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The problem of spontaneous emission of an excited atom inside a random medium formed by randomly
distributed dipoles is theoretically discussed by explicitly calculating the decay rate of the atom. After aver-
aging over all the density fluctuations of the medium, we obtain an analytical expression of the decay rate in
the low-density limit, which shows that inside a random medium the relaxation of an excited state is enhanced
due to the density-fluctuation correlations of the random medium.
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I. INTRODUCTION

The lifetime of an excited atom is a standard problem in
quantum optics; it is well known that in the dipole transition
approximation an excited state of a single atom in free space
can be shown to relax spontaneously to the ground state at a
rate proportional to the modular square of the dipole matrix
element that links these states. Such a result can be obtained
by treating spontaneous emission as a process of either the
interaction between an excited atom and the fluctuations of
the ground state of the quantized electromagnetic field or the
reaction of the atom to its own radiation field. These two
mechanisms are equally important in many situations in de-
termining the lifetime of an excited atom[1]. In the present
paper we will choose to work in the vacuum fluctuation
model.

It is also a well-established fact that, if other objects are
brought to the vicinity of an excited atom, the lifetime of the
atom will be modified[2]. In the view point of the vacuum
fluctuation theory, the presence of these objects inevitably
modifies the electromagnetic field operators and subse-
quently changes the structure of the fluctuating field of the
vacuum. It was by following this line that Power calculated
the Lamb shift in as early as 1966[3]. In the literature these
external objects are usually assumed to form a regular struc-
ture, such as a dielectric sphere[4], a perfect mirror[1,5,6],
a photonic crystal[7], and so on, and the lifetime of an
excited atom inside an irregular structure has largely evaded
proper treatment. Since in the past two decades, we have
seen interesting results being revealed from the studies of
light propagation inside random media, three examples of
which are backscattering enhancement[8], photon localiza-
tion [9], and random lasing[10], it is natural to ask if the
randomness of a medium also has any effects on light emis-
sion from an atom situated inside the medium. The present
paper is devoted to answering such a question by explicitly
computing the spontaneous decay rate of an excited atom
inside a random medium.

The process of spontaneous emission can be formulated

by starting from Fermi’s golden rule. It then follows that, in
the framework of the linear-response theory[11], the transi-
tion rate between an excited state and the ground state can be
related to the imaginary part of the response function of the
system[5,12,13] by using the fluctuation-dissipation theo-
rem:

G =
2di

*dj

"
ImfGijsr A,r A;vAdg, s1d

where the excited atom is assumed to be fixed in space atr A,
vA is the atomic transition frequency, andd is the dipole
matrix element linking the excited and ground states. The
repeated indices in Eq.s1d have to be summed over the Car-
tesian coordinates. The response functionGsr ,r 1d is, in fact,
the familiar dyadic Green function in the classical theory of
electromagnetic fields, which is in turn equal to the electric
field at positionr due to a unit dipole atr 1 subject to all
boundary conditions presented in a problem. Our task is,
therefore, reduced to evaluating the Green function corre-
sponding to the random medium.

The paper is organized as follows. We will first calculate
the Green function inside(a particular realization of) a ran-
dom medium in Sec. II, and then average it over the random-
ness of the medium in Sec. III to make our discussion con-
formable to the usual experimental realities. When the
averaged Green function is substituted back into Eq.(1) in
Sec. IV, an ensembly averaged spontaneous emission rate
will result. The paper will be summarized in Sec. V.

II. GREEN FUNCTION INSIDE A RANDOM MEDIUM

We assume that the random medium, in which the excited
atom is situated, is formed byN dipoles randomly distributed
in the whole space, and that each dipole is characterized by
an isotropic polarizabilitya and a diminishing physical size.
The Green functionGsr ,r 1d (in Gaussian units) needed in
Eq. (1), consequently, should be built up as the sum of all
fields radiated fromr 1 and multiply scattered by the dipoles:*Electronic address: weiguoguo@hotmail.com

PHYSICAL REVIEW A 69, 043802(2004)

1050-2947/2004/69(4)/043802(6)/$22.50 ©2004 The American Physical Society69 043802-1



Gsr ,r 1d = G0sr ,r 1;kAd + mE G0sr ,r 2;kAd ·G0sr 2,r 1;kAdnsr 2ddr 2

+ m2E G0sr ,r 2;kAdnsr 2ddr 2 ·E G0sr 2,r 3;kAdnsr 3ddr 3 ·G0sr 3,r 1;kAd + ¯

= G0sr ,r 1;kAd + mE G0sr ,r 2;kAd ·Gsr 2,r 1dnsr 2ddr 2, s2d

where kA=vA/c, m=4pkA
2a, and G0sr ,r 1;kAd is the free

space dyadic Green function

G0sr ,r 1;kAd =
1

4p
SI +

1

kA
2 = =DeikAur−r 1u

ur − r 1u
. s3d

We have suppressed a common multiplicity factor 4pkA
2 on

both sides of Eq.s2d for simplicity, and in Eq.s3d I denotes
the unit dyadic.

By writing the microscopic density function of the dipoles
nsr d=oi=1

N dsr −r id as the sum of its spatially averaged value
n0=knsr dl and density fluctuations about that averagednsr d,
we can use a linear-operator method to transformG into a
series in ascending powers ofdn [14]:

Gsr ,r 1d = gsr ,r 1d + mE gsr ,r 2ddnsr 2d ·gsr 2,r 1ddr 2

+ m2E gsr ,r 2ddnsr 2ddr 2 ·E gsr 2,r 3ddnsr 3ddr 3

·gsr 3,r 1d + ¯ , s4d

with g obeying the following integral equation:

gsr ,r 1d = G0sr ,r 1;kAd + mn0E G0sr ,r 2;kAd ·gsr 2,r 1ddr 2.

s5d

Since it exists in an unrestricted, uniform space characterized
by mn0, it follows that theg function assumes an outgoing-
wave solution that can be readily obtained by operating an
operators=3 = 3−kA

2d on both sides of Eq.s5d and solving
the derived differential equation. Explicit calculation shows

gsr ,r 1d = G0sr ,r 1;ÎkA
2 + mn0d. s6d

Formally, the total Green functionG expressed in the se-
ries in Eq.(4) can be regarded as a multiple scattering pro-
cess ofg by the density fluctuations: Theg function can go
directly from r 1 to r inside the uniform mediummn0 as the
first term on the right-hand side(RHS) of Eq. (4) shows, or
it has to be scattered by the density fluctuations once(the
second term), twice (the third term), ¯, before arriving atr .
As in Ref. [14] we assume that the dipoles are independent
with each other, that iskdnsr ddnsr 1dl=kdnsr dlkdnsr 1dl=0,
when r Þ r 1, so that the statistics of the density fluctuations
of the dipoles presented there can be applied directly to the
present case.

III. ENSEMBLE AVERAGE OF G

A specific form fordn’s in Eq. (4) corresponds to a spe-
cific configuration of the dipoles. In a typical experiment, a
random medium is often formed by suspending scattering
particles in a liquid[10,15,16]. If the observation time is
long enough, one can argue that since every configuration of
the scattering particles is reached, the observed result is ac-
tually an ensembly averaged result. To make our discussion
conformable to such an experimental reality, we will in the
following averageG over all possible density fluctuations;
the decay rate in Eq.(1) accordingly becomes an average
rate kGl.

Since kdnsr dl=0 from its definition, we know the first-
order density fluctuation does not contribute tokGl. The
second- and third-order density-fluctuation correlations make
no contributions either. To see this, we have to note from the
following two relations that in these two correlations the
density fluctuations are forced to be at same places:

kdnsr ddnsr 1dl = n0d sr − r 1d,

kdnsr ddnsr 1ddnsr 2dl = n0d sr − r 1ddsr 1 − r 2d.

When the preceding two relations are substituted into Eq.
s4d, they produce, respectively, the first- and second-order
self-field interactions: interactions between the radiation
from a dipole and the dipole itself. Higher orders of such
interactions will appear in correlations with orders higher
than three; see Eq.s7d for another example. Quantum-
mechanically self-field interactions are known to be respon-
sible for atomic energy shifts and spontaneous emission;
classically they amount to a correction to the polarizability of
the dipoles. In our classical theory of Green function, we
shall assume that such a correction has already been made in
our definition ofa. As a result of this assumption, any fur-
ther account of self-field interactions in the following discus-
sion becomes redundant.

The first nonzero contribution to the ensembly averaged
Green functionkGl actually comes from the fourth-order
correlation, although we know from Ref.[14] that the four
density fluctuations in this correlation can only be so
grouped that they are at either one common location or two
different ones:
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kdnsr ddnsr 1ddnsr 2ddnsr 3dl = n0dsr − r 1ddsr 1 − r 2ddsr 2 − r 3d

+ n0
2fdsr − r 1ddsr 2 − r 3d

+ dsr − r 2ddsr 1 − r 3d

+ dsr − r 3ddsr 1 − r 2dg. s7d

To be out of this apparent dilemma, it is essential to realize
that the integration orders in Eq.s4d formally specify radia-
tive paths. For example, the radiation path represented by the
third term on the RHS of Eq.s4d implies that a light wave
can only getr from r 1 by following the sequence ofr 1
→ r 3→ r 2→ r . This point has also been made implicitly be-
fore in the paragraph immediately following Eq.s6d. It then
becomes evident that two density fluctuations at a common
location, depending on the radiation sequence, can in fact
represent that radiation fields are scattered to that common
place twice by way of another scatterer. Substitution of the
expressions7d into Eq.s4d reveals that only onesout of fourd
of the d products on the RHS of Eq.s7d survives, and it
represents a third-order scattering event between two dipoles
at r 2 and r 3:

m4n0
2E gsr ,r 2d ·g3sr 2,r 3d ·gsr 3,r 1ddr 2dr 3. s8d

Other d function products reproduce the self-field interac-
tions and should be ignored accordingly. However, since it
can be shown by Fourier transformation that the transverse
component of Eq.s8d is rather weak compared with its lon-
gitudinal component, the term of Eq.s8d has to be dropped
from kGl hereafter for their limited contribution tokGl. This
is so, because for an absorbing medium only the transverse
part of G, denoted asGT, is responsible for radiative decay
of an excited atom while the longitudinal part ofG only
causes nonradiative decay in the form of Joule heatingf12g.

Similarly, we note that if two density fluctuations are set
to be at one positionr 2 and three at another positionr 3, the
fifth-order correlation makes a contribute tokGl as follows:

m5n0
2E gsr ,r 3d ·g4sr 2,r 3d ·gsr 3,r 1ddr 2dr 3. s9d

In this case theg function is formally scattered betweenr 2
andr 3 four times. The difference between the expressionss8d
and s9d is that in Eq. s9d, after multiple scattering, theg
function returns to the position from which it was scattered
before while in Eq.s8d g settles down at another location. As
long as the density fluctuations are only distributed on two
locations, even-order correlations will yield similar results as
that in Eq.s8d and will be ignored for their negligible role in
the radiative relaxation of an excited state.

The seventh correlation can also be treated in this fashion
by setting three fluctuations at one position and the remain-
ing four at another position. This arrangement leads to for-
mal scattering of theg function six times between two den-
sity fluctuations and produces

m7n0
2E gsr ,r 3d ·g6sr 2,r 3d ·gsr 3,r 1ddr 2dr 3. s10d

A series is, therefore, formed by applying such density-
fluctuation grouping to higher orders of odd correlations, in
which the multiple scattering part of theg function forms a
geometrical subseries. This observation thus enables us to
write the sum of the this series into closed form

m5n0
2E gsr ,r 3d ·

g4sr 2,r 3d
1 − m2g2sr 2,r 3d

·gsr 3,r 1ddr 2dr 3. s11d

See Fig. 1 for a graphical representation of the first two
terms in this series.

So far we have confined our discussion to the situation
where the density-fluctuations are only on two positions.
From the general discussion of density fluctuation correla-
tions in Ref. [14], we find more combinations of density
fluctuations become possible as still higher order correlations
are taken into account. In the tenth-order correlation, if we
divide the ten fluctuations into two groups, each of which
contains five fluctuations, and then in each group we set two
fluctuations at one position and three at another, we can get a
contribution tokGl from this order of correlation whose ex-

FIG. 1. Graphical representation of the first(lower) and second
(upper) terms in the series in Eq.(11), with the filled circles repre-
senting dipoles and the arrows indicating scattering events.
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pression seems to be formed by juxtaposing two expressions
like that in Eq.(9)

m10n0
4E gsr ,r 2d ·g4sr 2,r 3d ·gsr 2,r 4d ·g4sr 4,r 5d ·gsr 4,r 1d

3dr 2dr 3dr 4dr 5. s12d

Formally, Eq.s12d represents a scattering event where theg
function is first scattered four times between two density
fluctuations atr 4 and r 5, and then scattered another four
times between a different pair of density fluctuations atr 2
and r 3; see Fig. 2 for an illustration. In view of this, the 12
density fluctuations in the 12th-order correlation can also be
separated into two groups with one group containing five
fluctuations and the other containing seven fluctuations. For
the group that contains five fluctuations, we set two fluctua-
tions at one position and the rest three at another position; for
the group that contains seven fluctuations, we set three fluc-
tuations at one position and the remaining four at another
position. Under such an arrangement of the density fluctua-
tions, the 12th correlation yields two contributions tokGl: in
the first ones13d the first group has seven fluctuations and
the second group has five; in the second ones14d the two
groups are switched,

m12n0
4E gsr ,r 2d ·g6sr 2,r 3d ·gsr 2,r 4d ·g4sr 4,r 5d ·gsr 4,r 1d

3dr 2dr 3dr 4dr 5, s13d

and

m12n0
4E gsr ,r 2d ·g4sr 2,r 3d ·gsr 2,r 4d ·g6sr 4,r 5d ·gsr 4,r 1d

3dr 2dr 3dr 4dr 5. s14d

From all those even correlations with orders higher than 12,
by following the same procedure to group the density fluc-
tuations, we can get all the permutations that, when added,
reduce to the following expression:

m10n0
4E gsr ,r 2d ·

g4sr 2,r 3d
1 − m2g2sr 2,r 3d

·gsr 2,r 4d

·
g4sr 4,r 5d

1 − m2g2sr 4,r 5d
dr 2dr 3dr 4dr 5. s15d

It follows that, in this fashion, we can expresskGl again
in an integral equation

kGsr ,r 1dl = gsr ,r 1d + m5n0
2E gsr ,r 2d

·
g4sr 2,r 3d

1 − m2g2sr 2,r 3d
· kGsr 2,r 1dldr 2dr 3, s16d

with the expressionss11d and s15d as the second and third
terms, respectively, if Eq.s16d is written out iteratively.

Other kinds of density-fluctuation grouping are of course
also possible. For example, in the six-order correlation, we
can set the six fluctuations into three groups(rather than
two), each containing two fluctuations, and get a closed path
composed of three scatterers. The contribution tokGl from
such a configuration is then proportional tom6n0

3. This term,
and its higher-order counterparts, obviously gives a less im-
portant contribution tokGl when the average densityn0 of
the dipoles is low. In fact the theory of statistics of density
fluctuations reported in Ref.[14] was based on the assump-
tion of independent dipoles and the validity of this assump-
tion requires that the density of dipoles be so low that the
occurrence of a dipole atr does not depend on whether an-
other pointr 1, however close tor , is occupied or not. One
result of this theory is that density fluctuations are only cor-
related to themselves. To simplify our analysis and to con-
sider only the most important contributions tokGl at the
same time, we shall only include those terms that have en-
tered the relation(16), and our formulation consequently
works the best in the low-density limit.

When we separated the five density fluctuations in Eq.(9)
into two groups, we have implicitly assumed thatr 2Þ r 3;
when r 3 is integrated over in the integral equation(16), a
small volumeV has to be excluded aroundr 2. Besides, since
the integral overr 3 represents a multiple scattering process
of the g function between two density fluctuations super-
posed on a uniform absorbing medium, it is reasonable to
keep in everyg function involved only its transverse compo-

FIG. 2. Graphical representation of the contributions tokGl
from the tenth-order correlation function, with filled circles repre-
senting dipoles and the arrows indicating scattering events.
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nent gT. From the expression ofgTsRd (see Ref.[12]), it is
clear that aside from the intermediate zone, whereR
,2p / sRe k1d, it is the termeik1R/R that dominates. There-
fore, we can approximately have

gTsRd =
1

4pR
eik1RsI − R̂R̂d, s17d

where R̂=R /R and k1=ÎkA
2 +mn0. Explicit calculation

shows that any power ofgTsRd, when integrated over the
orientation ofR, becomes proportional to a unit dyadic. It
follows then that the integral overr 3 in Eq. s16d can be
regarded as a scalar constantf, whose expression be-
comes, after we setV→0,

f =
3 − 4p

3s4pd2E
0

` ei4k1RdR

s4pRd2 − m2e2ik1R . s18d

Again, by operatings=3 = 3−k1
2d on both sides of Eq.s16d,

it is straightforward to get

kGsr ,r 1dl = G0sr ,r 1;ÎkA
2 + mn0 + m5n0

2fd. s19d

IV. AVERAGED DECAY RATE

After having obtained the ensembly averaged Green func-
tion, we are now in a position to calculate the average decay
ratekGl. By following the method used by Barnettet al. [12]
it is easy to get the transverse Green functionkGTsr ,r 1dl
expressed in ascending powers ofur −r 1u. We then take the
imaginary part ofkGTsr ,r 1dl after settingr → r 1→ r A, and
substitute it, together with the suppressed factor 4pkA

2, into
Eq. (1). The ensembly averaged radiative decay rate of the
excited atom is finally found to be

kGl =
4kA

2udu2

3"
ReÎkA

2 + mn0 + m5n0
2 f , s20d

where Redenotes the real part of a complex quantity. It is
convenient to define an effective dielectric constanteef f
for the ensembly averaged medium through the following
relation:

Îeef f = Re
ÎkA

2 + mn0 + m5n0
2 f

kA
, s21d

which, together with the familiar decay rate in free space
G0=s4udu2kA

3d / s3"d ssee Refs.f2,13gd, enables us to reexpress
kGl into a more compact form

kGl = G0 ReÎeef f. s22d

This expression is analogous to that obtained by Barnettet
al. [12]. However, since they only considered a uniform me-
dium, the contribution from the density-fluctuation correla-
tions m5n0

2 f was absent in their dielectric constant. The
local-field corrections have been neglected in our formula-
tion [17], since they were pointed out to just amount to ap-
pending a multiplicity factor tokGl [12]. In the resonant
situation, wherevA is equal to the internal oscillation fre-

quency of the dipoles, the polarizability becomesa
=3i / s2kA

3d, and the decay ratekGl is rescaled and plotted in
Fig. 3 both with and without the contribution from the
density-fluctuation correlations. It is clear that the presence
of the density-fluctuation correlations causes the lifetime of
an excited atom to decrease. This can be understood as re-
sulting from the increment of the electric field acting on the
atom due to the density-fluctuation correlations; see expres-
sion (4). From the fluctuation-dissipation theorem, one finds
that the imaginary part of the Green function is proportional
to the local density of electromagnetic states(LDOS) [18];
the enhanced spontaneous emission rate in our case, there-
fore, implies that in a random medium LDOS is also in-
creased by the density fluctuations of the medium.

V. CONCLUSION

In this paper we have discussed theoretically the problem
of spontaneous emission of an excited atom surrounded by
randomly distributed dipoles. By separating the microscopic
density of the dipoles, which is a random function, into its
spatially averaged valuen0 and fluctuations about that aver-

FIG. 3. Rescaled decay rateskGl /G0−1d3103 against the nor-
malized densitylA

3n0, with the contribution from the density-
fluctuation correlations included in the upper curve but excluded in
the lower one.
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age dn, we are able to evaluate the Green functions with
respect to both a uniform distribution of the dipoles and the
density fluctuations. Since the Green function is related to
the spontaneous emission rate of the excited atom through
the fluctuation-dissipation theorem, our knowledge about the

Green functions has enabled us to get, in the low-density
limit, an analytical expression for the ensembly averaged de-
cay rate, from which we find that inside a random medium
an excited atom has a shorter lifetime than it dose inside a
uniform medium.
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