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I. INTRODUCTION

Dispersion relations have been widely recognized as a
powerful tool in spectroscopy that may, in particular, enable
us to reveal the linear and nonlinear refraction coefficient
from the relevant absorption spectrum. In linear spectros-
copy, the dispersion theory approach is based on the
Kramers-Kronig(KK ) relations[1,2], which connect the real
and imaginary parts of the linear susceptibility. Actually,
much of the present spectral data related to the linear optical
properties of the media, among others such as metals and
semiconductors, have their origin in the spectral data inver-
sion based on the exploitation of the KK relations and sum
rules [3]. The extension of KK relations to nonlinear spec-
troscopy has been proposed in the early 1960s[4–6]. How-
ever, detailed study revealed a number of fundamental diffi-
culties, which originate from the multiwave nature of the
nonlinear optical interactions. This has stimulated an exten-
sive search for proper formulation of the dispersion relations
in nonlinear optics and their practical implementation in non-
linear optical spectroscopy[7–15]. In particular, consistency
between the predictions of the dispersion theory and experi-
mental data was verified by Kishidaet al. [16] who measured
the real and imaginary part of the third-order nonlinear sus-
ceptibility of polysilane using third harmonic generation pro-
cess. Very recently Lucarini and Peiponen[17] showed that
the experimental data obtained from the measurements of the
third-order nonlinear susceptibility in polymers are consis-
tent with the so-called generalized KK relations. We wish to
emphasize that the range of available wavelengths for re-
cording spectra is much more restricted in nonlinear optical
spectroscopy than in the case of recording linear optical
spectra. Therefore, any tests including sum rules, which can
be used for checking the reliability of the measured and in-
verted data, are welcome. Unfortunately, KK relations and
sum rules have found little applications in practical data
analysis or checking the consistency of the measured data as
concerns nonlinear optical spectra. One reason may be the
tedious measurements, such as those of Kishidaet al. [16]
that require tunable dye lasers in order to obtain as broad
spectral range as possible. Another reason may be that the

full potential of KK relations and sum rules is not so familiar
among spectroscopists in the field of nonlinear optics. How-
ever, we believe that recent progress in technology and dis-
persion theory in the field of nonlinear optical spectroscopy
will enhance the applications of dispersion relations and sum
rules in practical spectra analysis. An important step for ana-
lyzing nonlinear optical spectra at narrow spectral range was
the introduction of the concept of multiply subtractive KK
relations, which greatly improve the reliability of data inver-
sion as has been demonstrated for polymer[18,19]. Further-
more, then sum rules for finite wavelength range become
more practical as it was demonstrated, e.g., in the case of
coherent anti-Stokes Raman spectrum(CARS) of nitrogenQ
branch[20].

One general requirement for the validity of KK relations
for nonlinear susceptibilities is that they have sufficient
asymptotic fall off at high frequencies. By generalizing the
Kubo’s [21] linear-response theory to nonlinear systems[11]
one can show that asymptotic behavior of the nonlinear sus-
ceptibilities at high frequencies satisfies the KK-type disper-
sion relations. However, the general analysis shows that
there is an additional and more restrictive general require-
ment. Specifically, the nonlinear susceptibility should be a
holomorphic[7] function of the complex frequency. In linear
and nonlinear optics the susceptibility is holomorphic when
it has poles only in the other(typically lower) half of the
complex frequency plane. In particular, the nonlinear optical
susceptibilities describing the generation of the optical har-
monics satisfy this condition.

If the poles of the nonlinear susceptibility are located in
the lower half plane then it is possible to write integral rela-
tions, i.e., so-called Hilbert-transforms[7] that connect the
real and imaginary parts of the susceptibility. If the poles
were located only in the upper half plane then also Hilbert
transforms can be written but then the sign of the transform
is switched[22] to negative if compared to the case of sus-
ceptibility having poles only in the lower half plane. Never-
theless, symmetry relations, under the assumption of real re-
sponse function imposed on holomorphic linear and
nonlinear susceptibilities, make it possible to rewrite the Hil-
bert transforms so that they take the familiar forms of the KK
relations.

If the poles were located in both upper and lower half
planes, the susceptibility can be termed as a meromorphic
function of the frequency. One of the simplest examples of
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such a function is the nonlinear susceptibility, which de-
scribes self-action of the light beam or frequency degenerate
pump-probe spectroscopy. In time-resolved measurements,
the applicability of the KK-type dispersion relations was first
questioned by Tokunagaet al. [23]. They have shown both
theoretically and experimentally that the presence of the
poles in both half planes simultaneously makes these disper-
sion relations invalid for zero time delay between the pump
and probe pulses. However, meromorphic functions have
been shown to satisfy the generalized dispersion relations
[24] allowing one to develop a consistent dispersion theory
of the nonlinear optical susceptibilities even for frequency
degenerate nonlinear interactions.

In this paper, by employing the theory of the meromor-
phic functions we obtain dispersion relations for nonlinear
optical susceptibilities in Sec. II. In Sec. III we derive sum
rules, which can be used to interpret experimental data, when
the conventional KK-type relations are invalid. We wish to
emphasize that some of the sum rules have not been, as far as
we know, presented in the literature until now. Finally, we
present our conclusions and the Appendix related to the deri-
vation of sum rules.

II. CAUSALITY AND DISPERSION RELATIONS

Causality[25] is the primary reason for the existence of
KK relations in the field of linear optics, but in the field of
nonlinear optics it cannot be taken for granted that causality
is the necessary and sufficient condition for the validity of
the KK relations[22]. Indeed in the case of degenerate non-
linear susceptibility it has been shown that KK relations are
invalid [24]. One thing is sure; causality works always also
in the cases where the pump beam arrives before the probe in
pump and probe experiments. The observation of Kircheva
and Hadjichristov[22] concerning the invalidity of the tradi-
tional treatment of the causality by means of response func-
tion, due to a complicated relationship between the nonlinear
polarization and excitation fields, has fundamental impor-
tance. So how to proceed in order to realize as general dis-
persion relations as possible? In a sense the case of mero-
morphic nonlinear susceptibility presents a more general
case than that of the holomorphic one. The reason is that
holomorphic nonlinear susceptibility can be considered as a
special case of a meromorphic nonlinear susceptibility.
Therefore, below we present results for meromorphic nonlin-
ear quantities and show how these results work with holo-
morphic cases. We assume the most general case that the
response function or correlation function, as it may be called
depending on its context, can be a complex one[22,26]. In
such a case there is no assumption of specific symmetry of
the real and imaginary parts, which is consistent with the
observations made by Remacle and Levine[26]. Note that
Tokunagaet al. [23] observed simultaneously real and imagi-
nary parts of susceptibility, which both were even functions
at zero delay. In context with real response function the real
and imaginary parts of the susceptibility obey always even
and odd parity, respectively. We remark that one can find
causal correlation function despite of the invalidity of the
KK relations [22].

The nth order nonlinear susceptibility in general case can
be expressed asxsnd=xsndso j=1

n v j ;v1,v2,¯ ,vnd. In the
case that all frequencies are allowed to change simulta-
neously, one can write dispersion relations and sum rules but
they are not of practical utility. Indeed, usually in experi-
ments there is little sense to scan simultaneously the wave-
length, for instance, of the probe and pump beams in pump
and probe spectroscopy. Nevertheless, the theory presented
below can be generalized to such cases of multivariate wave-
lengths by using the concept of several complex frequency
variables in a similar manner as it was done in Ref.[27]. In
order to understand the difference between holomorphic and
meromorphic nonlinear susceptibilities and to realize what
kind of nonlinear spectroscopies may be involved when we
wish to utilize dispersion relations and sum rules we consider
as an example the case of third-order nonlinear susceptibility
in pump and probe experiments. The usual experimental situ-
ation is that the frequencysv2d of the pump beam is fixed,
while the frequencysv1d of the probe beam is scanned. In
fact all possible third-order nonlinear(and also higher order
but weaker) processes are competing together, and the total
nonlinear susceptibility is the sum of different nonlinear sus-
ceptibilities related to different competing processes(this
matter is nicely described and illustrated, e.g., in the paper of
Bassani and Lucarini[28]). Then, for instance,xs3ds2v1

−v2;v1,v1,−v2d is a holomorphic function ofv1 and it
presents nonlinear susceptibility of CARS. On the contrary,
the degenerate nonlinear susceptibilityxs3dsv1;v1,−v1,v1d
is meromorphic. This susceptibility has importance in degen-
erate four-wave mixing process and in self-action processes
(involving one incident light beam), the last mentioned is
related to an important optical property of medium, namely,
nonlinear refractive index. We remark that one can easily
distinguish the meromorphic nonlinear susceptibility from
the holomorphic one. In the case of meromorphic nonlinear
susceptibility the same variable frequency appears simulta-
neously with positive and negative signs just like in the case
of the degenerate nonlinear susceptibility we mentioned
above. For the sake of simplicity we denote the arbitrary-
order nonlinear susceptibility by the functionf, and omit the
other fixed frequencies except one, which is allowed to vary
and denote it byx. This function is assumed to be a complex
function of real variable,x, fsxd=usxd+ ivsxd, wherex is a
frequency. Next we utilize the theory of complex analysis
and considerf = fszd as a meromorphic function of the com-
plex variablez. We perform complex contour integration as
shown in Fig. 1(a). Then we can write

rC
fszd

z− x8
dz=PE

−R

R fsxd
x − x8

dx+E
G

fszd
z− x8

dz+E
A

fszd
z− x8

dz,

s1d

where P denotes the Cauchy principal value. The next phase
is to let the radiusR to tend to infinity. The integration along
the closed contour on left-hand side of Eq.s1d gives accord-
ing to the theorem of residues usually a nonzero contribution
due to the poles located in the upper half plane. The first
integral on right-hand side of Eq.s1d is the integral that is the
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origin of Hilbert transforms. The second integral on right-
hand side in turn gives a nonzero contribution. Finally the
last integral on right-hand side of Eq.s1d is equal to zero
srigorous mathematical proof is presented in the paper of
Saarinenf13gd. Thus we get the following results by separat-
ing real and imaginary parts as follows:

usx8d =
1

p
PE

−`

` vsxd
x − x8

dx− 2 ReH o
Imhzj.0

poles

Res
fszd

z− x8
J s2d

and

vsx8d =
1

p
PE

−`

` usxd
x − x8

dx− 2 ImH o
Imhzj.0

poles

Res
fszd

z− x8
J .

s3d

If there are no poles in the upper half plane, then the residue
terms in Eqs.s2d and s3d are zero. Thus we have the more
familiar case of a holomorphic quantity, i.e., Hilbert trans-
forms. In the case of frequency dependent nonlinear suscep-
tibility this means that the response function is real and au-
tomatically symmetry relations can be written, which imply
KK relations. In the case on frequency variable the physical
reality requires positive frequencies. Equationss2d and s3d
can be written in other forms, allowing only positive fre-
quency, by resolving theu and v functions to the sums of
even and odd parts as follows:

usxd = uevensxd + uoddsxd, s4d

vsxd = vevensxd + voddsxd, s5d

which hold always. Hence, we may write

usx8d = −
2x8

p
PE

0

` vevensxd
x2 − x82dx+

2

p
PE

0

` xvoddsxd
x2 − x82 dx

− 2 ReH o
Imhzj.0

poles

Res
fszd

z− x8
J s6d

and

vsx8d =
2x8

p
PE

0

` uevensxd
x2 − x82dx−

2

p
PE

0

` xuoddsxd
x2 − x82 dx

− 2 ImH o
Imhzj.0

poles

Res
fszd

z− x8
J , s7d

wherex8.0. As we may observe the integrals in Eqs.s6d
ands7d are now of KK type. The parity of the functionf can
be revealed by Fourier analysis. It is the residue term that
may cause problems, since it requires the complex function
of complex variable. Usually the poles are the resonance
points of the system. Then if there is information on the
transition frequencies and the lifetimes of the electronic
states of the medium then poles can be estimated. Thus one
can try to construct the complex nonlinear susceptibility
function which is holomorphic almost everywhere except at
the poles. We remark that the most general case of meromor-
phic function allows also the existence of complex zeros
with f. Furthermore, it is also important to remark that the
dispersion theory above can be applied also for the powers of
the function f, f j, where j is an integer, and also to the
appropriate moments,xkf j, wherek and j are integers.

Usually wavelength dependent spectrum in nonlinear op-
tics is recorded. If we get information only on the modulusf
then the real and imaginary parts can be retrieved both in
linear and nonlinear optical spectroscopy by maximum en-
tropy method[7,29,30]. Then the calculation of the correla-
tion function, in the case of weak probe beam, may be based
on the procedure presented by Remacle and Levine[26].
However, such a study is beyond the scope of this paper.

If the experimental conditions are arranged so that defi-
nitely holomorphic nonlinear susceptibility is dominant in
the measured spectrum then the data inversion is usually
relatively simple. Thus, the most reliable way for data inver-
sion between the real and imaginary parts of the nonlinear
susceptibility is based on the application of singly or multi-
ply subtractive KK relations, and subsequent sum rules
[17–19]. However, if the spectrum(total nonlinear suscepti-
bility ) is a combination of holomorphic and meromorphic
susceptibilities, none of them being dominant, or meromor-
phic only, then the only reasonable way for practical data
inversion is based on the application of the phase retrieval by
maximum entropy method. In this latter case sum rules of
practical utility are needed to check the consistency between
theory and experimental data. The following section de-
scribes the derivation of sum rules for meromorphic nonlin-
ear susceptibilities. These sum rules are believed to find ap-
plications at least in degenerate four-wave mixing and self-
action spectroscopies.

III. SUM RULES

Sum rules have been exploited for a long time in linear
optical spectroscopy as constraints for self-consistence study
of experimental and calculated data. Unfortunately, the same
is not true in the field of nonlinear optics probably because
this field has developed much later than linear optics.

We obtain immediately the dc-sum rules from Eqs.(2)
and (3) as follows:

FIG. 1. Contour for the derivation of(a) the dispersion relations
and (b) the sum ruless=poled.
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us0d =
1

p
PE

−`

` vsxd
x

dx− 2 ReH o
Imhzj.0

poles

Res
fszd
z J s8d

and

vs0d = −
1

p
PE

−`

` usxd
x

dx− 2 ImH o
Imhzj.0

poles

Res
fszd
z J . s9d

In the case of the dispersion relations of Eqs.s6d ands7d for
x8=0 the first integrals on the right-hand side of these equa-
tions vanish and only the odd parts of the functions contrib-
ute to the dc-sum rules. dc-sum rules constitute constraints
that the meromorphic nonlinear susceptibilities have to obey.
If f were holomorphic then Eq.s9d yieldsvs0d=0, becauseu
has to be an even function ofx. Equations8d in turn yields
the familiar sum rule known already in linear optics

Next we derive another set of sum rules by making use of
the complex contour integration shown in Fig. 1(b). Thus we
can write the following equation:

rC fszddz=E
−R

R

fsxddx+E
A

fszddz. s10d

Again letting the radiusR to tend to infinitysin a symmetric
manner leading to a principal value integrationd and noting
that then integral along the arcA vanishes, it follows from
the theorem of residues that

PE
−`

`

usxddx= − 2p ImH o
Imhzj.0

poles

ResfszdJ s11d

and

PE
−`

`

vsxddx= 2p ReH o
Imhzj.0

poles

ResfszdJ . s12d

If the partition of even and odd functions, Eqs.s4d ands5d, is
exploited then the sum ruless11d and s12d change at the
left-hand side of these equations so that they involve integra-
tion only on semi-infinite positive real axis and the inte-
grands involve only even functions. Sum rules such as those
given by Eqs.s11d ands12d provide other constraints that the
meromorphic nonlinear susceptibility has to obey. In the case
of a holomorphic quantity the only sum rule follows from
Eq. s11d, i.e.,

PE
−`

`

usxddx=E
−`

`

usxddx= 0. s13d

Unfortunately, the sum rules above involving residue terms,
so far, have importance only in testing of theoretical models,
whereas sum rules that would involve measured data only
would have crucial importance. Therefore, we now take the
first step towards more practical sum rules for the meromor-
phic nonlinear susceptibility. For this purpose we consider
Eqs. s2d and s3d and integrate them as a principal value in-
tegral with respect tox8. Then we find that

PE
−`

`

usx8ddx8 = PE
−`

` F 1

p
PE

−`

` vsxd
x − x8

dxGdx8

− PE
−`

`

2 ReH o
Imhzj.0

poles

Res
fszd

z− x8
Jdx8

= PE
−`

` F 1

p
PE

−`

` vsxd
x − x8

dxGdx8

− 2p ImH o
Imhzj.0

poles

ResfszdJ s14d

and

PE
−`

`

vsx8ddx8 = PE
−`

` F−
1

p
PE

−`

` usxd
x − x8

dxGdx8

− PE
−`

`

2 ImH o
Imhzj.0

poles

Res
fszd

z− x8
Jdx8

= PE
−`

` F−
1

p
PE

−`

` usxd
x − x8

dxGdx8

+ 2p ReH o
Imhzj.0

poles

Res fszdJ . s15d

The principal value integral is needed because of the residue
terms in Eqs.s14d and s15d, which would otherwise diverge
logarithmically. In the calculation of Eqs.s14d and s15d we
exploited the partial fraction for the meromorphic function
f31g of the form cik / sz−aidk, whereai are the poles of the
function, k is a positive integer, andcik are complex con-
stants. As far as we know in all cases of nonlinear suscepti-
bilities the order of the poles appearing in the upper half
plane isk=1, whereas the order of poles appearing in the
lower half plane can be higher, see, e.g.,f28g as concerns the
third-order nonlinearities. In the Appendix we outline the
calculation of the integral, which involves the residue term.

The order of the double integration can be changed only
in the case of uniform convergent integrals. In such a case
one can integrate the functionsx−x8d−1 separately in Eqs.
(14) and (15). King [32] used such a strategy when he de-
rived sum rules for optical constants in the field of linear
optical spectroscopy.

Now if we compare Eqs.(11), (12), (14), and(15) we find
that

PE
−`

` FPE
−`

` vsxd
x − x8

dxGdx8 = 0 s16d

and

PE
−`

` FPE
−`

` usxd
x − x8

dxGdx8 = 0. s17d

As far as we know, the sum ruless16d ands17d have not been
presented before until now. We obtained sum rules that do
not involve the cumbersome residue terms but integrals of
quantities that may be measured.
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The integrations in Eqs.(16) and(17) cover also negative
frequencies. However, when we substitute the expressions of
Eqs.(4) and (5) into (16) and (17) we get sum rules, which
take the forms

PE
0

` FPE
0

` xvoddsxd + x8vevensxd
x2 − x82 dxGdx8 = 0 s18d

and

PE
0

` FPE
0

` xuoddsxd + x8uevensxd
x2 − x82 dxGdx8 = 0. s19d

It is noteworthy that the sum rules above, although describ-
ing meromorphic nonlinear susceptibility, have an analogy in
linear optics. Indeed, following King’sf32g argumentation
concerning average index sum rule for complex refractive
index Nsxd=nsxd+ iksxd, wheren is the real refractive index
and k is the extinction coefficient of the medium, it holds
that

E
0

`

fnsxd − 1gdx= PE
−`

` F−
1

p
PE

−`

` xksxd
x2 − x82dxGdx8 = 0.

s20d

Naturally in the case of Eq.s20d the well known crossing
relationsns−xd=nsxd andks−xd=−ksxd are valid. In Eqs.s18d
and s19d the integrand is an even function just like in the
case of the sum rules20d.

IV. CONCLUSIONS

In this paper we have presented general dispersion rela-
tions and sum rules for nonlinear optical spectroscopy. We
derived dispersion relations and sum rules that are valid both
for holomorphic (analytic) or meromorphic nonlinear sus-
ceptibilities.

The theory is expected to have importance in interpreta-
tion of measured spectra and proposed theoretical models
related to light interaction with nonlinear optical systems. A
typical quantity is the frequency-dependent nonlinear sus-
ceptibility to describe the response of the system. The theory
can be applied both for isotropic and anisotropic media, and
even in the case that the effective susceptibility is a linear or
nonlinear combination of the primitive susceptibilities. The
symmetry of the medium as well as the polarization state of
the light define the symmetry properties of dispersion rela-
tions, but here we have made no assumptions about the sym-
metry of the system.

In the case of holomorphic nonlinear susceptibilities the
KK analysis and related sum rules work much as in the case
of linear optical spectroscopy. The dispersion relations and
sum rules presented in this paper are valid for holomorphic
nonlinear susceptibilities so that the residue terms are equal
to zero, while they are nonzero for meromorphic nonlinear
susceptibilities. The sum rules(16)–(19) are expected to

have importance at least in degenerate four-wave mixing and
self-action spectroscopies. Self-action processes and also lin-
ear processes are finding applications in the study of the
optical properties of nanostructures[33,34,30], which will
have various impacts in future technology. Insofar, the inves-
tigation of the optical dispersion properties of nanostructures
has been concentrated mainly on their theoretical properties.
Their dispersion properties provide information, which is im-
portant for instance in the optimization of nonlinear all-
optical switchers[35] that are operated tuning the intensity
of the laser light. Another application is related to the opti-
mization of the signal for two-photon absorption induced
fluorescence in bioassays[36], which has great importance in
drug discovery, and which is based on the utilization of
nanoparticles. In this latter case the dispersion study of
meromorphic nonlinear susceptibility of nanoparticles is of
crucial importance.
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APPENDIX

The calculation of e.g., the integral

I = PE
−`

`

2 ReH o
Imhzj.0

poles

Res
fszd

z− x8
Jdx8 sA1d

is based on the use of the partial fraction cik / sz−aidk. It is
sufficient to demonstrate the calculation for one residue term
because the other terms are obtained in a similar manner.
Then we find out that whenk=1, we have

PE
−`

`

ReH ci1

ai − x8
Jdx8

=PE
−`

`

Re
Rehci1j + i Imhci1j

Rehaij − x8 + i Imhaij
dx8

=PE
−`

` Rehci1j + fRehaij − x8g + Imhci1jImhaij
sRehaij − x8d2 + sImhaijd2 dx8

=PE
−`

` Rehci1jfRehaij − x8g
sRehaij − x8d2 + sImhaijd2dx8

+ PE
−`

` Imhci1jImhaij
sRehaij − x8d2 + sImhaijd2dx8

=PE
−`

` Imhci1jImhaij
sRehaij − x8d2 + sImhaijd2dx8

= p Imhci1j. sA2d

The corresponding integration of the imaginary part of the
residue term can be obtained by similar procedure as above.
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