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We perform a dynamical symmetry analysis(DSA) of the high-order harmonic generation(HHG) spectrum
of an atom interacting with a bichromatic laser field. Within the framework of the conventional Hermitian
quantum mechanics(QM), the HHG spectrum calculated using a single Floquet state, orany finite number of
Floquet states, is invariant under the inversion of the relative phase of the two-frequency components,f→
−f. The asymmetry with respect to the phase inversion seen in the simulated HHG spectra is obtained in the
conventional QMonly when the Floquet spectrum is continuous and ionization is taken into consideration.
However, when the Hamiltonian is complex scaled the description is different. Even a single eigenstate of the
complex scaled Floquet operator is enough to describe the breaking of thef→−f symmetry in the HHG
spectra. We find that there is a direct correlation between the strength of the asymmetry with respect to the
relative phase inversion and the magnitude of the ionization rate. For illustration purposes, the DSA is accom-
panied by the results obtained for a one-dimensional effective single-electron model Hamiltonian mimicking
xenon atom interacting with strong laser field.
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I. INTRODUCTION: THE “PUZZLE”

Since the beginning of the 1990s, many experimental and
theoretical investigations have been carried out, in which the
photoinduced dynamics was controlled by means of varying
the relative phase of two laser beams. The laser beams em-
ployed in these studies were typically first and second or
third harmonics having comparable intensities. The two par-
ticular phenomena that attracted the attention of the research-
ers have been the high-order harmonic generation(HHG)
and above threshold ionization(ATI ). Let us mention here
only those publications which are most relevant to the sub-
ject of the present work, that is, to the phase-asymmetry
effect in the HHG spectra in bichromatic fields.

In 1992 Schafer and Kulander showed in their calcula-
tions that the change in sign of the relative phase in 1v-2v
fields can lead to completely different directional ionization
rates, angular distributions, and ATI spectra[1]. The asym-
metry in the directional ionization rates in the tunneling re-
gime was explained by the authors by comparing the electric
fields resulting from the opposite values of the relative
phase. In 1995, Alon and Moiseyev used the dynamical sym-
metry properties of the Floquet Hamiltonian to show that the
phase asymmetry in the directional ionization rates is a gen-
eral effect holding for an arbitrary ionization regime[2]. The
predictions of Schafer and Kulander were confirmed in 1994
by the experiment of Schumacher, Weihe, Muller, and

Bucksbaum summarized in Ref.[3]. The observed asymme-
try in the ATI rates regime has been attributed to the recol-
lision of the ionized electron with the core(see Ref.[4]).
Since in the low-frequency regime HHG is a consequence of
the recollision of the ionized electron with its parent ion
(tunneling mechanism) [4,5], one might expect to get the
similar phase-asymmetry effect for the HHG spectra too. In-
deed, Zuo and Bandrauk together with Ivanov and Corkum
showed in 1995 that the phase asymmetry is characteristic
also of the HHG spectra[6]. Analytical calculations for a
model potential which consists of twod functions performed
by Long, Becker, and McIver have also shown that there is
no symmetry in HHG spectra with respect to inversion of the
sign of the relative phase, i.e.,f→−f, although thef→f
+p symmetry is obeyed[7]. However, in 1999 Bivona, Bur-
lon, and Leone argued that since the time-periodic Hamil-
tonian does not change underf→−f, t→−t, andz→−z, the
power spectrum of the radiation is unaffected by the phase
inversion,f→−f [8]. This general statement was illustrated
by the results of the numerical calculations for two-level
model.

The experimental results obtained by Andiel, Tsakiris,
Cormiris, and Witte in 1999[9] do not show a dramatic
asymmetry with respect to the phase inversion, although the
scatter of the measured harmonic intensities could mask
some degree of phase asymmetry. Consequently, the experi-
ment leaves the question “is the HHG spectrum invariant
under the transformationf→−f or not?” unanswered.

More recently, in 2000, Faria, Milošević, and Paulus car-
ried out numerical studies of the phase-dependence effects in
bichromatic HHG[10]. In the experimental conditions their
solution of the one-dimensional(1D) time-dependent-
Schrödinger equation(TDSE) clearly shows that the HHG
spectrum is not invariant under thef→−f transformation
(see Fig. 7 in Ref.[10]).
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The “puzzle” is, thus, in the apparent contradiction be-
tween the results obtained from propagation calculations
solving the TDSE(e.g., Ref.[10]) and the results obtained by
using Floquet theory[8]. Does it imply that Floquet states do
not form a complete basis set? This might be a very serious
problem due to the fact that Floquet theory enables us to
carry out analytical investigation of the problem(see, for
example, the analysis of the HHG based on dynamical sym-
metry properties of the Hamiltonian[11]), and also enables
one to use time-independent scattering theory for time-
dependent Hamiltonian[12,13].

Let us illustrate the puzzle by representing the results
obtained for a 1D Gaussian potential well,Vsxd
=−0.63 expf−sx/2.65dg2. This potential supports three
bound states:E0=−0.4451 a.u.,E1=−0.1400 a.u., andE2
=−0.00014 a.u. The first two eigenstates mimic the
lowest electronic states of xenon atom. The electric field
generated by the bichromatic laser beam is given by
Est ,fd=e0fstdfcossvtd+coss2vt+fdg, where fstd represents
the shape of the pulse envelope. In the case of cw lasers
fstd=1. In Fig. 1 we represent the third-harmonic intensity as
a function of the relative phasef as obtained for a single
Floquet state. The laser frequency isv=0.0924 a.u.,("v
,2.5 eV,l=493 nm), and the field amplitude, strength pa-
rameter ise0=0.035 a.u. In two-color laser experiment the
field intensity depends on the relative phase,I
=c/ s8pdmaxuEst ,fdu2. For f=0, I ,1.331014 W/cm2 and
for f=p /2, the laser intensity is equal toI ,1.76
31014 W/cm2. The Floquet stateFsx,t ,fd=Fsx,t+T,fd,
whereT=2p /v was calculated numerically by the diagonal-
ization of the time evolution operator according to thest ,t8d
algorithm [14] using 500 particle-in-a-box basis functions
with the box sizeL=150 a.u.

For time-periodic systems(i.e., when the shape of the
laser pulse is not taken into consideration and the laser is
described as a cw laser) the intensity of thenth harmonic,

Insfd, is given by Insfd~ usNTd−1e0
NTd̈st ,fdexps±ivntddtu2,

whereT=2p /v is the time period, and the time-dependent

dipole is given bydst ,fd=kFsx,t ,fduxuFsx,t ,fdl. N is the
number of optical cycles which are taken into consideration
in our calculations of the HHG spectra. In propagation cal-
culations, Fsx,t ,fd is the solution of the time-dependent
Schrödinger equation which can be described as a linear
combination of Floquet states. In such a case one should take
the limit of N→`. However, for systems being described by
a single Floquet state,N=1 and the time-periodic part of the
Floquet wave function,Fsx,t ,fd, is the eigenfunction of the
Floquet Hamiltonian:H fFsx,t ,fd=EQEsfdFsx,t ,fd, H f =
−i ] /]t+Hsx,t ,fd. The time-dependent Hamiltonian of our
model is Hsx,t ,fd=−0.5d2/dx2+Vsx,t ,fd. The time-
dependent potential is defined asVsx,t ,fd=Vsxd−exEst ,fd,
wheree is the charge of the electron.

As one can see, the third-harmonic generation intensity
I3sfd is invariant under the transformationf→−f and also
under the transformationf→f+p. Note that in our calcu-
lations we followed the same Floquet state asf was varied.
This behavior is obtained forany high-order harmonic and
for any Floquet stateFasx,t ,fd, wherea=1,2, ... denotes
the ath quasienergy(QE) Floquet state. It is possible to
prove that the same two types of symmetry behavior, i.e.,
Insfd= Ins−fd and Insfd= Insf+pd, are obtained forany lin-
ear combination of discrete Floquet states. The Floquet spec-
trum is discrete only due to the use of finite number of basis
functions and a finite box size(or finite number of grid
points). However, this proof holds for any finite number of
basis functions and for any value ofL which can be taken as
large as one wishes. The proof, based on dynamical symme-
try analysis(see Ref.[15] for the treatment of dynamical
symmetries of time-periodic Hamiltonians) is as following.

Let P2 be the dynamical symmetry operator of order 2
which is defined asP2=st→−t ;f→−f ; i →−id. Since the
commutatorfH f ,P2g=0, the Floquet states, eigenfunctions
of H f, are also eigenfunctions ofP2. Therefore,Fasx,t ,fd
= ± fFasx,−t ,−fdg* . The Floquet eigenstates ofP2 which are
associated with the +1 eigenvalue are denoted by the indexj ,
whereas the Floquet states associated with the eigenvalue −1
are denoted by the indexk. Since the diagonal dipole matrix
elementsdast ,fd=fdas−t ,−fdg* , regardless ifa= j or a=k,
it is clear thatIn

sadsfd= In
sads−fd. Note that the same HHG

spectra are obtained when propagation is carried out forward
or backward in time; namely, the calculation of the time-
dependent dipole for −f rather than +f requires us to carry
out backward time propagation rather than forward time
propagation as in the case wheredast ,fd is calculated. In the
case of the conventional quantum mechanics(QM) this is not
a problem at all since time is symmetric. This is an important
point in our proof given above for the relative-phase symme-
try properties of thenth HHG spectra calculated from a
single Hermitian Floquet state. Note by passing that in non-
Hermitian QM(NH-QM) time is asymmetric. We will return
to this point later in the following section. In the case that the
initial state is a square integrable functionCsx,t=0d (for
example can be taken as the field-free ground state) we can
use the Floquet states as a basis set and the solution of the
TDSE Csx,td is given by

FIG. 1. The third harmonic as a function of the relative phasef,
I3sfd, as obtained from the propagation of a single Floquet state
within the framework of the conventional(i.e., Hermitian) QM. The
spectrum isinvariant with respect to the translationalf→f+p and
inversionalf→−f transformations.
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Csx,td = oa
Caexpf− iEa

QEsfdtgFasx,t,fd,

whereCa=kFast=0,fd uCst=0dl. It is easy to see that the
contributions to the exact harmonics in the Fourier transform
of the dipole momentkCstduxuCstdl, and/or its second-order
time derivative, areonly from the diagonal termsdast ,fd.
Therefore, the HHG intensity is invariant under the transfor-
mation f→−f and Insfd= Ins−fd. This proof supports the
statement of Bivona, Burlon, and Leone under the restriction
that the initial state has to be defined as a linear combination
of finite number of discrete Floquet states [8]. As we will
show later the key solution to the puzzle is in that restriction.

To complete the representation of the puzzle we carried
out numerical calculations whereCsx,t=0d was the field-
free ground state. The TDSE has been solved when the box
size L is taken to be large enough to avoid the artificial
reflections from the edge of the box during the propagation.
Two cases have been studied. In the first one the field was
adiabatically turned on whereas in the second case the enve-
lope of the laser pulse supportedNù20 optical cycles. The

propagation was carried out as long as the accelerationd̈std
=kCstdu−]Vsx,t ,fd /]xuCstdl had not been converged to that
of the free particle in the field. The results for the third har-
monic are presented in Fig. 2. As one can see the HHG
spectra are invariant againstf→f+p but InsfdÞ Ins−fd.
This result is in a complete agreement with the results of
Long-Becker-McIver and of Faria-Milošević-Paulus which
were mentioned above. Note by passing that the functional
behavior of the HHG spectra with respect to the variation of
the relative phasef is sensitive to the shape of the laser
pulse although the symmetry properties[i.e., Insfd vs
Ins−fd and Insfd vs Insf+pd] are alike.

Before closing the introductory part of this paper, let us
present in Fig. 3 the results we have obtained for the third
harmonic when the time-dependent dipole was calculated us-
ing a single complex scaled resonance Floquet state. We
selected the longest-living resonance Floquet state assuming
that this state controls the photoinduced dynamics. The
resonance Floquet state is an eigenfunction of the complex
scaled (non-Hermitian) Floquet operator, H f

u=−i ] /]t
+H(x expsiud ,t). For the calculations of resonances by the
complex scaling procedure(complex coordinate method) see
Ref. [16]. As one can see from the results presented in Fig. 3,
I3sfd= I3sf+pd but definitelyI3sfdÞ I3s−fd. The results ob-
tained from a single resonance Floquet state using(NH-QM)
are very different from the results obtained from a single
Floquet state calculated within the framework of the conven-
tional QM. Moreover, the results obtained from a single reso-
nance Floquet state are in good agreement with the results
obtained from simulation calculations when the TDSE has
been solved within the framework of the conventional QM.
Due to the sensitivity of the HHG spectra to the shape of the
laser pulse as stated above and shown in Fig. 2, we do not
expect to have a quantitative agreement between the HHG
spectra obtained from the time-dependent simulations. See
the results for the HHG spectra presented in Fig. 4 obtained
for the three different cases mentioned above. That is, in two
out of the three cases the initial wave packet was propagated
within the framework of the conventional QM(in one case
the field was adiabatically turned on and in the second case
the laser envelope supported 20 optical oscillations), whereas
in the third case the HHG spectra were obtained from a
single resonance Floquet state calculated within the frame-
work of the NH-QM. As one can see on a logarithm scale all
spectra look alike. However as we have shown in Figs. 2 and
3 the functional behavior ofInsfd phase dependency is quite
different although in the three different cases the phase
asymmetry is similar.

The strategy of solving the puzzle is as following. First
we will show that the dynamical symmetry proof given
above for the Hermitian time-dependent periodic Hamil-

FIG. 2. I3sfd, as obtained from the propagation of the ground
field-free state within the framework of the conventional QM. The
full solid line stands for the HHG spectrum obtained when the laser
is adiabatically turned on[the envelope of the pulse is given by
fstd=1−exps−0.000 02t2d]. The dashed line stands for the HHG
spectra obtained for the case where the laser pulse envelope is
fstd=sin2fv / s2Ndg, whereNù20. These results show that the func-
tional behavior of the HHG spectra with respect to the variation of
the relative phasef is sensitive to the shape of the laser pulse
although the phase-asymmetry property is alike.

FIG. 3. I3sfd, as obtained from the propagation of a single-
resonance(longest-living) Floquet state within the framework of the
non-Hermitian(NH) QM. The spectrum is invariant with respect to
the translationalf→f+p. However, it isnot invariant under the
inversion off→−f.

NON-HERMITIAN QUANTUM MECHANICS VERSUS… PHYSICAL REVIEW A 69, 043404(2004)

043404-3



tonian does not hold for the non-Hermitian complex scaled
Hamiltonian. We base our arguments on physical grounds
associating the discrepancy between the NH-QM formalism
to the conventional one with the resonance lifetime. As the
resonance lifetime is longer the discrepancy between the re-
sults should be smaller. Indeed our numerical calculations
presented in Sec. II support this assumption. In Sec. III we
show that when adiscreteFloquet spectrum is used for the
representation of the time evolution operator, the interference
among Floquet states which are nondegenerate states of the
dynamical symmetry operator are canceled. This interference
effect results in the breaking of the symmetry of the HHG
spectra to the inversion of the relative phase. This interfer-
ence effect is taken into consideration when the TDSE is
solved by carrying out propagation calculations as described
above in this section. Moreover, we show that in the propa-
gation calculations using the conventional(Hermitian) QM,
the phase breaking symmetry effect results, as in NH-QM,
from the photoinduced ionization phenomena.

II. EFFECT OF THE RELATIVE PHASE ON THE HHG
SPECTRA IN NON-HERMITIAN QM CALCULATIONS

In Fig. 3 we demonstrate that the intensity of the third
harmonic calculated from a single-resonance, complex
scaled, Floquet state changes asf→−f. This result is very
different from the result obtained from the calculations of
I3sfd with a single Hermitian Floquet state as shown in Fig.
1. Moreover, in Sec. I we proved that within the framework
of the Hermitian QMInsfd= Ins−fd when the initial state is
constructed from a linear combination of discrete Hermitian
Floquet states. Why the results for the HHG spectra are dif-
ferent when NH-QM is used?

In order to answer this question we will briefly describe
how the HHG spectrum is calculated in NH-QM. For the

sake of simplicity and without loss of generality we denote
the internal coordinate byx. The derivations we represent
here(and also in the preceding section) hold also for many-
electron systems where the electron correlations are taken
into consideration. The resonance Floquet states are the
eigenfunctions of the complex scaled Floquet Hamiltonian,

H fsx,t,f,udFasx,t,f,ud = Ea
QEsfdFasx,t,f,ud, s1d

where

H fsx,t,f,ud = − i
]

] t
+ Ĥsx expsiud,td + e0ex expsiud

3fcossvtd + coss2vt + fdg. s2d

The resonance complex quasienergies,

Ea
QEsfd = Easfd −

i

2
Gasfd, s3d

areu independent provideduùuc where the critical angle to
explore the resonances is given byf16g

uc = 1
2arctanfGa/s2Eadg. s4d

Gasfd is the total ionization rate of decay of theath reso-
nance Floquet state. The time-periodic Floquet states can
be expanded in a Fourier basis set,

Fasx,t,f,ud = o
n=−`

+`

eivntwn,asx,f,ud. s5d

The Fourier components are the eigenvectors of the Floquet
matrix F whosesn8 ,ndth matrix element is defined as

Fn8,nsx,f,ud =
1

T
E

0

T

e−ivn8tH fsx,t,f,ude+ivnt dt. s6d

It is important to realize that the Fourier components are
complex functions and are not analytical continuations to the
complex plane of the solutions obtained in the conventional
sHermitiand QM.

For the calculations of the time-dependent dipole mo-
ments we should define the “bra” states in NH-QM. The bra
states are associated with the left eigenvectors of the matrix
F. Therefore, the bra states are the right eigenvectors of the
transpose ofF. Let us denote the bra Fourier components as
wn,a

t sx,f ,ud. Note that atf=0, F is a complex and symmet-
ric matrix and consequently,wn,a

t sx,f=0,ud=wn,asx,f
=0,ud. If fÞ0, then wn,a

t sx,f ,udÞwn,asx,f ,ud. The bra
resonance Floquet states(denoted by the superscript “t”
which stands for “transposed”) are given by

Fa
t sx,t,f,ud = o

n=−`

+`

e−ivntwn,a
t sx,f,ud. s7d

In NH-QM the time-dependent dipole moment amplitude
calculated from a single-resonance Floquet state is given by

FIG. 4. The high-order harmonic generation spectra as obtained
whenf=0. The solid line stands for the results obtained by solving
the time-dependent Schrödinger equation when the ac field is adia-
batically turned on. The dashed line stands for the results obtained
when the sine-square envelope of the laser pulse supports 20 optical
oscillations. Both results are obtained within the framework of the
conventional QM. The solid-dotted line denotes the results obtained
by calculating the long-living resonance Floquet state using the
complex scaling approach(non-Hermitian QM calculations).
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dNH-QMst, ± f,ud =E
−`

+`

Fa
t sx,t, ± f,udxFasx,t, ± f,uddx.

s8d

The time-dependent dipole moment amplitudes
dNH-QMst , ±f ,ud as the resonance complex quasienergies
Ea

QEsfd and as any other physical quantity areu independent
provideduùuc where the critical rotational angle is defined
in Eq. s4d. From Eq. s4d one can see that for sufficiently
narrow resonances,uc~Gasfd. Therefore, we will change
the notation of the NH-QM value for the time-dependent
dipole moment amplitude fromdNH-QMst , ±f ,ucd to
dst , ±f ,Gasfdd. The linear dependence ofuc on Ga implies
that uc gets smaller values as the resonance width becomes
smaller. Since the resonance width is defined as the inverse
of the resonance lifetime it implies thatuc gets smaller val-
ues as the resonance lifetimes are larger. In Hermitian QM
the quasienergies are real and therefore we may say that as
the resonance widthGasfd gets smaller values, the differ-
ences betweendst ,f ,Gasfdd and the values obtained for the
time-dependent dipole moment amplitudes in the conven-
tional QM become smaller as well. This is another property
that will be clarified later and will help to explain the differ-
ent results for the HHG spectra and its dependence off,
which were obtained from a single Floquet state in the
NH-QM and in the conventional one. Moreover, it will help
us to understand why the strength of the phase-asymmetry
effect on the HHG, quantified by

Dnsfd = uInsfd − Ins− fdu, s9d

gets large values for specific values off and small for others
and why it varies with the field intensity. Let us return to the
calculation of the HHG spectra from a single resonance Flo-
quet state. The HHG spectrum is given by the Fourier trans-
form of the second-order time derivative of the dipole mo-
ment amplitude calculated from theath resonance Floquet
state,

Insf,Gasfdd ~ U 1

T
E

0

T

eivntd̈st,f,GasfdddtU2

. s10d

The variation of Insf ,Gasfdd under the transformation
f→−f can be understood by carrying out the dynamical
symmetry(DS) analysis of the problem. The dynamical sym-
metry operatorP2st→−t ,f→−f ,u→−u , i →−id commutes
with the complex scaled Floquet operator. Therefore,

H fsx,t,f,ud = fH fsx,− t,− f,− udg* s11d

and consequently the “ket” and the “bra” Floquet states sat-
isfy the following equalities:

Fasx,t,f,ud = ± fFasx,− t,− f,− udg* , s12d

Fa
t sx,t,f,ud = ± fFa

t sx,− t,− f,− udg* , s13d

and

Ea
QEsfd = Ea

QEs− fd. s14d

The last equality is obtained due to the fact that when the
coordinates are rotated backwardsi.e., u→−ud while the
propagation is backward in timesi.e., t→−td the complex
QE is embedded in the upper-half complex energy plane
fEa

QEs−fdg* rather than in the lower one where the physical
resonances are located. However, when the complex conju-
gate is taken following the requirement of the dynamical
symmetry operator, the resonance energyEa

QEs−fd is ob-
tained. Indeed the phase inversion symmetry of the complex
QE as given in Eq.s14d has been obtained in all our numeri-
cal calculations. For illustration purposes we present in Fig.
5 the f trajectory of the resonance Floquet state which is
associated with the narrowestsi.e., longest-livingd resonance
state. Now we return to the equality given in Eq.s12d. If we
were able to carry out backward propagation in time, then
the right-hand side of the equality for the ket Floquet state
would be associated with the bra Floquet state which is de-
fined below:

Fasx,− t,− f,− ud = Fa
t sx,t,− f,− ud. s15d

However, unlike Fasx,−t ,−f ,−ud and Fasx, +t ,−f , +ud
which are normalizable functions,Fasx, +t ,−f ,−ud and
Fasx,−t ,−f , +ud are not. The last two functions diverge
exponentially in time. One should keep in mind that the mo-
tivation to the rotation of the internal coordinates in the
Hamiltonian to the complex plane was to bring back the
resonance wave functionssassociated with outgoing Siegert/
Gamow boundary conditionsd which diverge exponentially
in the coordinate space to the Hilbert spacef16g. This is the
source of the time-asymmetry problem in NH-QMf17g. If
we would not have the time-asymmetry problem in NH-QM
we would get the following equality:

FIG. 5. The complex quasienergies of the longest-living reso-
nance Floquet state, as obtained from complex scaled NH-QM cal-
culations, as a function of the relative phasef. The resonance po-
sition ReEa

QE, and width (inverse lifetime) Im Ea
QE, are invariant

with respect to the translationf→f+p and to the inversion off
→−f transformations.
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dst,f,Gasfdd = fdst,− f,− Gasfddg* , s16d

which reminds us of the equalitydst ,fd=fds−t ,−fdg* as ob-
tained in the introduction part of the paper for the Hermitian
Floquet state. Similarly to our derivation in the Introduction
one might expect that if Eq.s16d holds thenIn(f ,Gsfd)
= In(−f ,Gsfd). However, as we will explain below the as-
sumptions that lead to Eq.s16d are not valid. In our deriva-
tion we assumed that the dipole moment on the right-hand
side of Eq.s16d has been calculated with the nonphysical
poles of the scattering matrix which are embedded in the
upper-half complex energy plane rather than the lower one
sfor the association of the resonances with the poles embed-
ded in the lower-half complex energy plane see, for example,
Ref. f18gd. These nonphysical poles diverge exponentially in
time as t→`. Due to the time-asymmetry problem in
NH-QM si.e., u.0 in our cased we can carry out only for-
ward time propagation calculationsfnote that exps−iEa

QEtd
diverges whent→−` since ImEa

QE,0g. Similarly when
u,0 we have to carry out backward time propagation
calculations. However, in the right-hand side of Eq.s16d
we assume that it is possible to carry out forward time
propagation whileu,0. Since it is impossible to carry out
these calculations Eq.s16d does not hold. We show here
that the time asymmetry in NH-QM is the reason for the
breaking of the symmetry of the HHG spectra to the in-
version of the relative phase, even when it is calculated
from a single resonance Floquet state.

The conclusion is that the breaking of the symmetry of the
HHG under the transformationf→−f results from the time
asymmetry in NH-QM which avoids the equality we ob-
tained in Hermitian QM for a single Floquet state,dst ,fd
=fdst ,−fdg* . From Eq. (16) it is clear that the phase-
symmetry HHG would be obtained asGasfd→0. Conse-
quently we argue that a quantitative measure for the strength
of the breaking symmetry parameter is the value ofGasfd.
As the resonance width becomes smaller,Dnsfd (see the
definition given above) is reduced. Our numerical calcula-
tions support this conclusion. See, for example, Fig. 6 where
we show the correspondence betweenD3sfd and Gasfd as
calculated from the same Floquet state(denoted here bya).

III. EFFECT OF THE RELATIVE PHASE ON THE HHG
SPECTRA IN CONVENTIONAL QM CALCULATIONS

In this section we address the following question. How
come that when we solve the TDSE the HHG spectrum is
phase asymmetric, while it is phase symmetric when the
propagated wave packet is described as a linear combination
of finite number of Floquet states?

To this end, we shall first recall a few notions of the
time-independent scattering theory for time-dependent
Hamiltonians. This can be conveniently done using thest ,t8d
formalism [14]. Within this method, the solution of the
TDSE is given by

Csx,td = csx,t8 = t,td, s17d

where the functioncsx,t8= t ,td is obtained by the action of
the time evolution operator on the initial condition:

csx,t8,td = e−iHfsx,t8dtCsx,0d. s18d

The fact thatst ,t8d formalism provides an analytical expres-
sion for the time evolution operator when the Hamiltonian is
time dependent enabled us to develop the time-independent
scattering theory for time-dependent Hamiltoniansf14,16g.
The Fourier components ofcsx,t8 ,td are given by

cEsx,t8d = iGEsx,t8dCsx,0d, s19d

where the Green operator in the extendedsx,t8d space is
defined as

GEsx,t8d = lim
e→0+

hE − fH fsx,t8d − iegj−1. s20d

In the spectral representation of the Green operator,

GEsx,t8d = lim
e→0+

E dE8
uFE8lkFE8u

E − E8 + ie
, s21d

whereFE8sx,t8d are the eigenfunctions of the Floquet opera-
tor. The time-dependent solution of the TDSE, expanded in
the Floquet basis set, is given by

Csx,td = iE
−`

+`

d Ee−iEt lim
e→0+

E
−`

+`

dE8

3
kFE8uCst = 0dl

E − E8 + ie
FE8sx,td. s22d

Due to the use of finite number of basis functions or finite
number of grid points in the numerical calculations the QE
spectrum ofH f is discrete. This approach which yields a
discrete spectrum is known as the “box-quantization” ap-
proach. Therefore, when the box quantization is applied, the
integrals overE andE8 in Eq. s22d are replaced by summa-
tions over Ea and Ea8. The corresponding discrete time-
periodic Floquet states are given by,

FIG. 6. The correspondence between the HHG asymmetry
strength parameterDnsfd= uInsfd− Ins−fdu and the longest-living
resonance Floquet widthGsfd as obtained from complex scaled
NH-QM calculations.
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Fasx,td = o
n

eivntwa,nsxd. s23d

The expression for the HHG spectra, whereV is the fre-
quency of the emitted radiation, is obtained by taking the
Fourier transform of the time-dependent expectation value of
the acceleration[i.e., time second-order derivative of the di-
pole moment,dstd=kCstduxuCstdl],

IsVd ~ U lim
e→0+

o
a,a8

Ca8
* Cao

n,n8

Aa8,n8,a,nsV,vdkwa8,n8uxuwa,nlU2
,

s24d

where

Ca = o
n=−`

+`

kwa,nuCst = 0dl s25d

and

Aa8,n8,a,nsV,vd =
fsEa − Ea8d + vsn − n8dg2

V − fsEa − Ea8d + vsn − n8dg + ie
.

s26d

From Eq.s26d it is clear that the peaks in the HHG spectra
should be obtained whenV=sEa−Ea8d+vsn−n8d. There-
fore, as mentioned in Sec. I, the only terms that contribute to
the HHG si.e., V=mv where m gets integer values onlyd
spectra are obtained whena8=a and the ratioV /v gets
integer values only. Moreover, as explained in the introduc-
tion part of this paper, due to the fact that only the diagonal

terms survived the Fourier transform ofd̈std, the HHG spec-
trum is invariant under thef→−f transformation. However,
this is not the case when the spectrum is continuous. What
wrong have we done by using the box-quantization condition
in the conventional QM? The answer is that by carrying out
the integration over time from 0 tò when the expression for
the HHG has been derived, we explored the artificial revivals
which result from the use of the box-quantization condition.
To avoid the effect of the artificial revivals,e in Eq. s26d
should be larger than a given nonzero valueswe will discuss
this point in detail laterd and therefore the nondiagonal terms
in Eq. s24d contribute to the calculations of the HHG spectra.
These nondiagonal terms are associated with quasienergy
Floquet states that are nondegenerate eigenfunctions of the
dynamical symmetry operator. This explains the breaking of
the symmetry properties of the HHG spectra obtained when
only the diagonal terms were involved in the calculations.
The phase asymmetry of the HHG spectra results from the
interference between nondegenerate eigenfunctions of the
dynamical symmetry operator.

Let us explain why when the wave packet is expanded
in terms of finite number of Floquet states we cannot take
the limit of e to zero. First we wish to consider a
simple case where the initial state is a linear combination of
two Floquet states, Csx,t=0,fd=fFasx,0 ,fd
+Fa8sx,0 ,fdg /Î2. The solution of the TDSE att=nT is
given by Csx,t=nT,fd=expf−iEasfdnTgsFasx,0 ,fd
+sexpf−iDEsfdTggnFsx,0 ,fdd /Î2 where DEsfd=Ea8sfd

−Easfd. It is clear that up to a phase factor, the solution
oscillates in time with the period ofDE/ s2pd. In our case the
initial field-free state populates finite number of Floquet
states only due to the use of box-quantization condition.
These oscillations(and the related wave-packet revivals) are
artificial and cancel the interference among Floquet states
which have different dynamical symmetry properties in Eq.
(24) when e=0. There are several ways to avoid these arti-
ficial revivals. One way is to carry out the Fourier transform
from t=0 to t= tf ,2pDE rather than tot=`. Another ap-
proach is not to take the limit ofe→0 in Eq. (24) but sub-
stitute in that equatione=DE whereDE is the smallest en-
ergy gap between two states that are populated by the initial
field-free state. HereDE serves as the width of the discrete
quasienergies. In this way we apply the NH-QM approach in
the most simple way in order to avoid the artificial revivals
which are introduced by the numerical calculations where
box-quantization condition is imposed. In Ref.[19] a simple
two-level model to illustrate the transition from beat to re-
laxation has been introduced. It has been shown that when
the width (i.e., e in our case) is equal to or greater than the
energy gap between the two states, rather than having a
damped oscillatory behavior of the survival probability it
decays exponentially in time with a rate constant which is
linearly proportional tosDEd2/e when eùDE. Here,e has
the effect of preventing the artificial revivals and in the two-
level model prevents the relaxation of the initial state. This
approach of substitutinge=DE into the cross-section expres-
sions has been taken, for example, in the calculations of the
crosssection for interatomic Coulombic decay in van der
Waals clusters[20]. Another approach which is very close in
its spirit to the last one is the approach where a complex
absorbing potential is added to the Hamiltonian. Again by
doing it the Hamiltonian becomes non-Hermitian. This ap-
proach has been taken extensively in different fields of phys-
ics and chemistry for many decades. However, we want in
this section to calculate HHG spectra, while avoiding the
artificial revivals, within the framework of the conventional
QM. Therefore, in our time propagation calculations the
number of grid points are increased(and thereby the energy
splitting due to the use of box-quantization condition is re-
duced) as time passes to avoid the situation whereCsx,t ,fd
gets nonzero value at the edge of the grid. Obviously, in our
numerical calculations the propagation of the initial state has
been carried out not untilt=` but until t= tf. The final time
of the propagation was taken as the time where the dipole
converges to one of the free particle in the field[21].

IV. CONCLUSIONS

Recent experiment and theoretical studies have shown
that the HHG spectra of atoms in bichromatic field are af-
fected by the relative phase between the two-color laser
beams. The question we addressed here was whether the ef-
fect of the sign of the relative phase can be obtained when
the lasers are adiabatically switched on and the photoinduced
dynamics is solely controlled by a single Floquet state. Dy-
namical symmetry analysis of the problem shows that the
HHG spectrum is invariant under the transformation of
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phase,f→f+p, but however itchanges under the transfor-
mationf→−f. We prove that within the framework of the
conventional Hermitian QM, the effect of the transformation
f→−f on the HHG spectra is not obtained when the initial
wave packet populates a finite number of Floquet states(also
when a single Floquet state is populated). The puzzle we
solved is associated with the two quasicontradictive results:
(a) the HHG spectrum calculated by a single Floquet state
(solving the time-dependent Schrodinger equation with Her-
mitian Hamiltonian) is invariant under the phase inversion
transformation(unlike the result obtained from wave-packet
propagation calculations); (b) upon complex scaling, when
the Hamiltonian becomes non-Hermitian, the HHG spectrum
changesunder the phase inversion transformation as seen
even from the calculations of a single complex scaled Flo-
quet state.

We show that the strength of the effect of thef→−f
transformation on the HHG spectrum is increased as the
photoinduced ionization rate of decay is increased(for ex-

ample, by varying the relative phasef). The photoinduced
ionization rates are directly obtained from the non-Hermitian
QM calculations of the complex quasienergies of the com-
plex scaled Floquet operator, and indirectly from motion of
wave-packet calculations within the framework of the con-
ventional(Hermitian) QM calculations.
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