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Searches for permanent electric-dipole moméBBM) of atoms provide important constraints on compet-
ing extensions to the standard model of elementary particles. Recently proposed experiment witfMauid
[M.V. Romalis and M.P. Ledbetter, Phys. Rev. LeZ, 067601(2001)] may significantly improve present
limits on the EDMs. To interpret experimental data in term€&B¥fviolating sources, one must relate measured
atomic EDM to various model interactions via electronic-structure calculations. Here we study density depen-
dence of atomic EDMs. The analysis is carried out in the framework of the cell model of the liquid coupled
with relativistic atomic-structure calculations. We find that compared to an isolated atom, the EDM of an atom
of liquid Xe is suppressed by about 40%.
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Most extensions of the standard model of elementary pairac-Hartree-FockDHF) equations and then employ the
ticles, e.g., supersymmetry, naturally produce permanennore sophisticated relativistic random-phase approximation
electric dipole momentéEDM) of atoms and moleculed] (RRPA) to account for correlations. We find that compared to
that are comparable to or larger than present ligse, e.g., the EDM of an isolated atom, the resulting EDM of an atom
a popular review?2]). For example, the most accurate to dateof liquid Xe is suppressed by about 40%. Thus if the experi-
determination of atomic EDM ot%Hg [3] sets limits on a ment with liquid Xe is carried out with the anticipated sen-
number of important parameteiGP-violating QCD vacuum  sitivity, we expect that the inferred constraints on possible
angle, quark chromo-EDMs, and semileptofiP-violating  sources ofCP violation would indeed be several orders of
parameters, and it restricts parameter space for certain extemagnitude more stringent than the present limits.
sions to the standard model. A substantial, several orders of Sources of atomic EDMhe conventional atomic Hamil-
magnitude improvement in sensitivity to all the enumeratedonianHy among other symmetries is invariant with respect
sources ofCP violation is anticipated in an experiment pro- to space reflectioiP) and time reversalT). Therefore, on
posed by Romalis and Ledbettig]. These authors propose very general grounds, an expectation value of the electric
to search for an EDM of a liquid sample &°Xe. Compared dipole operatorD=-3; r; in a nondegenerate atomic state
to the gas-phase experimgBi, a drastically improved sen- |¥) vanishes. The tinyCP-violating interactions, here ge-
sitivity of the liquid Xe experiment is mainly due to the nerically denoted ablcp==;hcp(r;), break the symmetry of

higher ~number densities of the liquid phasehe atom and induce a correction to the electronic stipe

(10° atoms/c). =|¥o)+|5¥). To the lowest order
The very use of the liquid phase raises questions about
density-dependent factors which can influence the outcome (W Hepl W)
and interpretation of the experiment. For example, an EDM |6w) => |\Pk>w, (1)
experiment with a molecular liquid was proposed in R6f. k Eo— Ex

The authors found an additional suppression of the EDM
signal by a factor of 100 due to a reduced population ofwhereE, and|¥,) are eigenvalues and eigenfunctiond-pf
molecular rotational levels in liquid. Although the experi- Due to selection rules, the¥) admixture has a parity op-
ment with liquid Xe will be free from such an effect, it is posite to the one of the reference stplg). Because of this
clear that the effects of the liquid phase on atomic EDMsopposite-parity admixture the atom acquires a permanent
have to be investigated. EDM

An EDM of an atom is related to a strength ofGP-
violating source via electronic-structure@nhancement or — I IPIT =
shielding factors. For an isolated Xe atom such factors were d=(¥[D|¥) = A¥,[D| o). @
computed previously:P,T-odd semileptonic interactions Now we specify particular forms dflcp. An analysis[1]
were considered by Martensson-Pendiil] and the nuclear shows that for diamagnetic atoms, such as Xe, the EDM
Schiff moment by Dzubat al.[8]. Here we employ a simple predominantly arises due B T-odd semileptonic interaction
cell model to study density dependence of the electronicHyy between electrons and nucleons and also due to interac-
structure factors. Technically, we extend the previous atomition Hgy, of electrons with the so-called nuclear Schiff mo-
relativistic many-body calculations by confining a Xe atomment [9]. Smaller atomic EDM is generated by intrinsic
to a spherically symmetric cavity. In a nonpolar liquid suchEDM of electrons and we will not consider this mechanism
as liquid Xe, this cavity roughly approximates an averagechere. Atomic unite| =% =my=4ms,=1 are used throughout.
interaction with the neighboring atoms. Imposing proper Explicitly, the effectiveP,T-odd semileptonic interaction
boundary conditions at the cavity radius, first we solve theHamiltonian may be represented [@%
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hin(re) = \“EGFCTNUN (Y0750 epn(T o). (3) proximate the total Hamiltonian with the traditional atomic
HamiltonianH.

Here subscripte andN distinguish between operators acting  Furthermore, the spherical symmetry of the cell allows us
in the space of electronic and nuclear coordinates, respete employ traditional methods of atomic structure. The only
tively. Cyy is a coupling constant to be determined from anmodification is due to boundary conditio(®). However, in
interpretation of EDM measurements and to be comparecklativistic calculations, special care should be taken when
with theoretical model-dependent predictions. Due to averimplementing this boundary condition. Indeed, the Dirac bis-
aging over nuclear degrees of freedom, this interaction depinor may be represented as

pends on nuclear density distributipg(r). In the following, R
we approximatepy(r) as a Fermi distributionpy(r) = po/{1 on(r) = 1( Pri(r)Qm(F) ) %
+exd(r-c)/a]}, with c=5.6315 fm anda=0.52 fm. Finally, feem r\iQp, (N, m(f) /)’

Gp=2.22254x 10" a.u. is the Fermi constant.
The interaction of an electron with the nuclear Schiff mo-
mentS has the form10]

where P and Q are the large and small radial components,
respectively, and is the spherical spinor. The angular quan-
tum numberx=(1-j)(2j+1). The nonrelativistic boundary
3 condition(6) applied directly to the above ansatz would lead
hgw(re) = B—PN(fe)(fe -S), (4)  to two separate constraints dm and Q. This overspecifies
4 boundary conditions and leads to the Klein paradox.

where B,=[Zr%py(r)dr is the fourth-order moment of the A possible relativistic generalization of the boundary con-

nuclear distribution. The Schiff moment characterizes a dif—diﬁon 6)is
ference between charge and EDM distributions inside the dP dQ
nucleus. It depends on a number of import@ft-violating ar rnK(Rcav) =3 rnK(Rcav). (8)

parameters enumerated in the introduction.

Finally, we emphasize that bottiry andHsy are contact  since in the nonrelativistic limit the small componéwan-
interactions. They occur when an electron penetrates thghes, this generalization subsumes @&y. Due to the semi-
nucleus. The electron speed at the nucleus is approximatefyalitative nature of our calculations, here we have chosen to
aZCZ%C(Z=54), i.e., a fully relativistic description of elec- yse simpleqMIT bag mode) boundary condition
tronic motion is important in this problem.

Cell model of liquid xenorHere we employ a simple cell Pr(Reay) = Qne(Reay - 9
model (see[11] and references thergito estimate the ef-
fects of the environment on permanent EDM of a given
atom. According to the cell model, we confine an atom to
spherical cavity of radius

Nonrelativistically, it corresponds to an impenetrable cavity
surface. Compared to this condition, the periodic boundary
aconditions(S) are “softer,” i.e., they modify the free-atom

wave functions less significantly; we expect that our use of
3 1>1/3 Eqg. (9) would somewhat overestimate the effects of confine-

5 ment in the liquid.
4mn ® a

Atom in a cavity: DHF and RRPA solutiongo reiterate

n being the number density of the sample. For a density of_he discussion so far, within the cell model, the complex

oo B X iquid-structure problem is reduced to solving the atomic
!|q_U|d Xe of 500 amagal?z.]’ RC&V_.4'9 bohr. In nonrelativ- many-body Dirac equation with boundary conditio(®.
istic calculations, periodicity requires that the normal com-

onent of the gradient of electronic wave function vanishe he atomic-structure analysis is simplified by the fact that
P 9 e is a closed-shell atom. Below we self-consistently solve
at the surface of the celkee, e.g.[13])

the DHF equations inside the cavity. Then we employ more
P sophisticated RRPA.
—(Rea) =0. (6) At the DHF level, the atomic wave function is represented
ar by the Slater determinant composed of occug@ie orbit-
Before proceeding with a technical question of imple-als Pa- These orbitals are determined from a set of DHF
menting these boundary conditions in relativistic calcula-€duations
tions, we notice that the cell model implicitly incorporates an 2 -
average polarization interaction with ?he rr)lledia. E)ndeed, the [car- p) + BC™+ Viue* Vore]$a = 2aga, (10
Hamiltonian of an atom placed in the liquid in addition to the whereV,,,. is a potential of the Coulomb interaction with a
conventional atomic HamiltoniaH includes the interaction finite-size nucleus of charge densjiy(r) andVpye is a non-
of electrons with the rest of the atoms in the media. ThiSocal self-consistent DHF potential. The DHF potential de-
interaction is dominated by polarization potential. An impor-pends on all the core orbitals. Similar equations may be writ-
tant point is that theveragedpolarization interaction can be ten for (virtual) excited orbitalse,,
expressed ayp:—ﬁ(l—e‘l)R;;\, where € is the dielectric We solved the DHF equations in the cavity using a
constant of the medifL3]. This interaction does not depend B-spline basis set technique by Johnso@l. [14]. This tech-
on an electronic coordinate — it is just an additive constanthique is based on the Galerkin method: the DHF equations
that does not affect calculations of EDM. Thus we may ap-are expressed in terms of an extremum of an action integral

|
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Sa. The boundary conditions are incorporated in Beas TABLE I. Individual contributions from various shells to the
well. Furthermore, the action integral is expanded in terms oEDM of a free *Xe atom in the DHF and RRPA methods. The
a finite set of basis function@ spline9. Minimization of =~ EDM is induced by the nuclear Schiff moment and it is given in
such$S, with respect to expansion coefficients reduces solvunits of S/ (efm?) x 10%cm.

ing integrodifferential DHF equations to solving a symmetric
generalized eigenvalue problem of linear algebra. The result- DHF RRPA
ing set of basis functions is finite and can be considered as

numerically complete. In a typical calculation we used a set n=1 0.039 0.039
of basis functions expanded over 1BGplines. n=2 0.091 0.092
Given a numerically complete set of DHF eigenfunctions n=3 0.20 0.21
{¢;}, the permanent atomic EDM, E(R), may be expressed n=4 0.52 0.64

as n=5 2.0 2.8
Total 2.88 3.78

dDHF= 22 <§Da|r|¢m><<Pm|hCP|(Pa>’ (11)

Em— &

e no dfRPA=10.7% 1078 Cry oy AU,
wherea runs over occupied ant over virtual orbitals. Here
hcp is either a semileptonic interaction, E@), or an inter- These values are to be compared with the results by
action with the nuclear Schiff moment, Eg). An additional ~ Mértensson-Pendril[7], d%F=7.764, andd;"*=9.808 in
peculiarity related to the Dirac equation is an appearance dhe same units. The reason for the 10% difference between
negative energy statds,,<-m.?) in the summation over our results and those from Réf] is not clear.
intermediate states in Egll). We have verified that these Before presenting results for finite cavity radii, let us con-
states introduce a completely negligible correction to thesider individual contributions to EDM from various shells of
computed EDMs. Xe atom. These contributions for the Schiff-moment-induced

To improve upon the DHF approximation, we have alsoEDM of an isolated atom are listed in Table I. A similar
computed EDMs using the RRPA methfddb]. This approxi-  table, but for the EDM arising from semileptonic interactions
mation describes a dynamic linear response of an atom toia given in Ref.[7]. From these tables we observe that the
perturbing one-body interactiaie.g.,Hcp). The perturbation dominant contribution to EDMs comes from the outer5
modifies core orbitals, thus changing the DHF potential. Thisshell. Thus we anticipate that a noticeable density depen-
modification of Vpe in turn requires the orbitals to adjust dence should occur wheR.,, becomes comparable to the
self-consistently. Such a readjustment process defines an isize of externah=5 shell. We also notice that the contribu-
finite series of many-body diagrams, shown, e.g., in R&f.  tion from the outer shell is relatively more important in
The RRPA series can be summed to all orders using iterativBRPA calculations than at the DHF level, i.e., the RRPA
techniques or solving DHF-like equations. We used an alterresults should exhibit stronger density dependence.
native method of solutions based on the use of basis func- These qualitative conclusions for a confined atom are sup-
tions [16]. As an input, we used the DHF basis functionsported by our numerical results, presented in Fig. 1. Here we
generated in the cavitysee discussion abojei.e., the plot the ratios of atomic EDMs for the confined and isolated
boundary conditions were satisfied automatically. As a result

of solving the RRPA equations, we have determined a qua- '
sicomplete set of particle-hole excited states and their ener- N 1=
gies. Then the EDMs are determined using expressions simi- «% 09 '_
lar to Eqgs.(1) and(2). ==
Discussion and conclusion§irst, we present the results 2

of our calculations for an isolated ato(R.,,~=). For the 8 0.8 B
Schiff-moment-induced EDM, our results, wigr S, §07 |
s L
dar =2 85( S ) X 108 ecm A osf-

SM : efm3 ’ . b

OS5k + | v 1 v 1y

4 5 6 7 8 9 10

R, (units of ay)

dRRPA= 3.7%%) x 108 ecm,
efm FIG. 1. The ratios of atomic EDMs for the confined and isolated
atoms(suppression factp@as a function of cavity radius. The upper
and lower sets of two curves are obtained with the DHF and RRPA
methods, respectively. EDMs induced ByT—odd semileptonic
interactions are shown as solid and dashed lines, while EDMs due
DHF _ 13 to the Schiff moment—as dotted and dashed-dotted lines. The
dry =8.44X 10 Cryo y a.u., heavy dot marks our final results for liquid Xe.

are in agreement with the recent calculations by Dzt .
[8]. For the EDM induced byl,P—odd semileptonic interac-
tions we obtain
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atoms as a function dR.,, The EDMs become smaller as cell model we could further refine our analysis. A dense lig-
the density increases;=R_3, At the density of liquid Xe, uid may be considered as a solid with vacancies, i.e., the
Reav=4.9 bohr, the more accurate RRPA results show a 25%jecrease of the average bond length is negligible, rather the
suppression of the atomic EDM due to confinement. Overalhearest-neighbor occupation numbers are decreased com-
there is a noticeable density dependence of atomic EDM. W4ed 10 a solid. Xe condenses into face-centered cubic struc-
expect the EDM signalif found) to be broadened. The rel- e The first nearest-neighbor shell contains 12 atqras
evant characteristic width of the signal can be simply eSt"tiaIIy justifying the spherical symmetry of the elementary

mated from Fig. 1 from the mean density fluctuations. : . : . :
. . ) ; .. cell). The density of the solid Xe is 3.54 g/énimplying the
From Fig. 1 we notice that both semileptonic— and SChIﬁ_half-radius of this shell of 4.2 bohr, somewhat smaller than

moment—induced EDMs scale wik,, in a similar fashion. Re.,~4.9 bohr for liquid Xe. As follows from Fig. 1, this

This similarity can be explained from the following argu- difference leads to a more pronounced suppression of the
ments. The values dCP-violating matrix elements, Eq8) atomic EDM by 40%.

and (4), are accumulated inside the nucleus. Nonrelativisti . . - .
() To reiterate, our work was motivated by anticipated sig-

ia,l\lly’ (Ris)rr'\? (zf)th\e;vh\graevil fL;r;ZtlOnr(l)srmzclzizﬁio?&?g::(tro)rs nificant improvements in sensitivity to atomic EDMSs in ex-
nih Ceavit Tk nl " periments with liquid*?®Xe [4]. Here we investigated con-

;Qgéif?rrgr;hrﬁi;%ng‘gr;tng%n;;gts'oréﬁggg er?nl\g/]l ,trlliequ.r)] a fining effects of the environment on the EDM of a Xe atom.

. : We carried out the analysis in the framework of the cell
trix_element of hcp as <(p“5|hcf’|q)“’p>z Nig(Rea) N p(Rea) e coupled with relativistic atomic-structure calculations.
X(slhcelp) we see that th&,-independent factalslhcelP) e found that compared to an isolated atom, the EDM of an
can be pulled out of the summation over atomic orbitals ingtom of liquid Xe is reduced by about 40%. Thus if the
Eq(11). Thus, both semileptonic— and Schifft-moment—eyxperiment with liquid Xe is carried out with the anticipated
induced EDMs exhibit approximately the same scaling withsengitivity, we expect that the inferred constraints on possible

the cavity radius. A correction to this “similarity scaling law” soyrces ofCP violation would be indeed several orders of
may arise, for example, due to different selection rules inynagnitude better than the present limits.

volved for the two EDM operators.

It is worth emphasizing the semiqualitative nature of our We would like to thank M. Romalis for discussions. This
calculations. The analysis can be improved by employingvork was supported in part by the National Science Founda-
more realistic models of liquid environment. Even within the tion.
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