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Quantum-state extraction from high-Q cavities
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The problem of extraction of a single-mode quantum state from a Qighvity is studied for the case in
which the time of preparation of the quantum state of the cavity mode is short compared with its decay time.
The temporal evolution of the quantum state of the field escaping from the cavity is calculated in terms of
phase-space functions. A general condition is derived under which the quantum state of the pulse built up
outside the cavity is a nearly perfect copy of the quantum state the cavity field was initially prepared in. The
results show that unwanted losses prevent the realization of a nearly perfect extraction of nonclassical quantum
states from highQ optical microcavities with presently available technology.
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[. INTRODUCTION posals have been made to reduce the effect of decoherence
) ) _ due to the atomic motiofil9]. In order to reduce unwanted
High-Q cavity QED has offered a number of novel possi- spontaneous emission in schemes that exploit multilevel at-
bilities of quantum-state engineeririgee, e.g., Ref41-4  oms, adiabatic transfer techniques have been promising
and references therginin particular, it provides promising [16-18. Moreover, the adiabatic passage is the main idea of
tools to generate nonclassical quantum states of atoms anide proposal of quantum networks of trapped atoms, where
light for further use. Accordingly various applications have cavity modes provide communication channels, by leaking
been proposed, with special emphasis on quantum commuwut of the cavities and propagating via optical interconnec-
nication and computatiofb—7]. In contrast to atomic states, tors [20]. Scattering and absorption losses, which are un-
the usage of quantum states of light as carriers of quantur@voidably connected with any material system, may be re-
information is especially appropriate, due to the reliability ofduced by well designed cavities and the use of materials
light to propagate over long distancg9]. showing extremely weak absorption, and almost perfectly
Various schemes for generating nonclassical light in cavifeflecting mirrors reduce the transmission losses. In particu-
ties have been considered. They are typically based on effedr: in Ref.[21] a method is presented for the protection of a
tive two-level atoms. A generator of single photon Fockdeneric guantum state of a cavity mode against the depoher—
states in an active microcavity with pump self-regularization"d €ffects of photon losses by feedback atoms crossing the

has been presentgdQ]. It has also been shown experimen- cavity mode. o .

tally that an entangled state of two nondegenerate cavit _Ondthebotheli hand, transmission :josses. arel neces?a;l]y re-
: .. guired to be taken into account in order to implement -

modes can be produced with means of a sequence of dIﬁeéavities that can serve as sources that emit nonclassical ra-

ently tuned interactions of a pair of single atoms with the tWOjiation for further use outside the cavitigh7,22—25, The

cavity ”.‘Odes[”]' and a sch'e'me for entangllng two mOde.SnaturaI guestion arises whether or not nonclassical states of

of spatially separated cavities by consecutively passm%ht, once generated inside a higheavity, can be extracted

Lhrough them atgms Qas been pror;lo{SEZ].I_A sczefme Eas from the cavity and what the ultimate limits are. In the
een proposeflL3] and experimentally realizefd4] for the — qohemes considered, it is often made the ad hoc assumption

generation of photon number states on demand, bY subjec(rﬁ nearly perfect extractioiisee, e.g., Refq.10,18,20,28).
ing single two-level atoms passing through a cavityzto The fact however is that even very small material absorption

pulse interaction. Similarly, a proposal has been made fop,y he expected to lead to drastic quantum state degradation
entangling two cavity modes via interaction with a bunch 02[27]

two-level atoms assisted by a strong classical driving fiel
[15]. Schemes that exploit multilevel atoms have also bee
studied both theoretically16,18 and experimentally17],
with special emphasis on effective three-level atomsAof

Recently, homodyne detection of the quantum state of the
field leaving a highQ cavity has been studied theoretically

[28]. From the results it might be expected that the quantum
state, in which an excited cavity mode is prepared at some

type. . . [nitial time, can be perfectly extracted from the cavity, so that
The main obstacles to generate nonclassical states are the., . sufficiently long time, i.e., when the cavity is effec-

various decoherence.eff.ects associated with, e.g., the mot.icm/ely empty, the pulse which has left the cavity is in the
and spontaneous emission of the atoms as well as scatteri me quantum state as the cavity mode initially was. How-

absorption, and transmission of the photon field. Several Pr%uyer, in the analysis the effects of unwanted logsesh as

absorption and scattering losge® the extracted quantum
state have not been considered. Moreover, instead of calcu-
*Email address: mkh@tpi.uni-jena.de lating the quantum state of the outgoing field directly, the
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authors base the derivation on an operational definition of the [
Wigner function in terms of collective mode operators intro- Yrad= E|T| (2)
duced within the frame of the homodyne detection scheme

considered. The reason is that they claim that due to thg the decay rate of the cavity mode which results from the
mode continuum outside the cavity the Wigner functiontransmission losses due to the radiative input-output cou-
would be ill defined. pling, and

In this paper, we directly calculate as a function of time
the quantum state of the pulse which leaves a Igtavity _C
and may be used for further processing. The calculations are Yabs™ E|A| 3)
performed for arbitrarys-parametrized phase space func-
tions, including the Wigner function. Taking into accountis the decay rate which results from the unwanted losses,
both transmission and unwanted losses of the cavity moddyriefly referred to as absorption losses in the rest of the pa-
we show that the crucial parameter for the efficiency ofper, such as the unavoidably existing material absorption and
quantum state extraction is the ratio of absorption losses tecattering. For a higl® cavity, both the transmission coef-
transmission losses of the cavity mode. As we will see, dicient T and the absorption coefficie& are very small
quantum state can be almost perfectly extracted after suffeompared with unity(|T|<1,|A|<1) Note thatT andA are
ciently long time, only if the value of this ratio is sufficiently taken at the cavity-mode frequeney,, The second term in
small, with the truly required smallness sensitively depend£q. (1) is the Langevin noise force arising from the input
ing on the nonclassical features of the state. radiation field, where

The outline of the paper is as follows. In Sec. Il the model
is explained and the basic equations, including the operatoE
input-output relations, are given. The quantum state of the n() = 7=
outgoing field is calculated in Sec. Ill, and Sec. IV presents
two examples. Finally, a summary and some concluding re- (4)
marks are given in Sec. V.

1
dw by (1) = — = do b(w,tg)e 1)
A

Aw Aw

and the third term is the Langevin noise force associated
with absorption, where

II. BASIC EQUATIONS

1 1 )
— — - —lw(t-tg)
A. Quantum Langevin equation & = N do &o,t) = V2 do &(w, lp)e '

Let us consider a one-dimensional highcavity bounded (5)
with a perfectly reflecting mirror at=0 and an almost per-
fectly reflecting mirror atx=I . For a highQ cavity, the Here and in the following, the notatiofy,dw... is used to

widths vy, of the cavity modes at frequencieg=kzc/| are  indicate that the integration runs over frequencies in the in-
very small compared with their separatidw=wy.1~wx  terval[wg—Aw/2,we+Aw/2] The operatoré(t), b(w,t),

=mc/l, wherec is the velocity of light. Being interested in and¢(w,t) satisfy the familiar bosonic equal-time commu-
resolving times that are large compared with the time ofation relations

propagation of light through the cavity, we may expand the

intracavity field in terms of standing waves at frequencies [a®t),a’(t)]=1, (6)
wy, Where the associated photon creation and annihilation

operatorsél and a,, respectively, obey quantum Langevin

equations[29,30. For sufficiently largeQ values, we may [Bin(,1), bl (0", )] = 8w - o), (7)
further assume that the time of excitation and preparation of
a cavity wave in gdesired quantum state is short compared [&(w,1),7 (0] = Slw- o). (8)

with its decay timgbut still long compared with the propa-
gation time through the cavityIn this case, the process of |t is not difficult to see that the solution of E¢l) can be
preparation of the cavity quantum state is well separategjiven in the form of
from the process of its transmission to the outside space.
Let 0., be the quantum state an excited cavity wave is  a(t) = a(tg)e [@ea (/2 radrapdI(t-to)
prepared in at some initial timg. For timest=t,, the cor-

12t
responding Langevin equation for the photon annihilation +<—> Tf dt’ e [@car(i/2) (%amabs}](tt)b At
operator associated with the excited mode then reads 2l to
: i c\¥ . c\* ! i i2 t-t)A
a=-i Weay ™ _('Yrad+ 'Yabg a+ (—) Tbm(t) + (E) Af dt' e 'Lca (12)tag and )C(t,)- 9
2 2l to
C 1/2
+ <—> AC(t). (1) _
2l B. Input-output relation

In the first term, In close analogy to Eq4), output operators
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o1 - bou(®,t) and bl (w,t), as given by Eq.(18), fulfill the
bout(t) = 27 s0 dewboufw,t) commutation rulg11).

1 We now substitute Eq9) together with Eqs(4) and(5)
— d wE)( ot)eiet  (t<t)  (10) into Eq.(18) to obtain

-— ,__
\”277' Aw ~ ~
boul@,t) = F (w,)a(ty) + B(w,t), 19
can be introduced, where, similar to E(), the bosonic oul ) =F (@, Da(to) + Blw.) (19
commutation relation where the functiorF(w,t) is defined by
i . ’ — ’ ; 1/2
[bout(wvt)ibout(w B]=dw-o) (11 F(o,t) = %(E) T dolt-t
is valid. Taking into account that, on the time scale under V2m\2l
consideration, the lower and upper integration limits of the _ i
frequency integrals can be extended, with little error, to - exp) —i| @ = wgay— E(Yrad"' Yabd |(t—1to) [ — 1
and +o, respectively, from Eqsi4) and (10) together with X . ,
the commutation relation€7) and (11) it then follows that _ ! +
the commutation relations @7 Geav Z(yrad Yabd
~ ~ 20
[B(0),Bl)] = ot ~1) 12 (20
and and the operatdB(w,t) is a linear functional of the operators
N - b(w,ty) and&(w,ty) according to
[Doudt), boydt")] = St - t') (13)
may be regarded as being valid. In a similar way, from Egs. é(w,t) = do’ G*(w,w’,t)B(w’,to)
(5) and(8) we derive Ao
[E(t),e'(t)]=at-t). (14) + [ do' H (0,0 )c(w't). (21)

. . Aw
Other important commutation rules are

. R . . Here, the function&(w, »’ ,t) andH(w, ’,t), respectively,
[a(t),bin(t")]=[a"(t),b,(t')]=0 if t<t. (15  are defined by

The output operatoBout(t) can be related to the cavity Glw,w' ) =T &wo' ) + RO w-w) (22
operatora(t) and the input operatdn;,(t) according to the
input-output relation and
A c\v2_ R H(w,0't) = A & w,0' 1), (23
boult) = (E) Ta(t) + Rhy(1), (16)
whereé(w, w’ 1) reads
where
/ — iE * 1
T T (17) W~ Weay ™ E(Vrad"' Yabs
We renounce to repeat its derivation here, but refer the gl (tto) — glwcat(/2)(ragvapd t-to)
reader to the literatur29,30. In Ref.[29] the derivation of :
Eq. (16) (with real T) is based on quantum noise theories ®' = Wy~ I_('}’rad+ Yabd
whereas in Ref[30] a more rigorous QED derivation is 2
given (also see Refl31]). Equation(16) corresponds to the dolttg) _ o’ (t-to)
following equation for the continuous-mode output operators - 1. (24)
~ i w— (x),
Pout(@, b):
1/2 t
I c ; 1 ' 1 amio(t=t' )5 47 . e .
boul@,t) = o Tlim o dt' e a’) It is not difficult to see that from Eq(19) together with the
b VAT commutation ruleg6) and(11) it follows that
+Rb(w, tp)e (), (18)

[B(w,1),Bf(0',)]= 8w- ') - F(w,)) F(w’,1). (25)
The proof of this equation is straightforward. Substituting

Eq. (18) into Eq. (10), performing the frequency integral as Note that

before(i.e., extending the integration limits te«), and re- R R

calling Eqg. (4), we exactly arrive at Eq(16). Note that [a(ty),B(w,t)] =[A(to),BT(w,1)]=0. (26)
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IIl. QUANTUM STATE OF THE OUTPUT FIELD

A. Characteristic functional

To calculate the quantum state of the output field in the

frequency interval wea—Aw/ 2, wea* Awl 2], we start from
its characteristic functional

Coul B(w),t] = Tr{@ exp[ fA dw B(w)E)gut(w,t) - H.C.:| } ,

(27)

PHYSICAL REVIEW A 69, 043807(2004)

N
Cout(ﬁvt) = TI’{ écav expl E ﬁnFn(t)éT(to) - H-C-:| }

n=1

N
XTr éin ® éabs eXp|:2 IBnBI(t) - H-C-:| .

n=1
(36)
In what follows we consider the case in which both the input

field and the dissipative system are initially in the vacuum
state. In this case, the second trace in(B6) simply reduces

whereg is the density operator of the initial quantum state oft0

the overall system, i.e., its quantum state=tf,. To further

handle the functional, it is convenient to regard the integral
as the limit of a sum, perform the calculations for the sum,
and take the limit at the end of the calculations. That is to

say, we write

Cou Blw),t]= h||im CoulB.1) (28)
[B=(B1.B2, ...,Byv], where
N
CoulBt) =Tr é expl 2 Bnbx(t) - H-C-:| . (29
n=1
Here, B, and E)n(t), respectively, are defined by
1 wptdwl2 —
o= —— do B(w) = Véw Blwy) (30
Vow wp—dwl2
and
R 1 wptowl2 R
by(t) = —— do boydw,1) (31)
Vow wn—6w/2
(6w=Aw/N). Note that
[Bn(t), B}, (6] = Sy (32
The discrete version of Eq19) then reads
bu(t) = Fr(DA(t) + By(0), (39)

whereF,(t) and én(t) being defined according to Eq&0)
and (31), respectively, withF(w,t) and é(w,t) instead of
B(w) andb,,(w,t), respectively, and E¢25) changes to

[B,(1),BT,(t)] = 8yy = F(D)F i (1).

n’

(34)

Let us assume that th@nitial) density operatop is fac-
torable as

é = écav® éin ® @abs (35)

(0caw density operator of the cavity mode;,, density

operator of the input fieldp,,, density operator of the

dissipative system responsible for absorptioBubstitut-

ing Eq.(33) into Eq.(29), we may write, on recalling Eq.

(26),

N
Tr éin &® éabs expl 2 ﬁnéﬁ(t) - H.C.] }

n=1
1 N N
=ex _§[E|Bn|2_ E IBnFn(t),B;rF;r(t)] ,
n=1

nn’'=1
(37)

which can be easily proved to be correct by recalling the
commutation rule(34) and applying the Baker-Campbell-
Hausdorff formula to write the exponential operator in nor-
mal order. Combining Eqg.36) and (37), we may rewrite

CoulB:1) @s

N
CoBO =X =33 |,3n|2} NG NBD].
n=1

(38)

Here,

Coal B) = TH[dcqe 0F 8l10)] (39)

is the characteristic function of the quantum state of the cav-
ity mode, and the function(8,t) is defined by

N
NBY = X Fot) By (40)

n=1

Equation(38) relates the multidimensional characteristic

function of the quantum state of the multimode output field
(at time t=ty) to the characteristic function of the cavity-
mode quantum stat€at time tg). Let C,{(B,t;s) and
C.alB;s0) be the respective characteristic functions in arbi-
trary s and sp order, respectively. The extension of £§8)
valid for s=5,=0 to arbitrary values 0§ and s, is straight-
forward

N
1
CoulB:1;9) = €x 52 |,8n|2(s_ 1)]
n=1
X UINPIIICE, INBYs]. (4D)

B. Phase-space functions

Let us now turn from the relation between the character-
istic functionsC,(8,t;s) and C..(8;Sy) to the relation be-
tween the corresponding phase-space functions
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1 1 N
Pou@,t;9) = f d™B Cou(B.;9) B, = == Fn(1) B0 (51)
V() n=1
N
X eXplz (anﬂ;‘ a;ﬁn):| (42) In this case, the multimode phase-space function in the new
n=1 variables simply reduces to the product of single-mode
and phase-space functiof®, {a,t;s) — Py{a’,t;s)],
Pead @;So) 1.fd2 CealB:S0) B -a'p (43) Paul 159
@;%) = — 1S T, , / : :
cal @S0 N B Ceal Bi% = Pouda1,t;9)Poud a5, t;9) . .. Poud af-1,159) Poud s 159)
respectively. TakingC,.(8.t;s) from Eq. (41), we derive (52)
1 N 5 as it is easily seen from E4). Obviously, only the first of
Poula,t;s) = N f d ﬁf d°@ Peafa;so) these output modes is related to the cavity mode, whereas all
other modes are in the vacuum state. From @¢) it then
N . follows that the phase-space function of the relevant output
X exp| X (anBy = apfB) mode is given by’ =a}, 8" = B])
n=1
1N P t( ,t'S)_i dZIB/ d2 P \K . )
X exp EE 1Bal?(s= 1) out @t S) =2 a Feal ;S
n=1 N * * N *
X exeN(B.0a" ~ N (B0l < explinta —a” 1f" - [Vnlha - o'l
1 —3[1-s- 21 -8 (59
2
X exp SINB YL -5 | (44) , . : :
2 which after integration oveB’ yields
To perform the R-fold integral over thes,, we change the 2 1
variables by means of a unitary transformation Poula' t;s) = —
. ml=s=nt)(1-s)
Br,n: 2 UnmnBn, (45) X f d’a Peal @ So)
n=1
_ N 2|V"%a -a'|? ]
U™ mn=Unms 46 X - , (54
(U= Up (46) exp{ s i s ©¥
thus

provided that

N
Bn= 2 UpniBro: (47) 1-s-7(t)(1-5)=0. (55)
m=1

ote that the case of equality sign should be understood as

In fact, this transformation corresponds to the introduction of; iting process. We compare Ep4) with the well-known

nonmonochromatic modes, the phase-space variables X |ati
. . ation
which are given by
N 2 23~ a|21|
P(e;s) = ———— | d?BP(B;s)exp ———— |,
afy= > Upnctn. (48) (ers) (s’ —s) J BP(B:S) p[ s'-s
n=1 (56)
In order to diagonalize the quadratic form in the last ex- _
ponential in Eq(44), we set which is valid for
F.(1) s'-s=0, (57)
U= 7, (49)
V()

and see that the quantum state of the relevant output mode
where can be expressed in terms of the quantum state of the cavity
mode in the compact form of

N
70 = 2 [Fa®)P, (50) 1 @
n=1 Poula@,t;8) = ——Peal —=:5" |, (58)
7(t) V(t)
so that, according to E¢45), 3; is expressed in terms of the
B as where, for chosen value &f the value ofs’ is given by
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1-s 1 e—xﬂ(l—z)
s=1-——. 59 L\)=—9, dz———, 66
7(t) (59 o) 2wi567 "Y1 -2) (66)
To calculater(t), we recall that in the limitN— o where the contoury encloses the origin but not the point
N z=1, after straightforward calculations we obtain the Wigner
7(t) = lim D IF,(B)2= do|F(,H), (60) function of the output pulse as
N—oon=1 Aw
2 ol 2 4n(t)
. . . n) - —(_ 2|a _ A 2
V\{Ith F(w,t) from Eqg. (20). Straightforward calculation \M)ut(“’t) - 7,( D'e [27(t) - 1]° Ln{ 2(t) - 1|“| '
yields 67)
() = —L29 1 — g Oradvapd(t-10)]. (61)  From Eq.(67) it is not difficult to see that the condition
Yrad T Yabs
Setting in Eq(54) s=5,=0, we see that the Wigner func- () >1- Z_ln (69)

tion of the relevant output mode is the following convolution

of the Wigner function of the cavity mode with a Gausswm:must be satisfied to guarantee that thehoton Fock state

2 1 prevails in the mixed output quantum state. In the simplest
Wouda,t) = P fdzﬂ Wead B) case of a one-photon Fock states 1, the condition reduces
7 - to n(t)>0.5. That is to say, the weight of the one-photon
279t B - al? Fock state exceeds the weight of the vacuum state in the
X - (1) (62 mixed state of the outgoing field,
This equation reveals that for perfectly extracting a quantum W, t) =[1 - () WO (@) + )WV (a),  (69)
state from a higl® cavity, the condition ) ) o .
only if the extraction efficiency exceeds 50%. Te@ndition
7(t) (68) clearly shows that with increasing value afthe

1-7(t) >1 (63 required extraction efficiency rapidly approachE¥%.

o ) o The dependence on the extraction efficiency of the quan-
should be SatISerd,. ie., the value of the_extractlon efficiencytum state of the outgoing field is illustrated in Fig. 1 for the
7(t) must be sufficiently close to unity. How close to case in which a single-photon Fock state is desired to be
unity—it really depends on the characteristic quantum feaextracted. Fig. () reveals that nearly perfect extraction re-
tures of the state to be extracted. On the other hand, from E@uires an extraction efficiency that should be not smaller
(61) it follows that than 7(t)=0.99, which fort— o corresponds to the require-

ment thaty,,d ¥2¢=0.01 As long asy(t)>0.5, the single-

7(t) < &. (64) photon Fock state is the dominant state in the mixed output
Yrad* Yabs state, as can be seen from Fig(b)l [5(t)=0.71, i.e.,
Note that7(t) = yad/ (Yradt Yapd fOr sufficiently long times  Yabd Yraq=0.429t—=)]. For 5(t)<0.5, i.e., Yapd Yrac=1
t—to= (Vraqt Yand - (t— ) ], the features typical of a single-photon Fock state
are lost, Fig. {c).
IV. EXAMPLES B. Schrédinger catlike states

The really required efficiency for nearly perfect quantum  Another example of typically nonclassical states are quan-
state extraction sensitively depends on the quantum state th@am interference states, e.g.,
is desired to be extracted. To illustrate this, let us consider
two examples of highly nonclassical states, namely, Fock [¥)cav=Mao) + |- ao)), (70

states and Schrodinger catlike states. .
with «q real, and

—_ 2 -
A. Fock states N=[2(1 +e490) ]2, (7

A typical nonclassical state is amphoton Fock state, The Wigner function of such a state is given by

whose Wigner function reads 5

2N 2 2
2 W la)=— e_z‘a_ao‘ +e‘2\a+ao\
we @=—(- 1)e 2L (4]a]?), (65) ) = =1

. . . + 26729 cogday | 72
where L,(x) is the Laguerre polynomial of order. Substi- € cod4ag M a)] (72)

tuting Eq.(65) into Eq.(62) and employing the integral rep- Substitution of Eq.(72) into Eq. (62) yields the following
resentation of the Laguerre polynomig8#], expression for the Wigner function of the output field:
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(a)

Ima

Ima -0.5

0.5

FIG. 1. (Color onling Wigner function of the quantum state of

the pulse that leaves the cavity, the mode of whiclindgtially) -0.5
prepared in a single-photon stata) %(t)=0.99;(b) #(t)=0.71;(c) ~1 0 o 2
7(t)=0.5. 1 8
Ima Rea
2/\[2 o e (D) |2 _ |2 . . .
W, (a,t) = —{e 2la=\n(t)ag|” 4. g=2lat\n(t)ay| FIG. 2. (Color online Wigner function of the quantum state of
T

the pulse that leaves the cavity, the mode of whicHingtially)

ol 2021 prepared in a Schrodinger catlike state given by @) with «q
+ 2P cos[4V p(t)ag Im aJe 207V}, =3 (a) 7(t)=0.998:(b) 7(t)=0.952;(c) 7(t)=0.84.
(73)
From Eq.(793) it follows that nearly perfect extraction of the mentanly, as long asn(t)>0.$4, 1.€., Yand ¥raq<0.19 (t
state requires the condition —) [Fig. 2Ab); 7()=0.952, i.€yapd ¥1ag=0.05 (t—)].

For smaller values of the extraction efficiency, the quantum
1 interferences are effectively destroyglg. 2(c)].
1-9t) < —2|a E (74)
0

to be satisfied. _ _ V. SUMMARY AND CONCLUSIONS
Figure 2 illustrates the dependence on the extraction effi-

ciency of the quantum state of the outgoing field for a We have derived an input-output relation that relates the
Schrddinger catlike cavity state, Ef0) with ap=3. Com-  quantum state of the pulse leaving a hi@heavity to the
paring Fig. 2 with Fig. 1, we see that, as expected, the effiquantum state in which an excited cavity mode was prepared
ciency for extracting such a Schrodinger catlike state is reat some initial time. Performing the calculations in the phase
quired to be substantially higher than that for extracting aspace, we have represented the respective quantum states in
single-photon Fock state. For a nearly perfect extraction oferms ofs-parametrized phase-space functions and derived a
the chosen Schrédinger catlike state, the efficiency should biermula that relates the phase-space functions of the outgo-
not smaller thanz(t)=0.998, i.e., Yapd ¥rag=0.002 for t ing field and the cavity mode to each other. Taking into ac-

— oo [Fig. 2@)]. The nonclassical interference fringes typical count unwanted losses of the cavity mode, we have studied
of a Schrddinger catlike state can be observed, at least rudihe conditions under which a nearly perfect extraction of

043807-7



KHANBEKYAN et al. PHYSICAL REVIEW A 69, 043807(2004)

nonclassical quantum states from hi@heavities should be also be extended to multimode excitation in a single cavity
possible. as well as multicavity systems. We have further assumed that

To calculate the quantum state of the outgoing field, wethe input field is in the vacuum quantum state. Clearly, the
started from its time-dependent continuous multimode charunderlying formalism can also be applied to the case, in
acteristic functional. By appropriate diagonalization, it canwhich the input field is prepared in another than the vacuum
be rewritten in terms of nonmonochromatic modes, one obtate. Needless to say that when the input field is in a thermal
which is related to the cavity mode, while all other modesstate, then additional noise is fed into the cavity, and the
remain unaffected by the cavity mode. In this way, thequantum state of the output field also carries additional
s-parametrized phase-space functions of the quantum state nbise. As can be seen from E@L6), the operator input-
the relevant nonmonochromatic output mode can be exeutput relation used in this paper does not take into account
pressed in terms of-parametrized phase-space functions ofthat the input field could be absorbed in the entrance port of
the quantum state in which the cavity mode was prepared. Ithe cavity, which would also give rise to additional noise. To
particular, the output Wigner function can be given as a coninclude this effect in the theory, the input-output relati@6)
volution of the cavity Wigner function with a Gaussian re- should be generalized, e.g., by following the line in Ref.
flecting the unwanted losses. [33].

The crucial parameter for nearly perfect extraction of a Finally, we have assumed that the process of preparation
guantum state from a higQ- cavity is the extraction effi- of the quantum state of the cavity mode is sufficiently short
ciency, which in the long-time limit is determined by the compared with the decay time of the cavity mode, so that the
ratio between the cavity-mode decay rate due to unwantetime scales of quantum state preparation and extraction are
losses and the cavity-mode decay rate due to wa@ited  well separated from each other and the preparation process
transmissionlosses. This ratio must be sufficiently small in can be ignored in the calculations. At this point it should be
order to realize a nearly 100% extraction efficiency, wherenentioned that one possible way to reduce the effect of un-
the really required smallness sensitively depends on thwanted losses may be the use of cavities of deliberately en-
quantum state to be extracted. In particular, extracting highlyarged transmission, so that the unwanted losses become
nonclassical states can require extremely small values of thigmall compared with transmission losses. When, for ex-
ratio. ample, the radius of a microsphere cavity is diminished, then

It should be pointed out that even for the best opticalthe transmission losses increase, thereby the absorption
high-Q microcavities available the required efficiencies forlosses remaining nearly const486,34g. Since, on the other
nearly perfect extraction of nonclassical quantum states havgand, the quality factor is reduced, the preparation time may
not been reached, because the unwanted losses are of @ comparable with the cavity decay time, which is now
same order of magnitude as the transmission logzg®@s25.  determined by the transmission time. So, in the single-
So, in the simplest case of extracting from a cavity a onephoton emitter experiments in R¢22], in which a cavity of
photon Fock state, the weight of the one-photon Fock state Q value of 6x 10* is used, the measured transmission time
exceeds the weight of the vacuum state in the mixed outpuef several microseconds is of the same order of magnitude as
quantum state only if the extraction efficiency is bigger thanthe cavity decay time. In order to answer the question of
50%. However, the biggest value that has been realized swhich quantum state is really obtained outside the cavity in
far in the production of triggered single photons by couplingsuch a case, the preparation process must necessarily be in-
a single semiconductor quantum dot to an optical mode in &luded in the calculations.
micropost microcavity is about 38925]. On the contrary, in
case of highQ microwave cavities the absorption losses may ACKNOWLEDGMENTS
be small compared with the transmission losi35. M.K. and D.-G.W. would like to thank Christian Raabe
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