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Non-Hermitian quantum mechanics versus the conventional quantum mechanics:
Effect of the relative phasing of bichromatic fields
on high-order harmonic generation
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We perform a dynamical symmetry analy@3SA) of the high-order harmonic generati@dHG) spectrum
of an atom interacting with a bichromatic laser field. Within the framework of the conventional Hermitian
guantum mechanio®QM), the HHG spectrum calculated using a single Floquet statanyffinite number of
Floquet statesis invariant under the inversion of the relative phase of the two-frequency compouents,
—-¢. The asymmetry with respect to the phase inversion seen in the simulated HHG spectra is obtained in the
conventional QMonly when the Floquet spectrum is continuous and ionization is taken into consideration.
However, when the Hamiltonian is complex scaled the description is different. Even a single eigenstate of the
complex scaled Floquet operator is enough to describe the breaking @f-the¢) symmetry in the HHG
spectra. We find that there is a direct correlation between the strength of the asymmetry with respect to the
relative phase inversion and the magnitude of the ionization rate. For illustration purposes, the DSA is accom-
panied by the results obtained for a one-dimensional effective single-electron model Hamiltonian mimicking
xenon atom interacting with strong laser field.
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I. INTRODUCTION: THE “PUZZLE” Bucksbaum summarized in R¢8]. The observed asymme-

; P ; in the ATI rates regime has been attributed to the recol-
Since the beginning of the 1990s, many experimental andy, " rat ,
theoretical investigations have been carried out, in which th Silnocr:a (I)I’]: ttr?g Ilcilc-lfzrz((j:]u?alﬁgg?ggmtg Iflr:-?GCingi?)nzig[Jg?’ice of
theotzllg?i?/gep?hggag?ltcv?/(:vlissgfggg&esd %:‘;22? 8@;?{3"2 he recollision of the ionized electron with its parent ion

. . ) , unneling mechanisim[4,5], one might expect to get the
ployed in these studies were typically first and second Ok, pr?ase-asymmbgtry effect for t?]e HH?B spectr% too. In-
third harmonics having comparable intensities. The two par

. : deed, Zuo and Bandrauk together with lvanov and Corkum
ticular phenomena that attracted the attention of the researcBpowed in 1995 that the phase asymmetry is characteristic
ers have been the high-order harmonic generat8HG) 5150 of the HHG spectrfi6]. Analytical calculations for a
and above threshold ionizatiaikTl). Let us mention here qqe| potential which consists of twdfunctions performed
only those publications which are most relevant to the subby Long, Becker, and Mclver have also shown that there is
ject of the present work, that is, to the phase-asymmetry,, symmetry in HHG spectra with respect to inversion of the
effect in the HHG spectra in bichromatic f|ellds. _ sign of the relative phase, i.a4— -, although thed— ¢
In 1992 Schafer and Kulander showed in their Ca|CU|a'+7rsymmetry is obeyefi7]. However, in 1999 Bivona, Bur-
tions that the change in sign of the relative phasedrZlb  |on and Leone argued that since the time-periodic Hamil-
fields can lead to completely different directional ionizationynian does not change undgr- -, t——t, andz— -z, the
rates, angular distributions, and ATI specfld. The asym-  ower spectrum of the radiation is unaffected by the phase
metry in the dlrgctlonal ionization rates in the_tunnellng ré-inversion,¢— —¢ [8]. This general statement was illustrated
gime was explained by the authors by comparing the electrigy he results of the numerical calculations for two-level
fields resulting from the opposite values of the relativeogel.
phase. In 1995, Alon and Moiseyev used the dynamical SYym- The experimental results obtained by Andiel, Tsakiris,
metry properties of the Floquet Hamiltonian to show that thecqrmiris. and Witte in 19999] do not show a dramatic
phase asymmetry in the directional ionization rates is a genssymmetry with respect to the phase inversion, although the
eral effect holding for an arbitrary ionization regif. The  gcatter of the measured harmonic intensities could mask
predictions of Schafer and Kulander were confirmed in 1994, 1,0 degree of phase asymmetry. Consequently, the experi-
by the experiment of Schumacher, Weihe, Muller, andmnent eaves the question “is the HHG spectrum invariant
under the transformatiogp— —¢ or not?” unanswered.
More recently, in 2000, Faria, MiloS&yiand Paulus car-
*Email address: avnerf@tx.technion.ac.il ried out numerical studies of the phase-dependence effects in
TPresent address: Theoretische Chemie, Physikalisch-Chemischeichromatic HHG[10]. In the experimental conditions their
Institut, Universitat Heidelberg, In Neuenheimer Feld 229, D-69120solution of the one-dimensiona(1D) time-dependent-
Heidelberg, Germany. Email address: Vitali.Averbukh@tc.pci.uni-Schrédinger equatioqTDSE) clearly shows that the HHG
heidelberg.de spectrum is not invariant under thk— —¢ transformation
*Email address: nimrod@tx.technion.ac.il (see Fig. 7 in Ref[10Q)).
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dipole is given byd(t, ¢)=(®(x,t, )|x|P(X,t, $)). N is the
10 : number of optical cycles which are taken into consideration
in our calculations of the HHG spectra. In propagation cal-
culations, ®(x,t, ¢) is the solution of the time-dependent
Schrodinger equation which can be described as a linear
combination of Floquet states. In such a case one should take
the limit of N— o. However, for systems being described by
a single Floquet stat&y=1 and the time-periodic part of the
Floguet wave function(x,t, ¢), is the eigenfunction of the
Floquet Hamiltonian:H;®(x,t, ¢)=EE(p)D(x,t, ¢), H;=
—-idlt+H(x,t,¢). The time-dependent Hamiltonian of our

o 05 1 model is H(x,t,¢)=-0.50%/dx?+V(x,t,¢). The time-
o/m] dependent potential is defined W&, t, ¢)=V(x) —exHt, ¢),
wheree is the charge of the electron.

13((1)) [arb. units]

-1 205

FIG. 1. The third harmonic as a function of the relative phése As one can see, the third-harmonic generation intensity
15(¢), as obtained from the propagation of a single Floquet stat? '

within the framework of the conventionéle., Hermitian QM. The 3(¢) is invariant under the transformatiaf—-¢ and also

spectrum isnvariant with respect to the translationél— ¢+ 7 and uqder the transformatiogp— ¢+ . Note that in our cqlcu-
inversionalé— - ¢ transformations. lations we followed the same Floquet statedawas varied.

This behavior is obtained faany high-order harmonic and

The “puzzle” is, thus, in the apparent contradiction be-OF @ny Floguet stateb,(x,t,¢), wherea=1,2, ... denotes
tween the results obtained from propagation calculationé1® ath quasienergy(QE) Floquet state. It is possible to
solving the TDSHe.g., Ref[10]) and the results obtained by Prove that the same two types of symmetry behavior, i.e.,
using Floquet theory8]. Does it imply that Floquet states do !n(#)=I4(=¢) andl,(¢)=I(¢+m), are obtained foany lin-
not form a complete basis set? This might be a very seriousar combination of discrete Floquet states. The Floguet spec-
problem due to the fact that Floquet theory enables us ttrum is discrete only due to the use of finite number of basis
carry out analytical investigation of the problefsee, for functions and a finite box sizéor finite number of grid
example, the analysis of the HHG based on dynamical sympoint. However, this proof holds for any finite number of
metry properties of the Hamiltonigil]), and also enables basis functions and for any value bfwhich can be taken as
one to use time-independent scattering theory for timetarge as one wishes. The proof, based on dynamical symme-

dependent Hamiltoniafl2,13. _ try analysis(see Ref.[15] for the treatment of dynamical
Let us illustrate the puzzle by representing the result$ymmetries of time-periodic Hamiltonianis as following.
obtained for a 1D Gaussian potential wellV(x) Let P, be the dynamical symmetry operator of order 2

=-0.63 exp-(x/2.69]%. This potential supports three which is defined aP,=(t—-t;p——¢;i——i). Since the
bound statesE,=-0.4451 a.u.,E;=-0.1400 a.u., anE,  commutator[;,P,]=0, the Floquet states, eigenfunctions
=-0.00014 a.u. The first two eigenstates mimic theof ;, are also eigenfunctions &,. Therefore,® (x,t, ¢)
lowest electronic statgs of xenon atom. The .elect.ric field= +[®(x,-t,-#)]". The Floquet eigenstates B§ which are
generated by the bichromatic laser beam is given bygsociated with the +1 eigenvalue are denoted by the ijjdex
E(t, ¢) = &f ()[codwt) +cog2wt + ¢)], Wheref(t) represents  \yhereas the Floquet states associated with the eigenvalue -1
the shape of the pulse envelope. In the case of cw lasetse denoted by the inddx Since the diagonal dipole matrix
f(t)=1. In Fig. 1 we represent the third-harmonic intensity asSelementsd,(t, ¢)=[d (-t,~¢)]", regardless ifx=j or a=k,

a function of the relative phas¢ as obtained for a single jt is clear tha“La)(@:'E]a)(“ﬁ)- Note that the same HHG
Floquet state. The laser frequency ds=0.0924 a.u.(hw  gpectra are obtained when propagation is carried out forward
~2.5eV,1=493 nm, and the field amplitude, strength pa- o packward in time; namely, the calculation of the time-
rameter ise,=0.035 a.u. In two-color laser experiment the dependent dipole for & rather than + requires us to carry
field intensity depends on the relative phasé, oyt packward time propagation rather than forward time
=c/(@mmaxE(t, ¢)|*. For ¢=0, | ~1.3x 10 W/cn and  propagation as in the case whelgt, ) is calculated. In the

for $= m/2, the laser intensity is equal 10~1.76  case of the conventional quantum mechan@sl) this is not
X 10" W/cn?. The Floquet stateb(x,t, §)=P(x,t+T, ), 4 problem at all since time is symmetric. This is an important

whereT=2m7/w was calculated numerically by the diagonal- yoint in our proof given above for the relative-phase symme-
ization of the time evolution operator according to tihd') try properties of thenth HHG spectra calculated from a
algorithm [14] using 500 particle-in-a-box basis functions sjngle Hermitian Floquet statdNote by passing that in non-
with the box sizeL =150 a.u. Hermitian QM(NH-QM) time is asymmetric. We will return

For time-periodic systemgi.e., when the shape of the tg this point later in the following section. In the case that the
laser pulse is not taken into consideration and the laser igjtial state is a square integrable functih(x,t=0) (for
described as a cw lagethe intensity' of thenth harmonic, example can be taken as the field-free ground jtaeecan
I.(¢), is given by In(gb)oc|(N'D‘1fg'Td(t,¢)exp(iiwnt)dt|2, use the Floquet states as a basis set and the solution of the
whereT=27/w is the time period, and the time-dependentTDSE W(x,t) is given by
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FIG. 3. I5(¢), as obtained from the propagation of a single-
FIG. 2. 13(¢), as obtained from the propagation of the ground resonanceélongest-living Floquet state within the framework of the
field-free state within the framework of the conventional QM. The non-Hermitian(NH) QM. The spectrum is invariant with respect to
full solid line stands for the HHG spectrum obtained when the |ase[he translationalp— ¢+ . However, it isnot invariantunder the
is adiabatically turned oifthe envelope of the pulse is given by inversion of— —d.
f(t)=1-exd—0.000 02?)]. The dashed line stands for the HHG
spectra obtained for the case where the laser pulse envelope is Before closing the introductory part of this paper, let us
f(t)=sir{w/(2N)], whereN=20. These results show that the func- present in Fig. 3 the results we have obtained for the third
tional behavior of the HHG spectra with respect to the variation ofharmonic when the time-dependent dipole was calculated us-
the relative phasep is sensitive to the shape of the laser pulseing a single complex scaled resonance Floquet state
although the phase-asymmetry property is alike. selected the longest-living resonance Floquet state assuming
that this state controls the photoinduced dynamics. The
- _ieQE resonance Floquet state is an eigenfunction of the complex
\P(X’t)_za CoeXfl~IBAHUP XL &), scaled (non-Hermitian Floquet operator, H;=—id/dt

where C,=(®(t=0,¢)| W(t=0)). It is easy to see that the +H(x exp(if),t). For the calculations of resonances by the

contributions to the exact harmonics in the Fourier transfornfOMPlex scaling procedureomplex coordinate methpdee

; ; Ref.[16]. As one can see from the results presented in Fig. 3,
of the dipole momentW (t)|x|¥(t)), and/or its second-order - =
time derivative, areonly from the diagonal termsl,(t, ¢). I3(¢)=13(¢p+ ) but definitelyl3(¢) # I5(=¢). The results ob-

Therefore, the HHG intensity is invariant under the transfor—faar'(;]ev(:;rorcri]iﬁa:a ?érr]ﬁ]I?rg?%?win?:sﬁ:?sq%%tt;tr?éed L;Gro"mig g'vsl?n le
mation ¢——¢ and |,(¢p)=1,(-¢). This proof supports the y 9

statement of Bivona, Burlon, and Leone under the restrictio Floquet state calculated within the framework of the conven-

that the initial state has to be defined as a linear combinatiorr1lional QM. Moreover, the results obtained from a single reso-
- . . nance Floquet state are in good agreement with the results
of finite number of discrete Floquet states .[8]s we will

show later the key solution to the puzzle is in that restriction obtained from simulation calculations when the TDSE has
y €p . ‘been solved within the framework of the conventional QM.
To complete the representation of the puzzle we carrie

" : _ . ue to the sensitivity of the HHG spectra to the shape of the
out numerical calculations wherd#(x,t=0) was the field- I
free d state. The TDSE has b ived when the b laser pulse as stated above and shown in Fig. 2, we do not
€€ ground state. 1he as been solved when the Oé&pect to have a quantitative agreement between the HHG
S'?Ie L.'S tafken tﬁ bed Iarg? ﬁnott:ghdto_avor]j the artlflqlal spectra obtained from the time-dependent simulations. See
;'(\e/vgcc;[:sness LoaTet beegngs(iu%ié de Inoi(heuf?rrs]? ct)nz %Zpﬁgﬁt'\?\lnthe results for the HHG spectra presented in Fig. 4 obtained
: icallv t q h L th d th r the three different cases mentioned above. That is, in two
adiabatically turned on whereas in the second case e eNVEy of the three cases the initial wave packet was propagated
lope of the laser pulse supportéti=20 optical cycles:. The within the framework of the conventional QNin one case
propagation was carried out as long as the acceleralfon  the field was adiabatically turned on and in the second case
=(¥(1)|-dV(x,t, ¢)/x|¥ (1)) had not been converged to that the laser envelope supported 20 optical oscillatipwhereas
of the free particle in the field. The results for the third har-in the third case the HHG spectra were obtained from a
monic are presented in Fig. 2. As one can see the HHGingle resonance Floquet state calculated within the frame-
spectra are invariant againgt— ¢+ but 1,(¢) #1,(-¢).  work of the NH-QM. As one can see on a logarithm scale alll
This result is in a complete agreement with the results obpectra look alike. However as we have shown in Figs. 2 and
Long-Becker-Mclver and of Faria-MiloSe¥Paulus which 3 the functional behavior df,(¢) phase dependency is quite
were mentioned abovéNote by passing that the functional different although in the three different cases the phase
behavior of the HHG spectra with respect to the variation ofasymmetry is similar.
the relative phasep is sensitive to the shape of the laser The strategy of solving the puzzle is as following. First
pulse although the symmetry propertigse., I,(¢) vs we will show that the dynamical symmetry proof given
[h(=¢) andl,(¢) vs1,(p+)] are alike. above for the Hermitian time-dependent periodic Hamil-
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_4

10 sake of simplicity and without loss of generality we denote
the internal coordinate by. The derivations we represent
here(and also in the preceding sectjdmld also for many-

~ electron systems where the electron correlations are taken
s 107 into consideration. The resonance Floquet states are the
= eigenfunctions of the complex scaled Floquet Hamiltonian,
=
= (Xt b DXL ,0) = ES( DXL .0, (1)
=10
where
.d A . .
107" Hi(x,t, b, 0) == IE +H(x exp(i6),t) + egex expli 6)

2 4 6 8 10
n

X[coq wt) + coq2wt + ¢)]. (2
FIG. 4. The high-order harmonic generation spectra as obtained ) .

when ¢=0. The solid line stands for the results obtained by solving Th€ resonance complex quasienergies,
the time-dependent Schrédinger equation when the ac field is adia- i
batically turned on. The dashed line stands for the results obtained QE _ _
when the sine-square envelope of the laser pulse supports 20 optical B ($)=Eul9) 2Fa(¢)’ ®
oscillations. Both results are obtained within the framework of the
conventional QM. The solid-dotted line denotes the results obtainedre 6 independent provided= 6. where the critical angle to
by calculating the long-living resonance Floquet state using theexplore the resonances is given b§]
complex scaling approaaimon-Hermitian QM calculations

0. = %arctan[Fa/(ZEQ)]. (4)
tonian does not hold for the non-Hermitian complex scaled , L
Hamiltonian. We base our arguments on physical ground$«(¢) iS the total ionization rate of decay of theh reso-
associating the discrepancy between the NH-QM formalisnfance Floguet state. The time-periodic Floquet states can
to the conventional one with the resonance lifetime. As thd?® €xpanded in a Fourier basis set,
resonance lifetime is longer the discrepancy between the re-
sults should be smaller. Indeed our numerical calculations
presented in Sec. Il support this assumption. In Sec. Ill we
show that when aliscreteFloquet spectrum is used for the
representation of the time evolution operator, the interferenc&he Fourier components are the eigenvectors of the Floquet
among Floquet states which are nondegenerate states of theatrix F whose(n’,n)th matrix element is defined as
dynamical symmetry operator are canceled. This interference
effect results in the breaking of the symmetry of the HHG 1(7 ion't iont
spectra to the inversion of the relative phase. This interfer- Forn(X ¢,0) = 1_'J e (X, t, ¢, 0)e" M dt.  (6)
ence effect is taken into consideration when the TDSE is 0
solved by carrying out propagation calculations as describeff is jmportant to realize that the Fourier components are

above in this section. Moreover, we show that in the propagmplex functions and are not analytical continuations to the
gation calculations using the conventiortblermitian QM,  compjex plane of the solutions obtained in the conventional
the phase breaking symmetry effect results, as in NH'QM(Hermitiar) oM.

from the photoinduced ionization phenomena.

+oo

D (X1, ¢, 0) = 2 €M, (X, b,6). (5)

n=-o

For the calculations of the time-dependent dipole mo-
ments we should define the “bra” states in NH-QM. The bra
IIl. EFFECT OF THE RELATIVE PHASE ON THE HHG states are associated with the left eigenvectors of the matrix
SPECTRAIN NON-HERMITIAN QM CALCULATIONS F. Therefore, the bra states are the right eigenvectors of the
In Fig. 3 we demonstrate that the intensity of the thirdtr?nspose of. Let us denote thg bra Fourier components as
harmonic calculated from a single-resonance, comple#n.(X; ¢ 6). Note that aiy=0, F is a complex and symmet-
scaled, Floquet state changesdas: —¢. This result is very TiC matrix and consequently,gy ,(x, $=0,6)=¢p o(X, &
different from the result obtained from the calculations of=0.6). If ¢#0, then ¢ (X, ¢,0) # ¢y (X, b, 6). The bra
13(¢) with a single Hermitian Floquet state as shown in Fig.resonance Floquet statégenoted by the superscript™
1. Moreover, in Sec. | we proved that within the framework Which stands for “transposeyare given by
of the Hermitian QMI(#)=1,(-¢) when the initial state is -
constructed from a linear combination of discrete Hermitian i
Floquet states. Why the results for the HHG spectra are dif- O (xt,,0) = ;m e o (%, b, ). ()
ferent when NH-QM is used? "
In order to answer this question we will briefly describe  In NH-QM the time-dependent dipole moment amplitude
how the HHG spectrum is calculated in NH-QM. For the calculated from a single-resonance Floquet state is given by
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+0 -8.45
dNH-OM(t + ¢, 6) =f D (x,t, = ¢, O)XxDP (X1, £ b, H)dX. g »
o @ -8.46
(8) N: -8.47
The time-dependent dipole moment amplitudes i 5 5 G 848
d\H-QM(t + 4, 6) as the resonance complex quasienergies ' '
EQ5(#) and as any other physical quantity aédependent “ ; ; " -5.5
provided = 6. where the critical rotational angle is defined U3
in Eq. (4). From Eg.(4) one can see that for sufficiently RS -6
narrow resonancesj.«I"(¢). Therefore, we will change =
the notation of the NH-QM value for the time-dependent =
dipole moment amplitude fromd"NHQM(t, +¢,6,) to 1 Z05 0 05 1762
d(t, +¢,T' (). The linear dependence éf on I, implies o[m]

that 6. gets smaller values as the resonance width becomes

smaller. Since the resonance width is defined as the inverse FIG. 5. The complex quasienergies of the longest-living reso-
) e - . nance Floquet state, as obtained from complex scaled NH-QM cal-
of the resonance lifetime it implies that gets smaller val-

o . ulations, as a function of the relative phageThe resonance po-
ues as the resc,mance lifetimes are larger. In Hermitian QI\gition ReEgE, and width(inverse lifetimg Im ESE, are invariant
the quasienergies are real and therefore we may say that gsh respect to the translatio— ¢+ and to the inversion of

the resonance widtl',(¢) gets smaller values, the differ- _,_ yransformations.

ences betweed(t, ¢,I" ,(¢)) and the values obtained for the

time-dependent dipole moment amplitudes in the conven- EQF() = E9F(= ) (14)
tional QM become smaller as well. This is another property o (D) =E; (= ).

that will be clarified later and will help to explain the differ-

ent results for the HHG spectra and its dependence,of The |ast equality is obtained due to the fact that when the
which were obtained from a single Floquet state in theyogrdinates are rotated backwafide., 6— —6) while the
NH-QM and in the conventional one. Moreover, it will help yropagation is backward in timé.e., t——t) the complex

us to understand why the strength of the phase-asymmet@ye is” embedded in the upper-half complex energy plane

effect on the HHG, quantified by [EQ5(-¢)]" rather than in the lower one where the physical
_ resonances are located. However, when the complex conju-
An(#) =[1n(B) = 1n(= )] ) gate is taken following the requirement of the dynamical

symmetry operator, the resonance eneEﬁF(—dﬂ is ob-

gets large values for specific values@find small for others tained. Indeed the oh : . v of th |
and why it varies with the field intensity. Let us return to the aned. indeed e phase Inversion symmetry of the complex
QE as given in Eq(14) has been obtained in all our numeri-

calculation of the HHG spectra from a single resonance Flo . / ) S
guet state. The HHG spectrum is given by the Fourier trans(—:aI caIcuIayons. For illustration purposes we present n F'.g'
form of the second-order time derivative of the dipole mo-5 the ¢ trajectory of the resonance Floguet state which is

ment amplitude calculated from theth resonance Floquet associated with the narrowe(se., Ipnge_st-liv_ing resonance
state. Now we return to the equality given in Efj2). If we

state, A
were able to carry out backward propagation in time, then
T 2 the right-hand side of the equality for the ket Floquet state
(T () —f gond(t, ¢, I o (¢))dt| . (10) would be associated with the bra Floquet state which is de-
TJo fined below:

The variation ofl,(4,I",(¢)) under the transformation
¢——¢ can be understood by carrying out the dynamical b =Dt g
symmetry(DS) analysis of the problem. The dynamical sym- Palx =1~ 4= 0) = DXt~ b= 6). (15)
metry operatoiP,(t——t,p——¢, 60— —6,i——1) commutes

with the complex scaled Floquet operator. Therefore, However, unlike ® (x,-t,—¢,-6) and ®(x, +t,—¢, +6)
. which are normalizable functionsp ,(x, +t,—¢,-6) and
Hi(X,t,¢,0) = [Hi(X,—t,— ¢,— 0)] (1D @ (x,~t,~¢,+6) are not. The last two functions diverge

q v the “ket” and the “bra” El exponentially in time. One should keep in mind that the mo-
and consequently the “ket” and the “bra” Floquet states salgy ation to the rotation of the internal coordinates in the

isfy the following equalities: Hamiltonian to the complex plane was to bring back the
resonance wave functiorfassociated with outgoing Siegert/

D%t ¢,0) = £[Po(X~t.= 4= O], 12 Gamow boundary conditionswhich diverge exponentially
in the coordinate space to the Hilbert sp&té]. This is the
D (x,t,0,0) = £[D(x,—t,— ,— O], (13)  source of the time-asymmetry problem in NH-QMI7]. If
we would not have the time-asymmetry problem in NH-QM
and we would get the following equality:
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d(t, ¢, Ta(¢) =[d(t,~ &, = Ta(P)T, (16)

which reminds us of the equality(t, ¢)=[d(-t,~-¢)]" as ob-
tained in the introduction part of the paper for the Hermitian
Floquet state. Similarly to our derivation in the Introduction
one might expect that if Eq(16) holds thenl,(¢,I'(¢))
=1,(=¢,I'(¢)). However, as we will explain below the as-
sumptions that lead to E@16) are not valid. In our deriva- 13
tion we assumed that the dipole moment on the right-hand
side of Eqg.(16) has been calculated with the nonphysical
poles of the scattering matrix which are embedded in the
upper-half complex energy plane rather than the lower one
(for the association of the resonances with the poles embed- 11 ; . .

ded in the lower-half complex energy plane see, for example, 02 0.4 o) 0.6 08 1
Ref.[18]). These nonphysical poles diverge exponentially in

time ast—c. Due to the time-asymmetry problem in  FG. 6. The correspondence between the HHG asymmetry
NH-QM (i.e., >0 in our casgwe can carry out only for-  strength parameted,(¢)=|I,(#)~1,(-¢)| and the longest-living
ward time propagation calculatiorigote that exp-iEQ®)  resonance Floguet width(¢) as obtained from complex scaled
diverges whernt— -« since ImEQ®<0]. Similarly when  NH-QM calculations.
#<0 we have to carry out backward time propagation

calculations. However, in the right-hand side of E#6)

we assume that it is possible to carry out forward time pix .y =

phropagatlionl Whileﬁzoiziné:e itis imrp‘olsasit\)/IVe to r?arryhout The fact that(t,t’) formalism provides an analytical expres-
:hetsfhcatpu ations qt ). OEISH nolt/l 0 tH €s OWf e:ﬁ sion for the time evolution operator when the Hamiltonian is
at e time asymmetry in -QM is the reason for Ctime dependent enabled us to develop the time-independent

breaking ?ftr;‘he slyrtnmetrryl/ of the HHGhspeﬁtra to lth? itn- cattering theory for time-dependent Hamiltonidad,16].
version of the relative phase, even when it is calculatedry,o o\ rier components af(x.t',t) are given by

from a single resonance Floquet state.
The conclusion is that the breaking of the symmetry of the "N /

HHG under the transformatioqa—qu?esults fr)(;m the )t/ime Pe(x,t) =iGe(x,t)W(x,0), (19

asymmetry in NH-QM which avoids the equality we ob- where the Green operator in the extendet’) space is

tained in Hermitian QM for a single Floquet stati{f,#)  defined as

=[d(t,-¢)]". From Eg. (16) it is clear that the phase-

symmetry HHG would be obtained d3,(¢)— 0. Conse- Ge(x,t") = lim {E - [Hs(x,t") —ie]} 2. (20

quently we argue that a quantitative measure for the strength 0"

of the breaking symmetry parameter is the valud gf¢).

As the resonance width becomes small&g(¢) (see the

10°A (9) [arb. units]

1.2f

10°0(0) [au.]

o

|Hf x,t’ t\I’(X 0) (18)

In the spectral representation of the Green operator,

definition given aboveis reduced. Our numerical calcula- M|
tions support this conclusion. See, for example, Fig. 6 where Ge(x,t') = lim der ELCEL (21)
we show the correspondence betweeji¢) andI',(¢) as 0 E-E'+ie

calculated from the same Floquet stédenoted here by). _ _
where®g (x,t") are the eigenfunctions of the Floquet opera-
lIl. EFFECT OF THE RELATIVE PHASE ON THE HHG tor. The time-dependent solution of the TDSE, expanded in

SPECTRA IN CONVENTIONAL QM CALCULATIONS the Floquet basis set, is given by

In this section we address the following question. How [

come that when we solve the TDSE the HHG spectrum is W(xt) = 'f

phase asymmetric, while it is phase symmetric when the -

propagated wave packet is described as a linear combination (Pe/|P(t=0))

of finite number of Floquet states? xmd@(x,t). (22

To this end, we shall first recall a few notions of the

time-independent  scattering theory for time-dependenpye to the use of finite number of basis functions or finite

Hamiltonians. This can be conveniently done using(th€)  number of grid points in the numerical calculations the QE

formalism [14]. Within this method, the solution of the gpectrum ofH; is discrete. This approach which yields a

TDSE is given by discrete spectrum is known as the “box-quantization” ap-
_ ’ proach. Therefore, when the box quantization is applied, the

PO = gxt' =), (47 integrals ovelE andE’ in Eq. (22) are replaced by summa-
where the functiony(x,t’ =t,t) is obtained by the action of tions overE, and E,.. The corresponding discrete time-
the time evolution operator on the initial condition: periodic Floquet states are given by,

+o0
d EeEtlim f dE’

"
e—0"Y —
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D, (x0) =D €M, (X). (23) —Eq(q’)). It' is.clear.that up tg a phase factor, the solution
n ’ oscillates in time with the period &E/(27). In our case the
initial field-free state populates finite number of Floquet
states only due to the use of box-quantization condition.
hese oscillationgand the related wave-packet revivadse
rtificial and cancel the interference among Floquet states
which have different dynamical symmetry properties in Eq.
(24) when €=0. There are several ways to avoid these arti-
2 ficial revivals. One way is to carry out the Fourier transform

The expression for the HHG spectra, whélds the fre-
quency of the emitted radiation, is obtained by taking th
Fourier transform of the time-dependent expectation value o
the acceleratiofi.e., time second-order derivative of the di-
pole momentd(t) =(W(t)|x|¥(t))],

(@) Im;E/ C“’C“E, A (0N @ o X o) from t=0 to t=t;<27AE rather than tat=cc. Another ap-
T ae nn proach is not to take the limit of— 0 in Eq. (24) but sub-
(24)  stitute in that equatior=AE where AE is the smallest en-
where ergy gap between two states that are populated by the initial
field-free state. HerdE serves as the width of the discrete
+o0 quasienergies. In this way we apply the NH-QM approach in
Co= 2 (@unl¥(t=0)) (25  the most simple way in order to avoid the artificial revivals
n=—o0 which are introduced by the numerical calculations where
and box-quantization condition is imposed. In REE9] a simple
two-level model to illustrate the transition from beat to re-
[(E,-E,)+wh-n)] laxation has been introduced. It has been shown that when
Av it an(Q,0) = the width(i.e., e in our casgis equal to or greater than the

Q-[(E—Ep) +oln-n)]+ie energy gap between the two states, rather than having a

amped oscillatory behavior of the survival probability it
(26) d d ill behavi f th ival bability i
_ . decays exponentially in time with a rate constant which is
From Eq.(26) it is clear that the peaks in the I/-|HG spectra"nearly proportional to(AE)2/ e when e=AE. Here, e has
fShOUld be ol_atamgql vgheml—(hEa—EIQ,Hw(n—hn )- The_lroe- the effect of preventing the artificial revivals and in the two-
ﬁre,Hali(;ne_ntlo?)e_ n eﬁ' , the only terms t atlcontn l:te Qevel model prevents the relaxation of the initial state. This
the (e, =mw wherem gets integer values only approach of substituting=AE into the cross-section expres-

. s .
spectra a:e obtallnei/l whe =a and tlh(_a rzt'.OQé“’ .getsd sions has been taken, for example, in the calculations of the
Integer values only. Moreover, as explained in the Introduc,qqqaction for interatomic Coulombic decay in van der

tion part of this paper, due to the fact"that only the diagonaly, 5 cluster$20]. Another approach which is very close in
terms survived the Fourier transform aft), the HHG spec- its spirit to the last one is the approach where a complex
trum is invariant under the¢p— —¢ transformation. However, absorbing potential is added to the Hamiltonian. Again by
this is not the case when the spectrum is continuous. Whaioing it the Hamiltonian becomes non-Hermitian. This ap-
wrong have we done by using the box-quantization conditiorproach has been taken extensively in different fields of phys-
in the conventional QM? The answer is that by carrying outics and chemistry for many decades. However, we want in
the integration over time from 0 te when the expression for this section to calculate HHG spectra, while avoiding the
the HHG has been derived, we explored the artificial revivalsartificial revivals, within the framework of the conventional
which result from the use of the box-quantization condition.QM. Therefore, in our time propagation calculations the
To avoid the effect of the artificial revivals in Eq. (26) number of grid points are increas@ahd thereby the energy
should be larger than a given nonzero valwe will discuss  splitting due to the use of box-quantization condition is re-
this point in detail latgrand therefore the nondiagonal terms duced as time passes to avoid the situation whéxe, t, ¢)

in Eq. (24) contribute to the calculations of the HHG spectra. gets nonzero value at the edge of the grid. Obviously, in our
These nondiagonal terms are associated with quasienergyimerical calculations the propagation of the initial state has
Floquet states that are nondegenerate eigenfunctions of tigen carried out not untt=s but until t=t;. The final time
dynamical symmetry operator. This explains the breaking obf the propagation was taken as the time where the dipole

the symmetry properties of the HHG spectra obtained whegonverges to one of the free particle in the figkd].
only the diagonal terms were involved in the calculations.

The phase asymmetry of the HHG spectra results from the
interference between nondegenerate eigenfunctions of the

dynamical symmetry operator. Recent experiment and theoretical studies have shown
Let us explain why when the wave packet is expandedhat the HHG spectra of atoms in bichromatic field are af-
in terms of finite number of Floquet states we cannot takgected by the relative phase between the two-color laser
the limit of € to zero. First we wish to consider a peams. The question we addressed here was whether the ef-
simple case where the initial state is a linear combination ofect of the sign of the relative phase can be obtained when
two  Floguet  states, W(x,t=0,4)=[P,(x,0,¢)  the lasers are adiabatically switched on and the photoinduced
+®,/(x,0,¢)]/V2. The solution of the TDSE at=nT is  dynamics is solely controlled by a single Floquet state. Dy-
given by W(x,t=nT,$)=exd —iE (H)NT|(D,(x,0,¢)  namical symmetry analysis of the problem shows that the
+(exg—IAE(¢)T]]"®(x,0,¢))/v2 where AE(¢)=E, () HHG spectrum is invariant under the transformation of

IV. CONCLUSIONS
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phase¢— ¢+, but however ithanges under the transfor- ample, by varying the relative phags. The photoinduced

mation ¢— —¢. We prove that within the framework of the ionization rates are directly obtained from the non-Hermitian
conventional Hermitian QM, the effect of the transformationQM calculations of the complex quasienergies of the com-
¢——¢ on the HHG spectra is not obtained when the initialplex scaled Floquet operator, and indirectly from motion of
wave packet populates a finite number of Floquet statis®  ave-packet calculations within the framework of the con-

when a single Floquet state is populgtedhe puzzle we yentional(Hermitian) QM calculations.
solved is associated with the two quasicontradictive results:

(a) the HHG spectrum calculated by a single Floguet state
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