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We show that a quasiperfect quantum-state transfer between an atomic ensemble and fields in an optical
cavity can be achieved in electromagnetically induced transparency(EIT). A squeezed vacuum field state can
be mapped onto the long-lived atomic spin associated to the ground-state sublevels of theL-type atoms
considered. The EIT on-resonance situation show interesting similarities with the Raman off-resonant configu-
ration. We then show how to transfer the atomic squeezing back to the field exiting the cavity, thus realizing a
quantum memory–type operation.
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I. INTRODUCTION

If photons are known to be fast and robust carriers of
quantum information, a major difficulty is to store their
quantum state. In order to realize scalable quantum networks
[1] quantum memory elements are required to store and re-
trieve photon states. To this end atomic ensembles have been
widely studied as potential quantum memories[2,3]. Indeed,
the long-lived collective spin of an atomic ensemble with
two ground-state sublevels appears as a good candidate for
the storage and manipulation of quantum information con-
veyed by light[4]. Various schemes have been studied: first,
the recent “slow-” and “stopped-light” experiments have
shown that it was possible to store a light pulse inside an
atomic cloud[5,6] in the electromagnetically induced trans-
parency(EIT) configuration[7]. EIT is known to occur when
two fields are both one- and two-photon resonant with three-
level L-type atoms, which allows one field to propagate
without dissipation through the medium. However, the stor-
age has only been demonstrated for classical variables so far.

On the other hand, the stationary mapping of a quantum
state of light(squeezed vacuum) onto an atomic ensemble
has been experimentally demonstrated, this time in an off-
resonant Raman configuration[8] and in a single-pass
scheme. Squeezing transfer from light to atoms is also inter-
esting in relation to “spin squeezing”[9] and has been
widely studied[10–15].

In this paper, unlike the single-pass approaches, we con-
sider a cavity configuration, allowing a full quantum treat-
ment of the fluctuations for the atom-field system[12]. We
show that it is possible to continuously transfer squeezing,
either in an EIT or Raman configuration, between a cloud of
cold three-levelL-type atoms placed in an optical cavity and
interacting with two fields: a coherent pump field and a
broadband squeezed vacuum field.

The paper is organized as follows. Section II briefly de-
scribes the system; in Sec. III we develop a simplified model
and study the conditions under which the squeezing transfer
is optimal. Both EIT and Raman schemes result in a quasip-
erfect transfer, which is not true for an arbitrary detuning. In

Sec. IV we check that these conclusions are in agreement
with full quantum calculations, evaluate the transfer robust-
ness with respect to a detuning from two-photon resonance,
and generalize to the case of nonzero amplitude fields. Last,
we present a simple readout scheme for the atomic squeezing
in Sec. V: the squeezing stored in the atomic medium can be
retrieved on the vacuum field exiting the cavity by switching
off and on the pump field. The efficiency of the readout
process is conditioned by the temporal profile of the local
oscillator used to detect the outgoing vacuum field fluctua-
tions, and can be close to 100% by an adequate choice of the
local oscillator profile.

II. MODEL SYSTEM

A. Atom-field evolution equations

The system considered in this paper is a set ofN three-
level atoms in aL configuration, as represented in Fig. 1. On
each transitioni →3 the atoms interact with one mode of the
electromagnetic field,Ai, in an optical cavitysi =1,2d. The
detunings from atomic resonance areDi and the cavity de-
tuningsDci. The three-level system is described using nine
collective operators for theN atoms of the ensemble: the
populationsPi =om=1

N uilmki um si =1–3d, the components of the
optical dipolesPi in the frames rotating at the frequency of
their corresponding lasers, and their Hermitian conjugates
and the components of the dipole associated to the ground-
state coherence:Pr =om=1

N u2lmk1um andPr
†.

*Email address: dantan@spectro.jussieu.fr FIG. 1. Three-level system in aL configuration.
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The atom-field coupling constants are defined bygi
=E0idi /", where di are the atomic dipoles andE0i

=Î"vi /2e0Sc (S being the beam cross section). With this
definition, the mean-square value of a field is expressed in
number of photons per second. To simplify, the decay con-
stants of dipolesP1 and P2 are both equal tog. In order to
take into account the finite lifetime of the two ground-state
sublevels 1 and 2, we include in the model another decay
rateg0, which is supposed to be much smaller thang. Typi-
cally, the atoms fall out of the interaction area with the light
beam in a time of the order of a few milliseconds, whereasg
is of the order of a few MHz for excited states. We also
consider that the sublevels 1 and 2 are repopulated with in-
termsL1 andL2, so that the total atomic population is kept
constantly equal toN.

The system evolution is given by a set of quantum
Heisenberg-Langevin equations:

Ṗ1 = ig1A1
†P1 − ig1A1P1

† + gP3 − g0P1 + L1 + F11,

Ṗ2 = ig2A2
†P2 − igA2P2

† + gP3 − g0P2 + L2 + F22,

Ṗ3 = − sig1A1
†P1 − ig1A1P1

†d

− sig2A2
†P2 − ig2A2P2

†d − 2gP3 + F33,

Ṗ1 = − sg + iD1dP1 + ig1A1sP1 − P3d + ig2A2Pr
† + F1,

Ṗ2 = − sg + iD2dP2 + ig2A2sP2 − P3d + ig1A1Pr + F2,

Ṗr = − sg0 − iddPr + ig1A1
†P2 − ig2A2P1

† + f r ,

Ȧ1 = − sk + iDc1dA1 +
ig1

t
P1 +Î2k

t
A1

in,

Ȧ2 = − sk + iDc2dA2 +
ig2

t
P2 +Î2k

t
A2

in,

where g1,2 are assumed real,d=D1−D2 is the two-photon
detuning,k is the intracavity field decay, andt the round-trip
time in the cavity. TheF’s are standardd-correlated Lange-
vin operators taking into account the coupling with the other
cavity modes. From the previous set of equations, it is pos-
sible to derive the steady-state values and the correlation
matrix for the fluctuations of the atom-fields systemssee,
e.g., Ref.f12gd.

B. Decoupled equations for the fluctuations

In the caseskA2
inl=0 and L2=Ng0, all the atoms are

pumped inu2l, so that onlykP2l is nonzero in steady state.
Here, we assume thatkA2l is zero, even if the number of
intracavity photons is nonzerostricto sensufor a squeezed
vacuum, this assumption is valid as long as the number of
intracavity photons is much smaller than the number of at-
oms. In this case, the fluctuations fordPr, dP2, anddA2 are

then decoupled from the other operator fluctuations

dṖr = − sg0 − idddPr + iVdP2 + f r , s1d

dṖ2 = − sg + iDddP2 + iVdPr + igNdA2 + F2, s2d

dȦ2 = − sk + iDcddA2 +
ig

t
dP2 +Î2k

t
dA2

in. s3d

To simplify, we omit the subscript 2 forg, D, andDc, and
assume that the Rabi pulsation associated to the pump field
V=g1kA1l is real. The atomic spin associated to the ground
states is aligned alongz at steady state:kJzl=kP2−P1l /2
=N/2. We will place ourselves in this situation, which not
only allows for analytical calculations and provides simple
physical interpretations, but can also be generalized to arbi-
trary states for fieldsA1 andA2, as we will show further.

To characterize the quantum state of the atomic ensemble
we look at the fluctuations of the spin components in the
plane orthogonal to the mean spin:Jx=sPr +Pr

†d /2 and Jy

=sPr −Pr
†d /2i. The spin componentJu=Jx cosu+Jy sin u in

the sx,yd plane is said to be spin-squeezed when its variance
is less than the coherent-state valueukJzlu /2, and the degree
of spin-squeezing is given[16] by

DJmin
2 = min

u

DJu
2

ukJzlu/2
, 1 s4d

III. ADIABATICAL ELIMINATIONS
IN THE LOW-FREQUENCY LIMIT

A. EIT configuration

Since the ground-state sublevels have a long lifetime
compared to the excited statesg0!gd, and in the bad cavity
limit sk*gd, the atomic spin associated to levels 1 and 2
evolves much slowly than the field or the optical coherence.
Fourier-transforming Eqs.(1)–(3) and adiabatically eliminat-
ing dP2 and dA2, one gets a simplified equation for the
ground-state coherence fluctuations,

Fg0 − id +
V2sk + iDcd

d
− ivGdPrsvd

=−
gNV

d
Î2k

t
dA2

insvd +
iVsk + iDcd

d
F2svd + f rsvd,

s5d

with d = sk + iDcdsg + iDd +
g2N

t
.

In the so-called EIT configuration, the fields are one- and
two-photon resonant:D=d=0. Moreover, for the squeezing
transfer to be optimal, one must have a zero-cavity detuning:
Dc=0 [12,15]. The equations for the spin components in the
sx,yd plane are then

sg̃0 − ivddJx =
− gNV

gs1 + 2CdÎT
dAp

in + f̃ x, s6d
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sg̃0 − ivddJy =
− gNV

gs1 + 2CdÎT
dAq

in + f̃ y, s7d

with an effective decay constantg̃0=g0+fGE/ s1+2Cdg, GE

=V2/g being the one-photon resonant pumping rate andC
=g2N/Tg the standard cooperativity parameter quantifying
the strength of the atom-field cavity coupling.T=2kt is the
coupling mirror transmission of the single-input cavity and

f̃ x, f̃ y are effective Langevin operators,

f̃ x = fx −
V

gs1 + 2Cd
Fy, f̃ y = fy +

V

gs1 + 2Cd
Fx. s8d

Ap=A2+A2
† andAq= isA2

†−A2d are the standard amplitude and
phase quadratures for the squeezed vacuum field. Although
the two modesA1,2 do not need to be orthogonally polarized
modes, it is rather convenient for the discussion to consider
them ass+ ands− modes of the field. In order to stress the
similarity between the atomic spin and the Stokes vector
which characterize the polarization state of the light, we in-
troduce

S0 = A1
†A1 + A2

†A2, Sy = isA1
†A2 − A1A2

†d,

Sx = − sA1
†A2 + A1A2

†d, Sz = A1
†A1 − A2A2

†.

The Stokes operators obey commutation relationsfSi ,Sjg
=2ei jkSk si =1,2,3d similar to the atomic spin and therefore
provide a useful and intuitive representation of the quantum
state of the field in our situation. Since we assumedkA2l
=0, the Stokes vector is parallel to the atomic spin:kSzl
=kA1l2 and kSxl=kSyl=0. Let us assume that the incident
vacuum is squeezed for the amplitude quadratureAp and that
the squeezing bandwidth is broad with respect to the cavity
bandwidth, so that its minimal noise spectrum isksdAp

ind2l
=e−2r. As dSx=−kA1ldAp, the field is also said to be
Sx-polarization squeezed.

It is easy to see that the first terms in the right-hand side
of Eqs.(6) and (7) derive from an effective Hamiltonian

HE = − "
2g2

gs1 + 2CdÎT
fJxSy

in − JySx
ing. s9d

The Langevin forces in Eqs.s6d and s7d being white noises,
their contribution to the atomic noise is the same for any
component in thesx,yd plane. By looking at Eqs.s6d ands7d,
one can see that, for aSx-squeezed incident field, the least
noisy spin component will be thex component. Its normal-
ized variance is

DJmin
2 =

1

ukJzlu/2
S 1

2p
E dvkdJx

2svdlD
=

2C

1 + 2C

GE

s1 + 2Cdg̃0

e−2r +
GE

s1 + 2Cd2g̃0

+
g0

g̃0

.

s10d

We used the fact thatkfxsvdfxsv8dl=2pdsv+v8dNg0/2 and
kFysvdFysv8dl=2pdsv+v8dNg /2. The three terms in Eq.

s10d can be understood as the coupling with the incident field
s~e−2rd, the noise contribution of the optical dipoles~GEd,
and the noise due to the loss of coherence in the ground state
s~g0d, respectively. We characterize the transfer efficiency
as the ratio of the atomic squeezing created in the ground
state to the incident-field squeezing,

h ;
1 − DJmin

2

1 − e−2r ,

h reduces to 0 when the atoms are not squeezed and, for
experimentally accessible values of squeezing in the field,
h,1 corresponds toDJmin

2 ,e−2r, thus providing a relevant
measure of the mapping efficiency. Note that, in the limit
of perfect field squeezing,h can be close to 1 even for
very different values of atomic and field squeezing. In an
ideal EIT configuration and in the lower frequency ap-
proximation, this parameter thus takes the form

hE =
2C

1 + 2C

GE/s1 + 2Cd
g0 + GE/s1 + 2Cd

. s11d

The transfer is almost perfect—hE,1—for a good coopera-
tive behaviorsC@1d and when the effective EIT pumping is
much larger than the loss rate in the ground statefGE/
s1+2Cd@g0g. Note that, for a closed systemsg0=0d, the
efficiency takes the extremely simple form

hmax=
2C

1 + 2C
,

scouplingd
fscouplingd + satomic noisedg

,

which emphasizes the central role played by the cooperativ-
ity to quantify the atom/field interaction in cavity. The noise
degrading the transferf~1/s1+2Cdg can thus be made very
small with respect to the couplingf~2C/ s1+2Cdg by in-
creasing the cooperativity, i.e., for large atomic samplessC
~Nd. In a cavity configuration, the cooperativity easily
reaches 100–1000, ensuring in principle a perfect transfer.

B. Analogy with the Raman configuration

In a previous work[15], we studied squeezing transfer in
a L system in the case where the fields are strongly detuned
with respect to the atomic resonancesD1,2@gd. In such a
configuration the three-level system can be reduced to an
effective two-level system for the ground state. We denote
the Raman optical pumping rate byGR=gV2/D2. When the

effective two-photon detuningd̃=d+V2/D, as well as the

effective cavity detuningD̃c=Dc−g2N/Dt are canceled, the
equations for thex,y-spin components read

sg̃0 − ivddJx = +
g2N

DÎT
dSy

in + f̃ x, s12d

sg̃0 − ivddJy = −
g2N

DÎT
dSx

in + f̃ y, s13d

with g̃0=g0+s1+2CdGR and
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f̃ x = fx −
V

D
Fy, f̃ y = fy +

V

D
Fx. s14d

These equations were derived from the effective equations
given in Ref. f15g by eliminating the intracavity field and
introducing the incident Stokes vector as in the preceding
section. As in EIT, one can deduce an effective Raman
Hamiltonian

HR = "
2g2

DÎT
fJxSx

in + JySy
ing. s15d

Assuming again aSx-squeezed incident field, the minimal
variance is now that of they component, and one gets the
following efficiency:

hR =
2C

1 + 2C

s1 + 2CdGR

g0 + s1 + 2CdGR
. s16d

The similarity between the EIT and Raman configuration
appears clearly by comparing Eqs.s6d–s8d and s11d to Eqs.
s12d–s16d. The equations are formally identical by making
the substitution,

s1 + 2Cdg ↔ D. s17d

The important result is that the transfer efficiency takes the
same form in both the on-resonant and strongly off-resonant
situations,

h =
2C

1 + 2C

G

g0 + G
,

s18d

with G =
GE

1 + 2C
or s1 + 2CdGR.

The effective pumping rate,G=GE/ s1+2Cd or s1+2CdGR, is
obtained in each case by making the substitution(17), and
can be made much larger thang0 with an adequate choice of
V. Note, however, that the EIT and Raman Hamiltonian are
identical up to a spin rotation byp /2 in thesx,yd plane. We
retrieve a well-known “p /2” phase-shift phenomenon when
going from “on-resonance” to “off-resonance.”

C. Transfer for an arbitrary detuning

The predictions given by the low frequency approxima-
tion in both the EIT and Raman configurations could lead
one to expect squeezing transfer for any value of the one-
photon detuningD, provided one maintains the optimal

transfer conditionsD̃c= d̃=0. Moreover, given thep /2 rota-
tion of the squeezed spin component when going over from
on-resonance to off-resonance, one expects the squeezed
component to continuously rotate from 0 top /2 when the
detuning is increased.

Using Eqs.(1), (3), and(5) one finds the optimal transfer
conditions to be

D̃c = Dc − 2Ck
gD

g2 + D
= 0, s19d

d̃ = d + GE
gD3 + s1 − 2Cdg3D

sg2 + D2dfs1 + 2Cdg2 + D2g
= 0. s20d

Equations5d then leads to the general equation for the spin
componentJu with angleu in the sx,yd plane,

sg̃0 − ivddJu = adAinsu − fd+ bfe−isu−f8dF2 + eisu−f8dF2
†g/2

+ fe−iuf r + eiuf r
†g/2, s21d

with a, b, g̃0, f, andf8 functions depending onD. Starting
again with aSx-squeezed field, the squeezed spin component
will be Jf. After straightforward calculations the optimal ef-
ficiency for a givenD is

hD =
2CgEs1 + D̄2d2

s1 + 2C + D̄2d

3
1

ss1 + D̄2ds1 + 2C + D̄2d + gEf1 + s1 + 2CdD̄2g
,

s22d

with s=g0/g, gE=GE/g, and D̄=D /g. This efficiency is
plotted in Fig. 2 for the two cases considered previously:
g0=0 andg0.0. In the first case the efficiency is optimal in

EIT sD̄=0, hD=hmaxd, decreases to a minimum foruD̄u=1
sh,2/C!1d, and increases again back to its maximal

value hmax when D̄@1. The squeezed component angle

can be shown to beusq=arctanD̄, which varies as expected

by p /2 when D̄ goes from 0 tò . One retrieves that the
transfer is optimal either in an EIT or a Raman configu-
ration. However, the transfer is really degraded in the in-

termediate regimeD̄,1.
If one takes into account losses in the ground state(g0

Þ0), the efficiency now reaches a maximum forD̄@1,

FIG. 2. (Color online) Transfer efficiency versusD̄ for g0=0
(plain) andg0=g /1000 (dash) sC=100,gE=15d.
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hD . hmaxS1 − 2Îg0

GE
D sC @ 1,g0 ! GEd

for D̄ . Î2CSGE

g0
D1/4

,

before decreasing when the coupling ins1+2CdGR becomes

too small asD̄ is increasedsV being fixedd to compensate for
the noise associated to the loss of coherenceg0 fsee Eq.
s16dg. These effects stress the fragility of the squeezing trans-
fer with respect to dissipation and explain why dissipation-
less situations such as EIT or Raman are favorable.

IV. FULL THREE-LEVEL CALCULATION

From the Heisenberg-Langevin equations given at the be-
ginning we calculated without approximation the spin cova-
riance matrix and now compare it with the analytical model
used in the previous sections.

A. Exact calculation in EIT

In the previous sections we neglected the frequencies
larger than the atomic fluctuation evolution constantg̃0, as-
suming thatk ,g@g̃0. We therefore neglected high atom-
field coupling frequencies due to the cavity. However, the
analytical calculation of the minimal spin variance in EIT is
possible using the Fourier transforms of Eqs.(1)–(3). In EIT

sD=D̃c= d̃=0d, the resulting equation for thex component
reads

Fg0 − iv +
V2sk − ivd

Dsvd GdJx

=
g2N

Dsvd
Î2k

t
dSx

in + fx −
Vsk − ivd

Dsvd
Fy,

with Dsvd = sk − ivdsg − ivd +
g2N

t
.

If the incident field is Sx-squeezed, we know the
x-component will be squeezed. However, a well-known cou-
pling frequencysvc.Î2C/rgd appears at high frequency
f12g, resulting in an increase of atomic noise, and, conse-
quently, in a degradation of the atomic squeezing. After
integration, the exact efficiency is

hE =
2CgE

s1 + 2Cds + gE

3
1 + r + sr

2Cs1 + rd + s1 + sds1 + r + sr + sr2 + gEr2d
,

s23d

with gE=GE/g, r=g /k, ands=g0/g. Three regimes can be
distinguished: for very small values of the effective pumping
G=GE/ s1+2Cd compared to the loss rate in the ground state
g0, one retrieves the low frequency results11d as can be seen
from Fig. 3: the efficiency is bad as long as the loss of
coherence in the ground stateg0 is not overcome by the

pumping. In an intermediate regimeg0!G!g ,k the effi-
ciency reaches its maximum. The optimal pumping rategE

*

can be shown to be proportional toÎs,

gE
*

1 + 2C
.

Î1 + r

r
Îs sC @ 1,s ! 1d

in good agreement with the results shown in Fig. 3. For
values ofG comparable tog, k, the efficiency is no longer
well reproduced by the low frequency approximation, since
the adiabatical eliminations are no longer valid. In this re-
gime, the efficiency asymptotically reaches that of a closed
systemsg0=0d, for which Eq. s23d reduces to a monoto-
nously decreasing function ofgE,

hE
0 =

2C

1 + 2C + gE
r2

1 + r

. s24d

The optimal transfer is naturally obtained by making a com-
promise between the coupling and the atomic noise, and oc-
curs in the intermediate regime II between regime I, for
which the coupling is small and the atomic noise due to
ground-state coherence losses dominates, and regime III, in
which the coupling is large, but the atomic noise due to
spontaneous emission is more important.

B. Robustness with respect to two-photon detuning

In a L scheme, the coherence created between the ground-
state sublevels strongly depends on the two-photon reso-
nance, the width of which is given by the effective atomic
decay constantg̃0. In Fig. 4 we plot the transfer efficiency
for the least noisy spin component as a function of the two-
photon detuning for a zero-cavity detuning, that is, when Eq.
(19) is fulfilled, but not Eq.(20). In addition to rotating the
maximally squeezed component in thesx,yd plane, the spin

squeezing is clearly destroyed as soon asd̃, g̃0. We would
like to emphasize that both EIT and Raman configurations
are equally sensitive to this two-photon resonance condition.

FIG. 3. (Color online) EIT transfer efficiency versus EIT pump-
ing rate: analytical(23) (plain), low frequency approximation(11)
(dots), and lossless system(24) (dashed). The three regimes are I
sG!g0d, II sg0!G!g ,kd, and III sG*g ,kd. Parameters:C=100,
s=1/1000,r=1/2. Theoptimal pumping rate is thengE

* .15.
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This similarity adds to the resemblance already stressed in
Sec. III B.

C. Transformation to the “ ŠA2‹=0” basis

In this section we show that any incident field state can
actually be transferred to the atoms in EIT. To simplify the
discussion let us assume again that the modesA1,2 interacting
with the transitions of theL system are orthogonally polar-
ized modes. Because of the similarities existing between the
Stokes vector and the atomic spin, the results obtained in the
special casekA2l=0 andkJzl=N/2 considered previously can
be applied to any polarization state of the incident field. The
Hamiltonian for aL system in EIT reads

H = "fg1A1
†P1 + g2A2

†P2 + H.c.g.

If both kA1l and kA2l are nonzero, one can always turn to a
basis sA18 ,A28d for which kA28l=0 via a rotationR in the
Poincaré sphere. The Hamiltonian is invariant under the
same rotation performed on the atomic spin, the atoms are
pumped into the dark stateuDl=Ru2l and theA28 field state
will thus imprint on the atomic spin. Let us assume, for
instance, thatA1 and A2 have minimal noisese−2ri for the
same quadratures and takeVi =gikAil si =1,2d as real num-
bers. The dark state is then

uDl =
− V2u1l + V1u2l

ÎV1
2 + V2

2
.

The minimal atomic variance is then a weight of theA1,2
mode squeezings,

DJmin
2 .

V2
2e−2r1 + V1

2e−2r2

V1
2 + V2

2 .

One finds naturally that one cannot transfer more than the
squeezing of one mode.

V. READING SCHEME AND QUANTUM MEMORY

We have shown how the quantum state of the incident
field could be transferred to the atomic spin in the ground
state. Note that the lifetime associated to the ground state is
quite long for cold atoms, and therefore the quantum infor-
mation can be stored for a long time(several milliseconds).
Let us start with our spin-squeezed atomic ensemble and
switch off the fields when the transfer is completed. The spin
squeezing then decreases on a time scale given by the
ground-state lifetimeg0

−1. After a variable delayts corre-
sponding to the storage time, we rapidly switch on again the
pump field att=0, fieldA2

in being in a coherent vacuum state,
and we look at the fluctuations of the field exiting the cavity
A2

out=ÎTA2−A2
in. Let us assume an EIT configuration for sim-

plicity and start with aJx-squeezed atomic spin; one expects
its fluctuations to imprint on theSx component of the outgo-
ing field [see Eq.(9)].

A. Standard homodyne detection

We assume a standard homodyne detection scheme with a
constant local oscillator and calculate the noise power ofAq

out

measured by a spectrum analyzer integrating during a time
T0 over a frequency bandwidthDv centered around zero-
frequency,

Pstd =E
−Dv/2

Dv/2 dv

T0
E

t

t+T0

dtE
t

t+T0

dt8e−ivst−t8dCst,t8d,

whereCst ,t8d=kdAp
outstddAp

outst8dl is the correlation func-
tion of Ap

out. Note thatT0 andDv must satisfyT0Dvù2p.
In the low frequency approximation and in the “good”
regime for transfer fg0!GE/ s1+2Cd!g ,k; see Sec.
IV A g, the correlation function ofAp

out may be calculated
via the Laplace transforms of Eqs.s1d–s3d,

Cst,t8d = dst − t8d −
4CGE

s1 + 2Cd2Rat e−g̃0st+t8d, s25d

whereRat=s1−DJmin
2 de−2g0ts represents the atomic squeez-

ing when the pump field is switched on again att=0. After
some algebra, one gets

1

Dv
Pstd = 1 −Ssa,bdRat e−2g̃0t,

whereS is an integral depending on two dimensionless pa-
rameters:a=T0g̃0 andb=Dv / g̃0, which, for large values of
C, is equal to

Ssa,bd = 2E
−b/2

b/2 dv̄

ab

1 + e−2a − 2e−a cossv̄ad
1 + v̄2 ,

with v̄=v / g̃0. This integral, which can be understood as the
signal-to-noise ratio of the readout process, is also the ratio
of the measured field squeezingRout=1−Ps0d /Dv to the
initial atomic squeezingRat. Squeezing may thus be trans-
ferred back from the atoms to the field. This squeezing
decreases back to a coherent vacuum state on a time scale
g̃0

−1 given by the atoms.Ssa,bd is optimal when the spec-

FIG. 4. (Color online) Transfer efficiency versusd̃ /g0 in EIT
(plain) and Raman (dash) schemes. Parameters:C=100, s
=1/1000,e−2r =0.5. With these values,GE and GR are chosen so
that, in both cases,g̃0.75g0.
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trum analyzer is Fourier-limited:b=2p /a, and when the
time measurement is of the order of the inverse of the
atomic spectrum width,a.1.3. Under these conditions,
the integral is about 0.64, and about two-third of the
atomic squeezing is transferred to the field exiting the
cavity, Rout.0.64Rat.

B. Temporal matching

This imperfect readout comes from the fact that the local
oscillator detecting the fluctuations of vacuum mode exiting
the cavity is not perfectly matched with the atomic squeezing
spectrum[14]. It is possible to reach a perfect readout by
choosing the right temporal profile for the local oscillator:
ELOstd=e−zg̃0t, with z a dimensionless adjustable parameter.
The spectrum analyzer now measures

Pstd =E
−Dv/2

Dv/2 dv

T0
E

t

t+T0

dtE
t

t+T0

dt8e−ivst−t8d

3 ELOstdELOst8dCst,t8d.

Using the correlation functions25d, one gets

1

Dv
Pstd = Nsa,zd − Ssa,b,zde−2g̃0tRat,

with Nsa,zd =
1 − e−2za

2za
,

Ssa,b,zd =
2

ab
E

−b/2

b/2

dv̄
1 + e−2as1+zd − 2e−as1+zdcossav̄d

s1 + zd2 + v̄2 .

Nsa,zd represents the noise level in the absence of atomic
squeezing andSsa,b,zd the amplitude of the atomic squeez-
ing transferred to the field. The field squeezing can be ex-
pressed as

Routstd ; 1 −
Pstd

DvNsa,zd
=

Ssa,b,zd
Nsa,zd

e−2g̃0tRat

and, for short times, the readout efficiency ism
;Routs0d /Rat=Ssa,b,zd /Nsa,zd. This efficiency is opti-
mized when the spectrum analyzer is Fourier limited and
when the integration time is larger than the inverse of the
atomic spectrum width:b=2p /a and a@1. In this case,
one hasNsa,zd,1/s2azd and Ssa,b,zd,2/as1+zd2, so
that the efficiency reads

m ,
4z

s1 + zd2 .

It is maximal and equal to 1 whenz=1, i.e., when the tem-
poral profile of the local oscillator perfectly matches the
atomic noise spectrum. It is thus possible to fully retrieve the
atomic squeezing stored into the atoms in an EIT configura-
tion. Note that the same results can be obtained in a Raman
configuration, in the regimeg0! s1+2CdGR!g ,k. In both
schemes, to ensure that the retrieved squeezing indeed origi-
nates from the atoms, one may vary the delayts between the
switching on and off, and check the exponential decay of the
squeezing withg0. Last, to evaluate the global efficiency of
the atomic memory, one should compare the retrieved field
squeezingRout to the initial squeezing in the input fieldRin,
the ratio of which is given by the producthme−2g0ts.

VI. CONCLUSION

To conclude, we have shown that a quasiideal squeezing
transfer should be possible between a broadband squeezed
vacuum and the ground-state spin ofL-type atoms. The cav-
ity interaction allows for good transfer. Our results for a
cavity configuration are consistent with those obtained in
single-pass schemes with thick atomic ensembles
[2,3,11,13,14], although efforts are still being conducted to
develop a full free-space quantum treatment[17]. The most
favorable schemes are those minimizing dissipation, such as
EIT or Raman[15], for the fluctuations of the intracavity
field imprint on the atomic spin, thus mapping the incident
field state onto the atoms. The relevant physical parameter
for the transfer efficiency is the cooperativity, which quanti-
fies the collective spin-field interaction and which can be
large in a cavity scheme. The mapping efficiency was evalu-
ated taking into account possible losses in the ground state.
Its robustness with respect to a detuning from the two-photon
resonance is shown to be the same in EIT and in the Raman
scheme. We also generalized the EIT results to the case in
which both fields have nonzero intensity. The atomic squeez-
ing is in this case a combination of the incident field squeez-
ings. This is related to the fact that, in EIT, the atoms are
pumped into a dark state and the atomic medium is then
transparent for a certain combination of the fields. Such a
dark-state pumping was exploited for double-L atoms in Ref.
[18] to generate “self–spin-squeezing” using only coherent
fields.

Last, we propose a simple reading scheme for the atomic
state, allowing a quantum memory–type operation. When the
pump field is again switched on, the outgoing vacuum is
squeezed by the atoms, and the atomic squeezing can be
fully transferred back by temporally matching the local os-
cillator used to detect the outgoing vacuum fluctuations with
the atomic spectrum. To our knowledge, it is the first in-
stance in which the conservation of quantum variables is
predicted in an EIT scheme within a full quantum model.
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