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Searches for permanent electric-dipole moments(EDM) of atoms provide important constraints on compet-
ing extensions to the standard model of elementary particles. Recently proposed experiment with liquid129Xe
[M.V. Romalis and M.P. Ledbetter, Phys. Rev. Lett.87, 067601(2001)] may significantly improve present
limits on the EDMs. To interpret experimental data in terms ofCP-violating sources, one must relate measured
atomic EDM to various model interactions via electronic-structure calculations. Here we study density depen-
dence of atomic EDMs. The analysis is carried out in the framework of the cell model of the liquid coupled
with relativistic atomic-structure calculations. We find that compared to an isolated atom, the EDM of an atom
of liquid Xe is suppressed by about 40%.
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Most extensions of the standard model of elementary par-
ticles, e.g., supersymmetry, naturally produce permanent
electric dipole moments(EDM) of atoms and molecules[1]
that are comparable to or larger than present limits(see, e.g.,
a popular review[2]). For example, the most accurate to date
determination of atomic EDM of199Hg [3] sets limits on a
number of important parameters:CP-violating QCD vacuum
angle, quark chromo-EDMs, and semileptonicCP-violating
parameters, and it restricts parameter space for certain exten-
sions to the standard model. A substantial, several orders of
magnitude improvement in sensitivity to all the enumerated
sources ofCP violation is anticipated in an experiment pro-
posed by Romalis and Ledbetter[4]. These authors propose
to search for an EDM of a liquid sample of129Xe. Compared
to the gas-phase experiment[5], a drastically improved sen-
sitivity of the liquid Xe experiment is mainly due to the
higher number densities of the liquid phase
s1022 atoms/cm3d.

The very use of the liquid phase raises questions about
density-dependent factors which can influence the outcome
and interpretation of the experiment. For example, an EDM
experiment with a molecular liquid was proposed in Ref.[6].
The authors found an additional suppression of the EDM
signal by a factor of 100 due to a reduced population of
molecular rotational levels in liquid. Although the experi-
ment with liquid Xe will be free from such an effect, it is
clear that the effects of the liquid phase on atomic EDMs
have to be investigated.

An EDM of an atom is related to a strength of aCP-
violating source via electronic-structure(enhancement or
shielding) factors. For an isolated Xe atom such factors were
computed previously:P,T-odd semileptonic interactions
were considered by Mårtensson-Pendrill[7] and the nuclear
Schiff moment by Dzubaet al. [8]. Here we employ a simple
cell model to study density dependence of the electronic-
structure factors. Technically, we extend the previous atomic
relativistic many-body calculations by confining a Xe atom
to a spherically symmetric cavity. In a nonpolar liquid such
as liquid Xe, this cavity roughly approximates an averaged
interaction with the neighboring atoms. Imposing proper
boundary conditions at the cavity radius, first we solve the

Dirac-Hartree-Fock(DHF) equations and then employ the
more sophisticated relativistic random-phase approximation
(RRPA) to account for correlations. We find that compared to
the EDM of an isolated atom, the resulting EDM of an atom
of liquid Xe is suppressed by about 40%. Thus if the experi-
ment with liquid Xe is carried out with the anticipated sen-
sitivity, we expect that the inferred constraints on possible
sources ofCP violation would indeed be several orders of
magnitude more stringent than the present limits.

Sources of atomic EDM.The conventional atomic Hamil-
tonianH0 among other symmetries is invariant with respect
to space reflection(P) and time reversal(T). Therefore, on
very general grounds, an expectation value of the electric
dipole operatorD=−oi r i in a nondegenerate atomic state
uC0l vanishes. The tinyCP-violating interactions, here ge-
nerically denoted asHCP=oihCPsr id, break the symmetry of

the atom and induce a correction to the electronic stateuC̃l
= uC0l+ udCl. To the lowest order

udCl = o
k

uCkl
kCkuHCPuC0l

E0 − Ek
, s1d

whereEk anduCkl are eigenvalues and eigenfunctions ofH0.
Due to selection rules, theudCl admixture has a parity op-
posite to the one of the reference stateuC0l. Because of this
opposite-parity admixture the atom acquires a permanent
EDM

d = kC̃uDuC̃l = 2kC0uDudCl. s2d

Now we specify particular forms ofHCP. An analysis[1]
shows that for diamagnetic atoms, such as Xe, the EDM
predominantly arises due toP,T-odd semileptonic interaction
HTN between electrons and nucleons and also due to interac-
tion HSM of electrons with the so-called nuclear Schiff mo-
ment [9]. Smaller atomic EDM is generated by intrinsic
EDM of electrons and we will not consider this mechanism
here. Atomic unitsueu="=me=4p«0;1 are used throughout.

Explicitly, the effectiveP,T-odd semileptonic interaction
Hamiltonian may be represented as[7]
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hTNsr ed = Î2GFCTNsN · sig0g5sderNsr ed. s3d

Here subscriptse andN distinguish between operators acting
in the space of electronic and nuclear coordinates, respec-
tively. CTN is a coupling constant to be determined from an
interpretation of EDM measurements and to be compared
with theoretical model-dependent predictions. Due to aver-
aging over nuclear degrees of freedom, this interaction de-
pends on nuclear density distributionrNsrd. In the following,
we approximaterNsrd as a Fermi distributionrNsrd=r0/ h1
+expfsr −cd /agj, with c=5.6315 fm anda=0.52 fm. Finally,
GF<2.22254310−14 a.u. is the Fermi constant.

The interaction of an electron with the nuclear Schiff mo-
mentS has the form[10]

hSMsr ed =
3

B4
rNsr edsr e ·Sd, s4d

where B4=e0
`r4rNsrddr is the fourth-order moment of the

nuclear distribution. The Schiff moment characterizes a dif-
ference between charge and EDM distributions inside the
nucleus. It depends on a number of importantCP-violating
parameters enumerated in the introduction.

Finally, we emphasize that bothHTN andHSM are contact
interactions. They occur when an electron penetrates the
nucleus. The electron speed at the nucleus is approximately
aZc. 1

2csZ=54d, i.e., a fully relativistic description of elec-
tronic motion is important in this problem.

Cell model of liquid xenon.Here we employ a simple cell
model (see[11] and references therein) to estimate the ef-
fects of the environment on permanent EDM of a given
atom. According to the cell model, we confine an atom to a
spherical cavity of radius

Rcav= S 3

4p

1

n
D1/3

, s5d

n being the number density of the sample. For a density of
liquid Xe of 500 amagat[12], Rcav.4.9 bohr. In nonrelativ-
istic calculations, periodicity requires that the normal com-
ponent of the gradient of electronic wave function vanishes
at the surface of the cell(see, e.g.,[13])

] C

] r
sRcavd = 0. s6d

Before proceeding with a technical question of imple-
menting these boundary conditions in relativistic calcula-
tions, we notice that the cell model implicitly incorporates an
average polarization interaction with the media. Indeed, the
Hamiltonian of an atom placed in the liquid in addition to the
conventional atomic HamiltonianH0 includes the interaction
of electrons with the rest of the atoms in the media. This
interaction is dominated by polarization potential. An impor-
tant point is that theaveragedpolarization interaction can be
expressed asVp=−1

2s1−e−1dRcav
−1 , where e is the dielectric

constant of the media[13]. This interaction does not depend
on an electronic coordinate — it is just an additive constant
that does not affect calculations of EDM. Thus we may ap-

proximate the total Hamiltonian with the traditional atomic
HamiltonianH0.

Furthermore, the spherical symmetry of the cell allows us
to employ traditional methods of atomic structure. The only
modification is due to boundary conditions(6). However, in
relativistic calculations, special care should be taken when
implementing this boundary condition. Indeed, the Dirac bis-
pinor may be represented as

wnkmsr d =
1

r
S PnksrdVkmsr̂ d

iQnksrdV−kmsr̂ d
D , s7d

whereP and Q are the large and small radial components,
respectively, andV is the spherical spinor. The angular quan-
tum numberk=sl − jds2j +1d. The nonrelativistic boundary
condition(6) applied directly to the above ansatz would lead
to two separate constraints onP and Q. This overspecifies
boundary conditions and leads to the Klein paradox.

A possible relativistic generalization of the boundary con-
dition (6) is

d

dr

Pnk

r
sRcavd =

d

dr

Qnk

r
sRcavd. s8d

Since in the nonrelativistic limit the small componentQ van-
ishes, this generalization subsumes Eq.(6). Due to the semi-
qualitative nature of our calculations, here we have chosen to
use simpler(MIT bag model) boundary condition

PnksRcavd = QnksRcavd. s9d

Nonrelativistically, it corresponds to an impenetrable cavity
surface. Compared to this condition, the periodic boundary
conditions(8) are “softer,” i.e., they modify the free-atom
wave functions less significantly; we expect that our use of
Eq. (9) would somewhat overestimate the effects of confine-
ment in the liquid.

Atom in a cavity: DHF and RRPA solutions.To reiterate
the discussion so far, within the cell model, the complex
liquid-structure problem is reduced to solving the atomic
many-body Dirac equation with boundary conditions(9).
The atomic-structure analysis is simplified by the fact that
Xe is a closed-shell atom. Below we self-consistently solve
the DHF equations inside the cavity. Then we employ more
sophisticated RRPA.

At the DHF level, the atomic wave function is represented
by the Slater determinant composed of occupied(core) orbit-
als wa. These orbitals are determined from a set of DHF
equations

fcsa ·pd + bc2 + Vnuc+ VDHFgwa = «awa, s10d

whereVnuc is a potential of the Coulomb interaction with a
finite-size nucleus of charge densityrNsrd andVDHF is a non-
local self-consistent DHF potential. The DHF potential de-
pends on all the core orbitals. Similar equations may be writ-
ten for (virtual) excited orbitalswm.

We solved the DHF equations in the cavity using a
B-spline basis set technique by Johnsonet al. [14]. This tech-
nique is based on the Galerkin method: the DHF equations
are expressed in terms of an extremum of an action integral
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SA. The boundary conditions are incorporated in theSA as
well. Furthermore, the action integral is expanded in terms of
a finite set of basis functions(B splines). Minimization of
suchSA with respect to expansion coefficients reduces solv-
ing integrodifferential DHF equations to solving a symmetric
generalized eigenvalue problem of linear algebra. The result-
ing set of basis functions is finite and can be considered as
numerically complete. In a typical calculation we used a set
of basis functions expanded over 100B splines.

Given a numerically complete set of DHF eigenfunctions
hwij, the permanent atomic EDM, Eq.(2), may be expressed
as

dDHF = 2o
m,a

kwaur uwmlkwmuhCPuwal
«m − «a

, s11d

wherea runs over occupied andm over virtual orbitals. Here
hCP is either a semileptonic interaction, Eq.(3), or an inter-
action with the nuclear Schiff moment, Eq.(4). An additional
peculiarity related to the Dirac equation is an appearance of
negative energy statess«m,−mec

2d in the summation over
intermediate states in Eq.(11). We have verified that these
states introduce a completely negligible correction to the
computed EDMs.

To improve upon the DHF approximation, we have also
computed EDMs using the RRPA method[15]. This approxi-
mation describes a dynamic linear response of an atom to a
perturbing one-body interaction(e.g.,HCP). The perturbation
modifies core orbitals, thus changing the DHF potential. This
modification ofVDHF in turn requires the orbitals to adjust
self-consistently. Such a readjustment process defines an in-
finite series of many-body diagrams, shown, e.g., in Ref.[7].
The RRPA series can be summed to all orders using iterative
techniques or solving DHF-like equations. We used an alter-
native method of solutions based on the use of basis func-
tions [16]. As an input, we used the DHF basis functions
generated in the cavity(see discussion above), i.e., the
boundary conditions were satisfied automatically. As a result
of solving the RRPA equations, we have determined a qua-
sicomplete set of particle-hole excited states and their ener-
gies. Then the EDMs are determined using expressions simi-
lar to Eqs.(1) and (2).

Discussion and conclusions.First, we present the results
of our calculations for an isolated atomsRcav=`d. For the
Schiff-moment-induced EDM, our results, withS=S,

dSM
DHF = 2.88S S

e fm3D 3 10−18 ecm,

dSM
RRPA= 3.78S S

e fm3D 3 10−18 ecm,

are in agreement with the recent calculations by Dzubaet al.
[8]. For the EDM induced byT,P–odd semileptonic interac-
tions we obtain

dTN
DHF = 8.443 10−13 CTNs N a.u.,

dTN
RRPA= 10.73 10−13 CTN sN a.u.

These values are to be compared with the results by
Mårtensson-Pendrill[7], dTN

DHF=7.764, anddTN
RRPA=9.808 in

the same units. The reason for the 10% difference between
our results and those from Ref.[7] is not clear.

Before presenting results for finite cavity radii, let us con-
sider individual contributions to EDM from various shells of
Xe atom. These contributions for the Schiff-moment-induced
EDM of an isolated atom are listed in Table I. A similar
table, but for the EDM arising from semileptonic interactions
is given in Ref.[7]. From these tables we observe that the
dominant contribution to EDMs comes from the outern=5
shell. Thus we anticipate that a noticeable density depen-
dence should occur whenRcav becomes comparable to the
size of externaln=5 shell. We also notice that the contribu-
tion from the outer shell is relatively more important in
RRPA calculations than at the DHF level, i.e., the RRPA
results should exhibit stronger density dependence.

These qualitative conclusions for a confined atom are sup-
ported by our numerical results, presented in Fig. 1. Here we
plot the ratios of atomic EDMs for the confined and isolated

TABLE I. Individual contributions from various shells to the
EDM of a free 129Xe atom in the DHF and RRPA methods. The
EDM is induced by the nuclear Schiff moment and it is given in
units of S/ se fm3d310−18ecm.

DHF RRPA

n=1 0.039 0.039

n=2 0.091 0.092

n=3 0.20 0.21

n=4 0.52 0.64

n=5 2.0 2.8

Total 2.88 3.78

FIG. 1. The ratios of atomic EDMs for the confined and isolated
atoms(suppression factor) as a function of cavity radius. The upper
and lower sets of two curves are obtained with the DHF and RRPA
methods, respectively. EDMs induced byP,T—odd semileptonic
interactions are shown as solid and dashed lines, while EDMs due
to the Schiff moment—as dotted and dashed-dotted lines. The
heavy dot marks our final results for liquid Xe.
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atoms as a function ofRcav. The EDMs become smaller as
the density increases,n~Rcav

−3 . At the density of liquid Xe,
Rcav<4.9 bohr, the more accurate RRPA results show a 25%
suppression of the atomic EDM due to confinement. Overall
there is a noticeable density dependence of atomic EDM. We
expect the EDM signal(if found) to be broadened. The rel-
evant characteristic width of the signal can be simply esti-
mated from Fig. 1 from the mean density fluctuations.

From Fig. 1 we notice that both semileptonic– and Schiff–
moment–induced EDMs scale withRcav in a similar fashion.
This similarity can be explained from the following argu-
ments. The values ofCP-violating matrix elements, Eqs.(3)
and (4), are accumulated inside the nucleus. Nonrelativisti-
cally, as r →0 the wave functions scale aswnlmsr d
<NnlsRcavdr lYlmsr̂ d, where Nnl are normalization factors.
Therefore the dominant contribution to the EDM, Eq.(11)
arises from mixing ofs andp states. By factorizing the ma-
trix element of hCP as kwnsuhCPuwn8pl<NnssRcavdNn8psRcavd
3ksuhCPupl we see that theRcav–independent factorksuhCPupl
can be pulled out of the summation over atomic orbitals in
Eq.(11). Thus, both semileptonic– and Schiff–moment–
induced EDMs exhibit approximately the same scaling with
the cavity radius. A correction to this “similarity scaling law”
may arise, for example, due to different selection rules in-
volved for the two EDM operators.

It is worth emphasizing the semiqualitative nature of our
calculations. The analysis can be improved by employing
more realistic models of liquid environment. Even within the

cell model we could further refine our analysis. A dense liq-
uid may be considered as a solid with vacancies, i.e., the
decrease of the average bond length is negligible, rather the
nearest-neighbor occupation numbers are decreased com-
pared to a solid. Xe condenses into face-centered cubic struc-
ture. The first nearest-neighbor shell contains 12 atoms(par-
tially justifying the spherical symmetry of the elementary
cell). The density of the solid Xe is 3.54 g/cm3, implying the
half-radius of this shell of 4.2 bohr, somewhat smaller than
Rcav<4.9 bohr for liquid Xe. As follows from Fig. 1, this
difference leads to a more pronounced suppression of the
atomic EDM by 40%.

To reiterate, our work was motivated by anticipated sig-
nificant improvements in sensitivity to atomic EDMs in ex-
periments with liquid129Xe [4]. Here we investigated con-
fining effects of the environment on the EDM of a Xe atom.
We carried out the analysis in the framework of the cell
model coupled with relativistic atomic-structure calculations.
We found that compared to an isolated atom, the EDM of an
atom of liquid Xe is reduced by about 40%. Thus if the
experiment with liquid Xe is carried out with the anticipated
sensitivity, we expect that the inferred constraints on possible
sources ofCP violation would be indeed several orders of
magnitude better than the present limits.
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