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A theory of quantum control of short-wavelength sum-frequency generation, which employs the continuum
states, is developed. The proposed scheme employs all-resonant coupling and trade-off optimization of the
accompanying constructive and destructive quantum interference effects in the lower-order and higher-order
polarizations controlled by the overlap of two autoionizinglike laser-induced continuum structures. The scheme
does not rely on adiabatic passage, coherent population trapping or maximum atomic coherence as a means to
facilitate maximum output. The opportunities for manipulating transparency of the medium and refractive
index for the fundamental and generated radiations, as well as nonlinear polarization in the multiple-resonant
medium, are shown. This opens the feasibility of creating frequency-tunable narrowband filters, polarization
rotators, and dispersive elements for vacuum ultraviolet radiation. The features specific for quantum interfer-
ence in Doppler-broadened media are investigated. The feasibility of almost complete conversion of long-
wavelength fundamental radiation into generated short-wavelength radiation, and of a dramatic decrease in the
intensity of required fundamental radiations, is shown.
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I. INTRODUCTION

The fact that two resonant intra-atomic oscillations(quan-
tum pathways) may interfere has been understood and em-
ployed in nonlinear spectroscopy since the widespread use of
lasers began. In the example of a three-level scheme, one of
two such oscillations can be produced by resonant probe
radiation and another by the same probe radiation in coop-
eration with an auxiliary field applied to the adjacent transi-
tion. Such oscillations may suppress(destructive interfer-
ence) or enhance(constructive interference) each other,
enabling one to eliminate or alternatively enhance the cou-
pling of light and matter. The relative phases and amplitudes
of such oscillations can be varied by changing the resonance
detuning and strength of the auxiliary control field. Since
such nonlinear interference effects(NIE) [1–6] are inherent
to various resonantly enhanced nonlinear interactions of light
and atoms, NIE-based feasibilities for producing laser-
induced transparency or, alternatively, new absorption and
emission peaks, as well as manipulating their position and
spectral lineshape, were consequently predicted and ob-
served. A classification of various possible NIE and condi-
tions for their separate observation were discussed in Refs.
[3,5,6]. In many early experiments, near-resonance coupling

of high-power ruby laser radiation with two excited states of
potassium atom was employed. In combination with the
Stokes component of stimulated Raman emission in ni-
trobenzene, this enabled the monitoring of a two-photon
ladder-type resonance with the ground state of the atom ac-
companied by an intermediate one-photon resonance. A va-
riety of proof-of-principle experiments on NIE, including
four- and multiwave mixing, were performed[7]. Other op-
tions were provided by the resonance interaction of He-Ne
lasers and Ne atoms excited in a discharge. Thus the NIE-
based opportunity for manipulating optical properties of the
resonance media from enhanced absorption to amplification
without population inversion via entire transparency were
discussed in detail and numerically illustrated for the ex-
ample of the Ne atom driven by He-Ne laser[6,8]. A review
of the relevant early theoretical and experimental work was
given in Ref.[9].

Resonant nonlinear optics, and specifically four-wave
mixing (FWM), in atomic gases have enjoyed tremendous
developments over recent years in connection with the con-
cepts of electromagnetically induced transparency, coherent
population trapping, and maximum coherence achievable be-
tween the discrete states[10–14]. Coherent population trap-
ping and maximum coherence usually imply utilization of
Raman-type coupling with metastable states or light pulses
shorter than the shortest relaxation rate in the gas. Manipu-
lating FWM with the control field in a more complex five-
level scheme has recently been investigated in Ref.[15].

So far a great majority of papers has dealt with resonant
schemes predominantly composed by discrete levels, espe-
cially with regards to the FWM processes. Quantum interfer-
ence is usually employed for a decrease of lower-order(ab-
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sorptive and dispersive) susceptibilities, whereas higher-
order (generating) nonlinear polarization is increased.
Basically, such an approach requires two-photon coupling
mediated by one-photon resonance for fundamental and of-
ten for generated radiations. The claimed primary implemen-
tation of such studies is to extend the generated radiation to
the vacuum ultraviolet(vuv) wavelength range where the
efficiency to be achieved exceeds that in crystals. However,
energy levels of atoms and molecules are fundamentally non-
equidistant and converge swiftly to the photoionization limit.
Therefore, the coupling of the generated vuv and at least one
of the fundamental radiations with the continuous energy
states becomes almost inevitable. This makes an understand-
ing of FWM and other accompanying nonlinear-optical pro-
cesses associated with continuum states and the investigation
of the feasibilities of their quantum control and enhancement
of basic and practical importance.

For a long time, the continuum of quantum states, such as
that observed in the ionization of an atom or dissociation of
a molecule, was regarded as an incoherent dissipation me-
dium. This changed with studies[16–18] that proposed that
the optical properties determined by quantum transitions to
the continuum can be manipulated with control lasers in the
same manner as the NIE associated with the discrete states.
Thus opportunities were predicted for the formation of nar-
row resonances embedded in an otherwise unstructured con-
tinuum. The shape of such spectral structures is similar to
that of a real autoionizing(Fano) resonance[19], but their
position, strength, and even their profile can be manipulated
with a control laser. Due to the interference origin, the fea-
tures of such autoionizinglike laser-induced continuum struc-
tures(LICS) were found to be different in absorption, refrac-
tion, ionization (dissociation), and FWM susceptibilities
[18,20,21]. In particular, the opportunity of producing a
transparency window for the generated radiation without a
substantial decrease of the FWM polarization was proposed
in Ref. [18]. Since the first proof-of-principle experiments
[22], where such induced resonances were observed in the
refractive index associated with the transition from the
ground state to the ionization continuum of atomic cesium,
great progress has been made in developing a deeper under-
standing of quantum coherence and related laser-induced
processes associated with continuum states[23]. The experi-
ments have confirmed the key predictions based on the sim-
plified theoretical models, although in some cases discrepan-
cies have been revealed. Main efforts have been applied to
the investigation of LICS-controlled polarization rotation
and photoionization, often in the vicinity of real autoionizing
states. Only very few publications have dealt with LICS-type
FWM schemes[24], but for all these, the specific features
attributed to coupling with the strong fields mediated by one-
photon resonance have not been investigated so far. The ap-
pearance and consequences of quantum coherence and inter-
ference processes are very different in the cw regime, where
relaxation processes play a crucial role, compared to the
pulsed regime of rapid adiabatic passage. Nor have the fea-
tures attributed to either the cw resonant FWM coupling or
the coupling with inhomogeneously broadened transitions,
been properly addressed in the context of LICS-based quan-
tum control. Most of the recent work on the coherent cou-

pling via the continuum deal with the suppression of ioniza-
tion and adiabatic passage between two discrete excited
metastable levels via ionization continuum in Raman-like
L-schemes driven by properly ordered laser pulses[25,26].

This paper is aimed at filling the outlined gaps. It pro-
poses a scheme that combines the advantages of the all-
resonant enhancement of the short-wavelength sum-
frequency FWM response of the medium and LICS-based
coherent quantum control. This is shown to enable one to
decrease the required intensities of the applied fields down to
those characteristic for cw radiation. Consequently, the
scheme specifically addresses the cases, where neither the
coherent population trapping nor the maximum coherence
can be achieved. Hence, it does not rely on such processes.
Besides, it offers great manipulating flexibility through a
suggested employment of several variable strong fields and,
at the same time, avoids the effects associated with the popu-
lation transfer, ionization, and depletion of the resonant at-
oms. It is shown that the resonant interaction of several
strong fields gives rise to qualitatively different effects com-
pared to the previously studied schemes where all fundamen-
tal radiations are imperturbatively weak and only one control
field is strong. The combined influence of the interference of
two LICS on the laser-induced transparency and dispersion
for both fundamental and generated radiations, as well as on
the modification of FWM polarization, is studied. The effect
of inhomogeneous(Doppler) broadening of the coupled tran-
sition on the appearance of NIE in the LICS-assisted
schemes is investigated. The latter includes anisotropic spec-
tra and narrow sub-Doppler spectral structures. The optical
properties of the materials in the vicinity of discrete transi-
tions are shown to also be manipulated through the interfer-
ence of two LICS that provide a considerably different ap-
pearance compared to quantum control in a solely discrete
scheme. The dependence of NIE on the distribution of the
oscillation strengths over the continuum is shown to be of
critical importance. Corresponding experiments may give in-
formation about complex Fano parameters attributed to the
excited discrete states and the continuum, which are, so far,
less known. However, the primary goal of the paper is the
implementation of the outlined effects for control over the
evolution of the generated and fundamental radiation along
the otherwise strongly absorbing media. The factors dis-
criminating the most favorable regimes of generation are de-
termined. They suggest the feasibilities of almost complete
conversion of long-wavelength fundamental radiation into
short-wavelength generated output under an appreciably re-
duced intensity of the fundamental radiations. Such opportu-
nities are shown feasible through a trade-off analysis of the
accompanying interference effects in the lower-order and
higher-order polarizations. An appropriate adjustment of the
overlap of two LICS that ensures the effect is proposed to be
achievable with the control field, which does not contribute
directly to four-wave mixing. Such opportunities are demon-
strated through numerical simulations that employ the typical
atomic parameters.

This paper is organized as follows. In the next section we
discuss the discriminating parameters, which determine fre-
quency conversion in a resonant absorbing medium, and out-
line the calculational procedures. Section III presents the
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density-matrix equations and their solutions, which describe
local optical characteristics of the resonant medium driven
by several strong fields. Laser-induced structures in discrete
and continuous spectra of absorption and refraction are in-
vestigated in Sec. IV. Section V considers specific features of
absorption and dispersive spectra at Doppler-broadened tran-
sitions. Resonance sum-frequency generation in strongly ab-
sorbing media controlled by the interference of two LICS is
studied in Sec. VI. The main outcomes of the work are sum-
marized in Sec. VII.

II. FREQUENCY CONVERSION IN ABSORBING MEDIA:
DISCRIMINATING PARAMETERS

A maximum achievable conversion efficiency and corre-
sponding medium length are determined by the interplay of
concomitant NIE-based changes in absorption, refraction,
and FWM polarization. In this section we show that the spe-
cific qualitatively different generation regimes may develop
under such conditions. The microscopic parameters will be
derived to be used and analyzed in the following sections for
the investigation of the spectral properties of resonant sum-
frequency generation in optically dense media. Conse-
quently, let us consider four plane-polarized electromagnetic
waves traveling along thez axis of an isotropic medium,

Ejsz,td = RehEjszdexpfisv jt − kjzdgj, s1d

wherekj is the complex wave number corresponding to the
frequencyv j s j =1,2,3,Sd that accounts for depletion along
the medium. We assume that the fieldsE1 andES are weak
compared to the driving fieldsE2 andE3, which do not vary
along the medium. On the contrary, the fieldsE1 andES may
change considerably along the medium because of absorp-
tion and nonlinear-optical conversion. Then the spatial be-
havior of the wavesES and E1 is given by two coupled re-
duced wave equations,

dESszd/dz= i2pkS8xS
s3dE2E3E1szdexpsiDkzd,

s2d
dE1szd/dz= i2pk18x1

s3dE2
*E3

*ESszdexps− iDkzd.

Here,kj =kj8− ikj9=s2pv j /cdx j, kj9=a j /2; x j ,a j are the effec-
tive linear susceptibilities and absorption indices for the cor-
responding radiations; andx1

s3d ,xS
s3d are the FWM nonlinear

susceptibilities:vS↔v1+v2+v3, Dk=kS−k1−k2−k3. The
quantum conversion efficiency of the radiationE1 into ES
that varies along the medium is defined by the equation

hq =
k18

kS8
UESst,zd

E1s0d
U2

=
k18

kS8
U ESszd

E1s0d
U2

exps− aSzd. s3d

Let us first consider the case of low conversion efficiency,
for which the change in theE1 caused by the nonlinear-
optical conversion can be ignored. Then the second equation
in (2) can be ignored as well and, with account of the bound-
ary conditionESsz=0d=0, one obtains the following equa-
tions:

ESszd = s2pkS8/DkdxS
s3dE1E2E3fexps− iDkzd − 1g, s4d

hqszd = skS8k18/uDku2du2pxS
s3dE2E3u2 exps− aSzduexps− iDkzd

− 1u2. s5d

If the medium length is much shorter than the minimum
absorption lengthLabs=minhL1=2/a1,LS=2/aSj and both
of these are assumed much shorter than the coherence
length Lcoh=Dk8−1, then Eq.s5d reduces to the approxi-
mate formula

hq = kS8k18u2pxS
s3dE2E3u2Le

2, s6d

where Le presents either the length of the mediumsin the
case of weak absorptiond or the optimal length of the order of
minhLabs,Lcohj.

Alternatively, assume that phase mismatch, which in-
cludes the nonlinear contribution, is compensated by the
standard technique, e.g., with a buffer gas. This is feasible in
the scheme under investigation, because all the driving fields
are homogeneous along the medium. Then for the more gen-
eral and complex case of considerable conversion and a me-
dium with substantial absorption dispersionsa1ÞaSd, but
Dk8=0, the solution of Eqs.(2) takes the form[27]

hqszd = 4sh̃q0/ubudexpf− sa1 + aSdz/2g

3 Fsinh2SÎubu − b

2

z

2
D + sin2SÎubu + b

2

z

2
DG .

s7d

Here,

h̃q0 = k18kS8u2pxS
s3dE2E3u2, b = 4h̃q0 − sa1 − aSd2/4, s8d

and the relationshipx1
s3d* =xS

s3d is assumed. According tos6d,
h̃q0 identifies the local conversion ratesefficiency per unit of
the medium length under negligible depletion of the radia-
tionsd. Parameterb defines the difference between the rates
of nonlinear-optical conversion and dispersion of absorption
of the radiations. This difference is usually determined by
the larger of the indices. Ifb.0, the conversion rate of
photons"v1 into "vS exceeds the absorption rate; ifb=0,
the rates are equal; and ifb,0, the conversion rate is less
than the absorption rate. Consequently, Eq.s7d predicts three
qualitatively different evolutions of the generated radiation
along the medium:

hqszd = s4h̃q0/bdexph− sa1 + aSdz/2j

3 sin2sÎbz/2d, at b . 0, s9ad

hqszd = h̃q0z
2 exph− sa1 + aSdz/2j, at b = 0, s9bd

hqszd = s4h̃q0/ubudexph− sa1 + aSdz/2j

3 sinh2sÎubuz/2d, at b , 0. s9cd

The first Eq.(9a) presents a damping oscillatory dependence
of the transfer of the weak radiations from one to another and
back along the medium, where each succedent maximum is
smaller than the previous one. The other two equations,(9b)
and (9c), describe the plots with one maximum, which is
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achievable over larger optical densitiessa1+aSdz and
reaches a greater magnitude in the case(9b). Since the local
conversion and absorption rates are interrelated, the factorb
is the most important discrimination parameter to be opti-
mized in order to achieve a maximum conversion efficiency
under the given experimental conditions.

The susceptibilitiesxS
s3d, x1

s3d, xS, andx1 are derived from
the medium polarizations at the corresponding frequencies:

Psv jd = x jEj ,
s10d

PNLsvSd = xS
s3dE1E2E3, PNLsv1d = x1

s3dESE2
*E3

* .

Traveling polarization waves are calculated conveniently
with the aid of a density matrix,ri j , as

Psv jd = Nri jsv jddji + c.c., s11d

whereN is the atomic number density in the medium, anddji
is a matrix element of the projection of the transition
electric-dipole moment along the direction of the electric
vector of the corresponding field. Thus, the problem under
consideration reduces to calculating the off-diagonal ele-
ments of the density matrix.

III. DENSITY MATRIX MASTER EQUATIONS
AND THEIR SOLUTIONS

Let us consider the transition scheme depicted in Fig. 1. A
strong fieldE2 at frequencyv2 is close to resonance with the
transition between levelsm and n, while the other strong
fieldsE3 andE at frequenciesv3 andv may couple levelsn
and f with the same states in the continuum. The fieldE1 at
v1 is close to resonance with the transition from the ground
state to levelm, and ES at the frequencyvS couples the
ground state to the state belonging to the continuum. These
radiations are assumed to be nonperturbative, so that one can
disregard a depletion of atoms caused by photoionization and
by a change in the level populations due to the all-resonant
couplings. Radiation atvS can be either a probe or generated
through four-wave mixing, depending on whether another
weak field atv1 is turned on. Consequently, we shall inves-
tigate two different problems. One is the LICS-based coher-
ent control of absorption and refractive indices atv1 andvS,

when both are independent probe radiations. Potential appli-
cations include frequency-tunable narrow-band filters, dis-
persive elements, and polarization rotators in short-
wavelength ranges, where competitive materials otherwise
are not available. Another problem concerns the optimization
of short-wavelength generation in an initially optically thick
(i.e., strongly absorbing) medium driven by several strong
fields, while the indicated frequencies are locked asvS=v1
+v2+v3, and bound-free atomic transitions play an impor-
tant role. A variable control fieldE plays a key role in opti-
mization of the interplay of NIE in absorption, phase match-
ing, and FWM coupling. The frequency of this field is tuned
in such a way that it couples an empty levelf with the same
continuum states that are coupled with any other fields. Thus
this field opens and manipulates a supplementary interfering
set of quantum pathways. Actually, the nearby red- and blue-
shifted continuum states may also contribute to interference,
some in a constructive, others in a destructive way. The over-
all result is given by integration over all such states. Besides
continuum states, a variety of other off-resonant discrete
states, which are represented by levelk in Fig. 1, may con-
tribute as well to the supplementary quantum pathways
turned on by the control fieldE. Basically, the sum over the
contribution of all such states must be taken along with the
integration over continuum states. It is supposed that the de-
tunings uv1−vgmu, uv1+v2−vgnu, and uv−v3−vnfu are con-
siderably less than all the other detunings, which validates
the employed approximation of overall resonant or qua-
siresonant coupling.

The equations for the density matrix, considered in the
interaction representation within first order in weak fields of
the perturbation theory, can be written as follows:

drgm/dt + Ggmrgm= isrggVgm+ rgnVnmd,

drgn/dt + Ggnrgn = i E rg«V«nd« + irgmVmn+ i o rgkVkn,

drgf/dt + Ggfrgf = i E rg«V«fd« + i o rgkVkf, s12d

drg«/dt = isrggVg« + rgnVn« + rgfVf«d,

drgk/dt + Ggkrgk = isrgnVnk + rgfVfkd.

Here, the index « denotes the continuum states;Vmn
=Gmn expfisv2−vnmdtg, Vg«=Gg« expfisvS−vg«dtg, Vn«

=Gn« expfisv3−vn«dtg, Vgm=Ggm expfisv1−vgmdtg, Vf«

=Gf« expfisv−v f«dtg, Vkn=Gkn expfisv−vkndtg and Vkf

=Gkf expfisv3−vkfdtg are the matrix elements of the Hermit-

ian interaction HamiltonianV̂, considered in the electric-
dipole approximation and in the interaction representation(in
units of "); Vij =Vji

* ;Gmn=−E2dmn/2" ,Gg«=−E4dg« /2", etc.;
andGi j is the homogeneous halfwidth of thei j transition(see
Fig. 1). In the approximation of the weak fieldsE1 and ES,
we obtainrgg=1,rm=rn=r f =0.

FIG. 1. LICS-based coherent quantum control in ladder
schemes.
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Under steady-state conditions, each off-diagonal element
of the density matrix is a sum of two components, which
may oscillate at different frequencies:

rg« = rg« expfisvS− vg«dtg + Rg« expfisv1 + v2 + v3 − vg«dtg,

rgn = rgn expfisvS− v3 − vgndtg + Rgn expfisv1 + v2 − vgndtg,

rgm= rgm expfisvS− v3 − v2 − vgmdtg

+ Rgm expfisv1 − vgmdtg, s13d

rgf = rgf expfisvS− v − vgfdtg

+ Rgf expfisv1 + v2 + v3 − v − vgfdtg,

rgk = rgk expfisvS− v3 − v − vgkdtg

+ Rgk expfisv1 + v2 − v − vgkdtg.

By substituting(13) into (12), one can see that the set of
differential equations under consideration reduces to two in-
dependent sets of algebraic equations, where each refers to
the processes determined by only one weak field:

iRgmDgm= − Ggm− RgnGnm,

Dgm= Ggm+ isv1 − vgmd,

iRgnDgn = −E Rg«G«nd« − RgmGmn− RgkGkn,

s14d
Dgn = Ggn + isv1 + v2 − vgnd,

iRg«Dg« = − RgnGn« − RgfGf«,

Dg« = isv1 + v2 + v3 − vg«d,

iRgfDgf = −E Rg«G«fd« − RgkGkf,

Dgf = Ggf + isv1 + v2 + v3 − v − vgfd,

iRgkDgk = − sRgnGnk − RgfGfkd,

Dgk = Ggk + isv1 + v2 − v − vgkd,

ir g«pg« = − Gg« − rgnGn« − rgfGf«,

pg« = isvS− vg«d,

ir gnpgn = −E rg«G«nd« − rgmGmn− rgkGkn,

s15d
pgn = Ggn + isvS− v3 − vgnd,

ir gmpgm= − rgnGnm,

pgm= Ggm+ isvS− v3 − v2 − vgmd,

ir gfpgf = −E rg«G«fd« − rgkGkf,

pgf = Ggf + isvS− v − vgfd,

ir gkpgk = − rgnGnk − rgfGfk,

pgk = Ggk + isvS− v3 − v − vgkd.

Here and elsewhere, the repeated indexk indicates summa-
tion over all discrete off-resonant levels combined to form
the levelk.

Equations(14) describe the absorption ofE1 and genera-
tion at the frequencyvS, and(15) presents the absorption of
ES and the parametric conversion ofES back intoE1. One
can solve(14) by substituting the equation forRg« under the
integrals. Then, in the calculation of the integrals, one can
employ thez function,

f− isvS− v«gdg−1 = pdsvS− v«gd + iPsvS− v«gd−1,

s16d

wheredsjd is the delta function, and P is the principal value
obtained by integration. This leads to the following equa-
tions:

Rg« = iFGn« − s1 − iqnfd
gnfGf«

g f fXf
b fGRgn

Dg«

,

Rgm= i
Ggm+ RgnGnm

XmGgm
, s17d

Rgn = −
GgmGmnXf

GgmGgnXms1 + gnndsXnXf − K + AmXfd
,

where

b f = gf f/s1 + gf fd, bn = gnn/s1 + gnnd,

gf f = g f f/Ggf, gnn = gnn/Ggn,

gmn= uGmnu2/GgmGgn, qij = di j /gi j , s18d

gi j = p"Gi«G« ju«="vS
+ ResGikGkj/pgkd,

di j = ImFi"PE d«
Gi«G« j

s"vS− «d
+ GikGkj/pgkG ,

K = k1b fbns1 − iqnfds1 − iqfnd,

Am = gmn/Xms1 + gnnd,

Xi = 1 + ixi, xm = V1/Ggm,
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xn = sV1 + V2 − dnnd/sGgn + gnnd = svS− v3 − dnnd/sGgn

+ gnnd, s19d

xf = sV1 + V2 − VL − d f fd/sGgf + g f fd = svS− v − vgf

− d f fd/sGgf + g f fd,

VL = sv + vgfd − sv3 + vgnd,

V1 = v1 − vgm, V2 = v2 − vmn.

Here VL is the spacing between the quasilevels induced by
the radiationsE andE3 in the continuum. The Fano param-
etersqij [19] are assumed real and indicate the ratio of the
light-induced shifts and the broadening of the corresponding
resonances by the control fields. In the adopted approxima-
tion, these parameters are independent of the field intensities
and are governed solely by the properties of the investigated
atom. The factork1 and other factorski used below are:

k1 = gnfg fn/gnng f f ,

k2 = ggfg fg/gggg f f ,

k3 = ggngng/ggggnn,
s20d

k4 = ggfg fngng/gggg f fgnn,

k5 = ggngnfg fg/gggg f fgnn,

k6 = gnfg fg/g f fgng.

They account for degenerate continuum states and are inde-
pendent of the fields intensities. For nondegenerate con-
tinuum states they are equal to unity, while for the degener-
ate case these factors may become appreciably less than
unity. These values are similar to the squared overlapping
parameter

r2 = ukCduCalu2

for the wave functions

Cd = sp"d1/2
o j

Gde0

j ce0

j

so j
gdd

j d1/2
, Ca = sp"d1/2

o j
Gae0

j ce0

j

so j
gaa

j d1/2

of the continuum statesed andea, excited from the levelsd
anda.

Following the same procedure as above and bearing in
mind the conditionvS=v1+v2+v3, one finds from the set of
equations(15) that

rg« = ihGg« − Gf«sggf/g f fdb fs1 − iqgfd/Xf

+ rgnfGn« − Gf«sgnf/g f fdb fs1 − iqnfd/Xfgj/pg«,
s21d

rgm= i
rgnGnm

XmGgm
,

rgn =
s1 − iqfnds1 − iqgfdggfg fn/sGgf + g f fd − s1 − iqgndXfggn

s1 + gnndGgnsXfXn − K + AmXfd
.

With the aid of the equations forRgm calculated from(17),
and forrg« calculated from(21), and with Eqs.(10) and(11),
after integration over the continuum states, one can obtain
the following expressions for the absorption and refractive
indices at the frequenciesv1 andvS, respectively:

asv1d
a10

= ReF1,
nsv1d − 1

a10l1/2
= ImF1, F1 =

1

Xm
F1

−
AmXf

XnXf + AmXf − K
G , s22d

asvSd
aS0

= ReFS,
nsvSd − nS0

aS0lS/2
= ImFS, s23d

FS= F1 −
XfXnsAn + Afd − U + AmAfXf

XfXn − K + AmXf
G

= F1 − Af − An −
KsAn + Afd − U − AmAnXf

XfXn − K + AmXf
G

=F1 − Af − Ãn −
KsÃn + Afd − U

XfX̃n − K
G .

Here a10 is the resonant value of the absorption index at
the wavelengthl1 with all strong fields turned off;aS0 and
nS0 are similar quantities for the absorption and refractive
indices at the wavelengthlS; and

Af = b fk2s1 − iqgfds1 − iqfgd/Xf ,

An = bnk3s1 − iqgnds1 − iqngd/Xn,

U = b fbnfk4s1 − iqgfds1 − iqfnds1 − iqngd

+ k5s1 − iqgnds1 − iqnfds1 − iqfgdg, s24d

Ãn = bnk3s1 − iqgnds1 − iqngd/X̃n,

X̃n = Xn + Am.

The functionsÃn and X̃n account for the perturbation of a
two-photon resonance with the leveln by the strong fields.
The expressions for the refractive index are obtained under
the assumption that this index is close to unity in the absence
of the fields.

The equation for the FWM nonlinear susceptibility at
vS=v1+v2+v3 calculated with the aid of Eqs.(10), (11),
and (17) after integration over the continuum states,
ed«Rg«d«g, is given by

xs3dsvSd
xS0

s3d =
Xf − k6b fs1 − iqfgds1 − iqnfd/s1 − iqngd

Xms1 + gnndsXnXf − K + AmXfd
, s25d

where xS0
s3d is the fully resonant nonlinear susceptibility at

E2,3, E→0.
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IV. LASER-INDUCED STRUCTURES IN DISCRETE
AND CONTINUOUS SPECTRA OF ABSORPTION

AND REFRACTION

In this section, we investigate coherent control of absorp-
tion and refractive indices in the vicinity of discrete and
within continuous quantum transitions with the aid of Eqs.
(22) and (23). As seen from Eq.(22), the strong fieldE2, in
cooperation with the other two, substantially modifies the
absorption and dispersive indices atv1. An important differ-
ence is seen when compared with similar effects at solely
discrete transitions[2,3,5,6]. The results given below dem-
onstrate considerable perturbations of discrete spectra by the
radiations coupled to the continuum. The first term in(22)
represents the field-unperturbed absorption index for thegn
transition (at Am=0), and the second term refers to the cu-
mulative effects of the strong fields. The coefficientAm de-
termines the splitting of a resonance into two components by
the strong fieldE2 [2,3,5,6], which is modified by the strong
field E3. The functionK describes further modification of the
absorption index by the strong fieldE. It is proportional to
the product of the intensities of the fieldsE andE3, and the
effect disappears when any of these fields is turned off. Since
the fieldE2 is in resonance with a discrete transition and the
fields E3 and E are coupled to the continuum, the spectral
properties of the corresponding contributions are different. If
E=0 (i.e., gf =g f =b f =K=0), the equation for the absorption
index (22) converges to the standard one commonly used in
three-level nonlinear spectroscopy[2,3,5,6]:

asv1d
a01

= ReFXnYSXnXm +
gmn

1 + gnn
DG . s26d

The denominator ins26d has two roots with respect toV1
=v1−vmn, which indicates a splitting of the resonance into
two maxima. The positions of these maxima and their rela-
tive amplitudes may vary depending on the parameters of the
fields and transitions. Resonance splitting is stipulated by the
appearance of coherence at the transitionng, which is asso-
ciated with the appearance of additional quantum transitions
ng in which photons of frequency"v1 may participate. The
corresponding laser-induced resonancessquasilevelsd are
shown by the dashed lines in Fig. 1. The phase and relax-
ation properties of the respective term for the polarization at
frequencyv1 are reflected by the dispersion functionXn. The
additional strong fieldsE3 andE cause further modification
of the laser-induced quasilevels. Corresponding changes oc-
cur in the absorptionsFig. 2d and refractive indicesfFig.
2sb,dashdg, which constitutes the base for their quantum con-
trol.

This figure displays the dependence of the absorption in-
dex atv1 on the scaled detunings from the bare-state one-
photon resonance,v1−vgm. Here, Gi j is the homogeneous
halfwidth of the i j transition,V2 is the frequency deviation
of the second field from the transitionmn, gmn is the squared
scaled Rabi frequency for this field,gnn and gf f are the
equivalent values for coupling of the corresponding level
with the continuum, andqij are Fano parameters. All these
denotations are given by Eqs.(18) and (19). The frequency
detuningsVL andV are depicted in Fig. 1. We have selected

numerical parameters from among those relevant to different
experiments in order to illustrate the breadth of possible co-
herent control.

Figures 2(a) and 2(b) correspond to the dressing fieldE2
being in exact resonancesV2=0d. Plot 1 in Fig. 2(a) corre-
sponds toE3=0. The splitting of the resonance and the con-
sequent decrease in the center of the bare-state resonance is
produced with the strong field coupled to the transitionmn.
An additional dressing field at the frequencyv3 may bring a
dramatic change in the absorption line shape[plot 2, Fig.
2(a)]. Plots 1 and 2 in Fig. 2(a) present an example of pos-
sible modification of the absorption profile in the vicinity of
a discrete transition by the fields coupling bound and free
states. Figure 2(b) illustrates a significant change of the same
line shape at the overlap of two LICS induced by the fields
E3 andE [compare plot 2 in Fig. 2(a) and plotasv1d in Fig.
2(b)]. This allows one to manipulate the transparency and
refractive index for the resonant fundamental radiationE1
through variation of the magnitudeVL=v−v3−vnf. The
dashed plot in Fig. 2(b) shows the line shape of the disper-
sive part of the refractive index at frequencyv1 for the same
parameters. The plot indicates the feasibility of the creation
of extremely steep dispersion with the aid of the dressing
field, coupled to both discrete and continuum states. Figures
2(c) and 2(d) show the interference structures induced by
only the field E2 (plot 1) and jointly by the two dressing
fieldsE3 andE (plot 2). Figure 2(c) displays possible control
of the transparency window by the fieldE3, including com-
plete eradication of the effect by the fieldE2 (plot 2). Figures
2(c) and 2(d) show that the interference structures induced
jointly by the two dressing fieldsE3 and E may strongly
depend on the Fano parameterqfn [compare plots 2(c) and
2(d)].

Overall, Fig. 2 shows the feasibility ofmanipulating ab-
sorption and dispersive indices in the vicinity of discrete
transitions by the control fields that couple discrete and con-

FIG. 2. Absorption index atv1 reduced by its resonant value in
the absence of all strong fields,asv1d /a10, vs scaled one-photon
detuning V1/Ggm=sV1=v1−vgmd /Ggm. Here, qf f =0.9, qnn=0.5,
Ggm/Ggf=100, andGgm/Ggn=10. (a,b): V2=0, qfn=1.5, gmn=7,
gf f =2. (a): gnn=0 (1), gnn=5, VL /Ggm=0.8 (2). (b): gnn=5, VL=0.
(c,d): V2/Gmn=0.3, gmn=70, gf f =10, VL /Ggm=−1.1, gnn=0 (1),
gnn=50 (2). (c): qfn=15. (d): qfn=1.5.
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tinuous states. It demonstrates that one can create transpar-
ency and steep dispersion in certain frequency intervals of
the discrete transitions or, on the contrary, eliminate effects
of the dressing fields with the aid of destructive interference
by varying the intensities and detunings of the driving fields
with account for the specific Fano parameters. These param-
eters present the relative contribution of the resonant con-
tinuum states, within the bandwidth on the order of the char-
acteristic width of the power-broadened discrete resonance,
and that of others integrated over all off-resonant continuous
and discrete states. Such a ratio determines the phase shift of
the intra-atomic oscillations brought about by the transitions
to the continuum states.

The spectral characteristics of absorption at the frequency
vS are determined by the interference of three quantum path-
ways: direct to the continuum, to levelf, and to the super-
position of levelsn andm. The line shapes of the absorption
and dispersive indices are presented by Eq.(23), whose
structure is similar to(22). The first term presents the unper-
turbed absorption index, while the rest describe contributions
of the additional quantum pathways induced by the dressing
fields. The functionAf presents an autoionizinglike reso-

nance induced byE, and the functionÃn describes the reso-
nance induced byE3 and modified byE2. The factorsK and
U describe the interference of the above outlined processes,
i.e., contributions of quantum pathways via various interme-
diate states, induced jointly byE3 andE. Their appearances
are determined by the Fano parameters. In the limiting case

of E3=0 (i.e., at Ãn=0,K=0,U=0) and k3=1, Eq. (23) re-
duces and converges to the corresponding equation from
[6,17,18,21,23]

asvSd
aS0

= Reh1 − Afj = 1 −b f + b f
sqgf + xfd2

1 + xf
2 , s27d

where xf =svS−v−vgf−d f fd / sGgf+g f fd, and b f →1 at g f f

@Ggf. This equation is similar to that for a real autoionizing
resonancef19g. It describes asymmetrical power-broadened
sg f fd and power-shiftedsd f fd resonance, whose asymmetry is
determined by the Fano parameterqgf. When b f →1, the
absorption profile is depicted only by the last term. In this
case, the absorption vanishes at xf =−qgf and reaches its
maximum value, aS0s1+qgf

2 d, at xf =1/qgf. When the contri-
bution of the resonant continuum states is relatively small
sqgf@1d, the absorption is predominantly determined by the
two photon transitiong→ f. Then the effect of interference
of one- and two-photon transitions becomes small. Conse-
quently the resonance profile becomes a symmetrical Lorent-
zian, and the transparency window vanishes. Otherwise, the
asymmetry grows withqgf→0. The location of the reso-
nance is controlled by the frequencyv of the fieldE, and its
strengths byb f, i.e., by the strength of this field.

Strong fieldsE3 and E2 bring about further qualitative
changes in the spectra. The additional independent structure,

described in these expressions by the functionÃn, is supple-
mented by the interference term, which depends on the fac-
tors K andU. This term disappears when either of the fields

E3 or E is turned off or when the spacingVL between the
LICS is increased.

The plots in Fig. 3 show the dependence of the absorption
index at frequencyvS on scaled detuningvS−sv+v fgd. The
magnitudes of the parameters used for the simulation, as
given in the figure captions, are selected to illustrate the fea-
sible manipulation of quantum interference and its depen-
dence on the atomic parameters. In Figs. 3(a) and 3(b), plots
1 correspond to fieldsE2 andE3 being turned off and display
characteristic asymmetric laser-induced Fano resonances
[Eq. (27)], plots 2 display the cases forE=0, and plots 3
depict the case when all three fields are turned on. The plots
show strong dependence of the absorption index on the Fano
parameters,qgf andqgn in the cases discussed, and feasibili-
ties for manipulating quantum interference by LICS with
supplementary dressing fields that couple the adjacent tran-
sitions. Interference contributions, which disappear in the ab-
sence of eitherE or E3, are shown in the insets to the figure.
Due to the interference nature, a frequency integral in each
of them equals to zero. Plot 4 in Fig. 3(b) demonstrates the
feasibility of mutual suppression of LICS through their de-
structive interference, so that the absorption spectrum be-

FIG. 3. Absorption index atvS reduced by its value in the ab-
sence of all strong fields,asvSd /aS0, vs detuningsV /G fg=svS−v
−v fgd /G fg (a–c). The insets are the interference contributions to the
corresponding curves vs detuning, the detuning interval is the same
as for the main curves. Here,Ggm/Ggf=100, Ggm/Ggn=10. (a,b):
qf f =0.9, qnn=0.9, VL /Ggf=−110, V2/Ggf=30. (a): qgf=−0.5, qgn

=−0.95, qfn=15. (1) E2=E3=0, g f f /Ggf=10. (2–3) gmn=70,
gnn/Ggn=50. (2) g f f =0. (3) g f f =10. (b): qgf=−0.95, qgn=−0.5,
qfn=15 (2,3), qfn=150 (4). (1) E2=E3=0, g f f /Ggf=10. (2–4) gmn

=7, gnn/Ggn=5. (2) g f f =0. (3,4) g f f /Ggf=10. (c): qgf=0.95, qgn

=0.01, qf f =0.01, qnn=−5, qfn=1.5, V2/Ggf=0, g f f /Ggf=10, gmn

=7. (1) gnn/Ggn=30, VL /Ggl=−1530. (2,3) gnn/Ggn=5. (2)
VL /Ggf=−110.(3) VL /Ggf=−405.
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comes the same as in the case of all strong fields being
turned off. Variation of the parameterqfn leads to an appre-
ciable change in the shape of laser-induced structures(com-
pare plots 3 and 4).

Figure 3(c) shows the dependence of the absorption spec-
trum on the strength of the driving fieldE3 as well as on the
spacing between two quasilevels induced in the continuum
by E andE3. In regard to the detuningVL=v−v3−v fn, plot
1 corresponds to large detuningsVL /Ggf=−1530d, plot 2 to
small detuningsVL /Ggf=−110d, and plot 3 to medium detun-
ing sVL /Ggf=−405d. The appearance of LICS is most pro-
nounced in the last case.

Figure 3 demonstrates the possible manipulation of the
absorption index for a probe radiation by LICS that includes
formation of the transparency windows. Opportunities are
brought about by the interference of two LICS, i.e., quantum
pathways via continuum states induced jointly by the fields
at v3 and v and modified by the strong field atv2. The
interference term displayed in the insets shows that the mag-
nitude of this term is comparable with others and can be both
constructive and distractive, depending on detunings ofv
−v3 from vnf, as well as on the Fano parameters, and on the
intensities of the coupled fields.

Figure 4 displays the feasibilities of manipulating by the
magnitude and profile of LICS in the refractive index. Such
artificial dispersive structures are superimposed over a flat
background and can be manipulated by a change of intensi-
ties and of frequencies of the dressing fields with the account
for a strong dependence of the interference processes on the
Fano parameters. The figure demonstrates thefeasibility of

creation of very steep variable positive and negative disper-
sion for the short wavelength radiationwith the aid of co-
herence and interference processes associated with the con-
tinuum states.

The above demonstrated features of quantum interference
and continuum coherence can be considered as candidates
for application to the persistent problems in the design of
such optical elements in the vacuum-ultraviolet wavelength
range as tunable narrowband filters, polarization rotators, and
dispersive elements.

V. ABSORPTION AND REFRACTIVE SPECTRA AT
DOPPLER-BROADENED TRANSITIONS

Homogeneously broadened discrete transitions with near
Lorentzian profile of resonance can be observed in atomic
jets or by immersing resonant atoms into a high-pressure
buffer gas. Basically, the Maxwell distribution of atoms over
velocities in warm gases and metal vapors leads to a corre-
sponding exponential distribution of Doppler shifts of nar-
row Lorentzian resonances. This may substantially change
the features described above. In this section we shall illus-
trate such changes with the example of Doppler broadened
media. Among the important features is the dependence of
the spectra on the ratio of the frequencies and on the relative
orientation of wave vectors of the coupled waves.

Figure 5 shows the feasibility of the modification of the
Doppler-broadened absorption resonance atv1 and the cre-
ation of a dramatically changed profile with new maxima.
Thus, instead of a Gaussian contour centered atV1=0 with
half width at half maximum(HWHM) about 1, the plot in

FIG. 4. Scaled laser-induced change of the dispersive part of the
refractive index atvS in the vicinity of LICS vs V /G fg=svS−v
−v fgd /G fg. All parameters are the same as for the corresponding
plots (a–c) in Fig. 3.

FIG. 5. Velocity averaged absorption index,kasv1dl / ka10l,
(solid) and dispersion part of the refractive index(dash) at v1 re-
duced by their maximum values in the absence of all strong fields in
a Doppler-broadened medium vsV1/Dv1D. Here, the Doppler
HWHM Dv1D=16.65Ggm, the wave vector orientations are
k ↑ ↑k1, k2↑ ↑k3↑ ↓k1, andk2/k1=0.9, k3/k1=0.5, k/k1=0.6 (k i is
wave vector corresponding to the frequencyvi), Ggm/Ggf=100,
Ggm/Ggn=10; uGmnu2/ sDv1Dd2=1, qnn=0.5, qf f =0.9, V2/Dv1D=
−0.9. (a,b): gnn/Dv1D=0.1, g f f /Dv1D=0.2, qfn=0.5. (a): VL=0.
(b–d): VL /Dv1D=−0.8. (c): gnn/Dv1D=0.8, g f f /Dv1D=0.3, qfn=
−1.5. (d): gnn/Dv1D=0.2, g f f /Dv1D=0.8, qfn=1.5.
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Fig. 5(a) displays the profile of almost the same Gaussian
shape shifted by about 0.5 HWHM, anenhanced narrow
sub-Doppler resonanceshifted to the opposite side at about
two HWHM, and the transparency window between them.
Due to the pure interference nature of the effect, the integral
value of the index taken overV1 must not change. Because
of the difference betweenv1 and v2, the compensation of
their Doppler shifts at two-photon transitiongn in counter-
propagating weak waves is not possible. However, for an
appropriate choice of the coupling parameters, such compen-
sation of the Doppler shift with velocity-dependent power
shifts caused by the dressing fields becomes possible. For
details of the physics in more simple cases, see[2,28] and
references therein. Indeed, this effect exhibits itself as the
appearance of an enhanced sub-Doppler peak. Such a peak
can be created through the overlap of two LICS[Fig. 5(a)] or
through the adjustment of another appropriate combination
of atomic and field parameters[Fig. 5(d)]. Other possible
modifications of the absorption profile are presented in Fig.
5(b) and 5(c). It is seen that the properties of the continuum
presented by the given values of the Fano parameters play an
important role. Corresponding changes occur in refractive
index and in nonlinear susceptibilities.

Figures 6(a)–6(d) shows similar opportunities for manipu-
lating absorption and refractive indices in Doppler-
broadened gases for otherwise unstructured continuous spec-
tra. These figures demonstrate an almost vanished absorption
created through destructive interference. Either single[(a–c)]
or multiple [(a–d)] transparency windows can be created.

Figures 5 and 6 demonstrate that the interference of con-
tributions from the atoms at different velocities brings an
important distinction in the appearance of quantum interfer-

ence processes at coupled discrete and continuous transi-
tions. The figures show that such interference may also be
constructive or destructive, depending on the sign of the de-
tuningv−v3−vnf, on the Fano parameters, on the detunings
from the two-photon resonancegn, on the ratio of the fre-
quencies, and on the orientations of the wave vectors of the
coupled electromagnetic waves. The plots show that the
proper adjustment of the orientation of the wave vectors,
along with the intensities and detunings of the coupled waves
provides the additional means of manipulating the line shape
of Doppler-broadened transitions. Thussub-Doppler
frequency-tunable transparency windows, enhanced absorp-
tion, and steep negative or positive dispersion structures can
be created through compensation for Doppler shifts by
velocity-dependent power shifts of the atomic resonances.

VI. RESONANCE SUM-FREQUENCY GENERATION
IN STRONGLY ABSORBING MEDIA ENHANCED

BY QUANTUM INTERFERENCE

Nonlinear interference structures, similar to those dis-
cussed above, can be created in the real and imaginary parts
of nonlinear FWM susceptibility as well. As shown for the
first time in[18], the NIE may influence differently the linear
and nonlinear susceptibilities, so that under certain condi-
tions areduction in the absorption of the generated radiation
may lead to no decrease in FWM polarization. For example,
when E2 and E3 are nonperturbatively small and the con-
tinuum is nondegenerate, the equation(25) reduces to

xs3dsvSd
xS0

s3d =
1

XmXn
F1 − b f

s1 − iqfgds1 − iqnfd
s1 − iqngds1 + ixfd

G , s28d

wherexf is scaled detuningV given by Eq.s19d. As one can
see from Eq.s17d for Rg«, the first term presents FWM pro-
cessvS=v1+v2+v3, whereas the second interfering compo-
nent originates from the higher-order processvS=v1+v2
+v3−v+v. The second term depicts an asymmetric reso-
nance as the function ofv3 or v. Its maximum is achievable
at b f →1. Depending on the other parameters, this term may
either fully compensate the first one and thus terminate the
FWM response, or alternatively, enhance it. As it was shown
above fsee the discussion on Eq.s27dg, the absorption of
generated radiation vanishes at xf =−qfg whereas, according
to Eq. s28d, the FWM polarization may even significantly
increase, if qnf@qng f18g.

In weak fields, the nonlinear susceptibility increases
strongly upon approaching discrete resonances. However,
this is accompanied by the significant growth in the absorp-
tion of the radiations. Hence, the trade-off modification of
the nonlinear FWM polarization on one hand, and the ab-
sorption and refractive indices on the other hand, become a
most important problem in maximizing the generation out-
put. Unlike the spectra discussed above,v1 and vS are
locked and cannot be varied independently in the course of
FWM. The trade off also depends on whether the local FWM
conversion rate exceeds the absorption rate or vice versa, and
if so, which absorption dominates in a given experimental
scheme. Therefore, the creation of the nonlinear resonances

FIG. 6. Velocity-averaged absorption index,kasvSdl / kaS0l,
(solid) and dispersion part of the refractive index(dash) at vS re-
duced by their values in the absence of all strong fields in a
Doppler-broadened medium vs detuningV /DvSD=svS−v
−v fgd /DvSD. Here, the Doppler HWHMDvSD=53103 Ggf; the
wave vector orientations are the samek ↑ ↑k3↑ ↑k2↑ ↑kS, and
k/kS=0.8, k3/kS=0.3, k2/kS=0.37, Ggm/Ggf=100, Ggm/Ggn=10;
uGmnu2/ sDvSDd2=1, gnn/DvSD=0.4, g f f /DvSD=0.8, qgf=0.95, qgn

=0.01,qf f =0.01,qnn=−5. (a): qfn=1.5, VL /DvSD=1.5, V2/DvSD

=2.2. (b–d): V2=0. (b): qfn=15, VL /DvSD=1.5. (c): qfn=−1.5,
VL /DvSD=15. (d): qfn=−1.5,VL /DvSD=−0.5.
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in nonlinear polarization must be performed in the context of
optimization of the parameters of the overall local conver-
sion rateb [Eq. (8)]. Ultimately, the trade-off options depend
on which of the oscillator strength of the transitions, com-
posing the coupling scheme, dominates. In this section we
shall investigate such options based on LICS produced with
several strong fields. The aim is to explore the opportunities
for increasing the conversion efficiency with the aid of the
control field. Such a field does not contribute to FWM di-
rectly, but allows one to adjust the interfering quantum chan-
nels contributing to the overall process in order to maximize
the generation output. We shall investigate the corresponding
evolution of the generated radiation along the medium. For
the sake of simplicity, we assume the medium to be homo-
geneously broadened, the continuum to be single(all param-
eterski =1), and phase mismatch to be ensured by the buffer
gas.

A numerical analysis of the interplay of the outlined pro-
cesses is convenient to perform with the aid of expression(7)
rewritten in the form:

hqszd =
4h̄q0

ub̄u
expf− sā1 + CāSdza10/2g

3 hsinh2fÎsub̄u − b̄dC/2za10/2g

+ sin2fÎsub̄u + b̄dC/2za10/2gj, s29d

where

h̄q0 =
h̃q0

a10aS0
, ā1 =

a1

a10
, āS=

aS

aS0
, C =

aS0

a10
,

s30d
b̄ = b/a10aS0 = 4h̄q0 − sā1 − CāSd2/4C.

Herewith, we have introduced the optical densityza10 of the
resonant medium forE1, the reduced absorption indices dis-
cussed above, and the ratioC of the nonperturbed absorption
indices atvS and its resonant value atv1. SinceC is propor-
tional to the ratio of the oscillator strengths of the corre-
sponding transitions, it specifies the atomic medium. The
term h̄q0 is proportional to the squared modulus of the FWM
nonlinear susceptibility and gives the quantum conversion
efficiency over a characteristic absorption length 1/Îa10aS0
considered within the approximation of ignoring absorption
of the given fields. It can be further presented in a more
explicit form,

h̄q0 = hq0
0 ux̄s3du2gmngnn, s31d

where

hq0
0 =

k18kS8u2px0u2

a10aS0

16"3GgmGgn
2

pudmndn«u2
s32d

is the efficiency for the resonant unperturbed nonlinearity
over a distance 1/Îa10aS0 in the fields corresponding to
gmn=gnn=1. The reduced nonlinear susceptibility,x̄s3d

=xS
s3d /xS0, is given by Eq.s25d, wherexS0 is the fully sone-

and two-photond resonant value of the susceptibility for

negligibly weak fields. We shall henceforth use the fol-
lowing approximate expressions:

a10 = 4pv1Nudgmu2/c"Ggm,

s33d
aS0 = 4p2svS/cdNudg«u2s« = "vSd,

ux0u2 = sp/2"2d2Ns1 + qgn
2 dudgmdmndn«d«gu2sGgmGgnd−2.

Then Eq.(32) reduces to

hq0
0 = 1 +qgn

2 . s34d

Therefore, in such approximation, the factorhq0
0 is deter-

mined only by the Fano parameterqgn.
As discussed above, the appearance of laser-induced reso-

nances for radiationE1 can be interpreted as a splitting of the
level m into quasilevels by the strong fieldE2 and by their
further modification by the fieldsE3 and E. The laser-
induced resonances for the generated radiation are deter-
mined by the creation of two quasilevels embedded in the
continuum that appear near the frequenciesvng+v3 and
v fg+v. These quasilevels are separated by an energy"VL.
The detuning of the generated frequency from the first reso-
nance isVS=V1+V2, whereas that from the second reso-
nance isV=VS−VL. The result is obviously different de-
pending on whether these detunings are varied at the expense
of deviations from one- and two-photon resonances,V1 and
V2, or solely by changing the magnitudeVL=v−v3−v fn.
The relative role of these channels also depends on the in-
tensities of the radiations, on their detunings from the reso-
nances, and on the relative magnitudes of the oscillator
strengths for the transitionsgmandg«. We shall illustrate the
outlined dependencies through investigation of several nu-
merical models of the medium.

Figure 7 depicts the case where the absorption of the gen-
erated radiation is considerably less than theresonantab-
sorption at the transitiongm sC=10−5d. The frequenciesv1

andv2 are considerably detuned from their one-photon reso-
nances, but the sum of the frequencies is close to a perturbed
two-photon resonance. It is seen from Fig. 7(a) that, for the
selected coupling and Fano parameters, the variation ofVL
by change of the frequenciesv or v3 may provide approxi-
mately a threefold reduction of the absorption coefficienta1,
whereasaS increases approximately by a factor of 3.8 in
some detuning interval, and considerably decreases in other
intervals. As such, the squared modulus of the nonlinear po-
larization, which is proportional toh̄q0, increases by a factor
of 1.9. These are changes that, when estimated, compared to
the values of the corresponding parameters in the far wings
of the plots, where the effects of the control fieldE vanish.
The absorption coefficient for a transition to the continuum,
however, remains much less thana1, so that aS/a1
=CāS/ ā1<10−2 over the whole considered interval ofVL. In

some range ofVL, the sign ofb̄ becomes positive, which
indicates that the nonlinear-optical conversion rate begins to
exceed the rate of absorption of the radiation. Indeed, within
this interval ofVL, a sharp maximum of conversion develops
[Fig. 7(c)]. The maximumhq max=0.29 is reached forza10
=4000. Figure 7(b) shows that outside this optimum match,
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the evolution of the generated radiation along the medium is
substantially different and conversion is far from optimum
[Figs. 7(b) and 7(c)].

Figure 8 is computed for the case where the detuning
from a one-photon resonance is still large, but resonant ab-
sorption at the discrete transition and transition to the con-
tinuum differ lesssC=3310−2d. In this case, the absorption
coefficienta1 can be decreased by a factor of 1.5, whereas
the absorption coefficientaS increases approximately three-
fold in one interval, but falls considerably in the other inter-
val of VL. Absorption at the transition into the continuum
dominates practically throughout the whole range of the de-
tuning VLsaS/a1<70d, andh̄q0 increases by a factor of 1.9

[Fig. 8(a)]. The quantityb̄ is positive throughout the entire
interval of VL, having its maximum at a certain separation
between two LICS. As that point, the conversion rate begins
to exceed the rate of absorption so much that an oscillatory
regime develops along the medium. The generation output
from such a coherently prepared medium becomes strongly
dependent on the optical density of the medium, i.e., onz or

on the concentrationN of atoms[Fig. 8(c)]. Thus the opti-
mization of these values is required. At the first maximum
(corresponding toza10<125), the quantum conversion effi-
ciency can reach 0.9[Fig. 8(c)], which isalmost a complete
quantum conversion of fundamental radiation to a short
wavelength, which efficiency is three times greater than in
the preceding case. Since the energy of generated photons is
several times greater than that of the fundamental ones, the
power conversion efficiency may exceed several hundred
percents, which is at the expense of energy of other driving
fields. The dependence of the generated power onVL along
the medium also significantly changes[Fig. 8(b)] in regard to
the absolute maximum, position and even the number of
maxima (i.e., one maximum in plot 1 and two maxima in
plot 2).

The above investigated regimes assume that one-photon
frequency deviations are relatively large, and consequently a
relatively high intensity of the fundamental radiations and/or
optical density of the medium are required in order to
achieve a maximum efficiency. The use of resonant pro-
cesses makes it possible to reduce the required intensities

FIG. 7. Reduced absorption indicesa1/a10 andaS/a10; reduced
squared modulus of the FWM polarization,h̄q0; and reduced differ-

ence of the conversion and absorption rates,b̄ vs detuningVL (a).
Dependence of the quantum conversion efficiencyhq on VL for
za10=8.53103 (1), za10=13104 (2), and za10=23104 (3) (b).
Quantum conversion efficiencyhq vs optical thickness andVL (c).
Here, C=10−5, gf f =150, gnn=200, gmn=9000, V1/Ggf=5000,
V2/Ggf=−5100, qfg=0.95, qgn=−2, qf f =0.01, qnn=−5, qfn=0,
Ggm/Ggf=100,Ggm/Ggn=10 (a–c).

FIG. 8. Reduced absorption indicesa1/a10 andaS/a10; reduced
squared modulus of FWM polarization,h̄q0; and reduced difference

of conversion and absorption rates,b̄ vs detuningVL (a). Quantum
conversion efficiencyhq vs VL along the medium computed for
za10=4.53102 (1), za10=53102 (2), andza10=5.53102 (3) (b).
Dependence ofhq on the optical thickness and onVL (c). Here,
C=3310−2, gnn=500, gmn=8000 (a–c). The other parameters are
the same as in Fig. 7.
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and to reach a fairly high conversion efficiency by optimiza-
tion of the bleaching of the medium and enhancement of
nonlinear-optical polarization through interference effects.
Figure 9 illustrates such a case, where the ratio of the reso-
nant absorption indices for discrete and continuous transi-
tions is the same as in Fig. 8, but the coupling is entire
resonance. The figure shows that at intensities of the radia-
tion atv2, three orders of magnitude less than in the preced-
ing case, it is possible to reduce the absorption index atv1
approximately by a factor of 10 compared with its value in
the absence of strong fields. The maximum effect of the field
E is a reduction in this index by a factor of 1.5[Fig. 9(a)].
Here, the value ofaS increases approximately threefold, and
h̄q0 by a factor of 4.7, and the absorption indicesa1 andaS
become comparable. Consequently, the nonlinear-optical
conversion rate increases considerably over a fairly wide
range ofVL, reaching a sharp maximum atVL /Ggf=−250.
Depending on the spacing between two LICS, which control
the interference, this may give rise to both a single maximum
and to an oscillatory regime of generation along the medium

[Figs. 9(b) and 9(c)]. This indicates the feasibility of total
conversion of the radiationsE1 to ES (and vice versa), apart
from that lost by absorption, for some magnitude of products
of the length of the medium and the number density of at-
oms. For the selected parameters, the conversion efficiency
at the first maximum, whereza10<5, reaches 0.54. This is
less than in the preceding case, but such still high efficiency,
where the power conversion may exceed 100%, is reached at
much lower intensities and optical density of the medium.

The appropriate candidates for the realization of the pro-
posed schemes are atoms among the II A and II B groups,
which poses an energy-level spectrum that stretches into
vacuum ultraviolet and is more equidistant compared to
other elements. The characteristic field strength correspond-
ing to values ofuGmnu2=s10. . .1000dGgmGgn falls in the range
of several parts of mW to several parts of W focused on the
spot about several parts of mm. The characteristic intensity
of the control fieldI, which is required to create a well-
pronounced autoionizinglike resonance, is found from the
equation g f f,nn=Ggf,gn. Assuming Ggf,gn<106−108 s−1,
photoionization cross section from the statesf ,n to equals
=10−17 cm2, and"v=10−19J; from the equationg f f = Is /"v
one obtains:I =s104−106dW/cm2. Thus the required strength
of the control field corresponds to the range of several parts
of kW to several kW focused on the spot about several parts
of mm. The resonance absorption length of about part of mm
can be easily ensured from the ground state at partial vapor
pressure of about one Torr. Hence the optical density of
about 1000 corresponds to the cell lengths of about one cm.
The continuous-wave regime implies the radiation pulse du-
ration longer than characteristic relaxation time in the media.
This corresponds to microsecond and longer pulses. It is as-
sumed that ionizations do not substantially deplete the den-
sity of the resonant atoms which is ensured by the weakness
of E1 and consequentlyES fields. The other factor that works
against the depletion is the exchange of atoms from inside
and outside the beam, which at the thermal velocity about
53102 m/s and the beam diameter 0.1 mm makes part of
microsecond.

VII. CONCLUSIONS

A theory of nonlinear interference processes in a multi-
level ladder-type quantum system is developed, which con-
siders the coupling of several strong fields with adjacent
bound-bound(discrete) and bound-free(continuous) transi-
tions in the continuous wave regime, accounting for relax-
ation of coherence. The proposed scheme is an alternative to
the approaches based on the concepts of coherent population
trapping and maximum atomic coherence. The analytical so-
lutions of coupled density-matrix equations is found and
implemented for an analysis of the solution of Maxwell’s
equations describing four-wave mixing in a strongly absorb-
ing medium. The theory is applied to the solution of two
problems of practical importance.

The first problem concerns manipulating absorption and
refractive indices both in the vicinity of discrete transitions
and within the continuous short-wavelength spectra through
the appropriate overlap of laser-induced continuous struc-

FIG. 9. Reduced absorption indicesa1/a10 andaS/a10; reduced
squared modulus of FWM polarization,h̄q0; and reduced difference

of conversion and absorption rates,b̄ vs detuningVL (a). Quantum
conversion efficiencyhq vs optical thickness forVL /Ggf=0 (1),
VL /Ggf=−250(2), VL /Ggf=−400(3) (b). Dependence of the quan-
tum conversion efficiencyhq on the optical thickness and onVL (c).
Here, gf f =100, gnn=5, gmn=7, V1=0, V2/Ggf=−250 (a–c). The
other parameters are the same as in Fig. 8.
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tures. Specific features attributed to quantum control in
Doppler-broadened media, such as the formation of narrow
sub-Doppler structures and the manipulation of transparency
and dispersion by changing the relative propagation direc-
tions of the coupled waves, are shown. Thus, opportunities to
create transparency and low dispersion, or alternatively, a
large increase of these values within the narrow frequency
bands of the required long-wavelength and short-wavelength
intervals have been demonstrated through extensive numeri-
cal simulations based on typical possible atomic parameters.
The applications may include frequency-tunable narrow-
band filters, polarization rotators, and dispersive elements for
vacuum ultraviolet radiation.

Similar opportunities regarding manipulating the nonlin-
ear four-wave mixing polarization of the medium have been
studied as well. These were investigated in the context of the
second problem, which is the large enhancement of short-
wavelength generation and a decrease in the required inten-
sities of the fundamental radiations by the use of fully reso-
nant coupling and eradication of the negative effects of
absorption through LICS-based coherent quantum control.
Such opportunities become feasible through constructive and
destructive interference of quantum pathways, which are dif-
ferent in lower-order and higher-order optical processes, and

by the compensation of the nonlinear phase mismatch, which
does not change along the media in the proposed scheme.
Specific regimes of the generation along the absorptive me-
dia are analyzed, and discrimination factors for different
types of behavior are found. A trade-off analysis of the ac-
companying nonlinear-interference processes in absorption
as well as in four-wave mixing nonlinear polarization has
been performed. The feasibility of the nearly complete con-
version of low-frequency fundamental radiation to sum-
frequency radiation is shown for the case of quasiresonant
coupling. It is somewhat lower but still high for the case of
fully resonant coupling which, however, requires a much less
intense field. These feasibilities are based on quantum inter-
ference manipulated through an appropriate overlap of two
LICS, which can be controlled by the strong field that does
not contribute directly to four-wave mixing.
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