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Geometric phase gate without dynamical phases
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A general scheme for an adiabatic geometric phase gate is proposed which is maximally robust against
parameter fluctuations. While in systems with(8)usymmetry geometric phases are accompanied by dynami-
cal phases and are thus not robust, we show that in the more general case @¢2pn SU(2) symmetry it is
possible to obtain a nonvanishing geometric phase without dynamical contributions. The scheme is illustrated
for a phase gate using two systems with dipole-dipole interactions in external laser fields which form an
effective four-level system.
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A major challenge for the practical implementation of cal contributions at all times when going from an @V
fault-tolerant scalable quantum computifig is the require-  system to a case with B) ® SU(2) symmetry. The simplest
ment of single-bit and quantum gate operations approachingontrivial representation of the $2) ® SU(2) symmetry is a
a fidelity of unity up to one part in T0[2]. As any unitary  four-level scheme with a tripod coherent couplj6g8,d. An
operation on physical qubits involves the interaction withgnhropriate adiabatic rotation in parameter space creates

externa} systems, either a very preci_se cpntrol or a clevebhase shifts ofr or #/2. This approach is then applied to a
des.'gt.” IS ne;ade(t:i to n|1ake sucrl opergyons |nser_13|t|velto S{” Wo-particle system with dipole-dipole interaction to con-
variations of external parameters. Since a universal set Qly .t 5 phase gate.

qubit operations includes arbitrary single-bit rotations, the ™\, 5 system undergoescgclic evolutionthe wave

qubit system must depend sensitively on at least one ContinLI'Emction of the system remembers its motion in the form of a

ous external parameter, e.g., some laser phase. It_ is theref Rase factor. As first noted by Berf#], one can distinguish
clear that not all elements of quantum computation can bg,,, ¢ontributions to the phase acquired: a dynamical part
made robust with respect to external parameters. Howev

apart from single-bit phase rotations, this should be p055|bl§

putation[3] using geometric or Berry phasg$]. The choice
of adiabatic evolutions removes the sensitivity to many ex-
ternal parameters at the expense of slower operations. E

space, then the state vector that corresponds to a simple non-
degenerate eigenvalue develops a phase which depends only

loving furth i oh hich d d onl "Bh this curve. Unlike its dynamical counterpart, the geo-
ploying furthermoregeometric phaseshich depend only on = \\qrica o Berry phase does not depend on the duration of

the geometry of the path followed in parameter space makegq interaction. The notion of a Berry phase was generalized
the operations tolerant with respect to parameter fluctuationg, o c41se of degenerate levels by Wilczek and P
The. prpblem of geometric quantum computation is t_hat MONYyhich involve non-Abelian operations and to general cyclic
vanishing geometric phases are in general associated W'g\/olutions by Aharonov and Anandéhi]

nonvatmzh.mg dynamical prr:laie(sj. Tthe Ia’f[tﬁr nefd :9 Ibe gom— Due to their intrinsically robust nature, geometric phases
pensated in some way, which destroys the potential robuste aractive for guantum computation. Their application

ness. For example, in th(_a pr_oposal of Joeesal._for 9€0"  however face a problem. As has been demonstrated by Rob-
metric quantum computation in nuclear magnetic resonancey. < anq Berry[12] for a spind particle in a slowly and

dynamical phases are compensated by spin-echo techniques.,: . Ce

[5]. In the ion-trap system of Duagt al. [6] dynamical phase &fchcally changing magnetic fielB,
shifts arise due to unavoidable ac-Stark shifts which have the
same strength as the couplings used for the implementation

Of. the phasg gate. Also in the _recent proposal _Of GarCia’fhe angular momentum stape) (in the direction ofB) at-
Ripoll and Cirac[7] to perform single- and two-bit opera- i5ing ot only a geometric phase but also a dynamical one.

tions with unknown interaction parameters, dynamicalq see this, jet us assume ti@tmakes a cyclic evolution in
phases arise in the individual steps of the operation and the_ o/ space as shown in Fig. 1

interaction parameters must be controlled over the whol Starting with a magnetic-field orientation in tizedirec-

cycle in order for thesg phase to add up to zero. tion, Q is successively rotated around thez, andx axes by
We here show that it IS .possmle to obtain & NONZEro g€os /5 The total solid angle in parameter space is thég.

metric phase under conditions of exactly vanishing dynam|1n principle, any other angle can be obtained, but this par-

ticular path can be implemented in a very robust way. The
initial state vector is assumed to be an eigenstate of Bq.
*Permanent address: Institute for Physical Research, Armeniawith eigenvalueE,,=m#(, i.e., |#p)=|J,m,=m). An adia-
National Academy of Sciences, 328410 Ashtarak, Armenia. batic cyclic evolution then leads to a state

H=%4Q-J, Q=ugBlA, (1)
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FIG. 2. Left: Tripod coupling scheme representing Hamiltonian
(6) with SU(2) ® SU(2) dynamical symmetry. Right: Pulse se-
guence to generate geometric phase without dynamical phase.

y
HJyo) = QL3 - 3P go) = 0, )
while the geometric phase is determined by
o ’ & ) = e—i(w/Z)(:l(Zl)+:J§2))|l/,o>_ (9)

FIG. 1. Cyclic evolution of the magnetic fiel® ~B from z to Since[j(zl)+:];2),3(21)—3(22)]:0 there is the possibility of find-
x to y and back to the direction to generate geometric phase of ing a zero-eigenvalue state &f with a geometric phase
/2. equal to a multiple ofr/2. The existence of such a state
depends on the realization of the Hamiltoni&, in particu-
) = €706y, (2) lar on the total spind¥ andJ®@.
) ) It is easy to see that the simplest possible realization is
where yq is the dynamical phase that of two half spins, i.e.J?=J?=1/2. If we take into
E. (1) account tha2={Q,,0Q,,€Q,} has three independent compo-
Ya= f dt— (3)  nents, thedV=J2=1/2realization of Eq(6) corresponds to
h a four-level scheme coupled by three coherent fields. The

The geometrical phase can be obtained from a parallel tranSPiN Operators can then be expressed, e.g., by the following

port of the adiabatic eigenstate following the rotation of the <4 matrices:

magnetic field 010 0 i [ 0 -10 0 i
Uglio) = e i(m12), i), e—i(w/2)3y| o) = e—i(w/2)32| o), 30 = 1100 O 302 -1 0 0 0
4) * 21000 -i|" * 20 0 0-il
. 00i O 0O 0 i O
e, - ; - ;
- 0 010 0 0 -10
=om ®) 00 0 0 0 0 i
%75 o2t ' el '
. L . Y21 0o oo0|" ¥ 2(-1 0 0 o
One recognizes that an elimination of the dynamical phase . .
implies in general a vanishing geometric phase, since a zero |0 -1 0 0] 0 -1 0 0]
eigenstate oH att=0 is also an eigenstate bf; with eigen- - . - -
value 1. 00 0 1 0 0 0 -1
In order to have a nonvanishing geometric phase and at . , 100 -i 0 x2_ 1l 0 0 -i 0
the same time a vanishing dynamical one, the stagemust J(Z )= 2loi o ol J(z = 2l o i o ol
be an eigenstate of the initial Hamiltonian with eigenvalue 0
but should not be an eigenstateléf with eigenvalue 1. This 10 0 0] |-1 0 0 0 ]

can be achieved if we consider a Hamiltonian with(3U With this t_he Hamiltoniar(6) has the matrix form
® SU(2) symmetry rather than the simple &) symmetry

of Eq. (1): 0 O Q) Q,
A Q 0 0 0
70 .13V -3 X 10
H=#Q -[J®-3@]. (6) Q, 0 0 of (10)
Here the angular moments fulfill the commutation relations O, 0 0 O
[3?”),3}“)]=i Sijkj(kn)a [3i(1),j}2)]:01 (7)  which represents the tripod scheme introduced in IR&f.

and shown in Fig. 2, which has been discussed in the context
which is equivalent to the Lorentz group. Starting again withof a non-Abelian geometric phases in Rg%,9]. The rota-
©(0)=(0,0,0) and in an eigenstate of E¢6), we find that  tion of Q in parameter space from tiredirection viax to y
the condition for a vanishing dynamical phase reads and back toz corresponds to a sequence of pul§gs— (),
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Haa= —hélayan(al © |a)sg(al, (13

Hine = x(|@)12(b + H.c) + 50y (|a)15(d| + H.c)
+51Q0(|a)o{b] + H.C). (14

¢ represents the strength of the interaction between the spins
in the internal statéa). An interaction Hamiltonian of type
(14) could, e.g., be realized with a pair of atoms with states
|a) being Rydberg levels with a large permanent dipole mo-
ment[14]. Also a realization in NMR systemid5] is fea-
sible. In each of the two systems a single qubit is encoded as

o T = = e - indicated in Fig. 3:
FIG. 3. System of two interacting spin systems. Top: Spectrum [|0>'|1>]A - [|C>’|b>]A' [|0>'|1>]B - [|C>'|a>]B'

without dipole-dipole interaction(),, {),, and{}, denote coherent |n order to implement a robust phase gate, the interaction

couplings. Bottom: Spectrum of two-particle states with dipole-sha|| generate a geometric phase shiftrasf state|ba) with-
dipole interaction of strengtlf. Frequencies of coherent fields are gt dynamical phases at all times.

chosen such that the statés), |da), |ab), and|aa) form a closed In the lower part of Fig. 3 the dressed-state energy dia-

tripod system. Logical states 00, 01, 10, and 11 are indicated. gram of the system corresponding to the free Hamiltokign
and the dipole-dipole interactidfyq are shown. Without co-
—y— 1, also shown in Fig. 2. The adiabatic rotation in herent coupling, i.e€;=0 the qubit statefca) and|ba) will
parameter space with solid angié2 can be implemented in - acquire a phase™#, while the other two statdsc) and|bc)
a very robust way by this pulse sequence. The only requireremain constant. The phase' is without consequence,
ments are sufficiently long pulses for adiabaticity and over-since it can easily be compensated by local operations if the
lap of only consecutive pulses to guarantee a solid angle aénergy splittingu is known very well. No precise knowledge
/2. Actual shape, precise timing, and amplitude of theof the interaction parametef¥; is required for this. It is also
pulses are irrelevant. sufficient to know the dipole-dipole shiff only approxi-
The orthogonal zero-eigenvalue states of the interactiomately in order to tune the fields close to resonance with
Hamiltonian at the initial timéJ\” - J\”)|y)=0 are obviously |aa). If £is sufficiently large the coupling between the states
levels [2) and |3). Their coherent superpositiond/y2)  |ba), [da), and|ab) with the lower-lying statesb) and|bb)
. . @) L2y can be disregarded. In this case there is a tripod coupling
X[|3)£i[2)] are also elgenstatesﬂff +J.7 with eigenvalues ! ;
z . with energetically degenerate statia), |da), and|ab) and a
+1. After the sequence of four pulses these states acquire

s%quence of overlapping pulsé€3,— Q,—Q,—Q,—Q
. ) o . X y 2 X
geometric phase shift ofy=+ m/2, while there is no dy- —.0,—Q, will lead to a geometric phase shifba) —

namical phase shift. Applying the pulse sequence twice Iead§|ab>—>|da)—>—|ba). Since the statelba), |da), and|ab) are

to a geometric phase of;=m. The latter is also true if the 4~ oi0 2hd the interactibh.. has SU2) ® SU(2) sym-
initial state is level2). Although|2) is not an eigenstate of me%ry, there is no dynamica:atgjrtwase at any time of }[/he oro-

Ug itis an eigenstates df W't.h elgenvalu_e 1. The Iast_ .cess. Therefore temporal fluctuations of the field amplitudes
case can also be understood in a much simpler way. If ini-

. . and the dipole-dipole shift will not affect the phase gate. It
tially state|2) is populated, the double pulse sequeske should be noted that the degeneracy of the lower states in the
—Qy—Qy—Q,—0,— 0, —, corresponds to three suc-

: tripod scheme is important however, since the exact time
_\ﬁhich the system spends in the three states depends on the
details of the interaction and is in general not known pre-
cisely.

passagdg13]. In this process the state vector is rotated ac
cording to|2) ——|4) — +|3)——|2), thus acquiring a robust

phase shift ofr. As can be seen from Fig. 3 the off-resonant coupling of

The use of geometric phases in the tripod scheme of Fi -
2 for single-qubit operations was considered by Duan, Ciragba>’ [de), and|ab) with the lower stateddt) and |bb) can

and Zoller in Ref.[6]. We now show that a similar scheme give rise to real transitions and ac-Stark dynamical phases.

can be used to oreate a robust phase gate between wo aubi 0 avoid real transitions into the lower manifold of states
- o P gate q > Q™ is required. The ac-Stark induced phase shift is
Here it is important that all states that will be temporarily

LS iy by < . -
occupied are energetically degenerate to avoid uncontrollabknegllglble if |"1°T/|¢] <1, whereT is the characteristic

o ; : ‘aDline of the process. These conditions combined read
phase shifts if the interaction parameters are not precisely

known. To this end we consider two systems with a level Qm|Qm2
structure as shown in Fig. 3 with an interaction of the form BrE < TT< 1. (15)
H=Ho+Haa* Hint, (11 It should be noted that the dipole-dipole shifis here an
independent parameter and can in principle be chosen very
Ho=p > |adi(al, (12)  large without affecting the resonant couplings. This is in
i=1,2 contrast to the proposal of Réb] where the ac-Stark shifts
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¢ FIG. 5. Final phase of statda) for pulse sequence of Fig. 4 and

growing values ot. Dots represent numerical results, dashed curve

FIG. 4. Absolute value of state amplitude fos), |ab), and|da) ~ is @ 1/ fit.
obtained from numeric solution of full problem with sequence of
time-delayed Gaussian pulsés,— Q,—Q,—Q, (half cycle of
phase gate Q;=«a exp[-(t—t)?/(2T?)] with a=1, T=20, t,=100,
t,=140, andt,=50, resp.t,=190; upper curve¢=1; lower curve,
é=4.

In the present paper we have shown that it is possible to
obtain a nonvanishing geometric phase of multiplesré?
with an exactly vanishing dynamical phase. For this it is
necessary to consider systems with an(8& SU(2) sym-
metry rather than just S@). The simplest nontrivial repre-
cannot be neglected and need to be compensated. sentation of this symmetry corresponds to a four-level sys-

To illustrate conditiong15), we have numerically calcu- tem with a tripod coherent coupling. We have shown that a
lated the amplitudes of statéisa), |da), and|ab) as well as  tripod coupling among two-qubit states can be implemented
the phase of the target stdtts) for half of the phase-gate using a pair of coherently driven particles with dipole-dipole
pulse sequence, i.eQ,—Q,—0,—Q, The results are interaction. With this it is possible to design a geometric
shown in Figs. 4 and 5. Ideally, i.e., if EGLS) is perfectly  phase gate. Due to the absence of dynamical contributions to
fulfilled, there is a complete state transfer fréb@) to [da)  the phase and the geometric nature of the phase shift, the

with zero phase change. Figure 4 shows that a dipole-dipolgyantum gate is maximally robust against parameter fluctua-
shift slightly larger than the peak Rabi frequency is sufficient;jons.

to suppress real transitions into other states. As can be seen

from Fig. 5 the ac-Stark induced phase shifts scale only as R.G.U. acknowledges the financial support of the

(¢T)7! and thus larger values d& are needed to neglect Alexander—von Humboldt Foundation and thanks D. Jaksch
them. Nevertheless it can be seen that it is always possible for stimulating discussions. This work was also supported by
choose sufficiently large values éfto obtain a purely geo- a grant from the Deutsche Forschungsgemeinschaft within

metric phase. the Schwerpunktprogramm “Quanteninformation”.
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