PHYSICAL REVIEW A 69, 043619(2004)

Vortex core structure and global properties of rapidly rotating Bose-Einstein condensates
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We develop an approach for calculating stationary states of rotating Bose-Einstein condensates in harmonic
traps which is applicable for arbitrary ratios of the rotation frequency to the transverse frequency of the trap
o, . Assuming the number of vortices to be large, we write the condensate wave function as the product of a
function that describes the structure of individual vortices times an envelope function varying slowly on the
scale of the vortex spacing. By minimizing the energy, we derive Gross-Pitaevskii equations that determine the
properties of individual vortices and the global structure of the cloud. For low rotation rates, the structure of a
vortex is that of an isolated vortex in a uniform medium, while for rotation rates approaching the frequency of
the trap(the mean-field lowest-Landau-level regiméne structure is that of the loweptwave state of a
particle in a harmonic trap with frequenay, . The global structure of the cloud is determined by minimizing
the energy with respect to variations of the envelope function; for conditions appropriate to most experimental
investigations to date, we predict that the transverse density profile of the cloud will be of the Thomas-Fermi
form, rather than the Gaussian structure predicted on the assumption that the wave function consists only of
components in the lowest Landau level for a regular array of vortices.
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[. INTRODUCTION system. Then in Sec. lll we derive the equation for the struc-

Bose-Einstein-condensed atomic gases are very wefHre of the wave function within a single cell of the vortex
suited to investigating quantized vortex lines. Single vortexattice by variation of the energy functional. In Sec. IV we
lines were first made in atomic condensates by Matthetvs derive equatlons for the gIObaI structure of the cloud. We find
al. [1], who induced rotation by phase imprinting in a spinor that, if in the nonrotating system the density profile in the
condensate. Subsequently, arrays containing many vorticg#ane transverse to the rotation axis is of the Thomas-Fermi
were created in scalar condensates by inducing rotation méerm, an inverted parabola, then at high rotation the shape
chanically, either by stirring the condensdt2,3] or by remains Thomas-Fermi, rather than the Gaussian one pre-
evaporating particlef4]. For a theoretical review, see Ref. dicted by the LLL calculation for a uniform array of vortices.
[5]. In a seminal work, H@6] predicted that clouds of atoms Recent studies that relax the assumption of a uniform array
confined in harmonic traps, when rotated at frequencies closef vortices indicate that the Thomas-Fermi profile persists to
to the transverse frequeney, of the trap, should condense even lower interaction strengtfi22,23
into the lowest Landau levelLLL) in the Coriolis force,
similar to charged particles in the quantum Hall regime. This
insight has led to extensive experimental studies in which
rotation rates in excess of 0.99, ha_ve_ been_achieved, and  \we consider a system of weakly interacting bosons
the structure of the condens_ate within a single cell of thecrapped in a harmonic potentiaN(r):%m(wzri+wzzz),
vortex lattice has been examingl 7].

To date, most theoretical work on vortices in harmonically
trapped condensates rotating at frequencies close, tbas

II. BASIC FORMALISM

wherer | =(x,y), rotating at angular velocity) about thez
axis. The angular momentum of the system is due to the
gresence of quantized vortices, of numidér=>1 at large

been based on the use of wave functions in which particle otation rates. We assume the vortices to be rectilinear and to
occupy only the lowest Landau level. In contrast, for slowlyform a regular triangular lattice. WheN, > 1, the limit in
rotating condensates, the usual approach to calculating VOlihich we work. the angular velbcityl af whi’ch the lattice
tex structure is to solve the Gross-Pitaevskii equation. In thi?otates is gene,rally close to the angular velocity

paper we address the question of how this approach goes
over to the mean-field lowest-Landau-level description when o

the rotation rate is increasef]. We develop a unified Q,=—#n,, (1)
method for calculating both the structure of individual vorti- m

ces and the global structure of the cloud for arbitrary rotation . . . . .

rates. Writing the condensate wave function as the product g¥neren, is the (two-dimensional density of vortices. The
a slowly varying envelope function that determines the den@ngular velocity(, is the mean angular velocity identified
sity averaged over a single cell of the vortex lattice, and a&via the condition for quantization of vorticity$.d¢ v
function that determines the variations of the wave functior=hN,(C)/m, where N,(C) is the number of vortices sur-
on length scales of order the vortex separation and core sizegunded by the contou€. Generally, ), is smaller than
we derive, in Sec. Il, an expression for the energy of the) [9].
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>

In order to separate out the short-distance vortex structure nf2 - (V)2 1
from the large scale structure, we follow the approach of Jd3r—(V<b)2=Ef d¥rnf 2| =+ —mQIR?
Fischer and Bayniil0] and write the order parameter as 2m i 7 2m 2

9(F) = dPOFF)VN(D), @) +Q, - (R X w,-)}; (7)

the product of dperiodig rapidly varying real functiorf(r),  the integration is over unit cefl, and the sum is over all
which vanishes at each vortex core times a slowly varyingeells. In the Wigner-Seitz approximation, which we employ
real enve|ope function‘/ﬁ and a phase factor. We nor- below, ¢l becomgs the azimuthal angle measured with re-
malize f? so that it averages to unity over each unit cell of spect to the poinR;. The final (cross term does not vanish
the lattice; thus(r) is the smoothed density profile of the when the density varies across the unit cell. Writing within
system, WhiCh varies sl%yvly over the unit cells pf the cell j, FE,':FL—;;, the middle term in Eq(7) becomes;llﬂf
vortex lattice. The factoe®f describes the local swirling +%mQ§EJ- J, rnf 2(p2-2p-F,), where I:fd3rmnf2r'i is

of the fluid—with the phaseb wrapping by 2r around the total moment of inertia of the system. Similarly the trans-

h — h ith th Il i f th - . )
'?ea;(CI a;{[?créegmto\?ve; geernvgrta”; i e%vfia rotation of the vor verse trapping potential term becoméls.)i. The total en-
' : ergy is then

The total energy of the system in the laboratory frame is
1 Vin2 m

72 9 E:—I(w2l+05)+fd3r<u+n—w§zz>
E:fdf*r %|V¢|2+V(r)n(r)fZ(r)+5n2(r)f4(r) : 2 2m 2

3) 3 (V17 2<(5¢,-)2 1,
+§J:J} drn(r){ o +f o +2va(p

where we assume a two-body interaction described by an
s-wave scattering lengta, with g=4magi?/m. With Eq. (2), -2p-F)) +0 -(Ii- % §¢_)> + gn(r)f 4 (. (8)
the kinetic energy in the laboratory frame becomes v ! 2

To determine the equilibrium structure, we work in the

1 - 1 - N f . . L ~
3 T vl =K= | d3r—— [3)2f 2 4 2.2 rame rotating at angular velocitf, and minimize the en
fd r2m|Vl//| K fd er{(V\n) 2+ (Vo)nf ergy in the rotating framez—QL, where

- 1- -
+n(V)2+ SV Z. Vn}. (4) L= f dBrn(r)f 2(n[F, X V)], (9)

is the angular momentum along thaxis.[This procedure is
equivalent to determining the equilibrium structure at fixed
angular momentun by minimizing the total energy taking
the constraint of fixed_ into account by a Lagrange multi-
plier Q.] Using Eq.(6), and again writing in celi, FL:F-ij

g p, we have

Sincen varies slowly across a unit cell of the vortex lattice,
we may replace thé? in the first term by its averagé=1).
This replacement is accurate to the ordeh?/2mR
~NQ,/N, to which we work, where\ is the total number of
particles in the system\, is the total number of vortices,
andR, is the transverse radius of the system. We integrat
the final term by parts to give ;—fd 3rf 2V2n, and similarly .
replace thef 2 here by its average in the cell, so that the L=10Q,+> Jd3rnf A, X V),~mQp-F,].
integral leaves only a vanishing surface term. Thus, i

(10

K = f d3ri{(§\fﬁ)2+ (%(I))an2+ n(%f)z}. (5) The first term is the angular momentum of the cloud for a

2m velocity field corresponding to uniform rotation with angular

) ) . velocity (), and the second is the contribution due to the fact

In the unit cell centered on vorteixat positionR; in the  that flow within a cell does not correspond to rigid-body

plane transverse to the rotation axis, the velo&iy/m is motion.

the sum of a solid body rotation at a rate determined by the

vortex density and evaluated at the position of the vortex,
), XR;, plus the local velocity around the vortex, which we
write as€¢j/m: We turn now to determining the structure of the vortices
within the unit cells. To do this we introduce the Wigner-

Seitz approximation to evaluate the vortex sum, replacing the

Ill. EQUILIBRIUM STRUCTURE OF VORTICES

Vd(r) =mQ, X Rj+ V. (6)  hexagonal unit cell by a circle of radiss1/(m¢,)2. Then
. f is cylindrically symmetric within each cell. In the follow-
The (V®)? term thus becomes ing, we assume that the vortex spacing is small compared
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with the characteristic length scale in the axial direction. The —

term in Eq.(8) containingdf/ 9z can then be neglected, afd I=1- mZ f d®rn(f 2 - 1)p
depends only on the transverse coordinate and the average I

local density. In celj, ¢; becomes the azimuthal angle with
respect to the center of the cell. Again we write within gell
Fl:§j+ﬁ, so that(§¢j)2:1/p2. Furthermore(p X §¢j)z be-
comes justi, so that the angular momentum in the Wigner- We therefore find
Seitz approximation is

— N
=l+——-my, | d®nf?p? 13
20, ijj e (19

E'= l(l + i)(wi +0%-200,)
L= |QU+2f Prnf21-mO5-7).  (1D) 2\ 20,
b 7 /)2
o _ _ +fd3r<m+mnwfzz>—NQv+E Ej, (14)
If the density is spatially uniform then by symmetry the fac- 2m 2 i
tor p-f, can be replaced by?, andL=1Q+N(1—(p?)/€?),
where(p?) is the average op? within a given cell. For an Where

incompressible fluid{p?/¢?=1/2, andtherefore the addi- 1[/af\2 2] 1

tional angular momentum per particle in the Wigner-SeitzE; :f d%n(r){—{(—) + —2] + —m(ZQUQ—wi)pzf 2
approximation isk/2, which is close to Tkachenko’s result i 2m\dp p 2

[11,12_ for a triangular lattice in an incompressible fluid, g

(m/4\3)h~0.453%. +5nf 4} (15)

To evaluate the second term, we expand the spatially
dependent mean densityn(r) about the center of includes all terms dependent énThe form off within each
cell j as n(Rj)+ﬁ-§n(Rj), so that 3 [; d®nf 25.f, cel}isdge(tfgmilr;e%by mri]nirr]nizti)n&j v(;/ith respt(ej_c'; td, snt;ig;:t
_ > 3 3. o 3.0 e 2 to [; d°p(f “=1)=0, with the boundary conditions t
=112 Vj;[Rin(Rj)]fj drip >_(1/2)fij EV-[rn(r)](;J ) =0 ;indaf/ap:O atp=¢. When analyzing this term, the dif-
=(1/2) Jd*V-[n(r){p?)]-(1/2) fd®m(r)7-V(p?. In the ference of and(), can be ignored. Since there are no terms
case that the density falls to zero at large distances, the firgbuplingf at different values of, the equilibriumf depends
term in the last expression vanishes. In addition, wWiahis  on z only through the dependence of the average density on
independent of position, the second term also vanishes. Ags Thus within a given cell, at given heiglat
we shall see below, this is a good approximation at low ro-
tation rates, when the density within one cell is essentially 1 | }i( ﬁ_f) L lm(ZQz— 2),% + gnfd
uniform, and also at high rotation rates, when interactions do 2om pdp pap p? 2 v @LP 9
not affect the structure within a single cell and the wave
function locally is well approximated by the lowest-Landau- = peall N(R;,2)]f. (16)

level expression. At intermediate rotation rates we expecﬁ.his equation describes the vortex structure for all values of

this term to be numerically small. It may be included arameters, provided that, is large. Equationg14) and
straightforwardly, but we shall neglect it in our subsequen 16) genera,lize the result Sf Ref10] 'through inclusion of
discussions. With this approximation, the second term in Eq. =~ > 2¢2
(11) vanishes to order unity, arid=10,. the (Vyn)*/2m and mo? pf /2 terms, as well as further

Similarly, when the density falls to zero at large distancesterms arising from the density gradients. Td%\s‘“ﬁ)z term
the termﬁv-(lij X V¢;) in Eq. (8) averages in the Wigner- allows us to go beyond.the Thoma_s—Ferm_i approximation,
Seitz approximation to &, while the factor-f, in Eq.(8) ~ When this energy dominates the interaction term. In the
averages to zero if one again neglects the spatial variation ofmit 1>’ /2gn, appropriate to the regime described in

(p?). Thus Ref.[10], the p? term in Eq.(16) can be neglected.
It is useful to define the averages over the unit cell,
1 (Vin? m 2 g2
E'=1(0? +Q2-200 +f 3<—+— 222> _1 Ity 1
2 (wj_ v v) d°r om 2nwz a= 262 ﬁp + p2 y (17)
V)2 Vé)? 1
+Ef d3rn(r){u+f2<(—¢1)—+5mﬂfp2—ﬂv> 1
i Ji 2m 2m b’ = ﬁ<p2f 2>, (18)
#2n()f 4(r)}. (12 and
b=(f%; (19

Next we expresd in terms of the moment of inertia
=fd3rmnri of the smoothed density distribution. When the these quantities depend on the distribution of the density
spatial variation ofp?) is neglected yet again, the result is within the cell. Then,
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Fl.G' .1' Density within a _vortex core in units of t_he .avergge FIG. 2. Variation of the core size with rotational velocity, in the
density in the cell, as a function of the transverse radius in units Orinear approximation to the core structure
the core radiug: (a) the single vortex forng21); (b) the linear core '
approximation(22); (c) the lowest-Landau-level structu¢d0); and
(d) the free particle Bessel functiah (dashedl Curvesa andb are _1-213
calculated foréy=0.1¢. b(¢) = (1- 5/2)2' (24)

5 To determine the vortex density we minimize EG4),
E, :J d3rn{Qva+ br(Q _ &) + g_nb} (200 with Eq.(20), with respect td, at fixed¢ andn(r), and find
]

20,) 2
For slow rotation, the core structure is basically that of a PN\ R S -l o B
single vortex[13], and is reasonably well approximated by 0,=0+ T{l a 2b * 4 2/)\02 [ @9

[14]

The final term is of relative order N,, and can be generally
~— P T (21 neglected, except in the very rapidly rotating mean-field
(265 + p%) lowest-Landau-level regime, where this term is needed to
recover the exact energy.
where&,=#/y2mgnis the Gross-Pitaevskii healing length.  The relative area occupied by the core at position,z)

The Corresponding denSity within this apprOXimationftO is found by m|n|m|z|ng the integrand of ECQO) at the den-
is shown as curve in Fig. 1 for the particular valué,  sjty n(r |, ,2):

=0.1¢. Referencd 10] used a simple linear approximation

for f for all rotation speeds, in whichrises linearly to the 2

effective core radiug and then becomes constant to the i{a(g) + b’(g)(l _&) + ﬂib@)} =0. (26)
¢

edge of the cell, 20%)  2049¢
fo) = 1 « plé, Ossp=<¢ 29 In the Thomas-Fermi regime, the sound velocky,n the
(p) = (1-&2¢)127 |1, ¢<pst. (22 center of the trap is given by

The corresponding density is shown as cubpve Fig. 1, for o, | 15Nba w 02\ |25

the valueé=16&, with £=0.1¢. In general one can solve ms’ = gbn(0) = 21 4 w_z 1‘w_2 . (27)

Eq. (16) numerically fors, although we shall not do this o +

here. . .

With the linear approximatio22), the individual vortex whered, =1/(mw )" is the oscillator length for transverse
energyE; is given by Eq.(20), with motion, and we sef),={). We show, in Fig. 2, the corre-

sponding prediction fot at the center of the trap as a func-
tion of rotational velocity() for 8'Rb, taking the represen-

1
1-ZIn¢ 1- g2 tative valuesN=2.5x10°, »,/27=8.3 Hz, and w,/27
a)=——7>, b= : (29 ~=S2Hz. .
1-¢g2 2-¢ As we see in Fig. 2, the core structure changes rapidly as

) approaches the transverse trap frequeagy In order to
and =£%/¢? is the fractional area occupied by the vortex study rotational velocities comparable to the transverse trap-
core. The fluctuations in the density within a cell renormal-ping frequency it is useful to spread out the horizontal scale
ize the(long-wavelengthcoupling constanf10] by a factor by measuring rotational rates in terms of ttegational ra-
b=(n?/{(ny>>1, given, for the ansat®?2), by pidity y defined by[15]
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1
0.25 | o E'=Z1(0? +02-200,)
LLL limit 2
Vin2 m b
0.20 | +J d3r(u + —nw322+ g_) +NQ,. (32
_ om 2 2

015 | The average op?/€? is given by

2 212\ £2
0.10 | b= = =0.608; (33

e-2
Jor

Mean square core area in units of cell area

005 ¢ in the linear core approximation one finds instead 0.614;
also,a=2-b’/2. The renormalization of the coupling con-
. stant by fluctuations in the density within a cell, the factor
2 4 6 8 10 b=(n%/{n)?, is given in the lowest-Landau-level limit by
Rotational Rapidity (16,17,
FIG. 3. Mean-square radius of the core in unitséf as a fdzpf‘l
function of rotational rapidityy computed for the linear core ap- 1 -5

b= =1.158; (34

proximation. The solid line shows the exact limit for condensation
in the lowest Landau level.

T a2
fdzp 4(e-2)

QO by comparison, the linear core approximation yields 1.192.
Zztanhy (28)  Note that the total moment of inerti& equals | —N(b’
-1/2)/Q,.
or Again to determin),, we minimize Eq.(32) with re-
spect to(},, and find
=Lt (29)
y—2 0, -Q 0,=0Q-NI, (35

- . . . sinceb is independent of), in this limit. Then
The rapidity variable essentially counts the number of 9's in ! 'S Ihdep o 1N IS A

the fractionQ)/w, as the fraction approaches unifust as 1, ) N?

metal dealers describe the purity of metalor example, the E'= 5' (0] = Q%) +NQ - 21

currently achievedl7] /v, =0.995corresponds to a rapid- s

ity of 3.00, while Q/w, =0.999 co_rresponds toy=3.45, e (ViVn)2 m 2.2 greb

and Q/w, =0.9999 toy=4.61. In Fig. 3 we show same A o, e o) (36)

result, now plotted as the mean-square core radjti

divided by ¢2, as a function of rapidity. This result for smallgn/w,, agrees with the exact result,
In the mean-field lowest-Landau-level regime, whére E’'=I(w? -QQ,), for condensation only in the lowest Lan-

approaches |, the cloud expands to the point where tie  dau level[6].

term becomes a small perturbation on the structure within a

cell; to lowest ordeif assumes the particularly simple oscil-

lator p state structure, IV. GLOBAL STRUCTURE OF THE SYSTEM
We turn now to determining the global structure of the
f=cler2® (30)  cloud. Minimizing Eq.(36) at fixed particle number, we de-
¢ rive the effective Gross-Pitaevskii equation for the smoothed

plus small terms, wher€=(1-2/e)"2. The p-wave solu- density:

tion for a particle in a trap with frequenc, that satisfies VZ m ) 5 ) N? ) I —
the usual boundary conditidin— 0 for p— = kindly has zero -S| 07+ 0] - 0% Z) gnbvn= pyn.

slope precisely ap=¢. With this form of f, 2m 2
(37
g

= :f d3rn<2(lv - T(wi +Q§_ 200,)p%f 2+ —nf4>, The structure in the axial direction will, faf) sufficiently
j 2 2 close tow, always become Gaussian. The criterion for the
(31) axial structure to be Gaussian is tliat be small compared
with the axial oscillator frequency,. Since the system den-
so that sity falls indefinitely with increasind?, this condition will
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eventually be satisfied. From E7), the criterion is Note that in the lowest-Landau-level limit, even though
the interaction energy plays only a perturbative role in deter-

1 _Q_z < b 32257 (39) mining the structure within each cell of the lattice, it is cru-
wi o 15Nag cial in determining the global structure. In particular, it is
responsible for the ground state in the rotating system having
or in terms of rapidity, nonzero vorticity. As we see in E42), interactions prevent
ao the collapse of the system to a Gaussian of dizeThey are
ys lln (ﬂ) 15Nag (39) furthermore responsible for inclusion of components from
2 . 2V, | higher Landau levels required to produce a Thomas-Fermi
. . ) éarofile if the vortex lattice is uniform.
For very weak interaction the transverse structure is g fina| axial-Gaussian, transverse-Thomas-Fermi struc-
Gaussian in the lowest-Landau-level linp]: ture at high rotation has the form
2 2
n(r,,2) = mo(2)%€ 7@ Mz), (40) 2 m
: N0 =eE 0 - el -0Art ). 4
whereN(2z) is the number of particles per unit length in the
axial direction. As we shall see below, such a Gaussian deJsing fd*rn=N, we find
scribes the system only fdta;<d,, whered,=1/(mw,)*? is 32
the axial oscillator length. If we adopt this Gaussian as a trial N=—d,R%n(0), (45)
wave function, we find 2
——\2 where the transverse sigg is given by the point whers(r)
i 1 (WMD) m 2.2 falls to zero,
E dz + [
2m dz 2 2gbr(0) 1/2 w2 1/2
bg R, = (2—2> = [87-rbasd2n(0)]l’2<2—L2> .
+ (0% - 0)0(22IM@) + —5N2)? [ +NQ. m(w? — 09 w) —
41
4D In terms of the total numbéX,
Minimizing with respect tao(z) at fixed AV(z), we find 2 14
& - i Nbis dl 47
o2\ d 78\ d,e? - 02
2)=d, [27bM(z 1’4<—l) , 42
o) =d.[2mN@a ™| -~ 5 “2
in agreement with Ref6]. In the Gaussian limit, the relation 0) = 1 N wi - 02\1? 48
of the angular velocity of the vortex lattice £&, Eq. (36), is n(0) = 27\ bd'da; o (48)
given by
— 2
Q,=0- N/f dz mr(2)°M2), (43) V. MEASURING THE CORE SIZE

Several quantitative measures can be used to compare
However, if the transverse structure of the nonrotatin redicted core sizes W'th experiment, z_and_wnh theory in the
owest-Landau-level regime. The first is simply to compare

cloud is Thomas-Fermi, it will remain Thomas-Fermi as thethe slopes of at the oriain. The slobe of the order parameter
cloud is spun up, even to the lowest-Landau-level limit. The P 'gin. P P

. . . . - _ 1/2
criterion for the transverse structure to be Gaussian is diﬁetj-nht.hﬁ linear aﬁproilrggltmrg,) Eq22), OIS 1h/€[§(ﬁ §r/]2)] d 1h
ent than in the axial direction, since the effective transvers ich approaches 1.62/as{l—w,. On the other hand the

oscillator frequencyw?® —-Q?)? goes to zero. The criterion owest-Landau-level wave functio0) has slope 14(1

— 1/2—
becomes instead that the interaction eneygye small com- 2/e) ‘1'95/€' )
pared with the transverse kinetic energyn~gN/ZR? The second is to measure the mean-square ragliofsthe

<1/2mR, whereZ is the axial height an&, the transverse density deficit in the core, defined by

in effective agreement with Reff6].

radius. This condition implies thatas/Z be <1. Since the

total density per unit height\/Z, increases with increasing f dp[ (€)%= f(p)*]p?

Q) as the system flattens out, the structure in the transverse r2= i _ (49)
direction can only be Gaussian if the transverse structure in ¢ " 5 >

the nonrotating cloud is itself Gaussian. The maximum that f d*plf(€)" - f(p)"]

N/Z can become is-N/d,, whered, is the axial oscillator .

length. ForNay/d,>1 the structure in the radial direction In the linear approxirﬂatiorr,ﬁlﬁzgzli At small rotational
will be Thomas-Fermi at larg€), even if it is Gaussian at velocities,r2/¢2=Q/gn=T}, , wheren is the average den-
small Q. sity in the system. For the lowest-Landau-level wave
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function, r2/¢2=[(11/2-2€]/(3-e)=0.225, in good calculations described in the previous paragraph demonstrate
agreement with the measurements of Rgf] at small that when interaction effects are small, the structure of the
I',... To compare with the result from the linear approxi- condensate wave function within a single cell depends _onIy
mation tof, we note that a§) approaches , the value of Weakly onw,. Therefore, after transfer, the wave function

¢ is found from the minimum o&(¢)+b’(¢)/2, which is at ~ Within a cell will be the lowest state for the new valuewf,
£=0.519: thus in this limit,r2/¢2=0.173. Athough good apart from corrections of order 1%. Likewise, for rotation
.519; e 173.

at small Q, the linear approximation is less accurate asates so small that interaction effects dominate, we expect a

O—w. . The initial slope of the lowest-Landau-level similar conclusion to hold because the oscillator potential

wave ﬁ;nction is larger than that in the linear approxima-plays little role in determining the structure of an individual
ortex.

tion; nonetheless, the mean-square radius of the depreg- . .
sion is also larger, since the depression in the quantum We now consider the degree to which the vortex cores

Hall wave function extends over the entire cell. Figure SadJUSt adiabatically in the expansion. To do this, we compare

shows the mean-square radius for the linear approximat-he time scaler. for response of the structure of a cell of a

tion, as well as the limiting result for condensation in thevortex lattice W.'th Fhe expansion time sca’}&P When .the

lowest Landau level. The linear rise i/ ¢2 and its even- vortex-core radius is small compared with the cell radius, the
tual saturation agrees very well with recent measurementtéme f°r_§",‘31“5.““.”e”t5 of the core is of order the core radius,
of the core sizd7]. ~(mgn~%, divided by the sound spees] or 7. ~7%/gn.

Experimentally, core properties are investigated after théN h%n(;ie cort(ra] ra}dlus becomes co:nparg\ble to the fcelldradtlﬁs,
rotating cloud has expanded. In the JILA experiments, th €.,k =gn, INE INVErse response ime beécomes ot orger e
atoms are transferred to a state in which the magnetic forc netic energy associated with a particle com;lned within 2
tend to drive the cloud apart. It is therefore necessary t %Iumf/ of rad|:Js€, d't\r’]'d(?d by , O/rﬁrce“;(;er{]h—l/Qi_
investigate how the vortex-core structure is affected by the l:S Tﬁe” IIZ awalyS te”artt;)er ogn than Lt ese est- ded
transfer to the new state and the subsequent expansion of t s should apply at all stages in the evoution, provide
cloud. Under expansion, the density drops, eventually reach? atn and() are the instantaneous values of these quantities.

ing the point where the interaction energy no longer plays N SOte that_ i tthe iXp?ES'On IS tpurely two dlrrlﬁns(;onal, a
role in determining the structure within the individual cells. good approximation for the recent experimefit; the den-

. 2 . .
The centrifugal force plays no role within a cell. If the po- sity and{) both scale as R, ; therefore, the ratign/#<

tential is adiabatically turned off, the system expands slowl);en.1alns /(;Lonstgnt, and the core expansion rate always re-
to the point where the interaction within a cell is small com-MaINSGN/7 Or &.2.

pared with the bending energy of the order parameter within There are similarly two regimes for the expansion. A.t low
a cell, or 1/2n€2:NU/2mRi>gN/RiZ, which is the case 'otation rates, when the interaction energy per particiés

when the axial height expands to the point whete Iarge compargd Witm.wi’ the expansion velocity .is de_ter-
>8maN/N,. Then the structure within the individual cells, mined by the Interaction energy of the cloud, and is typically
given by Eq.(16), is the Bessel functio,J;(Xor/€"), where of orde_r the sound velocnsb_ In th_e clout_j before releagthe
X,=1.84 is the location of the first maximum of thie(x), subscript 0 denotes quantities just prior to relgaSmn the

C,=2.05, and¢’ is the cell size in the expanded cloud. In other hand, when the typical initial orbital velocifyoR, o

fact, the Bessel function solution is always within 0.015 ofeXCEGdS the sound velocity, the dominant contribution to

the lowest-Landau-level solution, and the two solutionsthe expansion velocity after switching off the trap potential is

would be effectively indistinguishable in practiceee Fig the orbital motion, and therefore the expansion velocity is of
1). The slope at the origin of the Bessel function is 1'88,order 3oR, o- The typical expansion rate %, is thus al-

compared with 1.85 for the lowest-Landau-level solution, V&S the larger 0f/R, and (R, o/R, .

. . K L Now let us compare time scales. For low rotation veloci-
] 2
while the mean square radur%/{f of the depressmn IS ti SQO< /RLOa we hav

0.231, compared with 0.225 for the lowest-Landau-level so-
lution. Teel 1 MR, 1 R
One can distinguish two stages in the evolution of the Tep MSR 0 NR, MR, oR, o’
cloud during release and the subsequent expansion. The first ] ) )
is the period when the atoms are transferred to an untrappeihere the latter estimate holds for two-dimensional expan-
state, and the second is expansion of the cloud in a modifiedfon. This ratio is initially smaller than unity, implying that
trapping potential. The transfer of atoms occurs on a timdhe _ceII initially adiabatically adJ_usts during the expansion,
scale short compared with dynamical times for the particlesPut if the cloud expands to a radiesR’ o/ &, whereg, is the
Therefore the sudden approximation should be good, an_@ros_s-Pnae_vsku heallng_ length, Fhe cond!non for adiabatic-
changes in the coordinate-space wave function during thy Will be violated. For intermediate rotation rates/R o
transfer should be negligible. This implies that both the glo-={0=dno/%, the ratio of times is given by
bal structure of the cloud and the structure of an individual el HQoR. o
cell of the vortex lattice are unchanged. After transfer of - TTan R
atoms to the new state, the structure within a cell will not Tep OGN FL
correspond to the equilibrium configuration for the particularThis ratio starts at a value less than unity but increases
rotation rate because of the change in the trapping potentiakR, /R, ; as the cloud expands. For the final case of fast
which is determined by the instantaneous valuevef The  rotation,Q,=gny/#, the ratio is

(50)

(51)
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vortex lattice; we note that work on rapidly rotating conden-
— T orR R (52) sates carried out recently has demonstrated that the density
1 10 . H H
profile is of the Thomas-Fermi form as long as the number of

In this case the adiabatic assumption is marginally satisfiedortices is>1, and that the LLL wave function with a non-
initially, and is violated during the subsequent expansionuniform array of vortices is a good first approximation
We conclude that one may draw no general conclusion$22,23. A third set of problems concerns effects of excited
about the development of vortex-core structure during exstates, which have not been included in the Gross-Pitaevskii
pansion on the basis of arguments about time scales; moggpproach we have employed. One such effect is the zero-
detailed studies are needed. point motion of collective mode§21,17, which broadens

It is interesting to note that states made up only of com+the density profile of individual vortices and makes the low-
ponents in the lowest Landau level expand homologouslest density nonzero. The density at the center of the vortex
when the effects of interaction are neglecfdd]. In this  can also become nonzero via anomalous modes of excitation
case the structure of a single cell remains invariant, with onlyf the condensatgs] which in the linear approximation have
changes in scale, independent of the transverse length enternegative excitation energy. Even at zero temperature, such
ing the wave functioricf. Eq. (30)]. Even though the condi- modes will have a nonzero equilibrium population such that
tion for adiabaticity is violated, the structure of the singlethe energy required to add an extra quantum in an anomalous
cell would be precisely that predicted assuming adiabatienode, including the effects of self-interaction, is just equal to
behavior. zero. Explicit calculations are given in Rdfl9]. A third
effect is the thermal population of excited states, which like-
wise will lead to a nonzero density at the center of the vor-
] . tex. All of these effects must be taken into account in a

In this paper we have developed a unified framework folyeailed comparison of experiment with theory. Further prob-
describing the structure of rotating Bose-Einstein condengmg include the quantitative delineation of the effect of ex-
sates containing a large number of vortices. We have derivegansion on the vortex-core structure, and inclusion of effects
a Gross-Pitaevskii equation which describes the structure Qft ihe |attice beyond the Wigner-Seitz approximation, such

VI. CONCLUSION

individual vortices and have demonstrated how the meansg the rigidity to shear motion, which manifests itself, e.g., in
field lowest-Landau-level description emerges as a simplgyachenko mode§7,11,20,21

continuation of the structure for small rotation rates. We find
that the global density profile of the rotating clouds in the

transverse direction is generally of the Thomas-Fermi form,
rather than the Gaussian that emerges if only the lowest-

Landau-level is occupied and the vortex lattice is regular.
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