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Atomic polarization can have a profound effect on the generation of the high-order harmonics during the
interaction of the polarized atom with intense field. In this work, the atomic polarization effect is investigated
for the specific case of the 21P helium subject to infrared radiation. The strong coupling between the 21P and
2 1S states of helium is taken into account using a multichannel version of the strong-field approximation of
Lewenstein and co-workers[Lewensteinet al., Phys. Rev. A49, 2117(1994); Antoine et al., ibid. 53, 1725
(1996)]. The analysis reveals a strong dependence of the high-order harmonic generation efficiency on the
atomic polarization. While the occurrence of the predicted effect can be explained in terms of the recollision
model, its magnitude is deeply affected by the fast population oscillations between the excited bound states.
Moreover, the induced bound-bound transitions bring about the interesting double-maximum structure in the
ellipticity dependences of the emitted harmonics, both maxima occurring for nonzero field ellipticities. This
unusual structure shows up even for the high-energy harmonics generated solely by the bound-continuum
mechanism.
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I. INTRODUCTION

The dependence of the high-order harmonic generation
(HHG) by rare gas atoms on the polarization of the incident
radiation has been studied both experimentally and theoreti-
cally (see, e.g., Refs.[1–4]). It has been found that the high-
order harmonics become strongly suppressed with increasing
ellipticity of the laser beam. This phenomenon has found its
explanation within the framework of the recollision model of
the atomic HHG[5,6]. Classically speaking, the electron
leaving an atom under the influence of elliptically polarized
field acquires a nonzero drift velocity which precludes its
efficient rescattering from the atomic core. In this situation,
the chances for the electron’s recombination back to the
atomic ground state accompanied by the HHG become in-
creasingly small as one departs further from the zero-field
ellipticity. In fact, the observed damping of the high-order
harmonics in elliptically polarized field has been considered
as a principal experimental evidence for the validity of the
recollision mechanism of HHG.

While the effect of theelectromagnetic wave polarization
on the atomic HHG is understood, the possible influence of
the atomic polarizationon the process has not been consid-
ered so far. In the present work we show that, in fact, the
effect of the atomic polarization on the spectrum of the gen-
erated high-order harmonics can be no less significant than
the one of the incident field polarization. It turns out that the
harmonic intensities can depend strongly on the spatial ori-
entation of the atomic angular momentum with respect to the
polarization of the incident laser field. Let us elucidate the
role of the atomic polarization in the strong-field dynamics
by considering the interaction of a two-electron atom being

initially in a sn+1d1Pfns1sn+1dp1g excited state with lin-
early polarized field. In this case, the atomicp orbital occu-
pied by the “active” outer electron of the system can be
oriented, for example, along the electric-field axis or in the
perpendicular plane. In the case of the parallel orientation of
the atomic orbital and the ionizing field, the well-known
three-step scenario of the atomic HHG[5,6] can take place.
The ionized electron can be driven back by the oscillating
field to recombine to a bound state generating the high-
frequency radiation. However, in the case of the perpendicu-
lar orientation of thep orbital with respect to the electric
field, no ionization along the field polarization direction is
possible due to the symmetry of the atomic orbital. For ex-
ample, if an electron occupying apy orbital interacts with the
field polarized along thex axis, it cannot undergo a transition
to the scattering stateFpW

s−d with zero asymptotic momentum
in the y direction:

kFpW
s−dsr2,pW · rWdueExxuFpy

sr2,ydl = 0 if py = 0. s1d

In this perpendicular configuration, the ionized electron must
attain some nonzero velocity along the symmetry axis of the
p orbital. The electron drifts away from the atomic core re-
ducing the probability of the recollision event and with it
also the high-order harmonic intensities. Thus, the atomic
polarization can have a profound effect on the HHG spec-
trum, at least in the low-frequency, high-intensity regime
where the recollision model is valid.

The nonzero drift velocity of the electron being ionized in
the perpendicular configuration can also lead to unusual el-
lipticity dependences of the emitted high-order harmonics.
Indeed, within the recollision picture, the reason for the
damping of the HHG at nonzero ellipticity is the drift of the
electron induced by the elliptically polarized field. But if the
electron was initially bound in ap orbital oriented perpen-
dicularly to the main axis of the ellipse, there can be an
interplay between the symmetry- and field-induced drifts.
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Eventually one can find that the high-order harmonics pos-
sess maximal intensities at some nonzero field ellipticity.
Such an “anomalous” ellipticity dependence has been found
in HHG by the ground-state atoms for the harmonics with
energies within the range of the atomic ionization potential
(i.e., for the low-order and the threshold harmonics) [3,7,8].
However, the “anomalous” ellipticity dependence for the har-
monics of arbitrarily high order is expected to be a distinc-
tive feature of the polarized atom setup. In what follows we
shall explore these atomic and field polarization effects in
some detail considering the interaction of the excited helium
atom with infrared(IR) radiation.

II. MULTICHANNEL STRONG-FIELD APPROXIMATION
FOR THE HHG SPECTRUM OF EXCITED HELIUM

Regard a helium atom prepared in a superposition of the
ground state and the second excited singlet state

F0 = aF1 1S+ beiwF2 1P, a2 + b2 = 1. s2d

The polarization of the atom, i.e., the spatial orientation of
the p orbital of F2 1P, is defined by the polarization of the
excitation pulse used for the preparation of the stateF0. The
effect of the atomic polarization on the HHG can be under-
stood by comparing the spectra of the excited helium atoms
interacting with the electric field polarized along the symme-
try axis of thep orbital si.e., as the excitation pulsed with
HHG resulting from the interaction with the perpendicularly
polarized field.

The 21P state of helium has the binding energy of about
3.37 eV, only a bit lower than those of ground-state alkali
atoms. Since alkali metal vapors interacting with IR radiation
are known to generate high-order harmonics[9], we shall
concentrate on the interaction of the excited helium with an
IR source of intensity up to 10−3 a.u. Just as in the case of
the alkali, the HHG by the excited helium can be affected by
the bound-state dynamics. In particular, one should take into
account the transition from the 21P state to the first excited
singlet state, 21S, characterized by the relatively small
s<0.6 eVd energy splitting and larges<2.9 a.u.d transition
dipole moment. This transition is allowed in the case where
the IR pulse is polarized as the excitation pulse, but is for-
bidden in the case of perpendicularly polarized fields. The
other possible bound-bound transitions, e.g., 21P–1 1S and
2 1P–3 1S, characterized by much larger energy differences
and significantly smaller transition dipole moments, can be
neglected in the first approximation. These considerations
allow one to approximate the time-dependent wave function
of the helium atom interacting with IR field as

Cstd < a1 1SstdF1 1S+ a2 1SstdF2 1S+ a2 1PstdF2 1P

+E
−`

` d3p

s2p"d3bspW ,tdFpW
s−d, s3d

where FpW
s−d are the scattering states corresponding to the

single ionization of helium.
A series of further approximations will provide a simple

semianalytical solution for the bound and continuum state

amplitudes in Eq.(3). First of all, let us assume the single
active electron approximation. In the studied case, it is jus-
tified by the very significant energy separation between the
two helium orbitals occupied initially. The relevant bound
states of helium[see Eq.(3)] will be represented using
single-electron hydrogenic orbitals with such effective
charges that the correspondingkr2l expectation values match
the realistic ones,Zeffs1 1Sd=1.5855, Zeffs2 1Sd=1.6158,
Zeffs2 1Pd=1.3797. The crudity of this approximation can be
estimated by calculating the 21P–2 1S transition dipole mo-
ment using the hydrogenic wave functions. It turns out that
the matrix element is recovered with about 10% inaccuracy.

Regarding the bound-state coefficients[see Eq.(3)], one
notes that the 11S state population should not be affected
appreciably by the IR pulse. Indeed, the electric field is far
too weak for tunneling ionization of the ground state and its
frequency is too small to make any possible multiphoton
transition efficient. Thus, one can assume

a1 1Sstd = a exps− iE1 1St/"d, s4d

whereE1 1S is the ground-state energyswe neglect the small
ac Stark shift of the ground stated. On the other hand, the
excited 21S and 21P states are expected to be strongly
coupled between themselves and appreciably coupled to the
continuum. Let us calculate the continuum state amplitudes
using the strong-field approximation of Lewenstein and co-
workers f10,4g. Within this approach, the continuum states
are represented by plane waves and their population is as-
sumed to be insignificant comparing to the bound-state
population. The resulting expression for the continuum state
amplitudes reads

bspW ,td =
i

"
E

0

t

o
j=21S, 21P

eEW st8d ·dW j

3fpW + se/cdAW std − se/cdAW st8dgajst8d

3expH−
i

"
E

t8

t fpW + se/cdAW std − se/cdAW st9dg2

2m
dt9Jdt8,

s5d

whereEW std andAW std are the electric field and the vector po-

tential of the incident pulse, respectively, anddW j are the ma-
trix elements for the transitions from the excited states to the
plane wave continuum states:

dW jspWd = kexpsipW · rW/"durWuF jl, j = 2 1S,2 1P. s6d

Contrary to the single-bound-state expressions of Refs.
[10,4], Eq. (5) describes ionization from a pair of strongly
coupled bound states. Using the assumption of the low con-
tinuum population, one can calculate the excited-state ampli-
tudes,aj, within the two-state model. For linearly polarized
field, the corresponding coupled equations read

i"ȧ2 1Sstd = E2 1S a2 1Sstd − eEW std ·dW2 1S–21P a2 1Pstd,
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i" ȧ2 1Pstd = E2 1P a2 1Pstd − eEW std ·dW2 1S–21P
* a2 1Sstd, s7d

wheredW2 1S–21P=kF2 1SurW uF2 1Sl is the matrix element for the
2 1P–2 1S transition and the excited-state coefficients should
be normalized according toua2 1Su2+ ua2 1Pu2=b2 [see Eq.(2)].

The orientation of thedW2 1S–21P vector defines the spatial ori-
entation of the 2p orbital. Let us introduce the angleu be-
tween the symmetry axis of the 2p orbital and the field po-

larization axis: EW ·dW2 1S–21P=Ed2 1S–21Pcossud. For u small
enough, the dynamics of the 21P–2 1S transition in the IR
field can be characterized by high-interaction-energy varia-
tion, 2eEd2 1S–21P cossud@E2 1P–E2 1S. As shown by Ivanov
and Corkum, under these conditions, the system(7) can be
solved perturbatively[11]. The zeroth-order solution which
neglects the energy splitting between the two atomic states
reads

a2 1S
s0d std = ibeiw exps− iĒt/"d

3sinFeE
0

t

Est8dd2 1S–21P cossuddt8/"G ,

a2 1P
s0d std = beiw exps− iĒt/"d

3cosFeE
0

t

Est8dd2 1S–21P cossuddt8/"G , s8d

where Ē=sE2 1P+E2 1Sd /2. One can see that within the
zeroth-order approximation, the ac Stark shifts of the excited
states bring about their exact degeneracy. Since the high-
interaction-energy requirement cannot be satisfied by a finite
pulse during its switching on and switching off, the validity
of the above solution in the case of the interaction with laser
pulses is limited by the additional condition[11]: "v
@E2 1P–E2 1S, wherev is the field frequency. In the opposite
extreme case of small interaction energy, e.g., foruu−p /2u
!1, the excited-state coefficients attain the following simple
form:

a2 1Sstd < 0, a2 1Pstd < beiw exps− iE2 1Pt/"d, s9d

where the first equality is exact foru=p /2.
Equations(3)–(5), (8), and (9) define the approximate

time-dependent wave functionCstd of the excited helium
atom interacting with IR pulse. This wave function can be
used in order to calculate the resulting HHG spectrumIsVd
as the spectrum of the acceleration of the induced dipole
momentmW std:

IsVd = V4U 1

T
E

0

T

e−iVtmW stddtU2

, mW std = kCstdurW uCstdl,

s10d

whereT is the pulse duration. Substituting the wave function
s3d and s5d into the expression formW std, one obtains

mW std = 2eReHa2 1S
* stda2 1PstddW2 1S–21P

+ a1 1S
* stda2 1PstddW1 1S–21P + o

j
o
k

i

"

3E
0

t

dt8E
−`

` d3P

s2p"d3eEW st8d ·dW jfPW − se/cdAW st8dgajst8d

3 expF−
i

"
E

t8

t fPW − se/cdAW st9dg2

2m
dt9G

3dWk
*fPW − se/cdAW stdgak

*stdJ ,

j = 2 1S, 2 1P, k = 1 1S, 2 1S, 2 1P. s11d

The resulting expression is a generalization of the original
result of Lewenstein and co-workers[10,4] to the case of
several populated bound states. Within this multichannel ver-
sion of the strong-field approximation, each harmonic ampli-
tude is described as a sum of the bound-bound[the first two
terms on the right-hand side(rhs) of Eq. (11)] and bound-
continuum[the third term on the right-hand side(rhs) of Eq.
(11)] contributions. Furthermore, the bound-continuum part
is a coherent superposition of the amplitudes which are re-
lated to the various ionization-recombination paths character-
ized by different initial and final bound states.

III. THE EFFECT OF THE ATOMIC POLARIZATION
ON THE HHG OF THE EXCITED HELIUM

The general features of the HHG spectrum of the excited
helium atom can be predicted by considering the various
terms contributing to the induced dipole moment(11). Let us
consider first the HHG by the atom with the 2p orbital ori-
ented parallel to the field polarization axissu=0d. In this
“parallel” configuration, the first term on the rhs of the Eq.
(11) arises from the transitions between the closely lying 21S
and 21P states which are strongly coupled by the IR field.
These transitions lead to the HHG plateau of the length equal
to the maximal variation of the interaction energy[11]:

ncutoff
b−b = 2eEd2 1S–21P/s"vd. s12d

For the fields considered in this work, this plateau is ex-
pected to be quite short, e.g.,ncutoff<7 either for the 1.6mm
field of the 32 TW/cm2 intensity or for the 3.6mm field of
the 8 TW/cm2 intensity.

It is interesting to note that although no 11S–21P transi-
tion occurs in our model, the coupling between these states
gives rise to a nonlinear contribution to the induced dipole
moment[the second term on the rhs of Eq.(11)]. At zero
external field, a linear combination of the 21P and the 11S
states is characterized by the time-dependent dipole,m
,cosfsE2 1P−E1 1Sdt /"g. When the field is switched on, the
population of the 21P state varies in time due to the
2 1S–2 1P coupling [see Eqs.(7) and (8)]. As a result, the
second term on the rhs of Eq.(11) is expected to give rise to
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a band of lines situated around the 11S–2 1P transition fre-
quency. The number of the lines in this band is determined
by the dynamics of the 21P–2 1S transition and should be
aboutncutoff

b−b [see Eq.(12)].
The bound-continuum contribution to the induced dipole

moment of the helium atom[the third term on the rhs of Eq.
(11)] consists of the individual contributions of the transi-
tions from the 21S or 2 1P state to the continuum and the
recombinations to the 11S, 2 1S or 2 1P state. The resulting
HHG spectrum is qualitatively similar to the one of the ex-
cited 2s He+ ion considered in Refs.[12,13]. The recombi-
nation back to one of the ionized states(2 1Sor 2 1P) should
give rise to the familiar HHG plateau with the cutoff at
[5,6,10]:

ncutoff
b−c < s− Ē + 3.2Upd/s"vd, s13d

whereUp is the ponderomotive energy of a free electron in
the field, Up=e2E2/ s4mv2d. The recombination to the
ground state leads to the increase of the emitted photon en-

ergy by aboutĒ−E1 1S. As a result, the second rescattering
plateau of the same lengthfsee Eq.s13dg is formed starting at

the energy ofĒ−E1 1S. It should be noted that the higher-
energy plateau consists of lines shifted from the exact har-

monic frequencies bysĒ−E1 1Sdmod "v. These lines be-

come exact odd harmonics if the resonance conditionsĒ
−E1 1S=N"v, N is oddd is satisfiedf12g. The relative in-
tensities of the two HHG plateaus are defined by the ma-
trix elements for the recombination to the respective final
states:d2 1P, 21S

* spWd for the lower-energy plateau andd1 1S
* spWd

for the higher-energy plateausnote that the effective
charges used in the present work to mimic helium orbitals
distort the two plateaus intensity ratio with respect to the
Coulombic case considered in Ref.f13gd. The two rescat-
tering plateaus overlap if
the ponderomotive energy is high enough, i.e., forUp

. s2Ē−E1 1Sd /3.17<0.2 a.u.
Since we are dealing with atoms being initially prepared

in a superposition of the ground and the excited states, the
initial amplitudes and phases of the superposition can affect
the resulting HHG spectrum. Clearly, there should be a suf-
ficient initial population of the 21P state in order for the
HHG to be significant at all. On the other hand, only a sub-
stantial initial population of the ground state can reveal the
double-plateau structure of the spectrum atuÞp /2. Those
contributions to the induced dipole moment(11) which cor-
respond to the ionization from one of the excited states and
the recombination to the ground state are affected also by the
initial phase of the excited state coefficient,w [see Eq.(2)].
Thus, the phases of the lines belonging to the higher-energy
plateau arew dependent(this feature is probably of relevance
for the macroscopic response of the sample of the initially
excited atoms). On the other hand, the contributions tomW std
responsible for the formation of the lower-energy plateau are
w independent. As will be shown below, it is the lower-
energy plateau which is the common feature of the HHG
spectrum at both parallel and perpendicular configurations

and is thus of primary interest for this work. Consequently, in
what follows we shall assumew=0.

In Fig. 1 we show the HHG spectra of the excited helium
interacting with the 32-oscillation sin2 pulse of IR radiation

of the frequencyv=0.028 47 a.u.sĒ−E1 1S=27"vd and the
peak field strengthE0=0.03 a.u. The field frequency used in
the calculation is greater but not much greater than the
2 1S–2 1P energy splitting and the high-frequency require-
ment for the validity of the solution(8) in the case of a pulse
is, strictly speaking, not satisfied. Consequently, we have
used a numerical solution of Eq.(7) for the calculation of the
HHG spectrum at the parallel configuration. It should be
noted, nevertheless, that even at the frequency of
0.028 47 a.u., the Ivanov-Corkum solution leads to the har-
monic intensities which are in a very good agreement with
the results of the numerical solution. The reason for this is
that the high-order harmonics are produced mainly after the
pulse has been switched on, i.e., when the high-interaction-
energy requirement is satisfied(see the discussion after Eq.
(8) and Ref.[11]). One can see that the parallel configuration
spectrum shown in Fig. 1 embodies all the features predicted
by the qualitative analysis of the contributions to the induced
atomic dipole moment(11). The two bound-continuum pla-

teaus of the length of −Ē+3.17Up<35"v shifted from each
other by the 27"v energy difference appear in the spectrum
along with the two bands of harmonics due to the transitions
between the strongly coupled 21S and 21P states. The for-
mation of the low-energy harmonic band due to the bound-
bound transitions is reflected also in the field-intensity de-
pendence of the high-order harmonics. As the field becomes
stronger, the successive harmonics belonging to the rescat-
tering plateau get enhanced to join the bound-bound plateau.
The functional character of the enhancement is that of the
Bessel function of large order and small argument[11], i.e.,
very roughly In,expf−2n sinh−1sn/xdg, wheren is the har-

FIG. 1. The HHG spectra of helium atom prepared initially in a
superposition of 11S and 21P statessa=b=1/Î2,w=0d. The inci-
dent field parameters are:v=0.028 47 a.u.,E0=0.03 a.u. Upper
curve, the field is linearly polarized along the axis of the atomicp
orbital; lower curve, the field is linearly polarized perpendicularly
to the axis of the atomicp orbital.
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monic order and the small argumentx is proportional to the
field strength. This steep rise of the harmonics is illustrated
in Fig. 2. The predicted behavior of the band of the high-
order harmonics in the excited helium is different from the
one occurring in the alkalis[9,14,15], where the condition of
the multiphoton resonance is required for the harmonic en-
hancement. The reason for the difference between the two
systems is that the regime of the high interaction energy,
2eEdns−np@Enp−Ens, is not reached in the alkalis, in particu-
lar due to the relatively high energy differences between the
strongly coupledns andnp states.

Turning now to the HHG in the perpendicularsu=p /2d
configuration, we note that in this case the first two terms in
the expression(11) for the induced dipole moment vanish by
symmetry. Indeed, the electric field polarized perpendicularly
to thep orbital symmetry axis cannot induce a transition to a
s orbital. Consequently, the assumption(3) for the helium
wave function made in this work is insufficient to describe
the contribution of the bound-bound transitions to the HHG
in perpendicular configuration. While a more detailed analy-
sis than the one given here is needed to describe the actual
role of the bound-bound transitions to the HHG in this case,
their contribution is probably not going to be important for
the high-order harmonics with energies exceeding the ioniza-
tion energy of the 21P state. Symmetry considerations can
be also used to show that in the perpendicular configuration
there can be no recombination of the ionized electron into
the ground 11S state. As a result, the bound-continuum con-
tribution to the HHG atu=p /2 consists of a single plateau
due to the ionization from and the recombination to the 21P
state only(in other words, the 21P state plays the role of the
effective ground state of the system). The angular distribu-
tion of the electron ionization from thep orbital oriented

perpendicularly to the ionizing field is such that the probabil-
ity for the electron emission along the field polarization axis
is zero[see Eq.(1)]. Consequently, the ionized electron can-
not be driven by the field back to the core which should lead
to the damping of the recombination probability. Thus, the
efficiency of the HHG process in the perpendicularsu
=p /2d configuration should be significantly smaller than in
the parallelsu=0d one. The dramatic effect of the atomic
polarization on the HHG spectrum is demonstrated in Fig. 1.
The comparison of the HHG spectra computed once for the
parallel and another time for the perpendicular orientation of
the atomic orbital with respect to the incident field shows
that the HHG spectrum corresponding to the perpendicular
configuration exhibits only a single(lower-energy) rescatter-
ing plateau. Moreover, the intensity of the lower-energy pla-
teau in the perpendicular configuration is more than two or-
ders of magnitude lower than in the parallel one. Thus, the
atomic polarization effect is well pronounced.

The semianalytical approach exploited here allows one to
obtain a crude order-of-magnitude estimate of the magnitude
of the atomic polarization effect as a function of the param-
eters of the system. To this end, let us consider the case of
nonoverlapping plateaus in the HHG spectrum of the parallel
configuration, i.e., eitherUp,0.2 a.u. ora!b. Our calcula-
tions of the induced dipole moment(11) of the excited he-
lium show that the ionization-recombination path giving the
dominant contribution to the HHG spectrum at the parallel
configuration is the one involving 21P state both as the ini-
tial and the final one. Let us thus simplify the problem by
neglecting all other contributions. Furthermore, let us assume
a cw field and substitute the 21P population by its optical
cycle average:b2f1+J0s2eE0d2 1S–21P/"vdg /2 andb2 for the
parallel and perpendicular configurations, respectively[see
Eqs. (8) and (9)]. In this simplified picture, the expressions
for the harmonic amplitudes in the parallel and in the per-
pendicular configurations are of the same type, namely,

mi,'snvd , E
0

2p/v

dt e−invtE
0

t

dt8E
−`

` d3P

s2p"d3

3dx
x,yfPW − se/cdAW st8dgExst8d

3expH−
i

"
E

t8

t fPW − se/cdAW st9dg2

2m
dt9J

3expF iE2 1Pst − t8d

"
Gdx

x,y* fPW − se/cdAW stdg,

s14d

where the field is polarized along thex axis and thedx matrix
elementsfsee Eq.s6dg with the superscriptsx and y corre-
spond to thepx andpy orbitals, i.e., to the parallelfmisnvdg
and the perpendicularfm'snvdg configurations respectively.
The evaluation of the time and momentum integrals in Eq.
s14d can be done by steepest descent methodsf10g. As a
result, the values of the integrals are related to the magni-
tudes of the integrands at the stationary phase values of the
variables. One can use this property in order to estimate the
misnvd /m'snvd ratio for the highest-order harmonicsncutoffd

FIG. 2. Field strength dependence of the 13th(full line), 15th
(dashed line), 23rd(long-dashed line), and 25th(dashed-dotted line)
harmonics in the parallel configuration. Continuous wave field of
the frequencyv=0.028 47 a.u. and zero ground-state population
(a=0, b=1) are assumed. The lower-order harmonics(13th and
15th) become strongly enhanced due to the 21S–2 1P oscillations,
while the higher-order ones(23th and 25th) stay in the rescattering
plateau.
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in the low-energy rescattering plateau. More specifically,
let us employ the stationary phasesimaginaryd value of

the initial kinematic momentum,PW −se/cdAW st8d, and take
the rest of the values of the integration variables from the
kinematic model of the atomic HHGssee Ref.f16gd. The
resulting expression is

U misncutoffvd
m'sncutoffvd

U2

< F1 + J0S2eE0d2 1S–21P

"v
DG2

3F f1
E0

v2 −
f2

E0
G2

, s15d

where

f1 < 0.895
e

"
Î2uE2 1Pu

m
+ 4.483 10−2 eZeff

2 s2 1Pd"

a0
2mÎ2muE2 1Pu

< 0.617 a.u.,
s16d

f2 < 1.413 10−3 Zeff
4 s2 1Pd"3

ea0
4mÎ2muE2 1Pu

+ 3.55

3 10−2Zeff2s2 1Pd"
ea0

2
Î2uE2 1Pu

m
< 4.393 10−2 a.u.

are the functions of the atomic parameters. Of course, Eq.
(15) has a meaning only iff1E0/v2. f2/E0, a condition
which is easily met in the parameter region considered in this
work.

The leading term in the above harmonic intensity ratio
scales asE0

2/v4. Thus, the effect of the atomic polarization
on the HHG spectrum is most prominent in the high-
intensity, low-frequency regime, exactly where the
Lewenstein-type theory used to describe the phenomenon is
valid. In fact, the field-strength dependence of the estimated
intensity ratio consists of the monotonous rise[the second
factor on the rhs of Eq.(15)] due to the recollision process
modulated by the oscillating function[the first factor on the
rhs of Eq. (15)] resulting from the variation of the mean
population of the 21P state. The field strength dependences
of the atomic polarization effect calculated both using the
Fourier transforms of the induced dipole moments(11) and
the simple approximation(15) are shown in Fig. 3 for two
values of the field frequency(v=0.012 67 a.u. andv
=0.028 47 a.u.). As expected, the atomic polarization effect
is much more pronounced for the lower frequency, but even
in the higher-frequency case the effect is quite dramatic: the
atomic polarization changes the HHG efficiency by two to
four orders of magnitude. Figure 3 shows that the “exact”
results are indeed represented by rising curves modulated by
oscillations. The results of the steepest descent estimation lie
almost entirely within an order of magnitude range from the
“exact” ones. However, the simple approximation(15)
misses both the period and the phase of the predicted oscil-
latory behavior. This means that the effect of the fast popu-
lation oscillations between the strongly coupled bound states
is a dynamical one and is not described well by the time-
averaged 21P state population.

To conclude the discussion of the atomic polarization ef-
fect, let us mention that the spatial orientation of thep orbital
can continuously vary from parallel to the IR field polariza-
tion su=0d to the perpendicular onesu=p /2d. In the high-
intensity, low-frequency case, whereumisnvdu@ um'snvdu
(see Fig. 3), the deviation from the parallel configuration is
accompanied by the uniform decrease of the harmonic inten-
sities according to the cos2sud law up to theu’s at which
umisnvducossudø um'snvdu.

IV. ELLIPTICITY DEPENDENCES OF THE HIGH-ORDER
HARMONICS IN THE PERPENDICULAR

CONFIGURATION

It has been demonstrated in Sec. III that HHG by the
excited helium is suppressed when the atomicp orbital is
oriented perpendicularly to the linearly polarized field. It is
then natural to ask what should be the optimal field polariza-
tion for the HHG at the perpendicular configuration. As in
the case of the atomic polarization dependence, the recolli-
sion model suggests a qualitative answer. In order to enhance
the HHG, one has to compensate for the drift of the electron
induced by the symmetry of thep orbital. This can be done
using elliptically polarized field which is able itself to impart
a drift momentum to the ionized electron. The compensation
of the two effects can occur bringing about the most efficient
HHG at some nonzero ellipticity. Since it is known that for
symmetry reasons the atomic HHG is totally suppressed at
circular polarization, the ellipticitys«d dependences of the
high-order harmonics at the perpendicular configuration are
expected to attain their maxima at some 0,«max,1. Some
idea about the typical value of«max can be obtained on the

FIG. 3. The magnitude of the atomic polarization effect for the
highest-order plateau harmonics as a function of the field strength.
Zero ground-state population is assumed(a=0, b=1). Higher pair
of curves,v=0.012 67 a.u. Lower pair of curves,v=0.028 47 a.u.,
cw field is assumed in both cases. Full curves represent the Fourier
transforms of the dipole moments calculated according to Eq.(11).
The results are averaged over five successive harmonic orders,
ncutoff−6, . . . ,ncutoff+2, to get rid of the erratic oscillations. Dashed-
dotted curves represent the steepest descent estimation of Eq.(15).
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basis of the recent experiment of Bhardwajet al. [18]. The
authors studied the nonsequential double ionization of ben-
zene occurring according to the recollision mechanism.
Since the highest occupied molecular orbital(HOMO) of
benzene possesses a nodal plane(as the atomicp orbital in
our case), the optimal ellipticity for the double ionization
was found to be nonzero:«max<0.1. It should be taken into
account, however, that the experiment involved a sample of
unaligned molecules whereas here we consider a polarized
atom.

In order to provide a quantitative description for the ellip-
ticity dependence of the HHG by the studied system, we
would like to consider the interaction of the excited helium

atom with the elliptically polarized cw field, EW

=E0/Î1+«2fcossvtd ,« sinsvtd ,0g. The field of this type can
induce more bound-bound transitions than the linearly polar-
ized one. In our approximation it couples the ground and the
three excited helium states: 11S, 2 1S, 2 1Px and 21Py, i.e.
two of the three degeneratep orbitals participate in the dy-
namics. The amplitudes of the bound states can be calculated
by solving the corresponding four-level problem:

i"ȧ1 1Sstd = E1 1S a1 1Sstd − ed1 1S–21PfExstda2 1Px
std

+ Eystda2 1Py
stdg,

i"ȧ2 1Sstd = E2 1S a2 1Sstd − ed2 1S–21PfExstda2 1Px
std

+ Eystda2 1Py
stdg,

s17d
i"ȧ2 1Px

std = E2 1P a2 1Px
std − eExstdfd1 1S–21P

* a1 1Sstd

+ d2 1S–21P
* a2 1Sstdg,

i"ȧ2 1Py
std = E2 1P a2 1Py

std − eEystdfd1 1S–21P
* a1 1Sstd

+ d2 1S–21P
* a2 1Sstdg.

Since the ground state is only very weakly coupled to the
excited states by the IR field, its population can be thought of
as a constant[see Eq.(4)]. However, unlike at the linear field
polarization, one cannot describe the transitions between the
remaining three strongly coupled excited states by the
Ivanov-Corkum perturbation theory, i.e., neglecting the
2 1S–2 1P splitting. The reason is that the matrices of thex
and y components of the transition dipole moment in the
three-state representation do not commute neither with one
another nor with their commutator. It should be noted that
exact solutions for a degenerateN level problem have been
found in the case of circular polarization of the field(only
under conditions of a special kind of a discrete symmetry)
[19] and, more recently, in the general case for linear field
polarization[20].

The exact solution of the system(17), can be found in the
trivial case of«=0 for theCst=0d=F2 1Py

initial condition,
i.e., at the perpendicular configuration. In this case all the
couplings vanish by symmetry and the 21Py state behaves as
a stationary one. It can also be regarded formally as a
quasienergy(QE) state

a2 1Py
std = expS− i

lt

"
Dexps− in0vtd, s18d

wherel=modsE2 1P,"vd and n0"v+l=E2 1P. At nonzero
ellipticity, the systems17d has to be solved numerically.
The four QE solutions of Eq.s17d,

aj
astd = expS− i

lat

"
Do

n

aj ,n
a expsinvtd,

s19d
a = 1, . . . ,4 j = 1 1S, 2 1S, 2 1Px,2

1Py,

were obtained numerically as functions of the field ellipticity.
The correlation diagram forlas«d, 0ø«ø1 was constructed
and the QE state which correlates withF2 1Py

at zero ellip-
ticity was identified. The corresponding excited state ampli-
tudes[see Eq.(19)] were substituted into the expression for
the induced time-dependent dipole moment[Eq. (11) with
j =2 1S, 2 1Px,2 1Py, k=1 1S, 2 1S, 2 1Px, 2 1Py] to obtain

the ellipticity dependent HHG spectrum of the excited he-
lium. The resulting ellipticity dependences of the selected
high-order harmonics are presented in Fig. 4. One can see
that, as expected on the basis of the recollision arguments, all
the harmonics attain their maximal intensities at nonzero
field ellipticity. The calculations show that the average value
for the «max is around 0.2 for the plateau harmonics, while
for the cutoff harmonics a steady shift towards«max=0.15 is
observed. The magnitude of the harmonic intensity enhance-
ment at the optimal field ellipticity relatively to«=0 is typi-
cally around one order of magnitude(see Fig. 4), while for
some harmonics it reaches more than two orders of magni-
tude.

The unexpected feature of the obtained results is the
double-maximum structure of the ellipticity dependences of
many of the high-order harmonics belonging to the rescatter-

FIG. 4. Ellipticity dependences of the 15th(full line), 19th
(dashed line), 21st(long-dashed line), and 27th(dashed-dotted line)
harmonics. The electric field strength isE0=0.03 a.u., the frequency
is v=0.028 47 a.u. The harmonic curves are shifted along the in-
tensity axis to afford a clear presentation.
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ing plateau. This double-maximum character of the ellipticity
dependence cannot be explained by the recollision model
alone. In fact, the two maxima converge to a single one when
the transitions from the 21Py state to other bound states are
artificially neglected. Consequently, the predicted unusual el-
lipticity dependence of the HHG is a result of the bound-
bound dynamics. It has been verified that the bound-bound
contribution to the intensities of the high-order harmonics
presented in Fig. 4 is negligible. Thus, it is remarkable that
the transitions between the bound states cause the double-
maximum character of the ellipticity dependences of the har-
monics belonging to the rescattering plateau.

V. CONCLUSIONS

In conclusion, it has been shown that the polarization of
the atom can have a major effect on the structure and the
intensity of the HHG spectrum. The atomic polarization ef-
fect has been described using the specific example of the
2 1P state of helium. The parallel orientation of the atomicp
orbital relative to the electric field was found to be much
more favorable for the HHG process than the perpendicular
one. Depending on the incident field parameters, the har-
monic intensity ratio between the two atomic polarizations
can span the huge range 102–106, being the largest in the
low-frequency, high-intensity regime. The nature of the very
strong atomic polarization effect on the HHG spectrum can
be understood qualitatively using recollision model and
simple symmetry arguments. On the other hand, the charac-
ter of the dependence of the effect on the incident field pa-
rameters cannot be explained by the recollision arguments
alone. The reason is that the polarized atom dynamics is
profoundly affected by the strong coupling between closely
lying excited states. The fast oscillations between the excited
states of helium cause an interesting oscillatory behavior of
the magnitude of the atomic polarization effect, as quantified
by the intensity ratio of the highest plateau harmonics in the
“parallel” and the “perpendicular” configurations. They are
also responsible for the strong nonresonant enhancement of
the lower-order harmonics in the parallel(but not in the per-
pendicular) configuration. The bound-bound transitions were
accounted for using the generalized version of the atomic
HHG theory of Lewenstein and co-workers[10,4], which
describes the ionization from and the recombination to a
number of coupled bound states. This multichannel theory
consistently takes into account both bound-bound and
bound-continuum contributions to the HHG process. More-
over, it allows one to represent the bound-continuum contri-
bution as a coherent superposition of the possible ionization-
recombination paths characterized by different initial and
final bound states. Retaining the intuitive structure of the
original (single-bound-state) expressions, the more general
theory helps to elucidate the unique role of the bound-bound
transitions in the HHG by a polarized atom.

Another quantity reflecting the deep influence of the
bound state dynamics on the HHG spectra of the excited
helium is the ellipticity dependence of the high-order har-
monics. The recollision picture combined with the symmetry
arguments predicts that the plateau harmonics in the “perpen-

dicular” configuration attain their maximal intensities at non-
zero field ellipticity. The presented calculations show that
this is indeed the case, however, the values of the optimal
field ellipticity and the character of the ellipticity dependence
are strongly affected by the bound-state oscillations. In par-
ticular, they bring about the double-maximum structure in
the ellipticity dependences of many of the plateau harmonics.
It should be noted that the unusual effect of the bound-state
dynamics shows up for the harmonics corresponding to pho-
ton energies much exceeding the ionization potential of the
initial bound state and being characterized by negligible
bound-bound contribution to their intensities.

The interesting effects of the bound-bound transitions on
the whole energy range of the HHG spectrum emitted by a
polarized excited-state atom constitute the major qualitative
difference between this system and the studied case of an
aligned ground-state molecule[21,22]. The two systems can
be indeed related by symmetry if both the valence atomic
orbital and the HOMO possess a nodal plane. The effects of
the molecular-orbital symmetry have been described without
taking into account the field-induced transitions between the
molecular bound states and the results were found to be con-
sistent with the experimental ones[21,22]. Here we have
shown that such a description would be fundamentally
wrong in the case of a polarized excited-state atom. Conse-
quently, the two symmetry-related systems appear to be quite
different dynamically. This difference can be easily visual-
ized if one considers, for example, the elliptically polarized
field (see Sec. IV of the present work and Ref.[18]): the
initial atomic polarization can be altered very fast by the
incident beam, e.g., via 21Py–2 1S–2 1Px transition,
whereas a change in the molecular orientation involves slow
nuclear motion and occurs on much longer time scale.

The effects predicted in the present work have their origin
in the interplay between the atomic orbital symmetry, bound-
bound and rescattering dynamics. As such, they are not re-
stricted to the HHG alone. Indeed, it is widely believed that
the high-energy part of the atomic above-threshold ionization
(ATI ) spectrum is also formed by the rescattering mechanism
(see Refs.[17,23,24] and references therein). Thus, it would
be natural to suppose that the intensity of the ATI plateau of
a polarized atom depends strongly on the spatial orientation
of the atomic orbital(see Ref.[22] for the symmetry-related
molecular problem). Moreover, the bound-bound transitions
are expected to have a major influence on the atomic polar-
ization dependence of the ATI. The exact character of this
effect should be the subject of future investigations.

The presented calculations of the HHG by a polarized
helium atom suggest that the atomic polarization effects are
prominent enough to be observed experimentally. The recent
experiments with ground- and excited-state alkalis[9] indi-
cate feasibility of the experimental HHG studies in the re-
gime similar to the one studied in the present work. As far as
the target system is concerned, the 21P state of helium can
be readily prepared by resonant excitation from the meta-
stable 21S state [25]. A direct excitation from the ground
state using a HHG source is also possible[26]. The polariza-
tion of the resulting state is related to that of the excitation
beam and can be controlled as in the photoionization experi-
ment of Johanssonet al. [27]. The lifetime of the 21P he-
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lium is about 0.57 ns[25–27] which is several orders of
magnitude longer than the time needed for the interaction
with the intense IR pulse. Consequently, the experimental
observation of the effects proposed in the present work is
feasible.
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