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Derivation of general dispersion relations and sum rules for meromorphic
nonlinear optical spectroscopy
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Dispersion relations and sum rules for nonlinear susceptibilities are derived using complex analysis and
especially the concept of a meromorphic function. The dispersion relations and sum rules provide frames to
investigate the consistency between the theory and experiments.
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[. INTRODUCTION full potential of KK relations and sum rules is not so familiar
Dispersion relations have been widely recognized as among spec_troscopists in the field of npnlinear optics. How-
. ; . Bver, we believe that recent progress in technology and dis-
powerful tool in spectroscopy thaF may, In parpcular, er.]"’.‘bl%ersion theory in the field of nonlinear optical spectroscopy
us to reveal the linear an_d nonlinear refrac_tlon coefficien ill enhance the applications of dispersion relations and sum
from the relevant absorption spectrum. In linear Spectrosyeq in practical spectra analysis. An important step for ana-
copy, the dlsfpersmn thgory approgch s based on thR/zing nonlinear optical spectra at narrow spectral range was
Kram_ers-l_<ron|g(KK) relat|ons[_1,2], which connect the real the introduction of the concept of multiply subtractive KK
and imaginary parts of the linear susceptlblllty. Actually, relations, which greatly improve the reliability of data inver-
much of the present spectral data related to the linear optic ion as has been demonstrated for polyiM&19. Further-
properties of the media, among others such as metals angd, .o then sum rules for finite wavelength range become
semiconductors, have their origin in the spectral data invers, ora practical as it was demonstrated, e.g., in the case of

sion based on the exploitation of the KK relations and sum, : :
: . : oherent anti-Stokes Raman spectif@ARS) of nitrogen
rules[3]. The extension of KK relations to nonlinear spec- branch[20]. P genQ

troscoopl)y h;’;lsdbeeg proposle(c:ij in the Early flf%l%ﬂ' HOWI' i One general requirement for the validity of KK relations
evle_r, etarl]_ehstu_ yreve]:';le ahnum Ie_ro un amente:c r: 'for nonlinear susceptibilities is that they have sufficient
culties, which originate from the multiwave nature of the ,q hiniic fall off at high frequencies. By generalizing the
nonlinear optical interactions. This has stimulated an exteng iho's [21] linear-response theory to nonlinear systds

sive se_arch for proper forrr_1u|at|or) of Fhe dlsperspn rglauon%ne can show that asymptotic behavior of the nonlinear sus-
N nonlme.ar optics and their practical Im.plementatpn IN NON-cantibilities at high frequencies satisfies the KK-type disper-
linear optical speqtrqscon}?—lﬂ. _In par‘_tlcular, ConsIStency  gjon relations. However, the general analysis shows that
betwefg the predlctl_?_nz gf tQ_e ﬁ';’elrs'fg thﬁory and exgerihere is an additional and more restrictive general require-
mhenta I ate(ljvyas veriied by Ifsl’: ?(5 ](;N 0 melgsure ment. Specifically, the nonlinear susceptibility should be a
the real and imaginary part of the third-order nonlinear SUSholomorphic[7] function of the complex frequency. In linear
ceptibility of polysilane using third ha_lrmomc generation pro- 54 nonlinear optics the susceptibility is holomorphic when
chess. very recerllt(ljy L“Cg”r.“ a(r;cfi Pelpr?n[dﬁ] showed thatf it has poles only in the othetypically lowen half of the

the experimental data obtained from the measurements of the, e frequency plane. In particular, the nonlinear optical

thlrd-o_rgerh nonllneﬁlr dsuscepnlt_)lht()j/ I?Kpollynjers %(/e anﬁ's'susceptibilities describing the generation of the optical har-
tent with the so-called generalize relations. We wish o "Lie " cavicy this condition.

emgha&ze that _the raﬂge of a"a"?b'ed \{vavelelngths for_ e |f the poles of the nonlinear susceptibility are located in
cording spectra Is much more restricte In nontinear opt[c he lower half plane then it is possible to write integral rela-
spectroscopy than in the case of recording linear opticafions e so-called Hilbert-transfornjg] that connect the
spectra. Therefore, any tests including sum rules, which cap, | ang imaginary parts of the susceptibility. If the poles
be used for checking the reliability of the measureq and ins ere located only in the upper half plane then also Hilbert
verted data, are welcom_e ' Unfort.una_tely, .KK relat_lons aNGransforms can be written but then the sign of the transform
sum rules have found little applications in practical datdg gyjiched[22] to negative if compared to the case of sus-
analysis or chlgckmg the cclJnS|stencyC())f the measured dbata @&ptibility having poles only in the lower half plane. Never-
concerns nonlinear optical spectra. One reason may be thfejess symmetry relations, under the assumption of real re-
tedious measurements, such as.those of K'Shtd‘f’l' [16] ponse function imposed on holomorphic linear and
that reqluwe tunable dygbllaszrs 'E order to obtambas hbroa onlinear susceptibilities, make it possible to rewrite the Hil-
spectral range as possible. Another reason may be that trP)‘?ert transforms so that they take the familiar forms of the KK
relations.
If the poles were located in both upper and lower half
* Author to whom correspondence should be addressed. Electronjalanes, the susceptibility can be termed as a meromorphic
address: kai.peiponen@joensuu.fi function of the frequency. One of the simplest examples of
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such a function is the nonlinear susceptibility, which de- Thenth order nonlinear susceptibility in general case can
scribes self-action of the light beam or frequency degeneratbe expressed a&“‘EX(“)(E}Ll W), 01,0y, ", wp). In the
pump-probe spectroscopy. In time-resolved measurementsase that all frequencies are allowed to change simulta-
the applicability of the KK-type dispersion relations was first neously, one can write dispersion relations and sum rules but
questioned by Tokunaget al. [23]. They have shown both they are not of practical utility. Indeed, usually in experi-
theoretically and experimentally that the presence of thenents there is little sense to scan simultaneously the wave-
poles in both half planes simultaneously makes these dispelength, for instance, of the probe and pump beams in pump
sion relations invalid for zero time delay between the pumpand probe spectroscopy. Nevertheless, the theory presented
and probe pulses. However, meromorphic functions havéelow can be generalized to such cases of multivariate wave-
been shown to satisfy the generalized dispersion relationgngths by using the concept of several complex frequency
[24] allowing one to develop a consistent dispersion theoryariables in a similar manner as it was done in R27). In
of the nonlinear optical susceptibilities even for frequencyorder to understand the difference between holomorphic and
degenerate nonlinear interactions. meromorphic nonlinear susceptibilities and to realize what
In this paper, by employing the theory of the meromor-kind of nonlinear spectroscopies may be involved when we
phic functions we obtain dispersion relations for nonlinearwish to utilize dispersion relations and sum rules we consider
optical susceptibilities in Sec. Il. In Sec. Ill we derive sum as an example the case of third-order nonlinear susceptibility
rules, which can be used to interpret experimental data, whein pump and probe experiments. The usual experimental situ-
the conventional KK-type relations are invalid. We wish to ation is that the frequencft,) of the pump beam is fixed,
emphasize that some of the sum rules have not been, as far@gile the frequencyw,;) of the probe beam is scanned. In
we know, presented in the literature until now. Finally, we fact all possible third-order nonlinegand also higher order
present our conclusions and the Appendix related to the derput weakey processes are competing together, and the total
vation of sum rules. nonlinear susceptibility is the sum of different nonlinear sus-
ceptibilities related to different competing processgtss
matter is nicely described and illustrated, e.g., in the paper of
Bassani and Lucarin[28]). Then, for instancex® (2w,
Causality[25] is the primary reason for the existence of —w,; w1, w1,~w,) iS a holomorphic function ofw; and it
KK relations in the field of linear optics, but in the field of presents nonlinear susceptibility of CARS. On the contrary,
nonlinear optics it cannot be taken for granted that causalityhe degenerate nonlinear susceptibilit(w;; w;,~w;, w;)
is the necessary and sufficient condition for the validity ofis meromorphic. This susceptibility has importance in degen-
the KK relations[22]. Indeed in the case of degenerate non-erate four-wave mixing process and in self-action processes
linear susceptibility it has been shown that KK relations arginvolving one incident light beaim the last mentioned is
invalid [24]. One thing is sure; causality works always alsorelated to an important optical property of medium, namely,
in the cases where the pump beam arrives before the probe ionlinear refractive index. We remark that one can easily
pump and probe experiments. The observation of Kirchevalistinguish the meromorphic nonlinear susceptibility from
and Hadjichristof22] concerning the invalidity of the tradi- the holomorphic one. In the case of meromorphic nonlinear
tional treatment of the causality by means of response funcsusceptibility the same variable frequency appears simulta-
tion, due to a complicated relationship between the nonlineaneously with positive and negative signs just like in the case
polarization and excitation fields, has fundamental imporof the degenerate nonlinear susceptibility we mentioned
tance. So how to proceed in order to realize as general distbove. For the sake of simplicity we denote the arbitrary-
persion relations as possible? In a sense the case of merorder nonlinear susceptibility by the functiénand omit the
morphic nonlinear susceptibility presents a more generabther fixed frequencies except one, which is allowed to vary
case than that of the holomorphic one. The reason is thaind denote it by. This function is assumed to be a complex
holomorphic nonlinear susceptibility can be considered as &unction of real variablex, f(x)=u(x)+iv(x), wherex is a
special case of a meromorphic nonlinear susceptibilityfrequency. Next we utilize the theory of complex analysis
Therefore, below we present results for meromorphic nonlinand considef=f(z) as a meromorphic function of the com-
ear quantities and show how these results work with holoplex variablez. We perform complex contour integration as
morphic cases. We assume the most general case that t§gown in Fig. 1a). Then we can write
response function or correlation function, as it may be called
depending on its context, can be a complex {2#24. In f(2) R f(x) f(2) f(2)
such a case there is no assumption of specific symmetry of SSCTdZZPf dX+f d2+f
the real and imaginary parts, which is consistent with the X r A
observations made by Remacle and Levj@é]. Note that (1
Tokunageet al.[23] observed simultaneously real and imagi-
nary parts of susceptibility, which both were even functionswhere P denotes the Cauchy principal value. The next phase
at zero delay. In context with real response function the reaik to let the radiuR to tend to infinity. The integration along
and imaginary parts of the susceptibility obey always everthe closed contour on left-hand side of Efj) gives accord-
and odd parity, respectively. We remark that one can findng to the theorem of residues usually a nonzero contribution
causal correlation function despite of the invalidity of the due to the poles located in the upper half plane. The first
KK relations[22]. integral on right-hand side of E@l) is the integral that is the

Il. CAUSALITY AND DISPERSION RELATIONS

_RX—X z-x z-x
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DERIVATION OF GENERAL DISPERSION RELATIONS.
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FIG. 1. Contour for the derivation @) the dispersion relations
and(b) the sum ruleg=pole).
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wherex’ >0. As we may observe the integrals in E¢6)
and(7) are now of KK type. The parity of the functichcan
be revealed by Fourier analysis. It is the residue term that
may cause problems, since it requires the complex function
of complex variable. Usually the poles are the resonance
points of the system. Then if there is information on the

hand side in turn gives a nonzero contribution. Finally thestates of the medium then poles can be estimated. Thus one

last integral on right-hand side of E¢l) is equal to zero

can try to construct the complex nonlinear susceptibility

(rigorous mathematical proof is presented in the paper ofunction which is holomorphic almost everywhere except at
Saariner[13]). Thus we get the following results by separat- the poles. We remark that the most general case of meromor-

ing real and imaginary parts as follows:

1 - X poles f(z
u(xf):—Pf o ),dx—zR > Res ( ), ()
T Joo X=X Im{z}>0 =X
and
% poles
1 u(x f
v(x’):—Pf ( ),dx—z Im} > Res (Z),
T Joow X=X Im{z}>0 z-X
(3

phic function allows also the existence of complex zeros
with f. Furthermore, it is also important to remark that the
dispersion theory above can be applied also for the powers of
the functionf, fl, wherej is an integer, and also to the
appropriate moments&f/, wherek andj are integers.

Usually wavelength dependent spectrum in nonlinear op-
tics is recorded. If we get information only on the modufus
then the real and imaginary parts can be retrieved both in
linear and nonlinear optical spectroscopy by maximum en-
tropy method[7,29,3Q. Then the calculation of the correla-
tion function, in the case of weak probe beam, may be based
on the procedure presented by Remacle and Lej2
However, such a study is beyond the scope of this paper.

If the experimental conditions are arranged so that defi-

If there are no poles in the upper half plane, then the residugitely holomorphic nonlinear susceptibility is dominant in
terms in Egs(2) and (3) are zero. Thus we have the more the measured spectrum then the data inversion is usually
familiar case of a holomorphic quantity, i.e., Hilbert trans-relatively simple. Thus, the most reliable way for data inver-
forms. In the case of frequency dependent nonlinear suscepion between the real and imaginary parts of the nonlinear
tibility this means that the response function is real and aususceptibility is based on the application of singly or multi-
tomatically symmetry relations can be written, which imply ply subtractive KK relations, and subsequent sum rules
KK relations. In the case on frequency variable the physical17-19. However, if the spectrurtotal nonlinear suscepti-

reality requires positive frequencies. Equatid@s and (3)

bility) is a combination of holomorphic and meromorphic

can be written in other forms, allowing only positive fre- susceptibilities, none of them being dominant, or meromor-

quency, by resolving the andv functions to the sums of
even and odd parts as follows:

(4)

U(X) = Uever(x) + Uodo(x)a

)

v(X) = VevedX) + VogdX),

which hold always. Hence, we may write

2x' [~ X 2 (X X
U(X’)=——PJ —vgve'(,ldx’f—"’f ZOd(’(,gd
ar 0 X"=X ar 0 X"=X

poles

> Res——

-2R , (6)
Im{z}>0 Z=X

and

phic only, then the only reasonable way for practical data

inversion is based on the application of the phase retrieval by
maximum entropy method. In this latter case sum rules of
practical utility are needed to check the consistency between
theory and experimental data. The following section de-

scribes the derivation of sum rules for meromorphic nonlin-

ear susceptibilities. These sum rules are believed to find ap-
plications at least in degenerate four-wave mixing and self-
action spectroscopies.

Ill. SUM RULES

Sum rules have been exploited for a long time in linear
optical spectroscopy as constraints for self-consistence study
of experimental and calculated data. Unfortunately, the same
is not true in the field of nonlinear optics probably because
this field has developed much later than linear optics.

We obtain immediately the dc-sum rules from E¢3)
and(3) as follows:
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1 v(x PR g T nde =pl 1 ip 2™ :
u(0) = —Pf &dx—Z Re > Resg (8) Pl ux)dx =P —P X_X,dx dx
T Jow X Im{z>0 z - —o | T Jw
o poles
f(z
and —Pf 2Re) > Res (), dx’
poles —0 Im{z}>0 Z—X
1 (7 u(x f(z o o
v(0) = ——Pf de—z Imy > Resﬁ . (9 _ 1, v(X) L
T Joo X Im{z}>0 z ) Jox=-x XX
In the case of the dispersion relations of E@.and(7) for poles
x'=0 the first integrals on the right-hand side of these equa- - 27 Im E Resf(2) (14)
tions vanish and only the odd parts of the functions contrib- Im{z}>0

ute to the dc-sum rules. dc-sum rules constitute constraintgnd
that the meromorphic nonlinear susceptibilities have to obey.
If f were holomorphic then Eq9) yieldsv(0)=0, because o o 1 (™ uX
has to be an even function &f Equation(8) in turn yields Pf v(x)dx' = Pf - ;Pf ALl
the familiar sum rule known already in linear optics - - o
Next we derive another set of sum rules by making use of Joc poles f(2)
-P 21m

!

. . L ( ,
the complex contour integration shown in Figbjl Thus we > Resﬁ dx
can write the following equation: Im{z}>0

* 1 [ ux
R :Pf ——Pf —( ),dX dx’
$cf(2dz=| f(x)dx+ | f(2dz (10 o T J o X=X
R A poles
Again letting the radiug to tend to infinity (in a symmetric +2mRe) X Resf(2) (. (15)
manner leading to a principal value integraji@nd noting Im{z}>0
that then integral along the ark vanishes, it follows from  rhe principal value integral is needed because of the residue
the theorem of residues that terms in Eqs(14) and (15), which would otherwise diverge
. poles logarithmically. In the calculation of Eq$14) and (15) we
—_ exploited the partial fraction for the meromorphic function
Pf_w u()dx= = 2ar Im Im%>0 Rest(@ (19 [31] of the formc;/(z—a,)¥, wherea; are the poles of the

function, k is a positive integer, and,, are complex con-
and stants. As far as we know in all cases of nonlinear suscepti-
bilities the order of the poles appearing in the upper half
* plane isk=1, whereas the order of poles appearing in the
Pf v(x)dx=2m Re) > Resf(2) (. (12)  |ower half plane can be higher, see, e[88§] as concerns the
- Im{z>-0 third-order nonlinearities. In the Appendix we outline the
calculation of the integral, which involves the residue term.

If the partition of even and odd functions, E¢4) and(5), is . .

exploi?ed then the sum rule@1) and (12) ::qﬁange at the The order of the double integration can be changed only
left-hand side of these equations so that they involve integrag]n;hiacnas.r?t;fr;gﬁgg fonnc\;%ge_m,)'['fegga;‘altzl su_ghEa Scase
tion only on semi-infinite positive real axis and the inte- Integ uncti X P y In EQS.

grands involve only even functions. Sum rules such as those-? and (15). King [32] _used such a strategy yvhen h? de-
rived sum rules for optical constants in the field of linear

i Egs(11 12 i h i hat th :
given by Eqs(11) and(12) provide other constraints that the thlcal Spectroscopy,.

meromorphic nonlinear susceptibility has to obey. In the cas i '
of a holomorphic quantity the only sum rule follows from Now if we compare Eqs11), (12), (14), and(15) we find

poles

Eq. (11), i.e., that
, - “ v(X)
* ” P P[ ——dx|dx' =0 16
Pf u(x)dx=f u(x)dx=0. (13 J_m[ f_wx—x’ ] (16)
and
Unfortunately, the sum rules above involving residue terms,
so far, have importance only in testing of theoretical models, ” ©ux) .
whereas sum rules that would involve measured data only P . P . X_X,dx dx’ =0. a7

would have crucial importance. Therefore, we now take the

first step towards more practical sum rules for the meromorAs far as we know, the sum rulé$6) and(17) have not been
phic nonlinear susceptibility. For this purpose we consideipresented before until now. We obtained sum rules that do
Egs.(2) and(3) and integrate them as a principal value in- not involve the cumbersome residue terms but integrals of
tegral with respect ta’. Then we find that quantities that may be measured.
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The integrations in Eqg16) and(17) cover also negative have importance at least in degenerate four-wave mixing and
frequencies. However, when we substitute the expressions gElf-action spectroscopies. Self-action processes and also lin-
Egs.(4) and(5) into (16) and(17) we get sum rules, which ear processes are finding applications in the study of the

take the forms optical properties of nanostructur¢33,34,30, which will
have various impacts in future technology. Insofar, the inves-
" " , tigation of the optical dispersion properties of nanostructures
= f P f XVodd(X) + X Uever{x)dx dx=0 (18 hasbeen concentrated mainly on their theoretical properties.
0 0 X2 —x'2 Their dispersion properties provide information, which is im-

portant for instance in the optimization of nonlinear all-
and optical switcherg35] that are operated tuning the intensity
of the laser light. Another application is related to the opti-
m{ “ XU X) + X' UgyerX) mization of the ;ignal for twojphoton abso.rption induqed
PJ Pf 53 dx|dx' =0. (19 fluorescence in bioassa}®6], which has great importance in
0 0 X=X drug discovery, and which is based on the utilization of
It is noteworthy that the sum rules above, although describf@noparticles. In this latter case the dispersion study of
ing meromorphic nonlinear susceptibility, have an analogy ifm€romorphic nonlinear susceptibility of nanoparticles is of
linear optics. Indeed, following King'§32] argumentation ~Ccrucial importance.
concerning average index sum rule for complex refractive
index N(x)=n(x) +ik(x), wheren is the real refractive index
andk is the extinction coefficient of the medium, it holds ACKNOWLEDGMENTS
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(20
APPENDIX
Naturally in the case of Eq20) the well known crossing ) _
relationsn(—=x) =n(x) andk(-x)=—k(x) are valid. In Eqs(18) The calculation of e.g., the integral
and (19) the integrand is an even function just like in the |
case of the sum rul€0). * e f(2)
I=P| 2Re > Res—— (dx (A1)
-0 Im{z}>0 Z=

is based on the use of the partial fractiop/ @—a). It is
IV. CONCLUSIONS sufficient to demonstrate the calculation for one residue term

In this paper we have presented general dispersion relfecause t_he other terms are obtained in a similar manner.
tions and sum rules for nonlinear optical spectroscopy. Wd hen we find out that whek=1, we have
derived dispersion relations and sum rules that are valid both
for holomorphic (analytio or meromorphic nonlinear sus- Pf”’ Re{ Ci1 }dx’
ceptibilities. . a-x

The theory is expected to have importance in interpreta-
tion of measured spectra and proposed theoretical models
related to light interaction with nonlinear optical systems. A
typical quantity is the frequency-dependent nonlinear sus- .
ceptibility to describe the response of the system. The theory Pf Re{ciy} + [Refa} — ']+ Im{cigHim{a}
can be applied both for isotropic and anisotropic media, and o (Refa} - x')?+ (Im{a})?
even in the case that the effective susceptibility is a linear or . ,
nonlinear combination of the primitive susceptibilities. The :Pf Re{cigj[Refa} —x'] dx’
symmetry of the medium as well as the polarization state of _ (Re[a} = x')% + (Im{a})?
the light define the symmetry properties of dispersion rela-

” Relci} +i Im{cy}
PL ReRea) —x +i Im{ay

dx’

tions, but here we have made no assumptions about the sym- + pf Im{ciyjim{a} NG
metry of the system. — (Refa)} = x')%+ (Im{a})?

In the case of holomorphic nonlinear susceptibilities the o Im{c.,im{a}
KK analysis and related sum rules work much as in the case =p i M, dx’
of linear optical spectroscopy. The dispersion relations and - (Refa} = x')? + (Im{a})?

sum rules presented in this paper are valid for holomorphic = 7 Im{c,y) (A2)
nonlinear susceptibilities so that the residue terms are equal 1

to zero, while they are nonzero for meromorphic nonlinearThe corresponding integration of the imaginary part of the
susceptibilities. The sum rule€l6)—«19) are expected to residue term can be obtained by similar procedure as above.
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