
Superconducting analogs of quantum optical phenomena: Macroscopic quantum superpositions
and squeezing in a superconducting quantum-interference device ring

M. J. Everitt,1,* T. D. Clark,1,† P. B. Stiffell,1 A. Vourdas,2 J. F. Ralph,3 R. J. Prance,1 and H. Prance1
1Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Brighton,

Sussex BN1 9QT, United Kingdom
2Department of Computing, Bradford University, Bradford, West Yorkshire BD7 1DP, United Kingdom

3Department of Electrical and Electronic Engineering, Liverpool University, Brownlow Hill, Liverpool L69 3GJ, United Kingdom
(Received 23 August 2002; revised manuscript received 26 August 2003; published 5 April 2004)

In this paper we explore the quantum behavior of a superconducting quantum-interference device(SQUID)
ring which has a significant Josephson coupling energy. We show that the eigenfunctions of the Hamiltonian
for the ring can be used to create macroscopic quantum superposition states of the ring. We also show that the
ring potential may be utilized to squeeze coherent states. With the SQUID ring as a strong contender as a
device for manipulating quantum information, such properties may be of great utility in the future. However,
as with all candidate systems for quantum technologies, decoherence is a fundamental problem. In this paper
we apply an open systems approach to model the effect of coupling a quantum-mechanical SQUID ring to a
thermal bath. We use this model to demonstrate the manner in which decoherence affects the quantum states of
the ring.
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INTRODUCTION

In two recent publications[1,2] we reported on the theo-
retical description of a quantum-mechanical superconducting
quantum-interference device(SQUID) ring (here, a thick su-
perconducting ring enclosing a single Josephson weak link
device) coupled to quantized electromagnetic field(em) os-
cillator modes. In this work we emphasized that the SQUID
ring could be used to control various quantum phenomena
involving each of the circuit components of the coupled sys-
tem via the static magnetic bias fluxFx applied to the ring.
These included frequency conversion between the em modes
and quantum entanglement extending across the system, both
with relevance to emerging quantum technologies based on
Josephson devices[3–13]. Furthermore, work by Friedman
et al. on SQUID rings has highlighted another phenomenon
of potentially great significance to these incipient technolo-
gies, namely, the creation of externally controlled superposi-
tions of macroscopically distinct states in a SQUID ring, or
other, Josephson weak link based, circuit configurations[14].
As will become apparent, the creation and control of such
states is a natural application for a SQUID ring.

In this paper we consider the creation and control of mac-
roscopic quantum superposition states in a SQUID ring
alone, uncoupled to any em oscillator modes. First, we con-
sider the spectral properties of the ring Hamiltonian. Then
we observe that at certain points in the bias fluxFx applied
to the ring the eigenfunctions of this Hamiltonian form mac-
roscopic superposition states. We show that a strong enough
level of dissipation may destroy the quantum nature of these

states, while leaving the flux in the SQUID ring in a statis-
tical mixture of two macroscopically distinguishable states.
Following this we demonstrate that a SQUID ring can be
used to create(form) a controllable macroscopic superposi-
tion of states. In addition, we show that a SQUID ring with a
sufficiently large Josephson coupling term in its potential can
be used to squeeze coherent states. In this it is apparent that
physical phenomena associated with SQUID rings, and with
quantum circuits built around SQUID rings, have analogies
with effects well known in the field of quantum optics. In-
deed, the SQUID ring can be viewed as a nonlinear medium
which, for example, can be utilized to generate entangle-
ments, frequency conversion, superposition states, and
squeezing. However, the SQUID ring has significant advan-
tages over the generally weakly polynomial nonlinear media
of quantum optics which are usually weakly coupled to ex-
ternal em fields. Thus, it is extremely nonperturbative in na-
ture (and concomitantly capable of inducing extremely non-
linear behavior[1,2,15]) with a coupling to em modes that
can be adjusted by means of an external bias flux. This
would appear to make the SQUID a prime candidate for
future developments in what is, in effect, highly nonpertur-
bative quantum optics, albeit at much lower frequencies. In
practice, these frequencies would typically be much less than
1 THz for low critical temperature superconductors.

BACKGROUND

Wigner and Weyl functions

Although the Wigner and Weyl functions are familiar to
those working in the field of quantum optics[16–18], their
use in the quantum description of Josephson weak link cir-
cuits, and in particular SQUID rings, appears to be rather
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limited. The Wigner function is defined to be
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1
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where r is the density operator describing the state of the
system with conjugate variables positionx and momentump.
Physically, the Wigner function can, to some extent, be con-
sidered as a generalization of the wave function of the quan-
tum system under study in which we are provided with in-
formation in both position and momentum space. We note
that the Wigner function may, and often does, take on nega-
tive as well as positive values. An important and character-
istic feature of the Wigner function is that the quantum cor-
relations between the macroscopically distinct components
of a macroscopic superposition state can be seen in an obvi-
ous and graphical way, i.e., these correlations will appear in
the Wigner function as interference terms between the states
of the superposition in thex-p phase plane.

By contrast, the Weyl function is defined as
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1
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It is apparent here that the Weyl function of a state is equal
to the overlap of the displaced state with the original state so
that X and P are considered as increments in position and
momentum. As can be seen, the Weyl function is a general-
ized autocorrelation function; it is also the two-dimensional
Fourier transform of the Wigner function. Thus, just as the
Wigner function highlights the regions in thex-p plane
where the wave-function amplitude is significant, the Weyl
function tells us where there exists a significant amplitude
for correlations between intervals ofDxs=Xd andDps=Pd in
this plane. A more detailed discussion and review of Wigner
and Weyl functions, and the relationship between them, can
be found in the literaturef18,19g.

For those unfamiliar with these functions we provide a
specific example in Fig. 1. Here, we have plotted the Wigner

functions for the first four energy eigenstates of the simple
harmonic oscillator together with the absolute values of their
associated Weyl functions. We note that the Weyl function is,
in general, complex valued. In this paper, therefore, we only
ever plot its absolute value since, for our purposes, this pro-
vides us with sufficient information about the correlations of
the wave function.

The SQUID ring Hamiltonian

Over the last two decades SQUID rings, viewed as single,
macroscopic, quantum objects, have been the subject of con-
siderable attention theoretically. In early studies the focus
was primarily on time-independent properties and the inter-
action of SQUID rings with external environments
[15,20,21]. Of late there has been much interest in time-
dependent behavior, for example, in solving the time-
dependent Schrödinger equation for a SQUID ring in the
presence of a microwave field[22,23]. Recently, significant
efforts have been devoted to the experimental measurement
and control of macroscopic quantum superposition states in
SQUID rings [14]. In this paper we proceed to develop a
theoretical description of macroscopic quantum superposi-
tions in SQUID rings, borrowing techniques that are com-
monly used in quantum optics. We extend the usefulness of
this description by considering quantum-mechanical
squeezed states in SQUID rings. For both superposition of
states and squeezing in these rings we also discuss the effect
of dissipation(decoherence).

In the widely used lumped component model of a SQUID
ring [15,20] the Hamiltonian takes the form

H =
Q2

2C
+

sF − Fxd2

2L
− "n cosS2pF

F0
D , s1d

whereF andQ are, respectively, the magnetic flux threading
the ring and the electric displacement flux across the weak
link swith fF ,Qg= i"d, "n /2 is the matrix element for Jo-
sephson tunneling through the weak linkswith critical cur-
rentIc=2end, F0=h/2e is the superconducting flux quantum,
and L and C are, respectively, the ring inductance and the
capacitance of the weak link in the ring.

Introducing a unitary translation operatorT
=exps−iFxQ/"d, we can then write down the ring Hamil-
tonian as

H8 = T†HT =
Q2

2C
+

F2

2L
− "n cosS2p

F + Fx

F0
D , s2d

where it is clear that as"n→0 the system behavior reduces
to that of a simple harmonic oscillator. Given the relation
between our system and the simple harmonic oscillator, we
now define creation and annihilation operators in the usual
way, i.e., as

a =ÎCv

2"
SF −

i

Cv
QD, a† =ÎCv

2"
SF +

i

Cv
QD .

These raising and lowering operators, as used in quantum
optics, then allow us to write the ring Hamiltonian in a more
convenient form. We also choose to express it in dimension-

FIG. 1. Illustrative example of the(a) Wigner and(b) absolute
value of the Weyl functions of the first four energy eigenstates of
the simple harmonic oscillator(increasing in energy from left to
right).
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less units, normalized to"v, wherev /2p=1/2pÎLC is the
SQUID ring oscillator frequency. This takes the form

H = Sa†a +
1

2
D −

n

v
cosS2p

F0
Î "

2Cv
fa + a†g + 2pwxD ,

s3d

wherewx=Fx/F0 is the normalized static bias flux applied
to the SQUID ring. We note that the cosine term in the
Hamiltonian introduces nonlinearities to all orders. We have
seen that this property of the SQUID ring introduces highly
nonperturbative effectsf1,2g when coupled to other circuit
systems. In this paper we show that it also gives rise to
quantum superpositions of macroscopically distinct states
and squeezing within the ring itself.

From Eq.(3) it is apparent that as long as the ration :v
and the productCvs=ÎC/Ld remain the same the physics of
this system is unchanged. We therefore choose values ofC
and "n (or equivalentlyIc=2en) that can be attained using
currently available microfabrication techniques that are
physically sensible and that will lead to SQUID ring systems
exhibiting quantum behavior at experimentally accessible
temperatures. With these factors in mind we choose the cir-
cuit parametersC=5310−15 F, L=3310−10 H, and a suffi-
ciently large value of"ns=0.047F0

2/L ; Ic=2 mAd to generate
clear wells in the ring potential. Thus, for a thin-film Joseph-
son tunnel junction weak link with a 1 nm oxide insulator
thickness (dielectric constant<10) a capacitance of 5
310−15 F yields junction dimensions<0.25mm square,
readily achieved using microfabrication. Again, with these
dimensions the supercurrent density in the junction is around
4 kA cm−2 which is perfectly reasonable. Furthermore, with
C=5310−15 F and L=3310−10 H, v /2p=130 GHz, well
below the frequency corresponding to the superconducting
energy gap in niobiums<1 THzd, a metal often used in
weak link device fabrication. Given these chosen parameter
values, and assuming, as our example, SQUID circuits based
on niobium, these correspond ton /v=7.9 and Cv=4.1
310−3, values which, unless otherwise stated, we now keep
to throughout this paper.

Adopting these values ofL, C, and"n we show in Fig. 2
the SQUID ring potential UsF ,Fxd=sF−Fxd2/2L
−"n coss2pF /F0d — see Eq.(1) — computed for three
different values of Fx [=0F0stopd ,0.49F0smiddled, and
0.5F0sbottomd]. We also show in this figure the probability
densities of the wave functions of the ring as a function ofF.
These probability densities are displaced by their energy ei-
genvalues, found by solving the time-independent
Schrödinger equation using the Hamiltonian(1). As the bot-
tom of each of the local wells in the ring potential in Fig. 2
is approximately quadratic, we would expect the solutions
deep within these wells to look like those for the simple
harmonic oscillator. In addition, we find that, on average,
these states are slightly squeezed in terms of the magnetic
flux variableF. For example, in Fig. 2 the lowest state in
each of the wells forFx=0.49F0 has fDsÎCv /"Fdg2

<0.43 andfDsÎ1/C"vQdg2<0.58 (compared to 0.5 in the
unsqueezed state), where F and Q are normalized to

s" /Cvd1/2 and s"Cvd1/2, respectively. To aid in the descrip-
tion of the system we adopt the term locallys harmonic to
describe this behavior, where the prefixs denotes the
squeezed nature of these states. The equivalence of the low-
lying set of energy eigenvalues deep in each(local) well is a
sound approximation except where the energy levels of two
or more wells align. In such cases, of course, symmetric and
antisymmetric superpositions of the eigenfunctions for the
isolated wells develop.

In Fig. 3 we show a set of computed SQUID ring energy
eigenvalues of the Hamiltonian operator(3), starting with the
ground state, as a function of external fluxFx and spanning
one flux quantum. For clarity the energy levels are shown as
alternating black and gray lines. As can be seen, for the val-
ues ofL, C, and"n we have adopted in this work, there exist
many crossing points of the original eigenvalues asFx is
changed over aF0 period. At the scale provided in Fig. 3
these crossing points appear to be degenerate in energy(e.g.,
in the lowest two eigenvalues atFx=0.5F0). Of course, this
is not the case, as would be evident if these crossing points

FIG. 2. Potential energy in units of"vsv=1/ÎLCd vs dimen-
sionless flux[see Eq.(4)] for a SQUID ring with parameter values
C=5310−15 F, L=3310−10 H, and "n=0.047F0

2/L for Fx

=0F0, 0.49F0, and 0.5F0. Also shown are the probability density
functions of the ring wave functions displaced by their energy
eigenvalues.
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were computed to sufficient accuracy. However, for the po-
tential wells shown in Fig. 2, with the very weak coupling
between levels in different wells, the energy splittings at
these points may be extremely small indeed.

RESULTS

Quantum superpositions of macroscopically distinct states

Ignoring, for the moment, the special cases where the lo-
cally s-harmonic oscillator states are degenerate(zero cou-
pling between wells) we instead consider making an equal
superposition of two energy eigenstates. We start by assum-
ing that these two states are locallys harmonic in different
wells and, for simplicity, take these states to correspond to
the lowest-energy levels in each well. Then, as one would
expect, we create a superposition of macroscopically distinct
states in flux. As this superposition state is no longer an
eigenstate of the Hamiltonian for the system, it must evolve
with time. This evolution introduces a phase difference be-
tween the two stationary(locally s-harmonic) states in the
superposition which manifests itself in a time-dependent
evolution of the interference term in the Wigner function.

In computing Wigner functions for the SQUID ring it is
convenient to introduce equivalent dimensionless positionx
and momentump operators in place ofF andQ. These are
defined as

x =ÎCv

"
F, p =Î 1

"Cv
Q. s4d

An example of a macroscopic superposition state in a
SQUID ring, as illustrated through its computed Wigner
function, is shown in Fig. 4, both in perspective and in pro-
jection on thex-p plane. Here, we have taken our standard
values ofL, C, and"n (above) and have selected the state
s1/Î2dsuAl+ uBld at the flux biasFx=0.49F0 of Fig. 2(b). In
this example we can distinguish in the Wigner function two
macroscopically distinct flux states of the SQUID ring in the
x-p plane (i.e., the Gaussian-like components), separated
from one another by an oscillatory region. The latter, oscil-
latory, region arises because of the quantum coherence be-
tween the two separate components in the superposition and
demonstrates that we are indeed dealing with a true quantum
superposition of macroscopically distinct states in flux. We

note that the Wigner function of Fig. 4 has been calculated at
a fixed timet=0. However, its general form does not vary
with time. Nevertheless, there is dynamical evolution of the
interference term in the superposition but not in the observ-
able flux states.

Tunable superposition of states in a SQUID ring

We now consider the potential with a static bias fluxFx
=0.5F0, as shown in the bottom plot of Fig. 2. By examining
the first two energy eigenstates we find that we have wave
functions which are a symmetric,usl, and an antisymmetric,
ual, superposition of the lowest energy, locallys-harmonic,
oscillator vacuum states of the two middle wells. These two
states, which are squeezed, are extremely close in energy due
to the height of the barrier between the wells in the potential.
Even so, the interference terms in the Wigner function be-
tween the states for each of these macroscopically distinct
states arep /2 out of phase. However, from the viewpoint of
theory we might also consider an equal superposition of
these states of the form

1
Î2

fusl + expsiudualg, s5d

where u is the phase. LetEs and Ea be the eigenenergies
corresponding to the eigenstatesusl and ual so thatDE=Es
−Ea the energy splitting associated with the lifting of the
degeneracy concomitant with tunneling between the adjacent
wells. Thenu=DEt. It is seen that this phaseu changes as a
function of time and any particular value of expsiud is real-
ized cyclically with period 2p /DE. If we wished to fix our
state in a given superposition, we can do this simply by
changing our external magnetic bias flux by a fraction. If
this fractional change in bias flux is sufficient, this will
remove the coupling between the wells and setu. Alter-
natively, this could be achieved by tuning the barrier
height of the SQUID ringssee Fig. 9 later in this paperd so
that the Josephson-tunneling energy becomes vanishingly
small f24g. The effect of changingu can be dramatic, as
illustrated in Fig. 5, where the Wigner function in the
x-p plane is shown for selected values of this parameter.
As is apparent, when the wave function for the ring is
strongly sbut not completelyd localized in two or more

FIG. 3. Computed SQUID ring energy eigenvalues of the
Hamiltonian for the SQUID ring of Fig. 2.

FIG. 4. Wigner function showing, both in perspective and in
projection onto thex-p plane, the nature of this quantum superpo-
sition of macroscopically distinct statess1/Î2dsuAl+ uBld for the
SQUID ring of Fig. 2. The dimensionless quantitiesx and p are
defined in Eq.(4).
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regions in the ring potential, it is the quantum interaction
between these regions that is responsible for the creation
of superposition of macroscopically distinct states.

We note that given the very slightly different energies
between the symmetric and antisymmetric superposition
states, due to the height of the barrier between the two wells,
the superposition(5) will oscillate slowly back and forth
between these wells. Using these energies we calculate this
period to be 100 ns. This is much longer than the time con-
stant corresponding to theLC frequency of the SQUID ring
in our example(i.e., for C=5310−15 F, L=3310−10 H this
is 7.6 ps) but well within the decoherence times of modern
SQUID ring circuits[4,25–27].

In the above discussion we have considered the develop-
ment of macroscopic superposition states in a SQUID ring
based on a choice of ring parameters which can be realized
by fabrication and which are physically reasonable. How-
ever, this choice does not connect directly with published
experimental data. We will therefore deviate briefly from our
standard parameter values and consider an explicit example
of superpositions of SQUID ring states as reported recently
in the literature by Friedmanet al. [14]. In this paper the
authors considered aquantum superposition of distinct mac-
roscopic statesand presented experimental evidence, indicat-
ing that a SQUID ring could be placed into a superposition
of two magnetic flux states. We now demonstrate by compu-
tation that this superposition may indeed form a true macro-
scopic superposition state. The experimental system used a
SQUID ring with the circuit parametersC=1.03310−13 F,
L=2.38310−10 H, andIc=2.02310−6 A. To obtain a super-
position state as demonstrated in this paper we used the ex-
ternal bias flux quoted by the authors, i.e.,Fx
=0.514 466F0. The potential energy of a SQUID ring with
these parameters is shown in Fig. 6 together with the prob-

ability densities for the ring wave functions. These are dis-
placed, as before, by their energy eigenvalues. In this figure
we have marked with an arrow the states in the left-hand and
right-hand wells from which we will form our superposi-
tions. These are the states that were utilized in the experi-
ment of Friedmanet al.

These eigenfunctions are similar to those of Fig. 5, in that
they form a symmetric,usl, and an antisymmetric,ual, super-
position of the locallys-harmonic states of the separate
wells, albeit with higher and different ordinal numbers. The
quantum state of the SQUID ring, as reported by Friedmanet
al. [14], will thus be a superposition of these two eigenstates.
For our purposes it is therefore sufficient to look(again) at
superpositions of the form

1
Î2

fusl + expsiudualg. s6d

In Fig. 7 we show the Wigner functions for three different
superpositions of these eigenstates, again both in perspective
and projection onto thex-p plane. We notice that compared
with the Wigner functions of Fig. 5 both the states of the
macroscopic quantum superposition corresponding to the
left- and right-hand wells in Fig. 7 and the region of inter-
ference between them display more complex patterns. Given
the choice of more highly excited states in the experiment of
Friedmannet al., this is to be expected. Nevertheless, Fig. 7
demonstrates that the Wigner function(and, of course, the
associated Weyl function) can expose sophisticated quantum
coherent behavior in SQUID rings.

Dissipation

In considering the effect of dissipation on the calculations
presented in this paper we have chosen to use a standard
approach, and one familiar in quantum optics. This is to be
done by coupling the SQUID ring to a decohering mono-
chromatic thermal bath. The master equation for the evolu-
tion of the density operator of the system then takes the form
[28]

FIG. 5. Wigner function of a superposition of the lowest two
(symmetric and antisymmetric) energy eigenstates as a function of
phase—see Eq.(5) and related text and Fig. 4 for scalings.

FIG. 6. Potential energy in units of"v vs dimensionless flux
[see Eq.(4)] of a SQUID ring with parameter valuesC=1.03
310−13 F, L=2.38310−10 H, Ic=2.02310−6 A, and Fx

=0.514 466F0 (after Friedmannet al. [14]). Also shown are the
probability density functions of the ring’s wave functions displaced
by their energy eigenvalues. The arrow indicates the states used to
calculate the superposition state.
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] r

] t
= −

i

"
fH,rg +

g

2"
sM + 1ds2ara† − a†ar − ra†ad

+
g

2"
Ms2a†ra − aa†r − raa†d, s7d

whereM is related to the temperatureT and the frequencyvb
of each decohering bath viaMi =fexps"vb/kBTd−1g−1 andgi

is the couplingsdamping rated between each of the com-
ponents to its respective thermal bath. For the following
examples that we will now calculate we setT=1 K with
vb=v.

To illustrate the effect that dissipation has upon a macro-
scopic superposition state in a SQUID ring, we now solve
the master equation(7) for the system evolution, where the
ring is taken to be in its ground state atFx=0.5F0. For this
computation we return to our initial circuit values ofC=5
310−15 F, L=3310−10 H, and "ns=0.047F0

2/Ld. Here we
have chosen to use a decoherence rate of 0.01v. In Fig. 8 we
have plotted the Wigner and Weyl functions for the ring at
particular times. As the system evolves we notice that the
Wigner and Weyl functions display very clearly the disap-
pearance of the quantum coherence between the two states of
this superposition. We also note that after sufficient time has
elapsed the Wigner function still displays two distinct flux
probabilities. However, the SQUID ring is longer in a pure
state and this represents a classical coin toss probability and
not a quantum one. This is also clearly reflected in the dis-
appearance of the symmetrically positioned correlation peaks
in the Weyl function at these later times.

Squeezed states of a SQUID ring

Just as in quantum optics, where coherent light can be
squeezed in the number-phase plane through its interaction
with a nonlinear optical medium, we shall now demonstrate
that a SQUID ring, with the cosine Hamiltonian(1), can be
used to squeeze an initial coherent state. This starting condi-
tion in a SQUID ring can be achieved by changing the weak
link structure in the ring. As is well known, the combined
Josephson critical current in a parallel, two weak link, loop,
connected by superconducting wires(a dc SQUID[29]), can
be varied by adjusting the magnetic flux threading the loop.
Such a structure can serve as the adjustable weak link within
a larger diameter SQUID ring. This has been already dis-
cussed in several earlier papers, including that of Friedmanet

al. [14]. The arrangement is depicted in Fig. 9.
Provided the control magnetic fluxFx2

threading the mi-
nor loop in Fig. 9 is large enough, and the weak links in the
loop can be fabricated(in principle) to possess identical criti-

FIG. 7. Wigner function, from left to right, for the three distinct phase 0,p /2, andp (cf. Fig. 5 and after Friedmannet al. [14], showing,
both in perspective and in projection onto thex-p plane, the superposition of the(symmetric and antisymmetric) energy eigenstates as
indicated in Fig. 6.

FIG. 8. Wigner(left) and Weyl(right) functions for the ground
state of the SQUID ring of 3 evolving in the presence of dissipation
(T=1 K andg=0.01v). The effect of dissipation is to remove the
quantum correlations in this superposition of macroscopically dis-
tinct states over the time shown.
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cal currents, the net supercurrent carried through the loop can
be made vanishingly small. In this situation the Josephson
coupling energy in Eq.(1) reduces essentially to zero leaving
just the parabolic background term(i.e., as for a simple har-
monic oscillator). Let us now consider a possible mechanism
by which we could create a coherent state in a SQUID ring.
If we allow the SQUID ring to decohere to its ground state,
then, as we are in the low Josephson coupling limit, this state
will very much resemble that of the vacuum state of the
simple harmonic oscillator. Now, a coherent state is just the
vacuum state displaced from the origin and then allowed to
evolve freely. We can realize this for a SQUID ring by very
rapidly changing the external bias flux so that the wave func-
tion does not change significantly in shape, but the relative
expectation value of flux(position) no longer corresponds to
the minimum of the potential well. We can, within reason,
choose the ramp rate, start and end bias flux, to create a state
which is a very good approximation to a coherent state at a
required energy. We take this as the initial prepared condition
of the major SQUID ring(with a main control fluxFx1

) for
which we can choose a coherent stateuA= iÎ1l. We follow
this initial setup by a very rapid reduction inFx2

to yield the
desired(and finite) Josephson coupling energy in the prin-
ciple SQUID ring corresponding to the ring potential consid-
ered throughout this paper. Clearly, in an experimental situ-
ation this reduction must take place on a time scale short
compared with the decoherence time of the SQUID ring
coupled to its environment. From the literature[4,25–27] it
appears that the coherence times in SQUID rings can be
sufficiently long to make this readily achievable. With this
proviso the system is prepared in the required coherent state
and then allowed to evolve over time using the master equa-
tion (7).

Here, as before, we take the SQUID ring circuit param-
eters to beC=5310−15 F andL=3310−10 H. However, in
order to improve the effects of squeezing by the ring we have
increased"n to 0.24F0

2/L, yielding a superconducting criti-
cal current density of around 20 kA cm−2. From our given
initial condition, and by computing the uncertainties in flux,
we see that the SQUID ring can squeeze the magnetic flux
within the ring. We choose not to show the results for the
charge as they do not provide any additional information
relevant to this discussion. In Fig. 10 we show the uncer-
tainty in flux for a selection of decoherence rates. Here, the
horizontal line denotes that squeezing happens forsDxd2 less
than 1/2. We can clearly see that, on average, the ring has
effectively squeezed this state. We also see that for a judi-

cious choice of decoherence rate and interval of time, dissi-
pation can assist in the squeezing process. We note that in the
g=0.1 case it can be seen that the SQUID ring decoheres to
its (squeezed) vacuum state over a relatively short period.
Thus, it appears that these potential wells may be used with
facility to generate squeezing of the magnetic flux variable of
the ring. It is therefore reasonable to assume that adiabatic
changes of this potential would, unless matching conditions
exist between locals-harmonic energy levels of adjacent
wells, allow some adjustment of the expectation value of the
flux in the ring.

CONCLUSIONS

In this paper we have explored two applications of
SQUID rings, with strong analogies to the field of quantum

FIG. 9. Schematic of a SQUID ring with a(flux) controllable
Josephson tunneling energy. Here the area enclosed by the outer
loop ]S1 is much greater than that enclosed by the inner loop]S2.

FIG. 10. Uncertainty in dimensionless flux[see Eq.(4)] vs di-
mensionless timesvtd, for a SQUID ring with parameter valuesC
=5310−15 F, L=3310−10 H, and"n=0.24F0

2/L, computed for a
selection of decoherence rates atT=1 K. Here the horizontal line
denotes that squeezing occurs forsDxd2 less than 1/2. The gray
background oscillation for theg=0.001,0.01, and 0.1 examples is
the g=0 pattern repeated for comparison.
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optics, which may prove to be of great utility given the cur-
rent interest in quantum circuit technologies. In the first we
describe the manner in which we can create macroscopic
superposition states in SQUID rings and the way these may
be manipulated through an external control flux. In the sec-
ond we provide a dynamical mechanism for inducing
squeezing of the magnetic flux variable in a SQUID ring
starting from an almost harmonic-oscillator state. These take
advantage of the highly nonperturbative quantum nature of
SQUID rings arising from the cosine coupling energy term in
the ring Hamiltonian. As we emphasize, both are of great
interest in the light of current research in the fields of quan-
tum computing and quantum-information processing
[10–13]. Moreover, the results presented in this paper em-
phasize that the SQUID ring can act as a versatile quantum
device and, as we have shown previously, can be used to
create correlations across extended, multicomponent, quan-
tum circuit systems[1,2,30–33]. These correlations can, for
example, be made manifest as quantum entanglements and

quantum frequency up/down-conversion[1,2], with each
controlled by the external bias flux applied to the SQUID
ring. In this sense these phenomena, including macroscopic
superposition states and squeezing, highlight the role of the
SQUID ring as the essential machinery for a range of appli-
cations in superconducting quantum circuit technologies.
This further enhances our understanding of these nonpertur-
bative quantum objects and their possible usefulness in these
incipient technologies.
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