Logical states 00, 01, 10, and 11 are indicated.
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cannot be neglected and need to be compensated.
To illustrate conditions(15), we have numerically calcu-

lated the amplitudes of statesubal, udal, and uabl as well as
the phase of the target stateudal for half of the phase-gate
pulse sequence, i.e.,Vz→Vx→Vy→Vz. The results are
shown in Figs. 4 and 5. Ideally, i.e., if Eq.(15) is perfectly
fulfilled, there is a complete state transfer fromubal to udal
with zero phase change. Figure 4 shows that a dipole-dipole
shift slightly larger than the peak Rabi frequency is sufficient
to suppress real transitions into other states. As can be seen
from Fig. 5 the ac-Stark induced phase shifts scale only as
sjTd−1 and thus larger values ofuju are needed to neglect
them. Nevertheless it can be seen that it is always possible to
choose sufficiently large values ofj to obtain a purely geo-
metric phase.

In the present paper we have shown that it is possible to
obtain a nonvanishing geometric phase of multiples ofp /2
with an exactly vanishing dynamical phase. For this it is
necessary to consider systems with an SUs2d ^ SUs2d sym-
metry rather than just SU(2). The simplest nontrivial repre-
sentation of this symmetry corresponds to a four-level sys-
tem with a tripod coherent coupling. We have shown that a
tripod coupling among two-qubit states can be implemented
using a pair of coherently driven particles with dipole-dipole
interaction. With this it is possible to design a geometric
phase gate. Due to the absence of dynamical contributions to
the phase and the geometric nature of the phase shift, the
quantum gate is maximally robust against parameter fluctua-
tions.
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FIG. 4. Absolute value of state amplitude forubal, uabl, andudal
obtained from numeric solution of full problem with sequence of
time-delayed Gaussian pulsesVz→Vx→Vy→Vz (half cycle of
phase gate). Vi =a exp f−st− tid2/ s2T2dg with a=1, T=20, tx=100,
ty=140, andtz=50, resp.,tz=190; upper curve,j=1; lower curve,
j=4.

FIG. 5. Final phase of stateudal for pulse sequence of Fig. 4 and
growing values ofj. Dots represent numerical results, dashed curve
is a 1/j fit.
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