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We develop an approach for calculating stationary states of rotating Bose-Einstein condensates in harmonic
traps which is applicable for arbitrary ratios of the rotation frequency to the transverse frequency of the trap
v'. Assuming the number of vortices to be large, we write the condensate wave function as the product of a
function that describes the structure of individual vortices times an envelope function varying slowly on the
scale of the vortex spacing. By minimizing the energy, we derive Gross-Pitaevskii equations that determine the
properties of individual vortices and the global structure of the cloud. For low rotation rates, the structure of a
vortex is that of an isolated vortex in a uniform medium, while for rotation rates approaching the frequency of
the trap(the mean-field lowest-Landau-level regime), the structure is that of the lowestp-wave state of a
particle in a harmonic trap with frequencyv'. The global structure of the cloud is determined by minimizing
the energy with respect to variations of the envelope function; for conditions appropriate to most experimental
investigations to date, we predict that the transverse density profile of the cloud will be of the Thomas-Fermi
form, rather than the Gaussian structure predicted on the assumption that the wave function consists only of
components in the lowest Landau level for a regular array of vortices.
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I. INTRODUCTION

Bose-Einstein-condensed atomic gases are very well
suited to investigating quantized vortex lines. Single vortex
lines were first made in atomic condensates by Matthewset
al. [1], who induced rotation by phase imprinting in a spinor
condensate. Subsequently, arrays containing many vortices
were created in scalar condensates by inducing rotation me-
chanically, either by stirring the condensate[2,3] or by
evaporating particles[4]. For a theoretical review, see Ref.
[5]. In a seminal work, Ho[6] predicted that clouds of atoms
confined in harmonic traps, when rotated at frequencies close
to the transverse frequencyv' of the trap, should condense
into the lowest Landau level(LLL ) in the Coriolis force,
similar to charged particles in the quantum Hall regime. This
insight has led to extensive experimental studies in which
rotation rates in excess of 0.99v' have been achieved, and
the structure of the condensate within a single cell of the
vortex lattice has been examined[4,7].

To date, most theoretical work on vortices in harmonically
trapped condensates rotating at frequencies close tov' has
been based on the use of wave functions in which particles
occupy only the lowest Landau level. In contrast, for slowly
rotating condensates, the usual approach to calculating vor-
tex structure is to solve the Gross-Pitaevskii equation. In this
paper we address the question of how this approach goes
over to the mean-field lowest-Landau-level description when
the rotation rate is increased[8]. We develop a unified
method for calculating both the structure of individual vorti-
ces and the global structure of the cloud for arbitrary rotation
rates. Writing the condensate wave function as the product of
a slowly varying envelope function that determines the den-
sity averaged over a single cell of the vortex lattice, and a
function that determines the variations of the wave function
on length scales of order the vortex separation and core size,
we derive, in Sec. II, an expression for the energy of the

system. Then in Sec. III we derive the equation for the struc-
ture of the wave function within a single cell of the vortex
lattice by variation of the energy functional. In Sec. IV we
derive equations for the global structure of the cloud. We find
that, if in the nonrotating system the density profile in the
plane transverse to the rotation axis is of the Thomas-Fermi
form, an inverted parabola, then at high rotation the shape
remains Thomas-Fermi, rather than the Gaussian one pre-
dicted by the LLL calculation for a uniform array of vortices.
Recent studies that relax the assumption of a uniform array
of vortices indicate that the Thomas-Fermi profile persists to
even lower interaction strengths[22,23]

II. BASIC FORMALISM

We consider a system of weakly interacting bosons
trapped in a harmonic potential,Vsrd= 1

2msv2r'
2 +vzz

2d,
whererW'=sx,yd, rotating at angular velocityV about thez
axis. The angular momentum of the system is due to the
presence of quantized vortices, of numberNv@1 at large
rotation rates. We assume the vortices to be rectilinear and to
form a regular triangular lattice. WhenNv@1, the limit in
which we work, the angular velocityV at which the lattice
rotates is generally close to the angular velocity

Vv =
p

m
"nv, s1d

wherenv is the stwo-dimensionald density of vortices. The
angular velocityVv is the mean angular velocity identified

via the condition for quantization of vorticity,rCd,W ·vW
=hNvsCd /m, where NvsCd is the number of vortices sur-
rounded by the contourC. Generally,Vv is smaller than
V f9g.
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In order to separate out the short-distance vortex structure
from the large scale structure, we follow the approach of
Fischer and Baym[10] and write the order parameter as

csrWd = eiFsrWdfsrWdÎnsrWd, s2d

the product of asperiodicd rapidly varying real functionfsrWd,
which vanishes at each vortex core times a slowly varying
real envelope functionÎnsrWd and a phase factor. We nor-
malize f2 so that it averages to unity over each unit cell of
the lattice; thusnsrWd is the smoothed density profile of the
system, which varies slowly over the unit cells of the
vortex lattice. The factoreiFf describes the local swirling
of the fluid—with the phaseF wrapping by 2p around
each vortex—together with the overall rotation of the vor-
tex lattice atV. We generally set"=1.

The total energy of the system in the laboratory frame is

E =E d3rH "2

2m
u¹W cu2 + Vsrdnsrdf 2srd +

g

2
n2srdf 4srdJ ,

s3d

where we assume a two-body interaction described by an
s-wave scattering lengthas with g=4pas"

2/m. With Eq. s2d,
the kinetic energy in the laboratory frame becomes

E d3r
1

2m
u¹W cu2 ; K =E d3r

1

2m
Hs¹W Înd2f 2 + s¹W Fd2nf 2

+ ns¹W fd2 +
1

2
¹W f 2 ·¹W nJ . s4d

Sincen varies slowly across a unit cell of the vortex lattice,
we may replace thef 2 in the first term by its averages=1d.
This replacement is accurate to the orderN"2/2mR'

2

,NVv /Nv to which we work, whereN is the total number of
particles in the system,Nv is the total number of vortices,
andR' is the transverse radius of the system. We integrate
the final term by parts to give −12 ed 3rf 2¹2n, and similarly
replace thef 2 here by its average in the cell, so that the
integral leaves only a vanishing surface term. Thus,

K =E d3r
1

2m
hs¹W Înd2 + s¹W Fd2nf 2 + ns¹W fd2j. s5d

In the unit cell centered on vortexj at positionRW j in the

plane transverse to the rotation axis, the velocity¹W F /m is
the sum of a solid body rotation at a rate determined by the
vortex density and evaluated at the position of the vortex,

VW v3RW j, plus the local velocity around the vortex, which we

write as¹W f j /m:

¹W Fsrd . mVW v 3 RW j + ¹W f j . s6d

The s¹W Fd2 term thus becomes

E d3r
nf 2

2m
s¹W Fd2 = o

j
E

j
d3rnf 2Hs¹W f jd2

2m
+

1

2
mVv

2Rj
2

+ VW v · sRW j 3 ¹W f jdJ; s7d

the integration is over unit cellj , and the sum is over all
cells. In the Wigner-Seitz approximation, which we employ
below, f j becomes the azimuthal angle measured with re-

spect to the pointRW j. The final scrossd term does not vanish
when the densityn varies across the unit cell. Writing within

cell j , RW j =rW'−rW, the middle term in Eq.s7d becomes1
2IVv

2

+1
2mVv

2o j e j d3rnf 2sr2−2r ·rW'd, where I =ed3rmnf 2r'
2 is

the total moment of inertia of the system. Similarly the trans-
verse trapping potential term becomes1

2Iv'
2 . The total en-

ergy is then

E =
1

2
Isv'

2 + Vv
2d +E d3rS s¹W Înd2

2m
+ n

m

2
vz

2z2D
+ o

j
E

j
d3rnsrdH s¹W fd2

2m
+ f 2S s¹W f jd2

2m
+

1

2
mVv

2sr2

− 2r · rW'd + VW v · sRW j 3 ¹W f jdD +
g

2
nsrdf 4srdJ . s8d

To determine the equilibrium structure, we work in the
frame rotating at angular velocityV, and minimize the en-
ergy in the rotating frame,E−VL, where

L =E d3rnsrdf 2srdfrW' 3 ¹ Fsrdgz s9d

is the angular momentum along thez axis.fThis procedure is
equivalent to determining the equilibrium structure at fixed
angular momentumL by minimizing the total energy taking
the constraint of fixedL into account by a Lagrange multi-

plier V.g Using Eq.s6d, and again writing in cellj , rW'=RW j
+rW, we have

L = IVv + o
j
E d3rnf 2fsrW' 3 ¹W f jdz − mVvr · rW'g.

s10d

The first term is the angular momentum of the cloud for a
velocity field corresponding to uniform rotation with angular
velocity Vv, and the second is the contribution due to the fact
that flow within a cell does not correspond to rigid-body
motion.

III. EQUILIBRIUM STRUCTURE OF VORTICES

We turn now to determining the structure of the vortices
within the unit cells. To do this we introduce the Wigner-
Seitz approximation to evaluate the vortex sum, replacing the
hexagonal unit cell by a circle of radius,=1/smVvd1/2. Then
f is cylindrically symmetric within each cell. In the follow-
ing, we assume that the vortex spacing is small compared
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with the characteristic length scale in the axial direction. The
term in Eq.(8) containing]f /]z can then be neglected, andf
depends only on the transverse coordinate and the average
local density. In cellj , f j becomes the azimuthal angle with
respect to the center of the cell. Again we write within cellj ,

rW'=RW j +rW, so thats¹W f jd2=1/r2. Furthermore,srW 3¹W f jdz be-
comes just", so that the angular momentum in the Wigner-
Seitz approximation is

L = IVv + o
j
E

j
d3rnf 2s1 − mVvrW · rW'd. s11d

If the density is spatially uniform then by symmetry the fac-
tor rW ·rW' can be replaced byr2, andL= IV+Ns1−kr2l /,2d,
where kr2l is the average ofr2 within a given cell. For an
incompressible fluid,kr2l /,2=1/2, andtherefore the addi-
tional angular momentum per particle in the Wigner-Seitz
approximation is" /2, which is close to Tkachenko’s result
f11,12g for a triangular lattice in an incompressible fluid,
sp /4Î3d".0.453".

To evaluate the second term, we expand the spatially
dependent mean densitynsrd about the center of

cell j as nsRjd+rW ·¹W nsRjd, so that o j e j d3rnf 2rW ·rW'

.s1/2do j ¹W j ·fRW jnsRjdge j d3rkr2l.s1/2ded3r¹W ·frWnsrdgkr2l

.s1/2ded3r¹W ·frWnsrdkr2lg−s1/2ded3rnsrdrW ·¹W kr2l. In the
case that the density falls to zero at large distances, the first
term in the last expression vanishes. In addition, whenkr2l is
independent of position, the second term also vanishes. As
we shall see below, this is a good approximation at low ro-
tation rates, when the density within one cell is essentially
uniform, and also at high rotation rates, when interactions do
not affect the structure within a single cell and the wave
function locally is well approximated by the lowest-Landau-
level expression. At intermediate rotation rates we expect
this term to be numerically small. It may be included
straightforwardly, but we shall neglect it in our subsequent
discussions. With this approximation, the second term in Eq.
(11) vanishes to order unity, andL= IVv.

Similarly, when the density falls to zero at large distances,

the termVW v ·sRW j 3 ¹f jd in Eq. (8) averages in the Wigner-
Seitz approximation to −Vv, while the factorrW ·rW' in Eq. (8)
averages to zero if one again neglects the spatial variation of
kr2l. Thus

E8 =
1

2
Isv'

2 + Vv
2 − 2VVvd +E d3rS s¹W Înd2

2m
+

m

2
nvz

2z2D
+ o

j
E

j
d3rnsrdH s¹W fd2

2m
+ f2S s¹W f jd2

2m
+

1

2
mVv

2r2 − VvD
+

g

2
nsrdf 4srdJ . s12d

Next we expressI in terms of the moment of inertiaĪ
=ed3rmnr'

2 of the smoothed density distribution. When the
spatial variation ofkr2l is neglected yet again, the result is

I = Ī − mo
j
E

j
d3rnsf 2 − 1dr2

= Ī +
N

2Vv
− mo

j
E

j
d3rnf 2r2. s13d

We therefore find

E8 =
1

2
S Ī +

N

2Vv
Dsv'

2 + Vv
2 − 2VVvd

+E d3rS s¹W Înd2

2m
+

m

2
nvz

2z2D − NVv + o
j

Ej , s14d

where

Ej =E
j

d3rnsrdH 1

2m
FS ] f

] r
D2

+
f 2

r2G +
1

2
ms2VvV − v'

2 dr2f 2

+
g

2
nf 4J s15d

includes all terms dependent onf. The form of f within each
cell is determined by minimizingEj with respect tof, subject
to e j d2rsf 2−1d=0, with the boundary conditions thatfs0d
=0 and]f /]r=0 atr=,. When analyzing this term, the dif-
ference ofV andVv can be ignored. Since there are no terms
coupling f at different values ofz, the equilibriumf depends
on z only through the dependence of the average density on
z. Thus within a given cell, at given heightz,

1

2m
F−

1

r

]

] r
Sr

] f

] r
D +

f

r2G +
1

2
ms2Vv

2 − v'
2 dr2f + gnf3

= mcellfnsRj,zdgf . s16d

This equation describes the vortex structure for all values of
parameters, provided thatNv is large. Equationss14d and
s16d generalize the result of Ref.f10g through inclusion of

the s¹W Înd2/2m and mv'
2 r2f 2/2 terms, as well as further

terms arising from the density gradients. Thes¹W Înd2 term
allows us to go beyond the Thomas-Fermi approximation,
when this energy dominates the interaction term. In the
limit V@v'

2 /2gn, appropriate to the regime described in
Ref. f10g, the r2 term in Eq.s16d can be neglected.

It is useful to define the averages over the unit cell,

a =
1

2
,2KS ] f

] r
D2

+
f 2

r2L , s17d

b8 =
1

,2kr2f 2l, s18d

and

b = kf 4l; s19d

these quantities depend on the distribution of the density
within the cell. Then,
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Ej =E
j

d3rnHVva + b8SV −
v'

2

2Vv
D +

gnb

2
J . s20d

For slow rotation, the core structure is basically that of a
single vortex[13], and is reasonably well approximated by
[14]

f ,
r

s2j0
2 + r2d1/2, s21d

wherej0=" /Î2mgn is the Gross-Pitaevskii healing length.
The corresponding density within this approximation tof
is shown as curvea in Fig. 1 for the particular valuej0
=0.1,. Referencef10g used a simple linear approximation
for f for all rotation speeds, in whichf rises linearly to the
effective core radiusj and then becomes constant to the
edge of the cell,

fsrd =
1

s1 − j2/2,2d1/2 3 Hr/j, 0 ø r ø j

1, j ø r ø ,.
s22d

The corresponding density is shown as curveb in Fig. 1, for
the valuej=Î6j0 with j0=0.1,. In general one can solve
Eq. s16d numerically fors, although we shall not do this
here.

With the linear approximation(22), the individual vortex
energyEj is given by Eq.(20), with

aszd =

1 −
1

2
ln z

1 − z/2
, b8szd =

1 − z2/3

2 − z
, s23d

and z=j2/,2 is the fractional area occupied by the vortex
core. The fluctuations in the density within a cell renormal-
ize theslong-wavelengthd coupling constantf10g by a factor
b=kn2l / knl2.1, given, for the ansatzs22d, by

bszd =
1 − 2z/3

s1 − z/2d2 . s24d

To determine the vortex density we minimize Eq.(14),
with Eq. (20), with respect toVv at fixedz andnsrd, and find

Vv = V +
N

Ī
H1 − a −

1

2
b8 + S1

4
−

b8

2
DSv'

2

V2 − 1DJ . s25d

The final term is of relative order 1/Nv, and can be generally
neglected, except in the very rapidly rotating mean-field
lowest-Landau-level regime, where this term is needed to
recover the exact energy.

The relative area occupied by the core at positionsr' ,zd
is found by minimizing the integrand of Eq.(20) at the den-
sity nsr' ,zd:

]

] z
Haszd + b8szdS1 −

v'
2

2V2D +
gn

2V

]

] z
bszdJ = 0. s26d

In the Thomas-Fermi regime, the sound velocity,s, in the
center of the trap is given by

ms2 = gbns0d =
v'

2
F15 Nbas

d'

vz

v'
S1 −

V2

v'
2 DG2/5

, s27d

whered'=1/smv'd1/2 is the oscillator length for transverse
motion, and we setVv=V. We show, in Fig. 2, the corre-
sponding prediction forz at the center of the trap as a func-
tion of rotational velocityV for 87Rb, taking the represen-
tative values N=2.53106, v' /2p=8.3 Hz, and vz/2p
=5.2 Hz.

As we see in Fig. 2, the core structure changes rapidly as
V approaches the transverse trap frequencyv'. In order to
study rotational velocities comparable to the transverse trap-
ping frequency it is useful to spread out the horizontal scale
by measuring rotational rates in terms of therotational ra-
pidity y defined by[15]

FIG. 1. Density within a vortex core in units of the average
density in the cell, as a function of the transverse radius in units of
the core radius,: (a) the single vortex form(21); (b) the linear core
approximation(22); (c) the lowest-Landau-level structure(30); and
(d) the free particle Bessel functionJ1 (dashed). Curvesa andb are
calculated forj0=0.1,.

FIG. 2. Variation of the core size with rotational velocity, in the
linear approximation to the core structure.

G. BAYM AND C. J. PETHICK PHYSICAL REVIEW A69, 043619(2004)

043619-4



V

v'

; tanhy s28d

or

y =
1

2
ln

v' + V

v' − V
. s29d

The rapidity variable essentially counts the number of 9’s in
the fractionV /v' as the fraction approaches unitysjust as
metal dealers describe the purity of metalsd. For example, the
currently achievedf7g V /v'=0.995corresponds to a rapid-
ity of 3.00, while V /v'=0.999 corresponds toy=3.45,
and V /v'=0.9999 toy=4.61. In Fig. 3 we show same
result, now plotted as the mean-square core radius,z2/3
divided by ,2, as a function of rapidity.

In the mean-field lowest-Landau-level regime, whereV
approachesv', the cloud expands to the point where thegn
term becomes a small perturbation on the structure within a
cell; to lowest orderf assumes the particularly simple oscil-
lator p state structure,

f = C
r

,
e−r2/2,2

, s30d

plus small terms, whereC=s1−2/ed−1/2. The p-wave solu-
tion for a particle in a trap with frequencyVv that satisfies
the usual boundary conditionf →0 for r→` kindly has zero
slope precisely atr=,. With this form of f,

Ej =E
j

d3rnS2Vv −
m

2
sv'

2 + Vv
2 − 2VVvdr2f 2 +

g

2
nf 4D ,

s31d

so that

E8 =
1

2
Isv'

2 + Vv
2 − 2VVvd

+E d3rS s¹W Înd2

2m
+

m

2
nvz

2z2 +
gn2b

2
D + NVv. s32d

The average ofr2/,2 is given by

b8 =
E d2rsr2/,2df2

E d2r

=
2e− 5

e− 2
= 0.608; s33d

in the linear core approximation one finds instead 0.614;
also, a=2−b8 /2. The renormalization of the coupling con-
stant by fluctuations in the density within a cell, the factor
b=kn2l / knl2, is given in the lowest-Landau-level limit by
f16,17g,

b =
E d2rf 4

E d2r

=
1

4

e2 − 5

se− 2d2 = 1.158; s34d

by comparison, the linear core approximation yields 1.192.

Note that the total moment of inertiaI equals Ī −Nsb8
−1/2d /Vv.

Again to determineVv, we minimize Eq.(32) with re-
spect toVv, and find

Vv = V − N/I , s35d

sinceb is independent ofVv in this limit. Then

E8 =
1

2
Isv'

2 − V2d + NV −
N2

2I

+E d3rS s¹W Înd2

2m
+

m

2
nvz

2z2 +
gn2b

2
D . s36d

This result for smallgn/v', agrees with the exact result,
E8= Isv'

2 −VVvd, for condensation only in the lowest Lan-
dau levelf6g.

IV. GLOBAL STRUCTURE OF THE SYSTEM

We turn now to determining the global structure of the
cloud. Minimizing Eq.(36) at fixed particle number, we de-
rive the effective Gross-Pitaevskii equation for the smoothed
density:

H−
¹2

2m
+

m

2
Fvz

2z2 + Sv'
2 − V2 +

N2

I2 Dr'
2 G + gnbJÎn = mÎn.

s37d

The structure in the axial direction will, forV sufficiently
close tov', always become Gaussian. The criterion for the
axial structure to be Gaussian is thatgn be small compared
with the axial oscillator frequencyvz. Since the system den-
sity falls indefinitely with increasingV, this condition will

FIG. 3. Mean-square radius of the core in units of,2, as a
function of rotational rapidityy computed for the linear core ap-
proximation. The solid line shows the exact limit for condensation
in the lowest Landau level.
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eventually be satisfied. From Eq.s27d, the criterion is

1 −
V2

v'
2 ! Svzb

v'

D3/225/2d'

15Nas
s38d

or in terms of rapidity,

y @
1

2
lnFSv'

vz
D3/215Nas

21/2d'

G . s39d

For very weak interaction the transverse structure is
Gaussian in the lowest-Landau-level limit[6]:

nsr',zd = psszd2e−r2/sszd2Nszd, s40d

whereNszd is the number of particles per unit length in the
axial direction. As we shall see below, such a Gaussian de-
scribes the system only forNas!dz, wheredz=1/smvzd1/2 is
the axial oscillator length. If we adopt this Gaussian as a trial
wave function, we find

E8 =E dzH 1

2m
SdÎNszd

dz
D2

+
m

2
fvz

2z2

+ sv'
2 − V2dsszd2gNszd +

bg

4sszd2Nszd2J + NV.

s41d

Minimizing with respect tosszd at fixed Nszd, we find

sszd = d'f2pbNszdasg1/4S v'
2

v'
2 − V2D1/4

, s42d

in agreement with Ref.f6g. In the Gaussian limit, the relation
of the angular velocity of the vortex lattice toV, Eq. s36d, is
given by

Vv = V − NYE dz msszd2Nszd, s43d

in effective agreement with Ref.f6g.
However, if the transverse structure of the nonrotating

cloud is Thomas-Fermi, it will remain Thomas-Fermi as the
cloud is spun up, even to the lowest-Landau-level limit. The
criterion for the transverse structure to be Gaussian is differ-
ent than in the axial direction, since the effective transverse
oscillator frequencysv'

2 −V2d1/2 goes to zero. The criterion
becomes instead that the interaction energygn be small com-
pared with the transverse kinetic energy:gn,gN/ZR'

2

!1/2mR'
2 , whereZ is the axial height andR' the transverse

radius. This condition implies thatNas/Z be !1. Since the
total density per unit height,N/Z, increases with increasing
V as the system flattens out, the structure in the transverse
direction can only be Gaussian if the transverse structure in
the nonrotating cloud is itself Gaussian. The maximum that
N/Z can become is,N/dz, wheredz is the axial oscillator
length. ForNas/dz@1 the structure in the radial direction
will be Thomas-Fermi at largeV, even if it is Gaussian at
small V.

Note that in the lowest-Landau-level limit, even though
the interaction energy plays only a perturbative role in deter-
mining the structure within each cell of the lattice, it is cru-
cial in determining the global structure. In particular, it is
responsible for the ground state in the rotating system having
nonzero vorticity. As we see in Eq.(42), interactions prevent
the collapse of the system to a Gaussian of sized'. They are
furthermore responsible for inclusion of components from
higher Landau levels required to produce a Thomas-Fermi
profile if the vortex lattice is uniform.

The final axial-Gaussian, transverse-Thomas-Fermi struc-
ture at high rotation has the form

nsrWd = e−z2/dz
2Sns0d −

m

2gb
sv'

2 − V2dr'
2 D . s44d

Using ed3rn=N, we find

N =
p3/2

2
dzR'

2 ns0d, s45d

where the transverse sizeR' is given by the point wherensrWd
falls to zero,

R' = S 2gbns0d
msv'

2 − V2d
D1/2

= f8pbasd
2ns0dg1/2S v'

2

v'
2 − V2D1/2

.

s46d

In terms of the total numberN,

R'

d
=

2

p1/8SNb
as

dz

v'
2

v'
2 − V2D1/4

s47d

and

ns0d =
1

2p 5/4S N

bd4dzas

v'
2 − V2

v'
2 D1/2

. s48d

V. MEASURING THE CORE SIZE

Several quantitative measures can be used to compare
predicted core sizes with experiment, and with theory in the
lowest-Landau-level regime. The first is simply to compare
the slopes off at the origin. The slope of the order parameter
in the linear approximation, Eq.(22), is 1/,fzs1−z /2dg1/2,
which approaches 1.62/, asV→v'. On the other hand the
lowest-Landau-level wave function(30) has slope 1/,s1
−2/ed1/2=1.95/,.

The second is to measure the mean-square radiusrc
2 of the

density deficit in the core, defined by

rc
2 =

E
j

d2rffs,d2 − fsrd2gr2

E
j

d2rffs,d2 − fsrd2g
. s49d

In the linear approximation,rc
2/,2=z2/3. At small rotational

velocities,rc
2/,2=V /gn̄;GLLL

−1 , wheren̄ is the average den-
sity in the system. For the lowest-Landau-level wave
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function, rc
2/,2=fs11/2d−2eg / s3−ed.0.225, in good

agreement with the measurements of Ref.f7g at small
GLLL . To compare with the result from the linear approxi-
mation tof, we note that asV approachesv', the value of
z is found from the minimum ofaszd+b8szd /2, which is at
z.0.519; thus in this limit, rc

2/,2.0.173. Although good
at small V, the linear approximation is less accurate as
V→v'. The initial slope of the lowest-Landau-level
wave function is larger than that in the linear approxima-
tion; nonetheless, the mean-square radius of the depres-
sion is also larger, since the depression in the quantum
Hall wave function extends over the entire cell. Figure 3
shows the mean-square radius for the linear approxima-
tion, as well as the limiting result for condensation in the
lowest Landau level. The linear rise ofrc

2/,2 and its even-
tual saturation agrees very well with recent measurements
of the core sizef7g.

Experimentally, core properties are investigated after the
rotating cloud has expanded. In the JILA experiments, the
atoms are transferred to a state in which the magnetic forces
tend to drive the cloud apart. It is therefore necessary to
investigate how the vortex-core structure is affected by the
transfer to the new state and the subsequent expansion of the
cloud. Under expansion, the density drops, eventually reach-
ing the point where the interaction energy no longer plays a
role in determining the structure within the individual cells.
The centrifugal force plays no role within a cell. If the po-
tential is adiabatically turned off, the system expands slowly
to the point where the interaction within a cell is small com-
pared with the bending energy of the order parameter within
a cell, or 1/2m,2=Nv /2mR'

2 @gN/R'
2 Z, which is the case

when the axial height expands to the point whereZ
@8pasN/Nv. Then the structure within the individual cells,
given by Eq.(16), is the Bessel functionC1J1sx0r /,8d, where
x0=1.84 is the location of the first maximum of theJ1sxd,
C1=2.05, and,8 is the cell size in the expanded cloud. In
fact, the Bessel function solution is always within 0.015 of
the lowest-Landau-level solution, and the two solutions
would be effectively indistinguishable in practice(see Fig.
1). The slope at the origin of the Bessel function is 1.88,
compared with 1.85 for the lowest-Landau-level solution,
while the mean-square radiusrc

2/,2 of the depression is
0.231, compared with 0.225 for the lowest-Landau-level so-
lution.

One can distinguish two stages in the evolution of the
cloud during release and the subsequent expansion. The first
is the period when the atoms are transferred to an untrapped
state, and the second is expansion of the cloud in a modified
trapping potential. The transfer of atoms occurs on a time
scale short compared with dynamical times for the particles.
Therefore the sudden approximation should be good, and
changes in the coordinate-space wave function during the
transfer should be negligible. This implies that both the glo-
bal structure of the cloud and the structure of an individual
cell of the vortex lattice are unchanged. After transfer of
atoms to the new state, the structure within a cell will not
correspond to the equilibrium configuration for the particular
rotation rate because of the change in the trapping potential,
which is determined by the instantaneous value ofv'. The

calculations described in the previous paragraph demonstrate
that when interaction effects are small, the structure of the
condensate wave function within a single cell depends only
weakly onv'. Therefore, after transfer, the wave function
within a cell will be the lowest state for the new value ofv',
apart from corrections of order 1%. Likewise, for rotation
rates so small that interaction effects dominate, we expect a
similar conclusion to hold because the oscillator potential
plays little role in determining the structure of an individual
vortex.

We now consider the degree to which the vortex cores
adjust adiabatically in the expansion. To do this, we compare
the time scaletcell for response of the structure of a cell of a
vortex lattice with the expansion time scaletexp. When the
vortex-core radius is small compared with the cell radius, the
time for adjustments of the core is of order the core radius,
,smgnd−1/2, divided by the sound speeds, or tcell," /gn.
When the core radius becomes comparable to the cell radius,
i.e.,"V*gn, the inverse response time becomes of order the
kinetic energy associated with a particle confined within a
volume of radius,, divided by ", or tcell,m,2/"=1/V.
Thus 1/tcell is always the larger ofgn/" andV. These esti-
mates should apply at all stages in the evolution, provided
thatn andV are the instantaneous values of these quantities.
We note that if the expansion is purely two dimensional, a
good approximation for the recent experiments[7], the den-
sity andV both scale as 1/R'

2 ; therefore, the ratiogn/"V
remains constant, and the core expansion rate always re-
mainsgn/" or V.

There are similarly two regimes for the expansion. At low
rotation rates, when the interaction energy per particlegn is
large compared with"v', the expansion velocity is deter-
mined by the interaction energy of the cloud, and is typically
of order the sound velocitys0 in the cloud before release(the
subscript 0 denotes quantities just prior to release). On the
other hand, when the typical initial orbital velocityV0R'0
exceeds the sound velocitys0, the dominant contribution to
the expansion velocity after switching off the trap potential is
the orbital motion, and therefore the expansion velocity is of
order V0R'0. The typical expansion rate 1/texp is thus al-
ways the larger ofs0/R' andV0R'0/R'.

Now let us compare time scales. For low rotation veloci-
ties V0&s0/R'0, we have

tcell

texp
,

1

ms0R'0

n0R'0

nR'

,
1

ms0R'0

R'

R'0
, s50d

where the latter estimate holds for two-dimensional expan-
sion. This ratio is initially smaller than unity, implying that
the cell initially adiabatically adjusts during the expansion,
but if the cloud expands to a radius*R'0

2 /j0, wherej0 is the
Gross-Pitaevskii healing length, the condition for adiabatic-
ity will be violated. For intermediate rotation rates,s0/R'0
&V0&gn0/", the ratio of times is given by

tcell

texp
,

"V0

gn

R'0

R'

. s51d

This ratio starts at a value less than unity but increases
~R' /R'0 as the cloud expands. For the final case of fast
rotation,V0*gn0/", the ratio is
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tcell

texp
,

V0R'0

VR'

,
R'

R'0
. s52d

In this case the adiabatic assumption is marginally satisfied
initially, and is violated during the subsequent expansion.
We conclude that one may draw no general conclusions
about the development of vortex-core structure during ex-
pansion on the basis of arguments about time scales; more
detailed studies are needed.

It is interesting to note that states made up only of com-
ponents in the lowest Landau level expand homologously
when the effects of interaction are neglected[18]. In this
case the structure of a single cell remains invariant, with only
changes in scale, independent of the transverse length enter-
ing the wave function[cf. Eq. (30)]. Even though the condi-
tion for adiabaticity is violated, the structure of the single
cell would be precisely that predicted assuming adiabatic
behavior.

VI. CONCLUSION

In this paper we have developed a unified framework for
describing the structure of rotating Bose-Einstein conden-
sates containing a large number of vortices. We have derived
a Gross-Pitaevskii equation which describes the structure of
individual vortices and have demonstrated how the mean-
field lowest-Landau-level description emerges as a simple
continuation of the structure for small rotation rates. We find
that the global density profile of the rotating clouds in the
transverse direction is generally of the Thomas-Fermi form,
rather than the Gaussian that emerges if only the lowest-
Landau-level is occupied and the vortex lattice is regular.

A number of open problems remain for future work. One
is to understand microscopically the basic approximation(6)
for the velocity field and possible corrections to it. A second
is to explore in greater detail the relationship between the
lowest-Landau-level wave function and other forms for the
wave function. A related question concerns distortions of the

vortex lattice; we note that work on rapidly rotating conden-
sates carried out recently has demonstrated that the density
profile is of the Thomas-Fermi form as long as the number of
vortices is@1, and that the LLL wave function with a non-
uniform array of vortices is a good first approximation
[22,23]. A third set of problems concerns effects of excited
states, which have not been included in the Gross-Pitaevskii
approach we have employed. One such effect is the zero-
point motion of collective modes[21,17], which broadens
the density profile of individual vortices and makes the low-
est density nonzero. The density at the center of the vortex
can also become nonzero via anomalous modes of excitation
of the condensate[5] which in the linear approximation have
a negative excitation energy. Even at zero temperature, such
modes will have a nonzero equilibrium population such that
the energy required to add an extra quantum in an anomalous
mode, including the effects of self-interaction, is just equal to
zero. Explicit calculations are given in Ref.[19]. A third
effect is the thermal population of excited states, which like-
wise will lead to a nonzero density at the center of the vor-
tex. All of these effects must be taken into account in a
detailed comparison of experiment with theory. Further prob-
lems include the quantitative delineation of the effect of ex-
pansion on the vortex-core structure, and inclusion of effects
of the lattice beyond the Wigner-Seitz approximation, such
as the rigidity to shear motion, which manifests itself, e.g., in
Tkachenko modes[7,11,20,21].
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