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The problem of extraction of a single-mode quantum state from a high-Q cavity is studied for the case in
which the time of preparation of the quantum state of the cavity mode is short compared with its decay time.
The temporal evolution of the quantum state of the field escaping from the cavity is calculated in terms of
phase-space functions. A general condition is derived under which the quantum state of the pulse built up
outside the cavity is a nearly perfect copy of the quantum state the cavity field was initially prepared in. The
results show that unwanted losses prevent the realization of a nearly perfect extraction of nonclassical quantum
states from high-Q optical microcavities with presently available technology.
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I. INTRODUCTION

High-Q cavity QED has offered a number of novel possi-
bilities of quantum-state engineering(see, e.g., Refs.[1–4]
and references therein). In particular, it provides promising
tools to generate nonclassical quantum states of atoms and
light for further use. Accordingly various applications have
been proposed, with special emphasis on quantum commu-
nication and computation[5–7]. In contrast to atomic states,
the usage of quantum states of light as carriers of quantum
information is especially appropriate, due to the reliability of
light to propagate over long distances[8,9].

Various schemes for generating nonclassical light in cavi-
ties have been considered. They are typically based on effec-
tive two-level atoms. A generator of single photon Fock
states in an active microcavity with pump self-regularization
has been presented[10]. It has also been shown experimen-
tally that an entangled state of two nondegenerate cavity
modes can be produced with means of a sequence of differ-
ently tuned interactions of a pair of single atoms with the two
cavity modes[11], and a scheme for entangling two modes
of spatially separated cavities by consecutively passing
through them atoms has been proposed[12]. A scheme has
been proposed[13] and experimentally realized[14] for the
generation of photon number states on demand, by subject-
ing single two-level atoms passing through a cavity top
pulse interaction. Similarly, a proposal has been made for
entangling two cavity modes via interaction with a bunch of
two-level atoms assisted by a strong classical driving field
[15]. Schemes that exploit multilevel atoms have also been
studied both theoretically[16,18] and experimentally[17],
with special emphasis on effective three-level atoms ofL
type.

The main obstacles to generate nonclassical states are the
various decoherence effects associated with, e.g., the motion
and spontaneous emission of the atoms as well as scattering,
absorption, and transmission of the photon field. Several pro-

posals have been made to reduce the effect of decoherence
due to the atomic motion[19]. In order to reduce unwanted
spontaneous emission in schemes that exploit multilevel at-
oms, adiabatic transfer techniques have been promising
[16–18]. Moreover, the adiabatic passage is the main idea of
the proposal of quantum networks of trapped atoms, where
cavity modes provide communication channels, by leaking
out of the cavities and propagating via optical interconnec-
tors [20]. Scattering and absorption losses, which are un-
avoidably connected with any material system, may be re-
duced by well designed cavities and the use of materials
showing extremely weak absorption, and almost perfectly
reflecting mirrors reduce the transmission losses. In particu-
lar, in Ref.[21] a method is presented for the protection of a
generic quantum state of a cavity mode against the decoher-
ing effects of photon losses by feedback atoms crossing the
cavity mode.

On the other hand, transmission losses are necessarily re-
quired to be taken into account in order to implement high-Q
cavities that can serve as sources that emit nonclassical ra-
diation for further use outside the cavities[17,22–25]. The
natural question arises whether or not nonclassical states of
light, once generated inside a high-Q cavity, can be extracted
from the cavity and what the ultimate limits are. In the
schemes considered, it is often made the ad hoc assumption
of nearly perfect extraction(see, e.g., Refs.[10,18,20,26]).
The fact however is that even very small material absorption
may be expected to lead to drastic quantum state degradation
[27].

Recently, homodyne detection of the quantum state of the
field leaving a high-Q cavity has been studied theoretically
[28]. From the results it might be expected that the quantum
state, in which an excited cavity mode is prepared at some
initial time, can be perfectly extracted from the cavity, so that
after sufficiently long time, i.e., when the cavity is effec-
tively empty, the pulse which has left the cavity is in the
same quantum state as the cavity mode initially was. How-
ever, in the analysis the effects of unwanted losses(such as
absorption and scattering losses) on the extracted quantum
state have not been considered. Moreover, instead of calcu-
lating the quantum state of the outgoing field directly, the*Email address: mkh@tpi.uni-jena.de
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authors base the derivation on an operational definition of the
Wigner function in terms of collective mode operators intro-
duced within the frame of the homodyne detection scheme
considered. The reason is that they claim that due to the
mode continuum outside the cavity the Wigner function
would be ill defined.

In this paper, we directly calculate as a function of time
the quantum state of the pulse which leaves a high-Q cavity
and may be used for further processing. The calculations are
performed for arbitrarys-parametrized phase space func-
tions, including the Wigner function. Taking into account
both transmission and unwanted losses of the cavity mode,
we show that the crucial parameter for the efficiency of
quantum state extraction is the ratio of absorption losses to
transmission losses of the cavity mode. As we will see, a
quantum state can be almost perfectly extracted after suffi-
ciently long time, only if the value of this ratio is sufficiently
small, with the truly required smallness sensitively depend-
ing on the nonclassical features of the state.

The outline of the paper is as follows. In Sec. II the model
is explained and the basic equations, including the operator
input-output relations, are given. The quantum state of the
outgoing field is calculated in Sec. III, and Sec. IV presents
two examples. Finally, a summary and some concluding re-
marks are given in Sec. V.

II. BASIC EQUATIONS

A. Quantum Langevin equation

Let us consider a one-dimensional high-Q cavity bounded
with a perfectly reflecting mirror atx=0 and an almost per-
fectly reflecting mirror atx= l . For a high-Q cavity, the
widths gk of the cavity modes at frequenciesvk=kpc/ l are
very small compared with their separationDv=vk+1−vk
=pc/ l, wherec is the velocity of light. Being interested in
resolving times that are large compared with the time of
propagation of light through the cavity, we may expand the
intracavity field in terms of standing waves at frequencies
vk, where the associated photon creation and annihilation
operatorsâk

† and âk, respectively, obey quantum Langevin
equations[29,30]. For sufficiently largeQ values, we may
further assume that the time of excitation and preparation of
a cavity wave in a(desired) quantum state is short compared
with its decay time(but still long compared with the propa-
gation time through the cavity). In this case, the process of
preparation of the cavity quantum state is well separated
from the process of its transmission to the outside space.

Let %̂cav be the quantum state an excited cavity wave is
prepared in at some initial timet0. For timestù t0, the cor-
responding Langevin equation for the photon annihilation
operator associated with the excited mode then reads

ȧ̂ = − iFvcav−
i

2
sgrad+ gabsdGâ + S c

2l
D1/2

Tb̂instd

+ S c

2l
D1/2

Aĉstd. s1d

In the first term,

grad=
c

2l
uTu2 s2d

is the decay rate of the cavity mode which results from the
transmission losses due to the radiative input-output cou-
pling, and

gabs=
c

2l
uAu2 s3d

is the decay rate which results from the unwanted losses,
briefly referred to as absorption losses in the rest of the pa-
per, such as the unavoidably existing material absorption and
scattering. For a high-Q cavity, both the transmission coef-
ficient T and the absorption coefficientA are very small
compared with unitysuTu!1,uAu!1d Note thatT andA are
taken at the cavity-mode frequencyvcav. The second term in
Eq. s1d is the Langevin noise force arising from the input
radiation field, where

b̂instd =
1

Î2p
E

Dv

dv b̂insv,td =
1

Î2p
E

Dv

dv b̂sv,t0de−ivst−t0d,

s4d

and the third term is the Langevin noise force associated
with absorption, where

ĉstd =
1

Î2p
E

Dv

dv ĉsv,td =
1

Î2p
E

Dv

dv ĉsv,t0de−ivst−t0d.

s5d

Here and in the following, the notationeDvdv. . . is used to
indicate that the integration runs over frequencies in the in-

terval fvcav−Dv /2 ,vcav+Dv /2g The operatorsâstd, b̂sv ,td,
and ĉsv ,td satisfy the familiar bosonic equal-time commu-
tation relations

fâstd,â†stdg = 1, s6d

fb̂insv,td,b̂in
† sv8,tdg = dsv − v8d, s7d

fĉsv,td,ĉ†sv8,tdg = dsv − v8d. s8d

It is not difficult to see that the solution of Eq.s1d can be
given in the form of

âstd = âst0de−ifvcav−si/2dsgrad+gabsdgst−t0d

+ S c

2l
D1/2

TE
t0

t

dt8 e−ifvcav−si/2dsgrad+gabsdgst−t8db̂inst8d

+ S c

2l
D1/2

AE
t0

t

dt8 e−ifvcav−si/2dsgrad+gabsdgst−t8dĉst8d. s9d

B. Input-output relation

In close analogy to Eq.(4), output operators
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b̂outstd =
1

Î2p
E

Dv

dvb̂outsv,td

=
1

Î2p
E

Dv

dvb̂sv,t1de−ivst−t1d st , t1d s10d

can be introduced, where, similar to Eq.s7d, the bosonic
commutation relation

fb̂outsv,td,b̂out
† sv8,tdg = dsv − v8d s11d

is valid. Taking into account that, on the time scale under
consideration, the lower and upper integration limits of the
frequency integrals can be extended, with little error, to −`
and +̀ , respectively, from Eqs.s4d and s10d together with
the commutation relationss7d and s11d it then follows that
the commutation relations

fb̂instd,b̂in
† st8dg = dst − t8d s12d

and

fb̂outstd,b̂out
† st8dg = dst − t8d s13d

may be regarded as being valid. In a similar way, from Eqs.
s5d and s8d we derive

fĉstd,ĉ†st8dg = dst − t8d. s14d

Other important commutation rules are

fâstd,b̂inst8dg = fâ†std,b̂inst8dg = 0 if t , t8. s15d

The output operatorb̂outstd can be related to the cavity

operatorâstd and the input operatorb̂instd according to the
input-output relation

b̂outstd = S c

2l
D1/2

Tâstd + Rb̂instd, s16d

where

R= −
T

T* . s17d

We renounce to repeat its derivation here, but refer the
reader to the literaturef29,30g. In Ref. f29g the derivation of
Eq. s16d swith real Td is based on quantum noise theories
whereas in Ref.f30g a more rigorous QED derivation is
given salso see Ref.f31gd. Equations16d corresponds to the
following equation for the continuous-mode output operators

b̂outsv ,td:

b̂outsv,td = S c

2l
D1/2

T lim
t1→t+

1
Î2p

E
t0

t1
dt8 e−ivst−t8dâst8d

+ Rb̂sv,t0de−ivst−t0d. s18d

The proof of this equation is straightforward. Substituting
Eq. s18d into Eq. s10d, performing the frequency integral as
beforesi.e., extending the integration limits to7`d, and re-
calling Eq. s4d, we exactly arrive at Eq.s16d. Note that

b̂outsv ,td and b̂out
† sv ,td, as given by Eq.s18d, fulfill the

commutation rules11d.
We now substitute Eq.(9) together with Eqs.(4) and (5)

into Eq. (18) to obtain

b̂outsv,td = F*sv,tdâst0d + B̂sv,td, s19d

where the functionFsv ,td is defined by

Fsv,td =
i

Î2p
S c

2l
D1/2

T*eivst−t0d

3

expH− iFv − vcav−
i

2
sgrad+ gabsdGst − t0dJ − 1

v − vcav−
i

2
sgrad+ gabsd

,

s20d

and the operatorB̂sv ,td is a linear functional of the operators

b̂sv ,t0d and ĉsv ,t0d according to

B̂sv,td =E
Dv

dv8 G*sv,v8,tdb̂sv8,t0d

+E
Dv

dv8 H*sv,v8,tdĉsv8,t0d. s21d

Here, the functionsGsv ,v8 ,td andHsv ,v8 ,td, respectively,
are defined by

Gsv,v8,td = T*jsv,v8,td + R*eiv8st−t0ddsv − v8d s22d

and

Hsv,v8,td = A*jsv,v8,td, s23d

wherejsv ,v8 ,td reads

jsv,v8,td =
1

2p

c

2l
T* 1

v − vcav−
i

2
sgrad+ gabsd

3 5eiv8st−t0d − eifvcav+si/2dsgrad+gabsdgst−t0d

v8 − vcav−
i

2
sgrad+ gabsd

−
eivst−t0d − eiv8st−t0d

v − v8 6 . s24d

It is not difficult to see that from Eq.s19d together with the
commutation ruless6d and s11d it follows that

fB̂sv,td,B̂†sv8,tdg = dsv − v8d − F*sv,tdFsv8,td. s25d

Note that

fâst0d,B̂sv,tdg = fâst0d,B̂†sv,tdg = 0. s26d
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III. QUANTUM STATE OF THE OUTPUT FIELD

A. Characteristic functional

To calculate the quantum state of the output field in the
frequency intervalfvcav−Dv /2 ,vcav+Dv /2g, we start from
its characteristic functional

Coutfbsvd,tg = TrH%̂ expFE
Dv

dv bsvdb̂out
† sv,td − H.c.GJ ,

s27d

where%̂ is the density operator of the initial quantum state of
the overall system, i.e., its quantum state att= t0. To further
handle the functional, it is convenient to regard the integral
as the limit of a sum, perform the calculations for the sum,
and take the limit at the end of the calculations. That is to
say, we write

Coutfbsvd,tg = lim
N→`

Coutsb,td s28d

fb;sb1,b2, . . . ,bNdg, where

Coutsb,td = TrH%̂ expFo
n=1

N

bnb̂n
†std − H.c.GJ . s29d

Here,bn and b̂nstd, respectively, are defined by

bn =
1

Îdv
E

vn−dv/2

vn+dv/2

dv bsvd = Îdv bsvnd s30d

and

b̂nstd =
1

Îdv
E

vn−dv/2

vn+dv/2

dv b̂outsv,td s31d

sdv=Dv /Nd. Note that

fb̂nstd,b̂n8
† stdg = dnn8. s32d

The discrete version of Eq.s19d then reads

b̂nstd = Fn
*stdâst0d + B̂nstd, s33d

whereFnstd and B̂nstd being defined according to Eqs.s30d
and s31d, respectively, withFsv ,td and B̂sv ,td instead of

bsvd and b̂outsv ,td, respectively, and Eq.s25d changes to

fB̂nstd,B̂n8
† stdg = dnn8 − Fn

*stdFn8std. s34d

Let us assume that the(initial) density operator%̂ is fac-
torable as

%̂ = %̂cav ^ %̂in ^ %̂abs s35d

s%̂cav, density operator of the cavity mode;%̂in, density
operator of the input field;%̂abs, density operator of the
dissipative system responsible for absorptiond. Substitut-
ing Eq. s33d into Eq. s29d, we may write, on recalling Eq.
s26d,

Coutsb,td = TrH%̂cav expFo
n=1

N

bnFnstdâ†st0d − H.c.GJ
3TrH%̂in ^ %̂abs expFo

n=1

N

bnB̂n
†std − H.c.GJ .

s36d

In what follows we consider the case in which both the input
field and the dissipative system are initially in the vacuum
state. In this case, the second trace in Eq.s36d simply reduces
to

TrH%̂in ^ %̂abs expFo
n=1

N

bnB̂n
†std − H.c.GJ

= expH−
1

2Fo
n=1

N

ubnu2 − o
n,n8=1

N

bnFnstdbn8
* Fn8

* stdGJ ,

s37d

which can be easily proved to be correct by recalling the
commutation rules34d and applying the Baker-Campbell-
Hausdorff formula to write the exponential operator in nor-
mal order. Combining Eqs.s36d and s37d, we may rewrite
Coutsb ,td as

Coutsb,td = expF−
1

2o
n=1

N

ubnu2Ges1/2dulsb,tdu2Ccavflsb,tdg.

s38d

Here,

Ccavsbd = Trf%̂cave
bâ†st0d−b* âst0dg s39d

is the characteristic function of the quantum state of the cav-
ity mode, and the functionlsb ,td is defined by

lsb,td = o
n=1

N

Fnstdbn. s40d

Equation(38) relates the multidimensional characteristic
function of the quantum state of the multimode output field
(at time tù t0) to the characteristic function of the cavity-
mode quantum state(at time t0). Let Coutsb ,t ;sd and
Ccavsb ;s0d be the respective characteristic functions in arbi-
trary s ands0 order, respectively. The extension of Eq.(38)
valid for s=s0=0 to arbitrary values ofs ands0 is straight-
forward

Coutsb,t;sd = expF1

2o
n=1

N

ubnu2ss− 1dG
3 es1/2dulsb,tdu2s1−s0dCcavflsb,td;s0g. s41d

B. Phase-space functions

Let us now turn from the relation between the character-
istic functionsCoutsb ,t ;sd andCcavsb ;s0d to the relation be-
tween the corresponding phase-space functions
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Poutsa,t;sd =
1

p2N E d2Nb Coutsb,t;sd

3 expFo
n=1

N

sanbn
* − an

*bndG s42d

and

Pcavsa;s0d =
1

p2 E d2b Ccavsb;s0deab*−a*b, s43d

respectively. TakingCoutsb ,t ;sd from Eq. s41d, we derive

Poutsa,t;sd =
1

p2N E d2NbE d2a Pcavsa;s0d

3 expFo
n=1

N

sanbn
* − an

*bndG
3 expF1

2o
n=1

N

ubnu2ss− 1dG
3 expflsb,tda* − l*sb,tdag

3 expF1

2
ulsb,tdu2s1 − s0dG . s44d

To perform the 2N-fold integral over thebn, we change the
variables by means of a unitary transformation

bm8 = o
n=1

N

Umnbn, s45d

sU−1dmn= Unm
* , s46d

thus

bn = o
m=1

N

Umn
* bm8 . s47d

In fact, this transformation corresponds to the introduction of
nonmonochromatic modes, the phase-space variables of
which are given by

am8 = o
n=1

N

Umnan. s48d

In order to diagonalize the quadratic form in the last ex-
ponential in Eq.(44), we set

U1n =
Fnstd
Îhstd

, s49d

where

hstd = o
n=1

N

uFnstdu2, s50d

so that, according to Eq.s45d, b18 is expressed in terms of the
bn as

b18 =
1

Îhstd
o
n=1

N

Fnstdbn. s51d

In this case, the multimode phase-space function in the new
variables simply reduces to the product of single-mode
phase-space functionsfPoutsa ,t ;sd→Poutsa8 ,t ;sdg,

Poutsa8,t;sd

= Poutsa18,t;sdPoutsa28,t;sd . . . PoutsaN−18 ,t;sdPoutsaN8 ,t;sd,

s52d

as it is easily seen from Eq.s44d. Obviously, only the first of
these output modes is related to the cavity mode, whereas all
other modes are in the vacuum state. From Eq.s44d it then
follows that the phase-space function of the relevant output
mode is given bysa8;a18 ,b8;b18d

Poutsa8,t;sd =
1

p2 E d2b8E d2a Pcavsa;s0d

3 exphfÎhstda* − a8*gb8 − fÎhstda − a8gb8*

− 1
2f1 − s− hstds1 − s0dgub8u2j, s53d

which after integration overb8 yields

Poutsa8,t;sd =
2

p

1

1 − s− hstds1 − s0d

3E d2a Pcavsa;s0d

3 expF−
2uÎhstda − a8u2

1 − s− hstds1 − s0d
G , s54d

provided that

1 − s− hstds1 − s0d ù 0. s55d

Note that the case of equality sign should be understood as
limiting process. We compare Eq.s54d with the well-known
relation

Psa;sd =
2

pss8 − sd
E d2b Psb;s8dexpF−

2ub − au2

s8 − s
G ,

s56d

which is valid for

s8 − sù 0, s57d

and see that the quantum state of the relevant output mode
can be expressed in terms of the quantum state of the cavity
mode in the compact form of

Poutsa,t;sd =
1

hstd
PcavF a

Îhstd
;s8G , s58d

where, for chosen value ofs, the value ofs8 is given by
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s8 = 1 −
1 − s

hstd
. s59d

To calculatehstd, we recall that in the limitN→`

hstd = lim
N→`

o
n=1

N

uFnstdu2 =E
Dv

dvuFsv,tdu2, s60d

with Fsv ,td from Eq. s20d. Straightforward calculation
yields

hstd =
grad

grad+ gabs
f1 − e−sgrad+gabsdst−t0dg. s61d

Setting in Eq.(54) s=s0=0, we see that the Wigner func-
tion of the relevant output mode is the following convolution
of the Wigner function of the cavity mode with a Gaussian:

Woutsa,td =
2

p

1

1 − hstd E d2b Wcavsbd

3 expF−
2uÎhstdb − au2

1 − hstd
G . s62d

This equation reveals that for perfectly extracting a quantum
state from a high-Q cavity, the condition

hstd
1 − hstd

@ 1 s63d

should be satisfied, i.e., the value of the extraction efficiency
hstd must be sufficiently close to unity. How close to
unity—it really depends on the characteristic quantum fea-
tures of the state to be extracted. On the other hand, from Eq.
s61d it follows that

hstd ø
grad

grad+ gabs
. s64d

Note thathstd.grad/ sgrad+gabsd for sufficiently long times
t− t0* sgrad+gabsd−1.

IV. EXAMPLES

The really required efficiency for nearly perfect quantum
state extraction sensitively depends on the quantum state that
is desired to be extracted. To illustrate this, let us consider
two examples of highly nonclassical states, namely, Fock
states and Schrödinger catlike states.

A. Fock states

A typical nonclassical state is ann-photon Fock state,
whose Wigner function reads

Wcav
snd sad =

2

p
s− 1dne−2uau2Lns4uau2d, s65d

where Lnsxd is the Laguerre polynomial of ordern. Substi-
tuting Eq.s65d into Eq. s62d and employing the integral rep-
resentation of the Laguerre polynomialsf34g,

Lnsxd =
1

2pi
rg dz

e−xz/s1−zd

zn+1s1 − zd
, s66d

where the contourg encloses the origin but not the point
z=1, after straightforward calculations we obtain the Wigner
function of the output pulse as

Wout
sndsa,td =

2

p
s− 1dne−2uau2f2hstd − 1gn LnF 4hstd

2hstd − 1
uau2G .

s67d

From Eq.s67d it is not difficult to see that the condition

hstd . 1 −
1

2n
s68d

must be satisfied to guarantee that then-photon Fock state
prevails in the mixed output quantum state. In the simplest
case of a one-photon Fock state,n=1, the condition reduces
to hstd.0.5. That is to say, the weight of the one-photon
Fock state exceeds the weight of the vacuum state in the
mixed state of the outgoing field,

Wout
s1dsa,td = f1 − hstdgWs0dsad + hstdWs1dsad, s69d

only if the extraction efficiency exceeds 50%. Thecondition
s68d clearly shows that with increasing value ofn the
required extraction efficiency rapidly approaches100%.

The dependence on the extraction efficiency of the quan-
tum state of the outgoing field is illustrated in Fig. 1 for the
case in which a single-photon Fock state is desired to be
extracted. Fig. 1(a) reveals that nearly perfect extraction re-
quires an extraction efficiency that should be not smaller
thanhstd=0.99, which fort→` corresponds to the require-
ment thatgabs/grad&0.01 As long ashstd.0.5, the single-
photon Fock state is the dominant state in the mixed output
state, as can be seen from Fig. 1(b) [hstd=0.71, i.e.,
gabs/grad=0.429st→`d]. For hstdø0.5, i.e., gabs/gradù1
st→`d ], the features typical of a single-photon Fock state
are lost, Fig. 1(c).

B. Schrödinger catlike states

Another example of typically nonclassical states are quan-
tum interference states, e.g.,

uclcav= Nsua0l + u− a0ld, s70d

with a0 real, and

N = f2s1 + e−4a0
2
dg−1/2. s71d

The Wigner function of such a state is given by

Wcavsad =
2N 2

p
fe−2ua−a0u2 + e−2ua+a0u2

+ 2e−2uau2 coss4a0 Im adg s72d

Substitution of Eq.s72d into Eq. s62d yields the following
expression for the Wigner function of the output field:
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Woutsa,td =
2N 2

p
he−2ua−Îhstda0u2 + e−2ua+Îhstda0u2

+ 2e−2uau2cosf4Îhstda0 Im age−2a0
2f1−hstdgj.

s73d

From Eq.s73d it follows that nearly perfect extraction of the
state requires the condition

1 − hstd !
1

2ua0u2
s74d

to be satisfied.
Figure 2 illustrates the dependence on the extraction effi-

ciency of the quantum state of the outgoing field for a
Schrödinger catlike cavity state, Eq.(70) with a0=3. Com-
paring Fig. 2 with Fig. 1, we see that, as expected, the effi-
ciency for extracting such a Schrödinger catlike state is re-
quired to be substantially higher than that for extracting a
single-photon Fock state. For a nearly perfect extraction of
the chosen Schrödinger catlike state, the efficiency should be
not smaller thanhstd=0.998, i.e.,gabs/grad&0.002 for t
→` [Fig. 2(a)]. The nonclassical interference fringes typical
of a Schrödinger catlike state can be observed, at least rudi-

mentarily, as long ashstd.0.84, i.e., gabs/grad,0.19 st
→`d [Fig. 2(b); hstd=0.952, i.e.,gabs/grad=0.05 st→`d].
For smaller values of the extraction efficiency, the quantum
interferences are effectively destroyed[Fig. 2(c)].

V. SUMMARY AND CONCLUSIONS

We have derived an input-output relation that relates the
quantum state of the pulse leaving a high-Q cavity to the
quantum state in which an excited cavity mode was prepared
at some initial time. Performing the calculations in the phase
space, we have represented the respective quantum states in
terms ofs-parametrized phase-space functions and derived a
formula that relates the phase-space functions of the outgo-
ing field and the cavity mode to each other. Taking into ac-
count unwanted losses of the cavity mode, we have studied
the conditions under which a nearly perfect extraction of

FIG. 1. (Color online) Wigner function of the quantum state of
the pulse that leaves the cavity, the mode of which is(initially )
prepared in a single-photon state.(a) hstd=0.99;(b) hstd=0.71;(c)
hstd=0.5.

FIG. 2. (Color online) Wigner function of the quantum state of
the pulse that leaves the cavity, the mode of which is(initially )
prepared in a Schrödinger catlike state given by Eq.(70) with a0

=3 (a) hstd=0.998;(b) hstd=0.952;(c) hstd=0.84.
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nonclassical quantum states from high-Q cavities should be
possible.

To calculate the quantum state of the outgoing field, we
started from its time-dependent continuous multimode char-
acteristic functional. By appropriate diagonalization, it can
be rewritten in terms of nonmonochromatic modes, one of
which is related to the cavity mode, while all other modes
remain unaffected by the cavity mode. In this way, the
s-parametrized phase-space functions of the quantum state of
the relevant nonmonochromatic output mode can be ex-
pressed in terms ofs-parametrized phase-space functions of
the quantum state in which the cavity mode was prepared. In
particular, the output Wigner function can be given as a con-
volution of the cavity Wigner function with a Gaussian re-
flecting the unwanted losses.

The crucial parameter for nearly perfect extraction of a
quantum state from a high-Q cavity is the extraction effi-
ciency, which in the long-time limit is determined by the
ratio between the cavity-mode decay rate due to unwanted
losses and the cavity-mode decay rate due to wanted(i.e.,
transmission) losses. This ratio must be sufficiently small in
order to realize a nearly 100% extraction efficiency, where
the really required smallness sensitively depends on the
quantum state to be extracted. In particular, extracting highly
nonclassical states can require extremely small values of this
ratio.

It should be pointed out that even for the best optical
high-Q microcavities available the required efficiencies for
nearly perfect extraction of nonclassical quantum states have
not been reached, because the unwanted losses are of the
same order of magnitude as the transmission losses[23–25].
So, in the simplest case of extracting from a cavity a one-
photon Fock state, the weight of the one-photon Fock state
exceeds the weight of the vacuum state in the mixed output
quantum state only if the extraction efficiency is bigger than
50%. However, the biggest value that has been realized so
far in the production of triggered single photons by coupling
a single semiconductor quantum dot to an optical mode in a
micropost microcavity is about 38%[25]. On the contrary, in
case of high-Q microwave cavities the absorption losses may
be small compared with the transmission losses[32].

We have concentrated on the calculation of the quantum
state of the field that leaves a single cavity that is initially
excited in some single-mode quantum state. The theory can

also be extended to multimode excitation in a single cavity
as well as multicavity systems. We have further assumed that
the input field is in the vacuum quantum state. Clearly, the
underlying formalism can also be applied to the case, in
which the input field is prepared in another than the vacuum
state. Needless to say that when the input field is in a thermal
state, then additional noise is fed into the cavity, and the
quantum state of the output field also carries additional
noise. As can be seen from Eq.(16), the operator input-
output relation used in this paper does not take into account
that the input field could be absorbed in the entrance port of
the cavity, which would also give rise to additional noise. To
include this effect in the theory, the input-output relation(16)
should be generalized, e.g., by following the line in Ref.
[33].

Finally, we have assumed that the process of preparation
of the quantum state of the cavity mode is sufficiently short
compared with the decay time of the cavity mode, so that the
time scales of quantum state preparation and extraction are
well separated from each other and the preparation process
can be ignored in the calculations. At this point it should be
mentioned that one possible way to reduce the effect of un-
wanted losses may be the use of cavities of deliberately en-
larged transmission, so that the unwanted losses become
small compared with transmission losses. When, for ex-
ample, the radius of a microsphere cavity is diminished, then
the transmission losses increase, thereby the absorption
losses remaining nearly constant[35,36]. Since, on the other
hand, the quality factor is reduced, the preparation time may
be comparable with the cavity decay time, which is now
determined by the transmission time. So, in the single-
photon emitter experiments in Ref.[22], in which a cavity of
a Q value of 63104 is used, the measured transmission time
of several microseconds is of the same order of magnitude as
the cavity decay time. In order to answer the question of
which quantum state is really obtained outside the cavity in
such a case, the preparation process must necessarily be in-
cluded in the calculations.
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