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We present a theory for the linear dynamics of a weakly interacting Bose gas confined inside a harmonic trap
at finite temperature. The theory treats the motions of the condensate and of the noncondensate on an equal
footing within a generalized random-phase approximation, which(i) extends the second-order Beliaev-Popov
approach by allowing for the dynamical coupling between fluctuations in the thermal cloud, and(ii ) reduces to
an earlier random-phase scheme when the anomalous density fluctuations are omitted. Numerical calculations
of the low-lying spectra in the case of isotropic confinement show that the present theory obeys with high
accuracy the generalized Kohn theorem for the dipolar excitations and demonstrate that combined normal and
anomalous density fluctuations play an important role in the monopolar excitations of the condensate. Mean-
field theory is instead found to yield accurate results for the quadrupolar modes of the condensate. Although the
restriction to spherical confinement prevents quantitative comparisons with measured spectra, it appears that
the non-mean-field effects that we examine may be relevant to explain the features exhibited by the breathing
mode as a function of temperature in the experiments carried out at JILA on a gas of87Rb atoms.
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I. INTRODUCTION

Soon after the realization of Bose-Einstein condensation
in trapped atomic gases, an important development in this
field has been the measurement of the frequencies and damp-
ing rates of collective excitations[1–5]. These measurements
are very accurate and provide a unique opportunity for quan-
titative tests of quantum theories of the dynamics of many-
body systems. In particular, the measurements of the lowest-
energy excitations made at JILA[2] on 87Rb gases at various
temperatures have proved hard to understand at simple
mean-field level[6,7] and have therefore stimulated a num-
ber of theoretical studies to address effects beyond the mean-
field approximation[8–16].

The key issue in investigations transcending the mean-
field level is thefull dynamic description of both condensed
and noncondensed atoms and their mutual interactions[9].
While the condensate dynamics is well described by a single
nonlinear Gross-Pitaevskii equation(GPE), how to monitor
the evolution of the noncondensate is a much more delicate
problem. The best candidate theory that takes into account
the coupled dynamics of condensate and noncondensate for a
homogeneous weakly interacting Bose gas in the collision-
less limit is the second-order Beliaev-Popov(SOBP) theory
[17], which has been reexamined recently by Shi and Griffin
[18] and extended to trapped gases by Fedichev and Shlyap-
nikov [10] and by Giorgini[14] (see also Ruschet al. [15]).
However, for the trapped gas the Thomas-Fermi approxima-
tion on the SOBP theory fails to account for the JILA obser-
vations[10,14]. One possible reason is that the dynamics of
the condensate and noncondensate are not treated on an
equal footing in the theory, i.e., the dynamical coupling be-
tween fluctuations in the thermal cloud is not included. This

coupling should be important when the thermal fraction is
significantly populated and, as will be discussed below, is in
fact needed to satisfy the generalized Kohn theorem for the
dipole modes. One way to include these processes is to use
the linear response theory in the random-phase approxima-
tion (RPA) as developed by two of us[9]. Such a treatment
chooses the Hartree-Fock gas as the reference system for the
thermal atoms, thus neglecting the anomalous density fluc-
tuations that may play a role at intermediate temperatures.

In the present paper we improve on the Hartree-Fock RPA
(HF-RPA) by including the anomalous density fluctuations.
The resulting theory can be referred to as the HFB-RPA since
our choice of the reference system is provided by the first-
order Hartree-Fock-Bogoliubov theory. We explicitly show
that the HFB-RPA theory formally reduces to the SOBP
theory given by Fedichev and Shlyapnikov[10] and by
Giorgini [14] if (i) one excludes the process of driving the
noncondensate by its self-generated dynamical potential, and
(ii ) one keeps only terms of second order in the coupling
constant. It is interesting to note that the HF-RPA similarly
reduces to the dielectric formalism given by Reidlet al. [13].

We then numerically investigate the low-lying excitations
of a fluid representing a Bose-condensed gas of 200087Rb
atoms in a spherically symmetric harmonic trap at finite tem-
perature by using the HFB-RPA as well as the SOBP theory
and the HF-RPA. All three theories give qualitatively the
same results for the quadrupolar mode of the condensate.
However, they predict different trends for the monopolar
mode, due to the strong coupling between the oscillations of
the condensate and those of the noncondensate. This obser-
vation highlights the crucial roles played already in the linear
excitation spectra by the normal and anomalous density fluc-
tuations of the noncondensate.
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The paper is organized as follows. In Sec. II we derive the
generalized RPA equations within the framework of the
Hartree-Fock-Bogoliubov approximation, and in Sec. III we
briefly demonstrate how to deduce the SOBP theory from the
HFB-RPA equations. In Sec. IV we describe our numerical
procedure for calculating the spectral response functions and
check their accuracy, and in Secs. V and VI we present our
numerical results for the low-energy excitations. Finally, Sec.
VII presents our main conclusions.

II. THE HFB-RPA THEORY

The essential idea of the RPA is that the gas responds as a
reference gas to self-consistent dynamical potentials[8]. In
the HF-RPA treatment one chooses as dynamical variables
the density fluctuationsdnc of the condensate anddñ of the
noncondensate[9]. The HF-RPA equations follow by impos-
ing that the condensed and noncondensed particles experi-
ence dynamical Hartree-Fock potentials generated by both
types of density fluctuations and respond to them as a
Hartree-Fock gas.

Our starting point for the derivation of the HFB-RPA is
the definition of the appropriate single-particle reference sys-
tem. The contribution of the anomalous density is included
by choosing the Hartree-Fock-Bogoliubov gas at finite tem-
perature as reference, which is defined in terms of the con-
densate wave functionF0 and of the single-particle ampli-
tudesuj andv j for the noncondensate[19]. The condensate is
described by the generalized GPE,

F−
"2¹2

2m
+ Vextsr d + g„ncsr d + 2ñ0sr d…GF0sr d + gm̃0sr dF0

*sr d

= mF0sr d, s1d

where we adopt the standard contact-pseudopotential model
characterized by the coupling constantg=4p"2a/m, with a
being the s-wave scattering length. In Eq.s1d Vextsr d
=msvx

2x2+vy
2y2+vz

2z2d /2 is the external confinement and
ncsr d= uF0sr du2, ñ0sr d=o j hfuujsr du2+ uv jsr du2gf j + uv jsr du2j, and
m̃0sr d=o j fs1+2f jdujsr dv j

*sr dg are the condensate density
and the normal and anomalous thermal densities,f j
=1/sebe j −1d being the Bose-Einstein distribution withb
=1/kBT and m the chemical potential. The noncondensate
amplitudes are obtained by the solution of the generalized
Bogoliubov–de Gennes equations

Lsr dujsr d + g„F0
2sr d + m̃0sr d…v jsr d = e jujsr d,

s2d
Lsr dv jsr d + g„F0

*2sr d + m̃0*sr d…ujsr d = − e jv jsr d.

Here Lsr d=−"2¹2/2m+Vextsr d+2g(ncsr d+ ñ0sr d). The
Popov approximation to the Hartree-Fock-Bogoliubov
(HFB-Popov) theory is recovered by settingm̃0sr d=0 in Eqs.
(1) and (2) [19].

We would like to remark that from a dynamical point of
view the amplitudesuj andv j can alternatively be viewed as
excitations out of the condensate. The duality of such mean-
field description follows from the assumption of Bose sym-
metry breaking(see, e.g., Ref.[20] for a discussion).

In deriving next the HFB-RPA equations we adopt five
dynamic variables, which are the fluctuationsdF anddF* of
the condensate wave function and its complex conjugate, the
normal density fluctuationdñ, and the anomalous density
fluctuationdm̃ together with its complex conjugatedm̃* . dF
anddF* are separately introduced because of their different
coupling todm̃ anddm̃* , and are related to the density fluc-
tuation of the condensate bydnc=F0

*dF+F0dF* . The HFB-
RPA then follows naturally by evaluating the self-consistent
dynamical Hartree-Fock-Bogoliubov potential generated by
the density fluctuations of the condensate(phonon quasipar-
ticles) and of the noncondensate(thermal quasiparticles).
This can be done by invoking the decomposition

csr ,td = F0sr d + c̃sr ,td s3d

for the Bose field operator in the interaction Hamiltonian,

Hint =
g

2
E drc†sr ,tdc†sr ,tdcsr ,tdcsr ,td

=
g

2
E dr fuF0u4 + 2uF0u2F0

*c̃ + 2uF0u2F0c̃†

+ F0
*F0

*c̃c̃ + 4uF0u2c̃†c̃ + F0F0c̃†c̃†+ 2F0
*c̃†c̃c̃

+ 2F0c̃†c̃†c̃ + c̃†c̃†c̃c̃g. s4d

Note that in the choice made in Eq.s3d, which is different
from those generally used in the literature, thenonequilib-

rium statistical averagekc̃sr ,tdl of the operatorc̃sr ,td is
nonzero since we prefer to extract fromcsr ,td a time-

independentcondensate wave function. Rather,c̃sr ,td gives
the field operator for the phonon quasiparticles and describes

the condensate fluctuation, kc̃sr ,tdl=kcsr ,tdl−F0sr d
=Fsr ,td−F0sr d=dFsr ,td. AnalogouslydF*sr ,td=kc+sr ,tdl
−F0

*sr d.
The self-consistent dynamical potentials are originated

from the higher-order correlation terms beyond the mean-
field description and are contained in the last line of Eq.(4).
We approximate these terms by using Wick’s theorem in the
following manner:

2F0
*c̃†c̃c̃ . 4F0

*kc̃†c̃lc̃ + 2F0
*kc̃c̃lc̃† + 4F0

*dFc̃†c̃

+ 2F0
*dF*c̃c̃, s5d

2F0c̃†c̃†c̃ . 4F0kc̃†c̃lc̃† + 2F0kc̃†c̃†lc̃ + 4F0dF*c̃†c̃

+ 2F0dFc̃†c̃†, s6d

and

c̃†c̃†c̃c̃ . 4kc̃†c̃lc̃†c̃ + kc̃†c̃†lc̃c̃ + kc̃c̃lc̃†c̃†. s7d

Explicitly, the fluctuations of the noncondensate are defined
by dñsr ,td=kc†sr ,tdcsr ,tdl− ñ0sr d, dm̃sr ,td=kcsr ,tdcsr ,tdl
−m̃0sr d, and dm̃*sr ,td=kc†sr ,tdc†sr ,tdl−m̃0*sr d. We insert
these definitions into Eqs.s5d–s7d, remove the terms that are
proportional toñ0sr d, m̃0sr d, andm̃0*sr d as these are already
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accounted by the Hartree-Fock-Bogoliubov mean-field equa-
tions, and finally collect together the remaining terms. We
then find that the self-consistent dynamical potential induced
by fluctuations is

dVSC= gE dr f2F0
*dñc̃ + F0

*dm̃c̃† + 2F0dñc̃† + F0dm̃*c̃

+ 2F0
*dFc̃†c̃ + F0

*dF*c̃c̃ + 2F0dF*c̃†c̃

+ F0dFc̃†c̃† + 2dñc̃†c̃ + dm̃c̃†c̃†/2 + dm̃*c̃c̃/2g.

s8d

Physically, the eight leading terms on the right-hand side of
Eq. s8d are the self-consistent potentials generated by phonon
quasiparticles on themselves and on thermal quasiparticles.
These terms have been discussed by Giorginif14g and by
Liu and Huf21g and, as we shall see explicitly below, lead to
the SOBP theory in a perturbative treatment to second order
in the coupling constant. On the other hand, the last three
terms in Eq.s8d describe the self-potential of the thermal
quasiparticles and are expected to excite zero-sound-like col-
lective modes of the noncondensate. Although these terms
are only of third order in the coupling constant and therefore
are missing in the SOBP theory, they may have a significant
role when the depletion of the condensate is large. They are
also required for consistency with the generalized Kohn
theorem.

With the self-consistent Hartree-Fock-Bogoliubov poten-
tial in Eq. (8) and using the notation xf
;edr 8xsr ,r 8 ,vdfsr 8d, we can write the coupled HFB-RPA
equations fordF, dF* , dñ, dm̃, anddm̃* in a compact matrix
form. Within the linear response framework we have

S dF

dF* D = gSxcc xcc̄

xc̄c xc̄c̄
DS2F0

*dñ + F0dm̃*

2F0dñ + F0
*dm̃

D s9d

and

1 dñ

dm̃

dm̃* 2 = g1 xññ xñm̃ xñm̃+

xm̃ñ xm̃m̃ xm̃m̃+

xm̃+ñ xm̃+m̃ xm̃+m̃+
2

312F0
*dF + 2F0dF* + 2dñ

F0
*dF* + dm̃* /2

F0dF + dm̃/2
2 . s10d

In these equationsxab sa, b=c or c̄d andxab sa, b= ñ, m̃, or
m̃+d are the two-particle response functions of the condensate
and noncondensate components, respectively. They can eas-
ily be evaluated by using the quasiparticle amplitudes ob-
tained from the Hartree-Fock-Bogoliubov solutions in the
standard finite-temperature Green’s functions techniquef22g.
For the condensate we have

xccsr ,r 8,vd = o
j
Sujsr dv j

*sr 8d
"v+ − e j

−
v j

*sr dujsr 8d
"v+ + e j

D , s11d

xcc̄sr ,r 8,vd = o
j
Sujsr duj

*sr 8d
"v+ − e j

−
v j

*sr dv jsr 8d
"v+ + e j

D , s12d

xc̄csr ,r 8,vd = o
j
Sv jsr dv j

*sr 8d
"v+ − e j

−
uj

*sr dujsr 8d
"v+ + e j

D , s13d

and

xc̄c̄sr ,r 8,vd = o
j
Sv jsr duj

*sr 8d
"v+ − e j

−
uj

*sr dv jsr 8d
"v+ + e j

D , s14d

wherev+=v+ ih with h=0+. The expressions for the two-
particle response functions of the noncondensate are
lengthier and we list them in the Appendix.

The coupled HFB-RPA equations(9) and(10) are the cen-
tral result of this work. They reduce to the HF-RPA equations
if one omits the anomalous density fluctuations of thermal
quasiparticles. That is, the HF-RPA gives

dncsr ,vd = 2gE dr 8xcsr ,r 8;vddñsr 8,vd s15d

and

dñsr ,vd = 2gE dr 8xññsr ,r 8;vdfdncsr 8,vd + dñsr 8,vdg,

s16d

where xcsr ,r 8 ;vd=F0
*sr dxccF0

*sr 8d+F0sr dxc̄cF0
*sr 8d

+F0
*sr dxcc̄F0sr 8d+F0sr dxc̄c̄F0sr 8d. One must accordingly

take the Hartree-Fock reference system in the calculation of
the response functionsf9g.

III. REDUCTION TO THE SECOND-ORDER
BELIAEV-POPOV THEORY

In this section we show that the coupled HFB-RPA equa-
tions for the normal modes of the condensate simplify to
those obtained in the SOBP theory if we neglect the self-
coupling of density fluctuations in the noncondensate and
keep only terms up to second order in the coupling constant
g. This discussion also allows us to define a RPA form of the
SOBP theory, which will later be used in our numerical cal-
culations.

If we neglect the terms indñ, dm̃, anddm̃* on the right-
hand side of Eq.(10) and substitute this equation in Eq.(9),
we immediately obtain the self-consistent equations for the
fluctuations of the condensate as

S dF

dF* D = g2Sxcc xcc̄

xc̄c xc̄c̄
DDS dF

dF* D , s17d

where the matrixD is defined as

COLLECTIVE OSCILLATIONS OF A CONFINED BOSE… PHYSICAL REVIEW A 69, 043605(2004)

043605-3



D = S2F0
* 0 F0

2F0 F0
* 0

D1 xññ xñm̃ xñm̃+

xm̃ñ xm̃m̃ xm̃m̃+

xm̃+ñ xm̃+m̃ xm̃+m̃+
212F0

* 2F0

0 F0
*

F0 0
2 .

s18d

Equations17d is already of second order ing and we shall
regard it as providing a second-order Beliaev-Popov theory
within a random-phase frameworksSOBP-RPAd.

The SOBP-RPA differs only slightly from the SOBP
theory presented in Ref.[14], in the sense that it still keeps a
class of terms beyond second order. In fact, to second order
in the coupling constant we can describe the small oscilla-
tions of the condensate by a setsuosc,voscd of quasiparticle
amplitudes with excitation energyeosc. By setting
sdF ,dF*d=suosc,voscd in Eq. (17) and using Eqs.(11)–(14)
we find the eigenfrequency of the oscillations of the conden-
sate aseosc+dE− ig, where

dE − ig = g2svosc
* , uosc

* dDSuosc

vosc
D

= gE drF0f2suosc
* + vosc

* ddñ + uosc
* dm̃+ vosc

* dm̃*g.

s19d

In recent work two of usf21g have explicitly shown that Eq.
s19d agrees with the result for the eigenfrequency shift given
by the SOBP theory of Giorginif14g.

IV. NUMERICAL PROCEDURE

We turn to numerical illustrations of the excitation spectra
with the main aim of comparatively examining the three the-
oretical approaches that we have introduced in Secs. II and
III. We do this in the case of a spherically symmetric trap in
view of the complexity of the calculations involved.

We excite density fluctuations by applying a time-
dependent perturbation of the form Fstd
~expsivtdedrVpsr dc†sr dcsr d. In the HFB-RPA this corre-
sponds to adding the terms fxccVpF0

* +xcc̄VpF0,
xc̄cVpF0

* +xc̄c̄VpF0gT and fxññVp, xm̃ñVp, xm̃+ñVp gT on the
right-hand side of Eqs.(9) and (10), respectively. The vari-
ous density fluctuations are then calculated by the method of
Capuzzi and Hernández[23], with a discretization of the
dynamical equations on a spatial mesh of up to 256 points.
The frequencies of the collective excitations of the system
can be extracted from the resonances of the spectral function
x9svd, which is also the quantity of experimental interest.
This is defined in the HFB-RPA as

x9svd = xC9 svd + xT9svd, s20d

where

xC9 svd = −
1

p
ImE drVpsr dsF0

*dF + F0dF*d s21d

and

xT9svd = −
1

p
ImE drVpsr dsdñ + dm̃+ dm̃*d. s22d

Here the indicesC andT refer to the contributions from the
condensate and from the noncondensate. Other quantities of
interest are the density fluctuations of the condensate and the
noncondensate, which are readily extracted from the solution
of Eqs.s9d and s10d.

The main technical difficulty in the numerical calculations
is how to renormalize the ultraviolet divergence caused by
the use of contact interactions[24]. The divergence appears
in the equilibrium anomalous densitym̃0sr d and in the re-
sponse functionsxm̃m̃+ andxm̃+m̃. The simplest way to imple-
ment renormalization is by removing the zero-temperature
component of the above quantities. This procedure is not
fully correct as it neglects the quantum contributions[7], but
these are extremely small at temperatures where the thermal
corrections become important. Alternatively one can apply
renormalization by regularizingm̃0sr d, xm̃m̃+, andxm̃+m̃ in real
space[25]. We have checked that these two procedures give
almost the same mode frequencies in calculations based on
the standard SOBP theory.

In brief, the numerical method that we have used consists
of three steps. First, we solve the HFB Eqs.(1) and(2) (or, in
case of HF-RPA, the corresponding HF equations) to deter-
mine the equilibrium densities and quasiparticle amplitudes.
We then construct the bare two-particle response functions
and compute the dynamic fluctuations from Eqs.(9) and
(10). We finally calculate the imaginary part of the response
functions according to Eq.(20). In the present case of an
isotropic trap, the calculations can be greatly simplified by
projecting the RPA equations and the response functions onto
the various multipole modes[23]. We shall be interested in
the monopolar, dipolar, and quadrupolar excitations, which
require setting Vpsr d~ r2, Vpsr d~ r cosu, and Vpsr d
~ r2Y20su ,wd.

In the following we evaluate a gas ofN=200087Rb atoms
in a spherical trap with trap frequencyv0=2p3182.5 Hz,
this value being the geometric average of the axial and radial
frequencies in the JILA experiments[2]. The temperature is
taken in units of the critical temperature for an ideal gas with
the same value ofN and v0, which is Tc=0.94"v0N

1/3. In
most calculations we use a basis ofnønmax=24 and l
ø lmax=32 for the quasiparticle wave functions, where the
indices n and l label the number of radial nodes and the
orbital angular momentum of the wave function.

Tests of numerical accuracy

In this subsection we report some tests of the accuracy of
our numerical calculations. First of all, we must replace the
positive infinitesimal quantityh in the reference response
functions by a finite value. In Fig. 1 we show the spectral
functions for the monopolar excitation in the HF-RPA for
two values ofh at a reduced temperatureT/Tc=0.5. For a
small value ofh many spikes appear in the spectrum, due to
the discrete basis set that was chosen for the dynamical de-
scription. With increasingh these spikes are rounded off into
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broad resonances, which are insensitive to the precise value
of h. In the following we preferentially takeh=0.01v0 in
calculating the spectral functions, this choice being consis-
tent with a typical experimental energy resolution[2].

The other aspect of the calculations that needs examining
is the role of the basis set. In Fig. 2 we show the HF-RPA
monopole spectrum atT/Tc=0.6 andh=0.005v0, as calcu-
lated from two choices of basis set. These are the standard
set as described above(solid line) and a set in which the
number of basis function has been doubled(dashed line). No
quantitative changes are found for the condensate response
aroundv=2.2v0, while for the response of the thermal cloud
nearv=2.0v0 only a small change is present in the spectral
intensity.

V. DIPOLE MODE

An important check on the accuracy of the theory is of-
fered by the Kohn theorem. One can analytically prove that
the dipolar oscillation in thea direction (with a=x, y, or z
in the general case of an anisotropic trap) is described
by the ansatz dF=s] /]ra−mrava /"dF0, dF* =s] /]ra

+mrava /"dF0
* , dñ=]ñ0/]ra, dm̃=s] /]ra−2mrava /"dm̃0,

and dm̃* =s] /]ra+2mrava /"dm̃0*. The theorem asserts that
the corresponding mode frequency is given by the bare trap
frequencyva.

In Fig. 3(a) we show the spectral response for a dipolar
excitation as obtained from the HF-RPA atT/Tc=0.6 and
h=0.005v0. It has been explicitly shown that the Kohn theo-
rem is satisfied in this approach[26,27]. As a result a sharp
resonance is present in the HF-RPA dipole spectrum atv
=v0. The density fluctuations at the resonance, as calculated
from the solution of the dynamical equations, are plotted in
Figs. 3(b) and 3(c) as solid lines and are compared with the
predictions of the above ansatz(circles). The two methods
give almost the same result for both condensate and thermal
density fluctuations, except for a weak structure in the ther-
mal density fluctuation which may be due to the truncation
of the basis sets.

In Fig. 4 we show the spectral response of the dipole
mode as obtained from the HFB-RPA with the same choice
of parameters. In this approximation, the generalized Kohn
theorem is not exactly satisfied, since a secondary peak is
found in the spectrum atv.1.13v0. According to the dis-
cussion given by Lewenstein and You[28], a possible reason
for this inaccuracy is the noncompleteness of the set of qua-
siparticle wave functions used in the calculation. There also
are appreciable distortions of the eigenvectors for the non-
condensate oscillations in Fig. 4(c).

VI. MONOPOLE AND QUADRUPOLE MODES

We present in this section the numerical results of the
HFB-RPA for the monopole and quadrupole modes and com-
pare them with those given by the SOBP-RPA and by the

FIG. 1. Spectral responses(in arbitrary units) for the monopolar
excitation as functions of frequencyv (in units ofv0) as calculated
from the HF-RPA atT/Tc=0.5, plotted for two values ofh (in units
of v0) as indicated in the panels. The three panels display the total
spectral response(a) and the contributions of the condensate(b) and
of the noncondensate(c).

FIG. 2. Spectral response(in arbitrary units) for the monopolar
excitation as a function of frequencyv (in units ofv0) as calculated
from the HF-RPA atT/Tc=0.5 andh=0.005v0 with two kinds of
basis set.
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HF-RPA. These various theories give somewhat different re-
sults for the spectra at intermediate values of the tempera-
ture, in the range 0.4TcøTø0.8Tc.

In Fig. 5 we plot the HFB-RPA spectral functions at vari-
ous temperatures. ForkBT*m two main resonances are seen
in each spectrum, which can be interpreted as representing
the collective oscillations of the noncondensate and of the
condensate. The oscillator strength of each resonance has
been extracted from the spectra and is shown in Fig. 6 as a
function of temperature. Naturally, with increasingT/Tc the
amplitude of the noncondensate resonances grows(empty
circles) while that of the condensate resonances decreases
(solid circles). The amplitudes of the modes in the two com-

ponents of the gas are comparable with each other near
T/Tc=0.5, where the noncondensate fraction is populated by
about 30% for our choice of parameters. Above this tempera-
ture the strength of the noncondensate resonances increases
very rapidly.

In Fig. 7 we compare with each other the numerical re-
sults from the RPA theories for the monopolar and quadru-
polar spectra atT/Tc=0.6. We see that the HF-RPA and
HFB-RPA closely agree in their predictions on the main non-
condensate resonances for both types of excitations. We also
see that all three theories predict essentially very similar re-
sults for the main quadrupolar resonance of the condensate,
the position of the main peak atv.1.55v0 in Fig. 7(b)
being also in agreement with the result of the HFB-Popov
approximation(not shown). In the following we concentrate
on the main condensate resonance in the monopolar mode,
for which the three theories give rather different predictions
as is emphasized by the three arrows in Fig. 7(a). In fact, the

FIG. 3. (a) Spectral response(in arbitrary units) for the dipolar
excitation as a function of frequencyv (in units of v0), as calcu-
lated from the HF-RPA atT/Tc=0.6 with the choiceh=0.005v0.
The density fluctuations at resonance(in arbitrary units) are plotted
as functions of the radial coordinater [in units ofaho=s" /mv0d1/2]
in (b) for the condensate and in(c) for the noncondensate(solid
lines). In the same panels are also shown the corresponding results
from the analytical expressions of the mode eigenvectors(circles).

FIG. 4. The same as Fig. 3, but for the HFB-RPA.
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FIG. 5. Spectral response(in arbitrary units) as a function of frequencyv (in units ofv0) for the monopole mode(a) and the quadrupole
mode(b), as calculated withh=0.01v0 from the HFB-RPA at the temperatures indicated in the figure. The curves are progressively shifted
upwards by one unit for clarity and the quadrupole response atT/Tc=0.1 is reduced by a factor of 3. The dashed line in each panel indicates
how the condensate resonance moves with temperature.

FIG. 6. Amplitude of the HFB-RPA resonances(in arbitrary units) from Fig. 5 as a function of reduced temperatureT/Tc for the
monopole(a) and the quadrupole(b). The solid and empty circles refer to the condensate and to the noncondensate, respectively. The lines
are guides to the eye.

FIG. 7. Spectral response(in arbitrary units) as a function of frequencyv (in units ofv0) for the monopole mode(a) and the quadrupole
mode(b), at T/Tc=0.6 with h=0.01v0 from the HFB-RPA(solid lines), the SOBP-RPA(dashed lines), and the HF-RPA(dot-dashed lines).
The arrows in panel(a) point to the condensate resonance position given by each RPA theory. The SOBP-RPA spectra as defined in Eqs.(17)
and (18) do not include the contribution from the direct excitation of the noncondensate.
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partial spectra of condensate and noncondensate show an ap-
preciable overlap in this frequency range, implying a stron-
ger dynamical coupling between the breathing excitations of
the two components of the gas and therefore an enhanced
sensitivity to the approximations made in the theory.

To better illustrate the difference among the various theo-
ries, we extract the monopolar mode frequency of the con-
densate from the peak inx9svd and plot it in Fig. 8 as a
function of reduced temperature. For comparison we also
show the mode frequency given by the HFB-Popov theory
(see Sec. II). The most remarkable feature of Fig. 8 is that all
three RPA theories show anonmonotonicbehavior of the
resonance as a function of temperature, in contrast with the
prediction of the HFB-Popov theory in which the resonance
frequency decreases monotonically with increasing tempera-
ture. This difference is due to the dynamical coupling be-
tween the condensate and the noncondensate, which is ne-
glected in the mean-field theory and becomes important as
the noncondensate is significantly populated.

Let us now compare the three RPA theories, which tran-
scend the mean-field level. At low temperaturesT/Tc,0.4d
we observe two different trends: the mode frequencies ob-
tained from the HFB-RPA and from the SOBP-RPA are in

close agreement and move upwards with temperature,
whereas the mode frequency predicted by the HF-RPA tends
to decrease. The latter trend is in good agreement with the
HFB-Popov theory, in accord with the proof already given in
Ref. [9]. The upward trend of the mode frequency with tem-
perature is manifested in all RPA theories at intermediate
temperatures, reaching nearT/Tc=0.7 the highest sensitivity
to the detailed description of the physical process in which
the thermal cloud is driven by its self-generated dynamical
potential. Finally, in proximity of the critical temperature all
three theories tend to agree as the anomalous density fluc-
tuations disappear.

The fact that a large upward frequency shift is found with
increasing temperature in both the SOBP-RPA and the HFB-
RPA suggests that a significant role is played by the anoma-
lous density fluctuations. In Fig. 9 we show the partial den-
sity fluctuations which accompany the monopolar and
quadrupolar condensate resonances atT/Tc=0.6, as calcu-
lated from the HFB-RPA. In both modes we find that the
anomalous density fluctuations are at this temperature at
least comparable in magnitude to the fluctuations of the nor-
mal density.

VII. CONCLUSIONS

In conclusion, we have developed a random-phase theory
for the dynamics of a weakly interacting Bose gas under
external confinement at finite temperature. In the theory the
dynamics of the condensate and of the thermal cloud are
treated on the same footing and a previous Hartree-Fock
random-phase scheme is extended through the inclusion of
the anomalous density fluctuations. The theory satisfies with
good numerical accuracy the generalized Kohn theorem and
correctly reduces to the second-order Beliaev-Popov theory
if one neglects the process in which the thermal cloud is
driven by its self-generated potential. It thereby fully in-
cludes the Landau-Beliaev damping mechanism.

We have compared the theory with the second-order
Beliaev-Popov theory and with the Hartree-Fock random-
phase theory by numerical illustrations for a condensate of
87Rb atoms inside a spherical trap. The locations of the main
monopolar and quadrupolar resonances of the thermal cloud

FIG. 8. Monopole excitation frequencyvM (in units of v0) as a
function of reduced temperatureT/Tc, as predicted by various theo-
ries: the HFB-Popov(solid line), the HFB-RPA(solid circles), the
SOBP-RPA(empty circles), and the HF-RPA(stars). The lines con-
necting the symbols are guides to the eye.

FIG. 9. Density fluctuations(in arbitrary units) as functions of the radial coordinater (in units ofaho) for the monopole mode(a) and the
quadrupole mode(b), as calculated from the HFB-RPA forT/Tc=0.6 at the appropriate excitation frequency of the condensate. In both
panels the condensate density fluctuation is reduced by a factor of 5 for clarity.
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are well reproduced in the Hartree-Fock RPA and the fre-
quency of the quadrupole mode of the condensate does not
differ significantly from the mean-field HFB-Popov predic-
tion. We have instead found that forT.0.4Tc the tempera-
ture dependence of the breathing mode frequency of the con-
densate obtained from the various RPA theories is very
different from the HFB-Popov result. A significant role ap-
pears to be played in the dynamics of the Bose-condensed
gas by the anomalous density fluctuations of the thermal
cloud at intermediate temperatures, even though they are
known not to affect significantly the thermodynamics of the
trapped gas[29–31].

Our results, though restricted to isotropic confinement,
may be relevant in connection with the JILA experiments
[2], where the breathing mode in an anisotropic trap showed
a frequency upshift with temperature which could not be
accounted for by the HFB-Popov theory[6]. A quantitative
comparison between experimental data and the RPA predic-
tions for an anisotropic trap would be interesting for a full
test of the theory and we hope to address this issue in future
work.
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APPENDIX: THE TWO-PARTICLE RESPONSE
FUNCTIONS

We present here a brief explanation on how to derive the
response functions used in Eqs.(9) and (10) and list the
two-particle response functions of the noncondensate.

Let us consider, for example, the expression of
xccsr ,r 8 ;vd. The most convenient way to obtain it is to cal-
culate the bosonic Matsubara Green’s function with imagi-
nary time variable[22],

xccsr ,r 8;td = − kTtc̃sr ,tdc̃sr 8,0dl0. sA1d

Here Tt denote the ordering in imaginary time andk¯l0

denotes the equilibrium statistical average. By expressing the

operatorc̃sr ,td in terms of the Bogoliubov quasiparticle op-

eratorsâi and â+
i , c̃sr ,td=o j fujsr dâ je

−e jt+v j
*sr dâ j

+ee jtg, we
can rewritexccsr ,r 8 ;td in the form

xccsr ,r 8;t ù 0d = − kc̃sr ,tdc̃†sr 8,0dl0

= − o
j ,k

kfujsr dâ je
−e jt + v j

*sr dâ j
+ee jtg

3fuksr 8dâk + vk
*sr 8dâk

+gl0

= − o
j

fujsr dv j
*sr 8ds1 + f jde−e jt

+ v j
*sr dujsr 8df je

e jtg. sA2d

We then carry out a Fourier transform with respect to the
imaginary time variablet,

xccsr ,r 8; ivnd =E
0

b

dteivntxccsr ,r 8;t ù 0d

= o
j
Sujsr dv j

*sr 8d
ivn − e j

−
v j

*sr dujsr 8d
ivn + e j

D , sA3d

where ivn=2npi /b. With the analytic continuationivn
→v+ ih we obtain the expression forxccsr ,r 8 ;vd in
Eq. s11d.

The two-particle response functions of the noncondensate
can be derived in a similar way. They take the following
forms:

xññsr ,r 8;vd = xññ
s1dsr ,r 8;vd + xññ

s2dsr ,r 8;vd sA4d

with

xññ
s1dsr ,r 8;vd = o

i j

sui
*uj + vi

*v jdsuiuj
* + viv j

*dsf i − f jd
"v+ + sei − e jd

and

xññ
s2dsr ,r 8;vd =

1

2o
i j
F suiv j + viujdsui

*v j
* + vi

*uj
*ds1 + f i + f jd

"v+ − sei + e jd

−
sui

*v j
* + vi

*uj
*dsuiv j + viujds1 + f i + f jd
"v+ + sei + e jd

G;

xñm̃sr ,r 8;vd = xm̃+ñ
* sr 8,r ;vd = xñm̃

s1dsr ,r 8;vd + xñm̃
s2dsr ,r 8;vd

sA5d

with

xñm̃
s1dsr ,r 8;vd = 2o

i j

sui
*uj + vi

*v jduiv j
*sf i − f jd

"v+ + sei − e jd

and

xñm̃
s2dsr ,r 8;vd = 2o

i j
Fviujvi

*v j
*s1 + f i + f jd

"v+ − sei + e jd

−
ui

*v j
*uiujs1 + f i + f jd

"v+ + sei + e jd
G;

xñm̃+sr ,r 8;vd = xm̃ñ
* sr 8,r ;vd = xñm̃+

s1d sr ,r 8;vd + xñm̃+
s2d sr ,r 8;vd

sA6d

with

xñm̃+
s1d sr ,r 8;vd = 2o

i j

sui
*uj + vi

*v jdviuj
*sf i − f jd

"v+ + sei − e jd

and
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xñm̃+
s2d sr ,r 8;vd = 2o

i j
Fviujui

*uj
*s1 + f i + f jd

"v+ − sei + e jd

−
ui

*v j
*viv js1 + f i + f jd

"v+ + sei + e jd
G;

xm̃m̃sr ,r 8;vd = xm̃+m̃+
* sr 8,r ;vd = xm̃m̃

s1d sr ,r 8;vd + xm̃m̃
s2d sr ,r 8;vd

sA7d

with

xm̃m̃
s1d sr ,r 8;vd = 4o

i j

vi
*ujuiv j

*sf i − f jd
"v+ + sei − e jd

and

xm̃m̃
s2d sr ,r 8;vd = 2o

i j
Fuiujvi

*v j
*s1 + f i + f jd

"v+ − sei + e jd

−
vi

*v j
*uiujs1 + f i + f jd

"v+ + sei + e jd
G;

xm̃m̃+sr ,r 8;vd = xm̃m̃+
s1d sr ,r 8;vd + xm̃m̃+

s2d sr ,r 8;vd sA8d

with

xm̃m̃+
s1d sr ,r 8;vd = 4o

i j

vi
*ujviuj

*sf i − f jd
"v+ + sei − e jd

and

xm̃m̃+
s2d sr ,r 8;vd = 2o

i j
Fuiujui

*uj
*s1 + f i + f jd

"v+ − sei + e jd

−
vi

*v j
*viv js1 + f i + f jd

"v+ + sei + e jd
G;

and finally

xm̃+m̃sr ,r 8;vd = xm̃+m̃
s1d sr ,r 8;vd + xm̃+m̃

s2d sr ,r 8;vd sA9d

with

xm̃+m̃
s1d sr ,r 8;vd = 4o

i j

ui
*v juiv j

*sf i − f jd
"v+ + sei − e jd

and

xm̃+m̃
s2d sr ,r 8;vd = 2o

i j
Fviv jvi

*v j
*s1 + f i + f jd

"v+ − sei + e jd

−
ui

*uj
*uiujs1 + f i + f jd

"v+ + sei + e jd
G .

In the above expressionsv+=v+ i0+ and we have used ab-
breviations such asui

*ujuiuj
* =ui

*sr dujsr duisr 8duj
*sr 8d, which

means that in the product of four position-dependent func-
tions the first two depend onr and the latter two onr 8. xab

s1d

andxab
s2d in the above expressions correspond to the excitation

of single thermal quasiparticles and of pairs of thermal
quasiparticles, respectively.
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