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In this paper we explore the quantum behavior of a superconducting quantum-interference S@ite)
ring which has a significant Josephson coupling energy. We show that the eigenfunctions of the Hamiltonian
for the ring can be used to create macroscopic quantum superposition states of the ring. We also show that the
ring potential may be utilized to squeeze coherent states. With the SQUID ring as a strong contender as a
device for manipulating quantum information, such properties may be of great utility in the future. However,
as with all candidate systems for quantum technologies, decoherence is a fundamental problem. In this paper
we apply an open systems approach to model the effect of coupling a quantum-mechanical SQUID ring to a
thermal bath. We use this model to demonstrate the manner in which decoherence affects the quantum states of
the ring.
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INTRODUCTION states, while leaving the flux in the SQUID ring in a statis-
tical mixture of two macroscopically distinguishable states.

In two recent publication§l,2] we reported on the theo- Following this we demonstrate that a SQUID_ ring can be
retical description of a quantum-mechanical superconductinfSed to creatéform) a controllable macroscopic superposi-
guantum-interference devi¢8QUID) ring (here, a thick su- tIOI"I.O.f states. In addition, we shovy that a SQ_UID ring yv|th a
perconducting ring enclosing a single Josephson weak lingufficiently large Josephson coupling term inits potential can
device coupled to quantized electromagnetic fiéén) os- be uged to squeeze cohere_nt states. In this it is apparent .that
cillator modes. In this work we emphasized that the SQUIDPhYsical phenomena associated with SQUID rings, and with
ring could be used to control various quantum phenomen§uantum circuits built around SQUID rings, have analogies
involving each of the circuit components of the coupled sysWith effects well known in the field of quantum optics. In-
tem via the static magnetic bias flux, applied to the ring. deed, the SQUID ring can be viewed as a nonlinear medium
These included frequency conversion between the em modd¢hich, for example, can be utilized to generate entangle-
and quantum entanglement extending across the system, bdttents, frequency conversion, superposition states, and
with relevance to emerging quantum technologies based offlu€ezing. However, the SQUID ring has significant advan-
Josephson devicg8—13. Furthermore, work by Friedman tages over the genera_lly weakly polynomial nonlinear media
et al. on SQUID rings has highlighted another phenomenorPf quantum optics which are usually weakly coupled to ex-
of potentially great significance to these incipient technolo-ernal em fields. 'I_'hus, itis extreme]y nor_lperturbatlve In na-
gies, namely, the creation of externally controlled superposituré (and concomitantly capable of inducing extremely non-
tions of macroscopically distinct states in a SQUID ring, orlinear behavior{1,2,19) with a coupling to em modes that
other, Josephson weak link based, circuit configuratjgds ~ can be adjusted by means of an external bias flux. This
As will become apparent, the creation and control of suctvould appear to make the SQUID a prime candidate for
states is a natural application for a SQUID ring. future developments in what is, in effect, highly nonpertur-

In this paper we consider the creation and control of macbative quantum optics, albeit at much lower frequencies. In
roscopic quantum superposition states in a SQUID ringoractice, these frequencies would typically be much less than
alone, uncoupled to any em oscillator modes. First, we conl THz for low critical temperature superconductors.
sider the spectral properties of the ring Hamiltonian. Then
we observe that at certain points in the bias flbapplied
to the ring the eigenfunctions of this Hamiltonian form mac- BACKGROUND
roscopic superposition states. We show that a strong enough

level of dissipation may destroy the quantum nature of these Wigner and Weyl functions

Although the Wigner and Weyl functions are familiar to
those working in the field of quantum opti¢$6-1§, their
*Electronic address: m.j.everitt@sussex.ac.uk use in the quantum description of Josephson weak link cir-
"Electronic address: t.d.clark@sussex.ac.uk cuits, and in particular SQUID rings, appears to be rather
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functions for the first four energy eigenstates of the simple
harmonic oscillator together with the absolute values of their
associated Weyl functions. We note that the Weyl function is,
in general, complex valued. In this paper, therefore, we only
ever plot its absolute value since, for our purposes, this pro-
vides us with sufficient information about the correlations of

the wave function.

The SQUID ring Hamiltonian

Over the last two decades SQUID rings, viewed as single,

FIG. 1. lllustrative example of thea) Wigner and(b) absolute  macroscopic, quantum objects, have been the subject of con-
value of the Weyl functions of the first four energy eigenstates ofgjderable attention theoretically. In early studies the focus
the simple harmonic oscillataiincreasing in energy from left to  as primarily on time-independent properties and the inter-

right). action of SQUID rings with external environments
[15,20,21. Of late there has been much interest in time-
limited. The Wigner function is defined to be dependent behavior, for example, in solving the time-
dependent Schrodinger equation for a SQUID ring in the
W(X,p) = 1 f d§<x+ }§|p|X— }§>exp(— ip) presence of a microwave fie[@2,23. Recently, significant
2w 2 2 efforts have been devoted to the experimental measurement

1 < 1 1 > and control of macroscopic quantum superposition states in
:—Jdg p+ =Lplp- = )exp(-ix), SQUID rings[14]. In this paper we proceed to develop a

2m 2 2 theoretical description of macroscopic quantum superposi-
where p is the density operator describing the state of thelions in SQUID rings, borrowing techniques that are com-
system with conjugate variables positioand momentunp. ~ Monly used in quantum optics. We extend the usefulness of
Physically, the Wigner function can, to some extent, be conthis description by considering quantum-mechanical
sidered as a generalization of the wave function of the quarSqueezed states in SQUID rings. For both superposition of
tum system under study in which we are provided with in-States _and_ squeezing in these rings we also discuss the effect
formation in both position and momentum space. We notéf dissipation(decoherende
that the Wigner function may, and often does, take on nega- In the widely used lumped component model of a SQUID
tive as well as positive values. An important and characterfing [15,20 the Hamiltonian takes the form

istic feature of the Wigner function is that the quantum cor- 2 —d )2

) . i Q (D-Dy 27D
relations between the macroscopically distinct components H=—+——"7"-1% —, (1)
of a macroscopic superposition state can be seen in an obvi- 2C 2A 0

ous and graphical way, i.e., these correlations will appear ifyhered andQ are, respectively, the magnetic flux threading
the Wigner function as interference terms between the statqfe ring and the electric displacement flux across the weak

of the superposition in the-p phase plane. link (with [®,Q]=i%), 4v/2 is the matrix element for Jo-
By contrast, the Weyl function is defined as sephson tunneling through the weak lioith critical cur-
_ 1 < 1 1 > rentl.=2ev), ®y=h/2eis the superconducting flux quantum,
W(X,P) = — f dz\ £+ =X|p|¢ - =X )Jexp(—i{P) and A andC are, respectively, the ring inductance and the
2m 2 2 capacitance of the weak link in the ring.
1 1 1 . Introducing a unitary translation operatorT
=zfd§ §+§P|P|§‘§P exp(=i¢X). =exp(-i®,Q/#), we can then write down the ring Hamil-

tonian as
It is apparent here that the Weyl function of a state is equal 5 5
to the overlap of the displaced state with the original state so H' =TTHT = <« + @ hy cos(ZW(I) * (DX) 2)
that X and P are considered as increments in position and 2C 2A 0
760 autocormalation functon: f 1 alsb the wo-dimengionall!1Sre it s clear that a0 the system behavior rediuces
. . . . to that of a simple harmonic oscillator. Given the relation
Fo_uner transf_orm Qf the Wigner fun_ctlon._Thus, Just as thebetween our system and the simple harmonic oscillator, we
Wigner function h|gh!|ghts th? regions in _th)ep plane now define creation and annihilation operators in the usual
where the wave-function amplitude is significant, the Weyl .
way, i.e., as
Cow i
=\/—|®+—0Q].
2h ( CwQ)

function tells us where there exists a significant amplitude

for correlations between intervals ak(=X) and Ap(=P) in Co i

this plane. A more detailed discussion and review of Wigner a= E<¢ - aQ) a'=

and Weyl functions, and the relationship between them, can

be found in the literaturgl8,19. These raising and lowering operators, as used in quantum
For those unfamiliar with these functions we provide aoptics, then allow us to write the ring Hamiltonian in a more

specific example in Fig. 1. Here, we have plotted the Wignerconvenient form. We also choose to express it in dimension-
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less units, normalized thw, wherew/27=1/2m\/AC is the -1}
. . : -l
SQUID ring oscillator frequency. This takes the form %D _i_
£
H:<a’ra+}>—£cos(2—w i[a+a"]+21-r ) = _:
2) " w \d, V2Cw ) g ol _
(3) }’o.% -7t |
. . _— . i @, = 0.09
where ¢,=®,/®, is the normalized static bias flux applied -9 : - - : - - -
to the SQUID ring. We note that the cosine term in the % 46 4 2 0 2 4 6 8
Hamiltonian introduces nonlinearities to all orders. We have Dimensionless Magnetie: Flux o
seen that this property of the SQUID ring introduces highly 12
nonperturbative effectfl,2] when coupled to other circuit g3 11
systems. In this paper we show that it also gives rise to :-:3 10
quantum superpositions of macroscopically distinct states R 9}
and squeezing within the ring itself. < 8
From Eq.(3) it is apparent that as long as the ratiow § 7 1 B
and the producCw(=yC/A) remain the same the physics of B 6 )OL |B)
this system is unchanged. We therefore choose valu€s of sy @, =0.499 | |4)
and#v (or equivalentlyl.=2ev) that can be attained using e % 94 2 0 2 4 6 3
currently available microfabrication techniques that are Dimensionless Magnetic Flux z
physically sensible and that will lead to SQUID ring systems 12L
exhibiting quantum behavior at experimentally accessible > 11l
temperatures. With these factors in mind we choose the cir- %" 10h
cuit parameter€=5x 10 F, A=3x 10"'°H, and a suffi- S of
ciently large value ofi»(=0.047b3/ A ;1,=2 uA) to generate = 8f
clear wells in the ring potential. Thus, for a thin-film Joseph- 2 4]
son tunnel junction weak link with a 1 nm oxide insulator L 6l
thickness (dielectric constant=10) a capacitance of 5 & s| 32050
X 10 F vyields junction dimensions=0.25um square, e 2 Z i éo g

readily achieved using microfabrication. Again, with these

dimensions the supercurrent density in the junction is around
_2 - - .

4 kA cm = which is perfectly reasonable. Furthermore, with FIG. 2. Potential energy in units dfw(w=1/YAC) vs dimen-

— 15 - 10 —
C=5X10"F and A=3x10" H'_ w/2m=130 GHz, well . sionless flux{see Eq(4)] for a SQUID ring with parameter values
below the frequency corresponding to the superconducting_sy 115 A=3%x10°H. and %v=0 047D2/A for @
H H . X

energy gap in niobium=1 THz), a metal often used in - 0.49D, and 0.8b,. Also shown are the probability density
weak link device fabrication. Given these chosen paramet&finctions of the ring wave functions displaced by their energy
values, and assuming, as our example, SQUID circuits basegigenvalues.

on niobium, these correspond t@/ w=7.9 and Cw=4.1

X 1073, values which, unless otherwise stated, we now keer(nhlcw)uz and (ACw)2, respectively. To aid in the descrip-

to throughout this paper. o tion of the system we adopt the term loca#ijharmonic to
Adopting these values of, C, and/» we show in 2':'9' 2 describe this behavior, where the prefix denotes the
the  SQUID ring  potential U(®,Py)=(P-P»)%/2A g4 eezed nature of these states. The equivalence of the low-
—hv cod2m®/ Do) — see Eq.(1) — computed for three ying set of energy eigenvalues deep in edoeal) well is a
different values of ®, [=0d(top),0.49D(middle), and  gound approximation except where the energy levels of two
0.5Pg(bottom]. We also show in this figure the probability or more wells align. In such cases, of course, symmetric and
densities of the wave functions of the ring as a functioof  antisymmetric superpositions of the eigenfunctions for the
These probability densities are displaced by their energy eisolated wells develop.
genvalues, found by solving the time-independent |n Fig. 3 we show a set of computed SQUID ring energy
Schrddinger equation using the Hamiltonidn. As the bot-  ejgenvalues of the Hamiltonian operat8y, starting with the
tom of each of the local wells in the ring potential in Fig. 2 ground state, as a function of external fid and spanning
is approximately quadratic, we would expect the solutionsone flux quantum. For clarity the energy levels are shown as
deep within these wells to look like those for the simplealternating black and gray lines. As can be seen, for the val-
harmonic oscillator. In addition, we find that, on average,ues ofA, C, and%» we have adopted in this work, there exist
these states are slightly squeezed in terms of the magnetiiany crossing points of the original eigenvaluesdasis
flux variable ®. For example, in Fig. 2 the lowest state in changed over ab, period. At the scale provided in Fig. 3
each of the wells for®,=0.49D, has [A(VCw/fi®)]*  these crossing points appear to be degenerate in ey
~0.43 and[A(V1/ChwQ)]*>~0.58 (compared to 0.5 in the in the lowest two eigenvalues dt,=0.5b,). Of course, this
unsqueezed stagte where @ and Q are normalized to is not the case, as would be evident if these crossing points

Dimensionless Magnetic Flux z
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External Bias Flux ‘I’ga/‘I’o FIG. 4. Wigner function showing, both in perspective and in

projection onto thex-p plane, the nature of this quantum superpo-
FIG. 3. Computed SQUID ring energy eigenvalues of theSition of macroscopically distinct statéd /v2)(|A)+|B)) for the
Hamiltonian for the SQUID ring of Fig. 2. SQUID ring of Fig. 2. The dimensionless quantitiesand p are
defined in Eq(4).

were computed to sufficient accuracy. However, for the po- _ ] ]
tential wells shown in Fig. 2, with the very weak coupling Note that the Wigner function of Fig. 4 has been calculated at

between levels in different wells, the energy splittings at@ fixed timet=0. However, its general form does not vary
these points may be extremely small indeed. with time. Nevertheless, there is dynamical evolution of the
interference term in the superposition but not in the observ-

able flux states.
RESULTS

Quantum superpositions of macroscopically distinct states Tunable superposition of states in a SQUID ring

Ignoring, for the moment, the special cases where the lo- We now consider the potential with a static bias iy
cally s-harmonic oscillator states are degener@ero cou- =0.5P,, as shown in the bottom plot of Fig. 2. By examining
pling between wellswe instead consider making an equal the first two energy eigenstates we find that we have wave
superposition of two energy eigenstates. We start by assunfunctions which are a symmetrits), and an antisymmetric,
ing that these two states are loca#iynarmonic in different  |a), superposition of the lowest energy, locatharmonic,
wells and, for simplicity, take these states to correspond t@scillator vacuum states of the two middle wells. These two
the lowest-energy levels in each well. Then, as one wouldtates, which are squeezed, are extremely close in energy due
expect, we create a superposition of macroscopically distinaio the height of the barrier between the wells in the potential.
states in flux. As this superposition state is no longer arEven so, the interference terms in the Wigner function be-
eigenstate of the Hamiltonian for the system, it must evolveéween the states for each of these macroscopically distinct
with time. This evolution introduces a phase difference bestates arer/2 out of phase. However, from the viewpoint of
tween the two stationarglocally s-harmonig states in the theory we might also consider an equal superposition of
superposition which manifests itself in a time-dependenthese states of the form
evolution of the interference term in the Wigner function.

In computing Wigner functions for the SQUID ring it is i_[|s>+ expli6)|a)] (5)
convenient to introduce equivalent dimensionless position V2 '
and momentunp operators in place ob andQ. These are

defined as where 6 is the phase. LeEg and E, be the eigenenergies

corresponding to the eigenstatss and |a) so thatAE=Eg
Cw 1 —-E, the energy splitting associated with the lifting of the
X= ?<I>, p= hC_wQ' (4) degeneracy concomitant with tunneling between the adjacent
wells. Thenfd=AEt. It is seen that this phaggchanges as a
An example of a macroscopic superposition state in gunction of time and any particular value of €k@) is real-
SQUID ring, as illustrated through its computed Wignerized cyclically with period 2/ AE. If we wished to fix our
function, is shown in Fig. 4, both in perspective and in pro-state in a given superposition, we can do this simply by
jection on thex-p plane. Here, we have taken our standardchanging our external magnetic bias flux by a fraction. If
values ofA, C, and7%v (above and have selected the state this fractional change in bias flux is sufficient, this will
(1/72)(|A)+|B)) at the flux biagb,=0.49D, of Fig. 2b). In  remove the coupling between the wells and geflter-
this example we can distinguish in the Wigner function twonatively, this could be achieved by tuning the barrier
macroscopically distinct flux states of the SQUID ring in the height of the SQUID ringsee Fig. 9 later in this papeso
x-p plane (i.e., the Gaussian-like componentseparated that the Josephson-tunneling energy becomes vanishingly
from one another by an oscillatory region. The latter, oscil-small [24]. The effect of changing can be dramatic, as
latory, region arises because of the quantum coherence b#lustrated in Fig. 5, where the Wigner function in the
tween the two separate components in the superposition andp plane is shown for selected values of this parameter.
demonstrates that we are indeed dealing with a true quantuss is apparent, when the wave function for the ring is
superposition of macroscopically distinct states in flux. Westrongly (but not completely localized in two or more
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FIG. 6. Potential energy in units dfw vs dimensionless flux
[see Eq.(4)] of a SQUID ring with parameter valueS=1.03
X108 F, A=238x10%°H, 1,=2.02x10°%A, and &,
=0.514 46®, (after Friedmanret al. [14]). Also shown are the
probability density functions of the ring’s wave functions displaced
by their energy eigenvalues. The arrow indicates the states used to
calculate the superposition state.

ability densities for the ring wave functions. These are dis-
placed, as before, by their energy eigenvalues. In this figure
FIG. 5. Wigner function of a superposition of the lowest two we have marked with an arrow the §tates in the left-hand f"md
(symmetric and antisymmetjienergy eigenstates as a function of fight-hand wells from which we will form our superposi-
phase—see Eq5) and related text and Fig. 4 for scalings. tions. These are the states that were utilized in the experi-
ment of Friedmaret al.
regions in the ring potential, it is the quantum interaction These eigenfunctions are similar to those of Fig. 5, in that
between these regions that is responsible for the creatiofhey form a symmetrids), and an antisymmetri¢a), super-
of superposition of macroscopically distinct states. position of the locallys-harmonic states of the separate
We note that given the very slightly different energieswells, albeit with higher and different ordinal numbers. The
between the symmetric and antisymmetric superpositiofuantum state of the SQUID ring, as reported by Friedetan
states, due to the height of the barrier between the two wellg|. [14], will thus be a superposition of these two eigenstates.
the superposition5) will oscillate slowly back and forth  For our purposes it is therefore sufficient to lo@gair at
between these wells. Using these energies we calculate thigiperpositions of the form
period to be 100 ns. This is much longer than the time con-
stant corresponding to th&C frequency of the SQUID ring i_[|s> + exp(i0)|a)] 6)
V2 '

in our examplgi.e., for C=5x 1075 F, A=3Xx 1071 H this

is 7.6 ps but well within the decoherence times of modern ] ] ) )
SQUID ring circuits[4,25-21. In Fig. 7 we show the Wigner functions for three different

In the above discussion we have considered the develoFUPerpositions of these eigenstates, again both in perspective
ment of macroscopic superposition states in a SQUID ringnd projection onto th&-p plane. We notice that compared
based on a choice of ring parameters which can be realizeffith the Wigner functions of Fig. 5 both the states of the
by fabrication and which are physically reasonable. How-Macroscopic quantum superposition corresponding to the
ever, this choice does not connect directly with published€ft- and right-hand wells in Fig. 7 and the region of inter-
experimental data. We will therefore deviate briefly from ourférence between them display more complex patterns. Given
standard parameter values and consider an explicit examp{g® choice of more highly excited states in the experiment of

of superpositions of SQUID ring states as reported recentljy"iedmanret al, this is to be expected. Nevertheless, Fig. 7
in the literature by Friedmaet al. [14]. In this paper the ~demonstrates that the Wigner functicand, of course, the

authors considered guantum superposition of distinct mac- @ssociated Wey! functigrean expose sophisticated quantum
roscopic stateand presented experimental evidence, indicatcoherent behavior in SQUID rings.

ing that a SQUID ring could be placed into a superposition
of two magnetic flux states. We now demonstrate by compu-
tation that this superposition may indeed form a true macro-
scopic superposition state. The experimental system used a In considering the effect of dissipation on the calculations
SQUID ring with the circuit parameter€=1.03x 10'3F,  presented in this paper we have chosen to use a standard
A=2.38x10%0H, andl,=2.02xX 10°® A. To obtain a super- approach, and one familiar in quantum optics. This is to be
position state as demonstrated in this paper we used the edone by coupling the SQUID ring to a decohering mono-
ternal bias flux quoted by the authors, i.e®, chromatic thermal bath. The master equation for the evolu-
=0.514 46@,. The potential energy of a SQUID ring with tion of the density operator of the system then takes the form
these parameters is shown in Fig. 6 together with the probf28]

Dissipation
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-11 X 11 -11 X 11 -11 X 11

FIG. 7. Wigner function, from left to right, for the three distinct phaser(®, and (cf. Fig. 5 and after Friedmanet al. [14], showing,
both in perspective and in projection onto tke plane, the superposition of theymmetric and antisymmetjicenergy eigenstates as
indicated in Fig. 6.

i y - ‘ al. [14]. The arrangement is depicted in Fig. 9.
Pyl g[HvP] + E(M +1)(2apa’ -a'ap-pa'a) Provided the control magnetic fluk,, threading the mi-
nor loop in Fig. 9 is large enough, and the weak links in the
+ % M(2a'pa - aalp - paa), @) loop can be fabricateg@n principle) to possess identical criti-

whereM is related to the temperatufeand the frequency,

of each decohering bath vM,; =[exp(fiw,/kgT)—1]"t and y,

is the coupling(damping ratg between each of the com-
ponents to its respective thermal bath. For the following
examples that we will now calculate we set1 K with
wWpH=w.

To illustrate the effect that dissipation has upon a macro-
scopic superposition state in a SQUID ring, we now solve
the master equatio(v) for the system evolution, where the
ring is taken to be in its ground state &;=0.5D,. For this
computation we return to our initial circuit values 6=5
X107 F, A=3X 107'°H, and#1»(=0.047b3/A). Here we
have chosen to use a decoherence rate of«).BlLFig. 8 we
have plotted the Wigner and Weyl functions for the ring at
particular times. As the system evolves we notice that the
Wigner and Weyl functions display very clearly the disap-
pearance of the quantum coherence between the two states of
this superposition. We also note that after sufficient time has
elapsed the Wigner function still displays two distinct flux
probabilities. However, the SQUID ring is longer in a pure
state and this represents a classical coin toss probability and
not a quantum one. This is also clearly reflected in the dis-
appearance of the symmetrically positioned correlation peaks
in the Weyl function at these later times.

Squeezed states of a SQUID ring

Just as in quantum optics, where coherent light can be
squeezed in the number-phase plane through its interaction
with a nonlinear optical medium, we shall now demonstrate
that a SQUID ring, with the cosine Hamiltonidh), can be
used to squeeze an initial coherent state. This starting condi-
tion in a SQUID ring can be achieved by changing the weak
link structure in the ring. As is well known, the combined
Josephson critical current in a parallel, two weak link, loop,
connected by superconducting wir@sdc SQUID[29]), can FIG. 8. Wigner(left) and Weyl(right) functions for the ground

be varied by adjusting the magnetic flux threading the loopstate of the SQUID ring of 3 evolving in the presence of dissipation
Such a structure can serve as the adjustable weak link withift=1 K and y=0.01w). The effect of dissipation is to remove the

a larger diameter SQUID ring. This has been already disquantum correlations in this superposition of macroscopically dis-
cussed in several earlier papers, including that of Friedetan tinct states over the time shown.
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2,, 3,

FIG. 9. Schematic of a SQUID ring with dux) controllable
Josephson tunneling energy. Here the area enclosed by the outer
loop S, is much greater than that enclosed by the inner l68p

cal currents, the net supercurrent carried through the loop can
be made vanishingly small. In this situation the Josephson
coupling energy in Eq.l) reduces essentially to zero leaving
just the parabolic background tefire., as for a simple har-
monic oscillatoy. Let us now consider a possible mechanism
by which we could create a coherent state in a SQUID ring.

If we allow the SQUID ring to decohere to its ground state,
then, as we are in the low Josephson coupling limit, this state
will very much resemble that of the vacuum state of the
simple harmonic oscillator. Now, a coherent state is just the
vacuum state displaced from the origin and then allowed to
evolve freely. We can realize this for a SQUID ring by very
rapidly changing the external bias flux so that the wave func-
tion does not change significantly in shape, but the relative
expectation value of flugposition no longer corresponds to

the minimum of the potential well. We can, within reason,
choose the ramp rate, start and end bias flux, to create a state
which is a very good approximation to a coherent state at a 0.2 i
required energy. We take this as the initial prepared condition

Flux Uncertanty (Az)?

of the major SQUID ringwith a main control flux®, ) for 0.1 v =01

which we can choose a coherent stgeiy1). We follow 0 ' : :

this initial setup by a very rapid reduction @, to yield the 0 500 1000 1500 2000
p by yrap m"Z y Dimensionless Time wt

desired(and finite Josephson coupling energy in the prin-

ciple SQUID ring corresponding to the ring potential consid-  FIG. 10. Uncertainty in dimensionless fligee Eq.(4)] vs di-

ered throughout this paper. Clearly, in an experimental situmensionless timéwt), for a SQUID ring with parameter valués

ation this reduction must take place on a time scale shor5x 10715 F, A=3X107'°H, and#»=0.24D3/ A, computed for a

compared with the decoherence time of the SQUID ringselection of decoherence ratesTat1 K. Here the horizontal line

coupled to its environment. From the literatye25-27 it denotes that squeezing occurs farx)? less than 1/2. The gray

appears that the coherence times in SQUID rings can bkackground oscillation for the=0.001,0.01, and 0.1 examples is

sufficiently long to make this readily achievable. With this the y=0 pattern repeated for comparison.

proviso the system is prepared in the required coherent state

and then allowed to evolve over time using the master equazious choice of decoherence rate and interval of time, dissi-

tion (7). pation can assist in the squeezing process. We note that in the
Here, as before, we take the SQUID ring circuit param-,=0.1 case it can be seen that the SQUID ring decoheres to

eters to beC=5x 10" F andA=3x 107°H. However, in  its (squeezedvacuum state over a relatively short period.

order to improve the effects of squeezing by the ring we haverhus, it appears that these potential wells may be used with

increasediv to 0.24D3/ A, yielding a superconducting criti- facility to generate squeezing of the magnetic flux variable of

cal current density of around 20 kA cf From our given the ring. It is therefore reasonable to assume that adiabatic

initial condition, and by computing the uncertainties in flux, changes of this potential would, unless matching conditions

we see that the SQUID ring can squeeze the magnetic flugxist between locak-harmonic energy levels of adjacent

within the ring. We choose not to show the results for thewells, allow some adjustment of the expectation value of the

charge as they do not provide any additional informationflux in the ring.

relevant to this discussion. In Fig. 10 we show the uncer-

tainty in flux for a selection of decoherence rates. Here, the

horizontal line denotes that squeezing happen$£aj? less

than 1/2. We can clearly see that, on average, the ring has In this paper we have explored two applications of

effectively squeezed this state. We also see that for a judiSQUID rings, with strong analogies to the field of quantum

CONCLUSIONS
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optics, which may prove to be of great utility given the cur- quantum frequency up/down-conversigh,2], with each

rent interest in quantum circuit technologies. In the first wecontrolled by the external bias flux applied to the SQUID
describe the manner in which we can create macroscopidng. In this sense these phenomena, including macroscopic
superposition states in SQUID rings and the way these maguperposition states and squeezing, highlight the role of the
be manipulated through an external control flux. In the secSQUID ring as the essential machinery for a range of appli-
ond we provide a dynamical mechanism for inducingcations in superconducting quantum circuit technologies.
squeezing of the magnetic flux variable in a SQUID ring This further enhances our understanding of these nonpertur-
starting from an almost harmonic-oscillator state. These takbative quantum objects and their possible usefulness in these
advantage of the highly nonperturbative quantum nature oiihcipient technologies.

SQUID rings arising from the cosine coupling energy term in
the ring Hamiltonian. As we emphasize, both are of great
interest in the light of current research in the fields of quan-
tum computing and quantum-information processing We would like to thank the EPSRC for its generous fund-
[10-13. Moreover, the results presented in this paper eming of this work and for sponsoring the U.K. Quantum Cir-
phasize that the SQUID ring can act as a versatile quanturouits Network. We would also like to express our thanks both
device and, as we have shown previously, can be used to Professor C.H. van de Wal and Professor A. Sobolev for
create correlations across extended, multicomponent, quamteresting discussions and to the Sussex High Performance
tum circuit systemg1,2,30-33. These correlations can, for Computing Initiative for the use of their NAG-IRIS explorer
example, be made manifest as quantum entanglements agdaphics software.
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