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We present a theory for the linear dynamics of a weakly interacting Bose gas confined inside a harmonic trap
at finite temperature. The theory treats the motions of the condensate and of the noncondensate on an equal
footing within a generalized random-phase approximation, wtiichxtends the second-order Beliaev-Popov
approach by allowing for the dynamical coupling between fluctuations in the thermal cloudi)areduces to
an earlier random-phase scheme when the anomalous density fluctuations are omitted. Numerical calculations
of the low-lying spectra in the case of isotropic confinement show that the present theory obeys with high
accuracy the generalized Kohn theorem for the dipolar excitations and demonstrate that combined normal and
anomalous density fluctuations play an important role in the monopolar excitations of the condensate. Mean-
field theory is instead found to yield accurate results for the quadrupolar modes of the condensate. Although the
restriction to spherical confinement prevents quantitative comparisons with measured spectra, it appears that
the non-mean-field effects that we examine may be relevant to explain the features exhibited by the breathing
mode as a function of temperature in the experiments carried out at JILA on a §4&bohtoms.
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[. INTRODUCTION coupling should be important when the thermal fraction is
significantly populated and, as will be discussed below, is in
Soon after the realization of Bose-Einstein condensatioffiact needed to satisfy the generalized Kohn theorem for the
in trapped atomic gases, an important development in thigdipole modes. One way to include these processes is to use
field has been the measurement of the frequencies and danibe linear response theory in the random-phase approxima-
ing rates of collective excitatiorjfd—5]. These measurements tion (RPA) as developed by two of 4®]. Such a treatment
are very accurate and provide a unique opportunity for quanehooses the Hartree-Fock gas as the reference system for the
titative tests of quantum theories of the dynamics of manythermal atoms, thus neglecting the anomalous density fluc-
body systems. In particular, the measurements of the lowestuations that may play a role at intermediate temperatures.
energy excitations made at JILJ&] on 8’Rb gases at various In the present paper we improve on the Hartree-Fock RPA
temperatures have proved hard to understand at simplgiF-RPA) by including the anomalous density fluctuations.
mean-field level[6,7] and have therefore stimulated a num- The resulting theory can be referred to as the HFB-RPA since
ber of theoretical studies to address effects beyond the meanur choice of the reference system is provided by the first-
field approximationN8-16|. order Hartree-Fock-Bogoliubov theory. We explicitly show
The key issue in investigations transcending the meanthat the HFB-RPA theory formally reduces to the SOBP
field level is thefull dynamic description of both condensed theory given by Fedichev and Shlyapnikd®Q] and by
and noncondensed atoms and their mutual interacti®hs Giorgini [14] if (i) one excludes the process of driving the
While the condensate dynamics is well described by a singleoncondensate by its self-generated dynamical potential, and
nonlinear Gross-Pitaevskii equatigPE), how to monitor (i) one keeps only terms of second order in the coupling
the evolution of the noncondensate is a much more delicateonstant. It is interesting to note that the HF-RPA similarly
problem. The best candidate theory that takes into accoumeduces to the dielectric formalism given by Restlal. [13].
the coupled dynamics of condensate and noncondensate for aWe then numerically investigate the low-lying excitations
homogeneous weakly interacting Bose gas in the collisionef a fluid representing a Bose-condensed gas of 20B0
less limit is the second-order Beliaev-Pop@OBP theory  atoms in a spherically symmetric harmonic trap at finite tem-
[17], which has been reexamined recently by Shi and Griffinperature by using the HFB-RPA as well as the SOBP theory
[18] and extended to trapped gases by Fedichev and Shlyapnd the HF-RPA. All three theories give qualitatively the
nikov [10] and by Giorgini[14] (see also Ruscét al. [15]). same results for the quadrupolar mode of the condensate.
However, for the trapped gas the Thomas-Fermi approximaHowever, they predict different trends for the monopolar
tion on the SOBP theory fails to account for the JILA obser-mode, due to the strong coupling between the oscillations of
vations[10,14. One possible reason is that the dynamics ofthe condensate and those of the noncondensate. This obser-
the condensate and noncondensate are not treated on aation highlights the crucial roles played already in the linear
equal footing in the theory, i.e., the dynamical coupling be-excitation spectra by the normal and anomalous density fluc-
tween fluctuations in the thermal cloud is not included. Thistuations of the noncondensate.
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The paper is organized as follows. In Sec. Il we derive the In deriving next the HFB-RPA equations we adopt five
generalized RPA equations within the framework of thedynamic variables, which are the fluctuatio®® and 6®" of
Hartree-Fock-Bogoliubov approximation, and in Sec. Ill wethe condensate wave function and its complex conjugate, the
briefly demonstrate how to deduce the SOBP theory from th@ormal density fluctuationsn, and the anomalous density
HFB-RPA equations. In Sec. IV we describe our numericaffluctuation sm together with its complex conjuga@’. 5P
procedure for calculating the spectral response functions anahd 5®" are separately introduced because of their different
check their accuracy, and in Secs. V and VI we present oucoupling toém and 6", and are related to the density fluc-
numerical results for the low-energy excitations. Finally, Sectuation of the condensate .= ®,60 +d,6d". The HFB-

VII presents our main conclusions. RPA then follows naturally by evaluating the self-consistent
dynamical Hartree-Fock-Bogoliubov potential generated by
the density fluctuations of the condensgibonon quasipar-
ticles) and of the noncondensat¢ghermal quasiparticlgs

The essential idea of the RPA is that the gas responds as'&is can be done by invoking the decomposition
reference gas to self-consistent dynamical poteniBilsin ~
the HF-RPA treatment one chooses as dynamical variables Yr,t) = Do(r) + A1, 1) ©)
the density fluctuationsn, of the condensate andh of the  {o the Bose field operator in the interaction Hamiltonian,
noncondensatg]. The HF-RPA equations follow by impos-
ing that the condensed and noncondensed particles experi- g T +
ence dynamical Hartree-Fock potentials generated by both "int= > drg ' (r, D (r, O gdr Dy, 1)
types of density fluctuations and respond to them as a

Il. THE HFB-RPA THEORY

Hartree-Fock gas. ZQJ 4y 20" 7+ 20,71

Our starting point for the derivation of the HFB-RPA is 2 A [Pl + 2|l oy + 2|l oy
the definition of the appropriate single-particle reference sys- o i ~ i~y e
tem. The contribution of the anomalous density is included + O Do)+ A Do "Y' i+ O '+ 2D iy
by choosing the Hartree-Fock-Bogoliubov gas at finite tem- ot v T I vy
perature as reference, which is defined in terms of the con- +20Y Y+ Y ] (4)

densate wave functio, and of the single-particle ampli- Note that in the choice made in E€B), which is different
tudesUj andl)j fOI‘ the noncondensa[QQ]. The Condensate IS from those genera”y used in the |iterature' ﬂ[meql_““b_

described by the generalized GPE, rium statistical averagé?ﬁ(r,t)) of the operator?p(r,t) is

2y2 0 =0 . nonzero since we prefer to extract frogar,t) a time-
2m ¥ Vedr) + 9(Ne(r) + 210(r) | Po(r) + GITT(T) Do(r) independentondensate wave function. Rathefy ,t) gives

= uDy(r) (1) the field operator for the phonon guasiparticles and describes

o the condensate fluctuation, (¢(r ,t))=(¢(r ,t)) —Dy(r)

where we adopt the standard contact-pseudopotential modekp(r ,t)—dy(r)=5b(r ,t). Analogouslysd” (r,t)=(y*(r ,t))
characterized by the coupling constait4m#a/m, with a —<I>g(r).
bemgz tzhe Swave, zscattgrmg length. In EQ(1) Vex(r) The self-consistent dynamical potentials are originated
=MW+ Y™+ w;°) /2 is the external confinement and fom the higher-order correlation terms beyond the mean-
n(r)=|do(r)[%, no(r)=Ej*{[|uj(r)|2+|Uj(r)|2]fj+|Uj(r)|2}’ and  fie|d description and are contained in the last line of &g
P(r)==; [(1+2f)u;(r)v;(r)] are the condensate density we approximate these terms by using Wick’s theorem in the
and the normal and anomalous thermal densiti€s, following manner:
=1/(ef-1) being the Bose-Einstein distribution wit@
=1/kgT and u the chemical potential. The noncondensate  2®; ! gy = 4Dy (YT + 2D Yy’ + 4Dy DYy
amplitudes are obtained by the solution of the generalized e
Bogoliubov—de Gennes equations + 20,50 Y, (%)

L(r)uy(r) +g(@3(r) +T°(r))v;(r) = guj(r),

@ 2000 U= 4D+ 20T g+ 4o YT
L(r)j(r) +g(Dg (1) + T (r)u;(r) = = o;(r). + 2D, 6D Y P, (6)

Here  L£(r)=-h%V2/2m+Ver)+2g9(n(r)+1°%r)). The  gng

Popov approximation to the Hartree-Fock-Bogoliubov

(HFB-Popoy theory is recovered by settifig®(r)=0 in Egs. G = Gt e+ g+ Gty (1)
(1) and (2) [19].

We would like to remark that from a dynamical point of Explicitly, the fluctuations of the noncondensate are defined
view the amplitudes;; andu; can alternatively be viewed as by on(r ,t)=<¢T(*f A (r ) =Rr), (r D=, DYr 1)
excitations out of the condensate. The duality of such mear=°(r), and &M (r,t)=("(r , )y (r ,t))~=T"(r). We insert
field description follows from the assumption of Bose sym-these definitions into Eq$5)—(7), remove the terms that are
metry breakingsee, e.g., Ref20] for a discussion proportional tori%(r), m°(r), andm®(r) as these are already
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accounted by the Hartree-Fock-Bogoliubov mean-field equa-

tions, and finally collect together the remaining terms. We Xedlr .1, w) =2 (
then find that the self-consistent dynamical potential induced !
by fluctuations is

(U (r’) v (Nu(r")

ﬁ(l)+ - GJ' hw+ + 61'

), (12

- (v v (r)  u(u(r)

ho' - € ho' + €

85C=g f dr[20, SRy + Doy’ + 20Ny + Doy J. ) . (19

+ 205D Y g+ DD Y+ 205D Yy and
+ OS50 Y Y + 280y g+ syt + Y 2].
(8

Physically, the eight leading terms on the right-hand side of

Eqg. (8) are the self-consistent potentials generated by phonowhere o*=w+i7 with =0*. The expressions for the two-
quasiparticles on themselves and on thermal quasiparticleparticle response functions of the noncondensate are
These terms have been discussed by Giorffidi and by lengthier and we list them in the Appendix.

Liu and Hu[21] and, as we shall see explicitly below, lead to  The coupled HFB-RPA equatioii8) and(10) are the cen-
the SOBP theory in a perturbative treatment to second orddral result of this work. They reduce to the HF-RPA equations
in the coupling constant. On the other hand, the last thre& one omits the anomalous density fluctuations of thermal
terms in Eq.(8) describe the self-potential of the thermal quasiparticles. That is, the HF-RPA gives

quasiparticles and are expected to excite zero-sound-like col-

lective modes of the noncondensate. Although these terms

are only of third order in the coupling constant and therefore n(r,w) = ZQJ dr'xc(r,r'; w)on(r’, o) (15

are missing in the SOBP theory, they may have a significant

role when the depletion of the condensate is large. They are

also required for consistency with the generalized Kohrf"

- (v U r) u(nvy(r)

ho' - € how* + €

), (14)

i

theorem.
With the self-consistent Hartree-Fock-Bogoliubov poten- _ , . , ,
tial in Eg. (8 and using the notation yf éﬁ(r,w)—ngdr Xa(r.r @)l ong(r’,w) + (', w)],
= [dr'x(r,r’,w)f(r’'), we can write the coupled HFB-RPA (16)
equations fos®, 60", A, oM, andsM" in a compact matrix
form. Within the linear response framework we have * * *
b where Xe(T o1 @) = Do) xeeor )+ Polr) xee P(r 1)
_ * « D (1) xeePo(r') +Dg(r) xacPo(r’). One must accordingly
5D 24 8T + Dy o T oll )Xo oM Xee®o , ,
( ) = (XCC XCC)( 0 0 ) (9) take the Hartree-Fock reference system in the calculation of
o Xoo Xos/ \ 2PN + Do the response functiorf$].
and
I1l. REDUCTION TO THE SECOND-ORDER
SN i X XRe BELIAEV-POPOV THEORY
oM |=g| Xami Xim X In this section we show that the coupled HFB-RPA equa-
sm' Xit® X Xt tions for the normal modes of the condensate simplify to
. . those obtained in the SOBP theory if we neglect the self-
206D + 206D + 200 coupling of density fluctuations in the noncondensate and
X @65@* + 8m'/2 . (10) keep only terms up to second order in the coupling constant
DodD + 2 g. This discussion also allows us to define a RPA form of the

SOBP theory, which will later be used in our numerical cal-

; ~ lations.
In these equationg, s («, B=c or ¢) and x,p, (&, b=, M, or cu . . .
") are the two-particle response functions of the condensaﬁalf dWF." dnegerEct t{‘; teréns 'gmt’.tg?" tz;r)déﬁ] ct).n the right-
and noncondensate components, respectively. They can e ind side o 910 and substitute this equation in E®).
ily be evaluated by using the quasiparticle amplitudes opWe |mrT_1ed|ater obtain the self-consistent equations for the
tained from the Hartree-Fock-Bogoliubov solutions in theﬂUCtu"’ltlonS of the condensate as
standard finite-temperature Green'’s functions technj@@g

For the condensate we have oD Xcc oD
( ) =gz<xcc >D< ) an
o ) P Xeo Xec/ \OP
ui(No;(r') v (Nu(r’)
XCC(r r (,!)) E + - + ’ (11) ) ) )
ho™ — ¢ ho™ + € where the matrixD is defined as
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~ . * 1 .
20, 0 @) X K Xm ) [2Pe 2P X;(w)=——|mfdrvp(r)(m+aﬁ1+aﬁ1). (22
= 2by B, 0 Xin - X X 0 9, ™

SR paAt At (I) 0
Xmn X X 0 Here the indice andT refer to the contributions from the

(18) condensate and from the noncondensate. Other quantities of
interest are the density fluctuations of the condensate and the

Equatio_n(l?) s qlrgady of second order 'g' and we shall noncondensate, which are readily extracted from the solution
regard it as providing a second-order Beliaev-Popov theor}z)f Egs.(9) and (10)

within a random-phase framewo(BOBP-RPA.

The SOBP-RPA differs only slightly from the SOBP The main technical difficulty in the numerical calculations

is how to renormalize the ultraviolet divergence caused by

theory presented in Refl4], in the sense that it siill keeps a the use of contact interactiofig4]. The divergence appears
class of terms beyond second order. In fact, to second Ol’d(ﬁji the equilibrium anomalous densifj®(r) and in the re-

in the coupling constant we can describe the small oscilla- S o . . i
tions of the condensate by a @, v..) of quasiparticle sponse functiongzmm+ and s+ The simplest way to imple

amplitudes with excitation energye,.. By setting ment renormalization is by removing the zero-temperature

(8D, 60") = (Uyew vosd in Eq. (17) and using Eqs(11)(14) component of the above quantities. This procedure is not

' : . fully correct as it neglects the quantum contributi¢rg but
we find the e|genfrequency of the oscillations of the Condenfhese are extremely small at temperatures where the thermal
sate aseyg.+ SE—i7y, where

corrections become important. Alternatively one can apply
u renormalization by regularizing®(r), xss+ andysss in real
OSC) space[25]. We have checked that these two procedures give
almost the same mode frequencies in calculations based on
. . . . . the standard SOBP theory.
=g f dr D[ 2(Ugse+ vgsd N + Ugs M+ vo0M . In brief, the numerical method that we have used consists
of three steps. First, we solve the HFB E@y.and(2) (or, in
(19 case of HF-RPA, the corresponding HF equatjaiesdeter-

- mine the equilibrium densities and quasiparticle amplitudes.
In recent work two of ug21] have explicitly shown that Eq. We then construct the bare two-particle response functions

g%higgg%g':p;gfyrgfsggfgr"tgf 4]e igenfrequency shift IVeHnd compute the dynamic fluctuations from E¢8) and

(10). We finally calculate the imaginary part of the response
functions according to Eq20). In the present case of an
IV. NUMERICAL PROCEDURE isotropic trap, the calculations can be greatly simplified by
projecting the RPA equations and the response functions onto

witxvfhgum;% g?g%;'%?#lus:;%t\'/(;?sg;;ﬁnei;(c'ttizot';rsepeef;zthe various multipole mode23]. We shall be interested in
oretical approaches that I?Ne haveyintroduceg in Secs. Il anthe monopolar, dipolar, and quadrupolar excitations, which
PP : Pequire setting Vy(r)ocr?,  Vy(r)o=r cosd, and Vy(r)

I1l. We do this in the case of a spherically symmetric trap in
b y 3y P x12Y (6, ).

view of the complexity of the calculations involved. . 87
We excite density fluctuations by applying a time-. Inthﬁfo.IIO\vang we.tehv?luat(faagas Nf:fgoox &g?olfs
dependent perturbation of the form F(t) lﬁisavzrl)u:rlgce?n rap with trap frequen@y,=car x 1o2.5 1z,
: + . g the geometric average of the axial and radial
xexpiot) [drVp(r)y'(r)(r). In the HFB-RPA this corre- frequencies in the JILA experimenig]. The temperature is
sponds to adding the terms[y. Vo Pyt xcVp® guencies s &P ' P :

« T e AP O taken in units of the critical temperature for an ideal gas with
XeeVpPot xeVpPol' and [xiVe XirVp XaiVp]' on the  ihe same value oN and wg, which is T.=0.94iwoNY3. In
rlght-hanc_j side of Eqs(.9) and(10), respectively. The vari- 0st calculations we use a basis & Nmax=24 and |
ous density fluctuations are then calculated by the method ak| =32 for the quasiparticle wave functions, where the
Capuzzi and Hernandef23], with a discretization of the jngicesn and| label the number of radial nodes and the

dynamical equations on a spatial mesh of up to 256 pointsyrital angular momentum of the wave function.
The frequencies of the collective excitations of the system

can be extracted from the resonances of the spectral function
x"(w), which is also the quantity of experimental interest. Tests of numerical accuracy
This is defined in the HFB-RPA as

SE—iy= gz(U;sc’ u;sc)D<

Uosc

In this subsection we report some tests of the accuracy of
X' () = xc(o) + x1(), (200  our numerical calculations. First of all, we must replace the
positive infinitesimal quantityn in the reference response
where functions by a finite value. In Fig. 1 we show the spectral
functions for the monopolar excitation in the HF-RPA for
two values ofy at a reduced temperatufié T.=0.5. For a
small value ofy many spikes appear in the spectrum, due to
the discrete basis set that was chosen for the dynamical de-
and scription. With increasingy these spikes are rounded off into

1 * x
Xe(w) == ;Im f drVp(r)(@o8P + Dpsd™)  (21)
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2.0 T T T T T T T
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LSE e 1n=0010 . .
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05 ] 04 |- ]
ook , . .
0.0
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[ (b) ——1=0.001 ]
L S n=0010 2

FIG. 2. Spectral respong@ arbitrary unit3 for the monopolar

§ . excitation as a function of frequenay(in units of wy) as calculated
:Q | ] from the HF-RPA afT/T,=0.5 and7=0.0050, with two kinds of
Ak ] basis set.
V. DIPOLE MODE
osb— An important check on the accuracy of the theory is of-

fered by the Kohn theorem. One can analytically prove that
the dipolar oscillation in ther direction (with a=x, y, or z

in the general case of an anisotropic Yap described

by the ansatz 8&=(d/dr,—mr,w,/h)®y 6D =(dlor,
+Mrw,/h) Dy, A=/ or,, S=(dlor ,—2mr,w /)P,
and 6" =(d/ or ,+2mr,w, /)T, The theorem asserts that
the corresponding mode frequency is given by the bare trap
frequencyaw,,.

In Fig. 3@ we show the spectral response for a dipolar
excitation as obtained from the HF-RPA &tT.=0.6 and
7=0.0050y. It has been explicitly shown that the Kohn theo-
rem is satisfied in this approa¢B6,27. As a result a sharp
resonance is present in the HF-RPA dipole spectrum at
=w,. The density fluctuations at the resonance, as calculated
from the solution of the dynamical equations, are plotted in
excitation as functions of frequeney (in units of wg) as calculated Figs. 3b) and 3c) as solid lines and are compared with the

from the HF-RPA afl/T,=0.5, plotted for two values of (in units p_redlctlons of the above ansagrcles. The wo methods
of wp) as indicated in the panels. The three panels display the totd1V€ almost the same result for both condensate and thermal

density fluctuations, except for a weak structure in the ther-
mal density fluctuation which may be due to the truncation
of the basis sets.

In Fig. 4 we show the spectral response of the dipole
. . . ) mode as obtained from the HFB-RPA with the same choice
broad resonances, which are msen_smve to the precise valyg parameters. In this approximation, the generalized Kohn
of 7. In the following we preferentially tak&=0.0lwg in theorem is not exactly satisfied, since a secondary peak is
calculating the spectral functions, this choice being consistgynd in the spectrum ab=1.13w,. According to the dis-
tent with a typical experimental energy resolutig. cussion given by Lewenstein and Y{8], a possible reason

The other aspect of the calculations that needs examiningr this inaccuracy is the noncompleteness of the set of qua-
is the role of the basis set. In Fig. 2 we show the HF-RPAgiparticle wave functions used in the calculation. There also
monopole spectrum &f/T,=0.6 and»=0.005w,, as calcu- are appreciable distortions of the eigenvectors for the non-
lated from two choices of basis set. These are the standambndensate oscillations in Fig(c}.
set as described aboysolid line) and a set in which the
number of basis function has been doublédshed ling No
quantitative changes are found for the condensate response
aroundw=2.2wq, while for the response of the thermal cloud  We present in this section the numerical results of the
nearwo=2.0wg only a small change is present in the spectralHFB-RPA for the monopole and quadrupole modes and com-
intensity. pare them with those given by the SOBP-RPA and by the

L B

Z [(®)

“19 2.0 21 22 23
o/ o,

FIG. 1. Spectral responsés arbitrary unitg for the monopolar

spectral respong@) and the contributions of the condensdigand
of the noncondensate).

VI. MONOPOLE AND QUADRUPOLE MODES
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FIG. 3. (a) Spectral responsgn arbitrary unit3 for the dipolar 0 2 4 6

r

FIG. 4. The same as Fig. 3, but for the HFB-RPA.

excitation as a function of frequeney (in units of wy), as calcu-
lated from the HF-RPA af/T.=0.6 with the choicern=0.005vy.
The density fluctuations at resonari@earbitrary unit$ are plotted
as functions of the radial coordinatdin units ofa,,=(f/mwe)¥?]  ponents of the gas are comparable with each other near
in (b) for the condensate and i) for the noncondensatesolid  T/T.=0.5, where the noncondensate fraction is populated by
lines). In the same panels are also shown the corresponding resulebout 30% for our choice of parameters. Above this tempera-
from the analytical expressions of the mode eigenveciarsles. ture the strength of the noncondensate resonances increases
very rapidly.

HF-RPA. These various theories give somewhat different re- In Fig. 7 we compare with each other the numerical re-
sults for the spectra at intermediate values of the temperasults from the RPA theories for the monopolar and quadru-
ture, in the range OB.<T=<0.8T.. polar spectra aff/T.=0.6. We see that the HF-RPA and

In Fig. 5 we plot the HFB-RPA spectral functions at vari- HFB-RPA closely agree in their predictions on the main non-
ous temperatures. F&T= u two main resonances are seen condensate resonances for both types of excitations. We also
in each spectrum, which can be interpreted as representirgge that all three theories predict essentially very similar re-
the collective oscillations of the noncondensate and of theults for the main quadrupolar resonance of the condensate,
condensate. The oscillator strength of each resonance h#ése position of the main peak ab=1.550 in Fig. 7(b)
been extracted from the spectra and is shown in Fig. 6 as laeing also in agreement with the result of the HFB-Popov
function of temperature. Naturally, with increasimgT, the  approximation(not shown. In the following we concentrate
amplitude of the noncondensate resonances gr@mwgty on the main condensate resonance in the monopolar mode,
circles while that of the condensate resonances decreasésr which the three theories give rather different predictions
(solid circleg. The amplitudes of the modes in the two com- as is emphasized by the three arrows in Fi@.7n fact, the
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s 1
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FIG. 5. Spectral respongm arbitrary unit3 as a function of frequency (in units of wg) for the monopole modéa) and the quadrupole
mode(b), as calculated withy=0.01w, from the HFB-RPA at the temperatures indicated in the figure. The curves are progressively shifted
upwards by one unit for clarity and the quadrupole respon3éBt=0.1 is reduced by a factor of 3. The dashed line in each panel indicates
how the condensate resonance moves with temperature.

4 ' 1 1 ) I
L (a) ]
3 .
~ h
8 2 .
= L i
0 1 " 1 . " "
0.0 0.2 0.4 0.6 0.8 1.0

T/ T
FIG. 6. Amplitude of the HFB-RPA resonancés arbitrary unit3 from Fig. 5 as a function of reduced temperatdrel, for the
monopole(a) and the quadrupolé). The solid and empty circles refer to the condensate and to the noncondensate, respectively. The lines
are guides to the eye.

FIG. 7. Spectral respongm arbitrary unit§ as a function of frequency (in units of wg) for the monopole modés) and the quadrupole
mode(b), at T/T.=0.6 with =0.01w, from the HFB-RPA(solid lineg, the SOBP-RPAdashed lines and the HF-RPAdot-dashed lines
The arrows in pandl) point to the condensate resonance position given by each RPA theory. The SOBP-RPA spectra as defin€l’)n Egs.
and(18) do not include the contribution from the direct excitation of the noncondensate.
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W11 close agreement and move upwards with temperature,
whereas the mode frequency predicted by the HF-RPA tends
to decrease. The latter trend is in good agreement with the
HFB-Popov theory, in accord with the proof already given in
Ref.[9]. The upward trend of the mode frequency with tem-

22 - 4

(=]

§ perature is manifested in all RPA theories at intermediate

83 %1 - —— HFB-Popov T temperatures, reaching nebtT,=0.7 the highest sensitivity
e ! to the detailed description of the physical process in which
5 L —— HF-RPA | the thermal cloud is driven by its self-generated dynamical

) potential. Finally, in proximity of the critical temperature all

— 1. | three theories tend to agree as the anomalous density fluc-
00 02 04 06 08 10 tuations disappear.

T/T, The fact that a large upward frequency shift is found with

increasing temperature in both the SOBP-RPA and the HFB-
FIG. 8. Monopole excitation frequenayy (in units ofwg) asa  RPA suggests that a significant role is played by the anoma-
function of reduced temperatulé T, as predicted by various theo- |ous density fluctuations. In Fig. 9 we show the partial den-
ries: the HFB-Popovsolid line), the HFB-RPA(solid circley, the ity fluctuations which accompany the monopolar and
SOBP-RPAlempty circleg, and the HF-RPAstars. The lines con-  quadrupolar condensate resonanced/4t,=0.6, as calcu-
necting the symbols are guides to the eye. lated from the HFB-RPA. In both modes we find that the

anomalous density fluctuations are at this temperature at

partial spectra of condensate and noncondensate show an gy comparable in magnitude to the fluctuations of the nor-
preciable overlap in this frequency range, implying a stron-

ger dynamical coupling between the breathing excitations O?wal density.
the two components of the gas and therefore an enhanced
sensitivity to the approximations made in the theory.

To better illustrate the difference among the various theo-
ries, we extract the monopolar mode frequency of the con- In conclusion, we have developed a random-phase theory
densate from the peak ip"(w) and plot it in Fig. 8 as a for the dynamics of a weakly interacting Bose gas under
function of reduced temperature. For comparison we alsexternal confinement at finite temperature. In the theory the
show the mode frequency given by the HFB-Popov theorydynamics of the condensate and of the thermal cloud are
(see Sec. )l The most remarkable feature of Fig. 8 is that alltreated on the same footing and a previous Hartree-Fock
three RPA theories show monmonotonicbehavior of the random-phase scheme is extended through the inclusion of
resonance as a function of temperature, in contrast with ththe anomalous density fluctuations. The theory satisfies with
prediction of the HFB-Popov theory in which the resonancegood numerical accuracy the generalized Kohn theorem and
frequency decreases monotonically with increasing temperaorrectly reduces to the second-order Beliaev-Popov theory
ture. This difference is due to the dynamical coupling be-if one neglects the process in which the thermal cloud is
tween the condensate and the noncondensate, which is ndrven by its self-generated potential. It thereby fully in-
glected in the mean-field theory and becomes important asludes the Landau-Beliaev damping mechanism.
the noncondensate is significantly populated. We have compared the theory with the second-order

Let us now compare the three RPA theories, which tranBeliaev-Popov theory and with the Hartree-Fock random-
scend the mean-field level. At low temperatyiie T, < 0.4) phase theory by numerical illustrations for a condensate of
we observe two different trends: the mode frequencies ob?’Rb atoms inside a spherical trap. The locations of the main
tained from the HFB-RPA and from the SOBP-RPA are inmonopolar and quadrupolar resonances of the thermal cloud

VIl. CONCLUSIONS

2

2 T T T T

1

-2

FIG. 9. Density fluctuationgén arbitrary unit$ as functions of the radial coordinat&in units ofay,,) for the monopole modg) and the
guadrupole modégb), as calculated from the HFB-RPA far/T,=0.6 at the appropriate excitation frequency of the condensate. In both
panels the condensate density fluctuation is reduced by a factor of 5 for clarity.

043605-8



COLLECTIVE OSCILLATIONS OF A CONFINED BOSE. PHYSICAL REVIEW A 69, 043605(2004)

are well reproduced in the Hartree-Fock RPA and the freWe then carry out a Fourier transform with respect to the
quency of the quadrupole mode of the condensate does nwhaginary time variabler,

differ significantly from the mean-field HFB-Popov predic-
tion. We have instead found that for>0.4T, the tempera-
ture dependence of the breathing mode frequency of the con-
densate obtained from the various RPA theories is very . .
different from the HFB-Popov result. A significant role ap- -3 (Uj(r)v; (r') vy’
pears to be played in the dynamics of the Bose-condensed B J

gas by the anomalous density fluctuations of the thermal

cloud at intermediate temperatures, even though they afghere iw,=2nmi/B. With the analytic continuationw,
known not to affect significantly the thermodynamics of the . ,+i7 we obtain the expression fog.(r,r';w) in
trapped ga§29-31. Eq. (11).

Our results, though restricted to isotropic confinement, The two-particle response functions of the noncondensate
may be relevant in connection with the JILA experimentscan be derived in a similar way. They take the following
[2], where the breathing mode in an anisotropic trap showeghrms:

a frequency upshift with temperature which could not be

accounted for by the HFB-Popov thedi§]. A quantitative X, r' ) :X%—lﬁ)(r,r’;w) +X-%)(r,r’;w) (A4)
comparison between experimental data and the RPA predic-

tions for an anisotropic trap would be interesting for a full with
test of the theory and we hope to address this issue in future
work.

B _
ch(r,r’;iwn)=f dre“ny.{r,r";7=0)
0

) . (A3)

|wn_6j |wn+6j

1) .. _ (U:Uj '|'l):l)j)(uil.]}Y "'Uiv?)(fi_fj)
Ay r’r ) =
Xi n( 00) 2 ﬁw+ + (Ei _ EJ)

ij
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APPENDIX: THE I;I'L\J/\’/\I%TPI,?DFIQ\ITSICLE RESPONSE (1T @) = Xﬁq’r‘ﬁ(r rw)= X%)](r’r )+ X%(r,r’;w)
We present here a brief explanation on how to derive the (A5)
response functions used in Eq®) and (10) and list the
two-particle response functions of the noncondensate. with
Let us consider, for example, the expression of . . .
Xee(r 1" @). The most convenient way to obtain it is to cal- B w) =25 (U Uj +vivju; (fi — )
culate the bosonic Matsubara Green’s function with imagi- nmn ho'+ (- €)
nary time variablg22],

ij

~ ~ and
Xed 1.7 == (T DU 0. (AD) .
Here T, denote the ordering in imaginary time axd-), X211 w) =2, [viujvifj(l+fi 1)
denotes the equilibrium statistical average. By expressing the ij ho™ = (€ + ¢)
operatory(r , 7) jn Eerms of the Bogoliubov 9uasiparticle op- B ufvj*uiuj(l +fi+ 1) |
eratorsg; andal, y(r,7)=%; [uj(r)&je‘fiwvj(r)&;efif], we o™+ (g +€)
can rewritex.J(r,r’; 7 in the form
Xed o172 0) = = ((r, Dyl (r',0))g X (115 0) = XT3 0) = X (115 0) + X2 (1,1 0)
== 3 (u(NaEs +v (Nafed] (AB)
I ) with
X[u(r " ag + v (reg o w o (f— )
) o W (ot = Ui Uj + v vj)uil; (T — T
- . ” ’ . €T ~= . (r, : — 2
%[uj(r)vj(r )(L+f)e X (T3 @) % P P
+u; (r)uy(r)fed7]. (A2)  and
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v U (1 + i+ )
ﬁw+ - (Gi + E])

20rw=23|
ij

_ U:U}Uivj(l + fi + fj) .
ho™+ (g + €)

Xl T3 0) = X (111 0) = XT3 0) + XGi(r,1 s )
(AT)
with
fi-1)
(l)(rr ) 4EUUUU(
ij ho'+ (& - 51)
and
UinU:U}((l + fi + fJ)
hw+— (Gi + Ej)

%ﬂxtm=22[
ij

_ U:U}(Uin(l + fi + fJ) .
ﬁ(l)+ + (Ei + EJ) '

Xarr(r,r o) = Xmm+(ff Tw) + Xmm+(ff ‘w)  (A8)
with

) 42 U-*U'U'Uf(f'— )

Xﬁqw(r r hw™ + (g — 61)

and
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U U U (L + + £
ﬁw+ - (Ei + GJ)

@ (rr )= 22{

U vivivj(l +fi+1) |
ho'+ (g + €)

and finally

Xar(FoT 5 0) = Xoe (1,1 ) + X2 (r,r @) (A9)

with
Uqu(f f;)
) =gy Tt
Xatw(T 1 E ho™+ (6~ <)

and

oy =2S {vivjvivj(1+fi+fj)
ij

ho' - (& +¢)

U:U}(Uin(l +fi + fj):|
ho'+(g+e) |

In the above expressions"=w+i0* and we have used ab-
breviations such asi ujuiu; =u; (r)u;(r)u(r)u; (r’), which
means that in the product of four position- dependent func-
tions the first two depend onand the latter two om’ Xab
andx b in the above expressions correspond to the excitation
of single thermal quasiparticles and of pairs of thermal
quasiparticles, respectively.
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