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states of nitrogen and oxygen atoms have been calculated. The calculation is performed using the asymptotic
approach, based on the single-electron asymptotic representation of the electron wave function. The ground-
state cross sections are in a good agreement with those calculated via comprehensive quantum chemical
approach. The results of calculations demonstrate a reasonable accuracy and a high convenience of this
approach in determination of cross sections for the manifold of excited states of atoms.
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I. INTRODUCTION

Transport properties of thermal plasmas including the
presence of low- and high-lying electronically excited states
have been the subject of several investigations[1–5]. In par-
ticular, high-lying excited states, i.e., states with principal
quantum number different from the ground state, despite
their small concentration in a thermal plasma, can strongly
affect the transport properties due to the dramatic increase of
the corresponding cross sections as a function of principal
quantum number[5].

The main difficulty of such calculations relates to the
evaluation of collision cross section for excited species. The
comprehensive approach to this problem has been demon-
strated in Refs.[5–12] for the case of hydrogen atom. The
cited authors have performed calculations of the resonant
excitation transfer [5–7] and resonant charge-exchange
[8–12] cross sections for excited states of hydrogen atom.
The cross section of resonant processes is expressed through
the exchange interaction potential, which is the difference
between the energies of a gerade and ungerade states of a
quasimolecule, formed in approaching the atomic particles
under consideration.

This approach, which manifested itself quite well in the
case of hydrogen atom and ion, becomes much more com-
plicated in the case of many-electron atoms, for example,
nitrogen and oxygen, which are of the great practical impor-
tance, being the main components of the atmosphere. The
difficulties relate mainly to a large variety of possible states
of a quasimolecule, which are formed when two atomic par-
ticles with not fully filled electron shells start interacting. For
example, in the case of ground-state atom Ns4S3/2d and ion
N+ s3Pd one can select six pairs of quasimolecular states
(2,4,6Sg,u and 2,4,6Pg,u), differed from each other in the total
spin and the projection of the electron orbital angular mo-
mentum. The same situation occurs in collision of ground-
state atom Os3Pd and ion O+ s4S3/2d. Generally speaking,
these pairs of states differ from each other in the magnitude
of the exchange interaction potential and therefore in the

resonant charge-exchange cross section. The real magnitude
of the cross section, which has to be compared with experi-
ment, is the result of averaging the relevant partial magni-
tudes, related to specific states of a quasimolecule.

The technical difficulties in a comprehensive calculation
of the exchange interaction potential for the specific excited
many-electron atom and a large variety of excited states of
atoms, making a considerable contribution into the transport
coefficients of plasma, can be overcome(quite easily) in the
frame of the asymptotic approach. This theory is based on
the use of a single-electron asymptotic representation for the
wave function of the valence electron. In accordance with
this approach, which was applied first by Firsov[13] and
developed subsequently in detail by Smirnov[14,15], the
transition probability is determined mainly by the behavior
of the atomic wave function at large internuclear distances,
exceeding the characteristic atomic size. The asymptotic ap-
proach permits the evaluation of the resonant charge-
exchange cross section for all the atoms of the periodic table
with the accuracy of about 10%, which is virtually within the
accuracy of the modern experiment and only slightly de-
creases with the complexity of an atom[14,15]. In this work
the asymptotic approach is used for evaluation of the reso-
nant charge-exchange cross section for some excited states of
nitrogen and oxygen atoms.

The outline of the present paper is as follows. In Sec. II
we report the asymptotic method used to calculate the rel-
evant exchange interaction potentials for excited atomic ni-
trogen and oxygen colliding with their parent ions. In Sec. III
we report the method of calculation of resonant charge-
transfer cross sections involving excited states and the rel-
evant results for N-N+ and O-O+ pairs. Section IV discusses
the limits of used approximations and possible scaling laws.
Section V is dedicated to the conclusions.

II. METHOD OF CALCULATION

The resonant charge-exchange cross section can be ex-
pressed as[13–15]
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Here R is internuclear distance,r is the impact parameter,
DsRd is the exchange interaction potential, which is the dif-
ference between gerade,«g, and ungerade,«u, potential en-
ergy of the quasimolecule, consisted of an ion and the parent
atom,P12srd is the probability of the electron transfer from
one center to another as a result of the ion-atom collision
with the impact parameterr.

The magnitude of the resonant charge-exchange cross sec-
tion is determined by the internuclear distance dependence of
the exchange interaction potential. Therewith the main con-
tribution into the cross section is due to the region of com-
paratively large internuclear distancesR@a0 (a0 is the Bohr
radius). This permits the use of the asymptotic approach to
the determination of the exchange interaction potential
[14–18], which is based on an asymptotic representation of
the wave function of the valence electron. This approach
seems to be more justified in the case of excited atomic
states, because the valence electron is bound with the atomic
core to a lesser degree, and can be considered independently.

In accordance with the asymptotic approach the exchange
interaction potential is expressed through the single-electron
wave function of a valence electron of an atom, having the
quantum numbers,, m, 1 /2, s. This latter is represented as
the product

c,m1/2s = R,srdY,msq,wdxs, s2d

where R,srd is the radial part of the wave function,
Y,msq ,wd and xs are the angular and the spin part, respec-
tively, andr, q, w are the spherical coordinates of the elec-
tron. The asymptotic behavior of the radial part of the elec-
tron wave function at large distance from the nucleussrg
@1d has the following form:

Rsrd = Ars1/g−1de−gr . s3d

Here −g2/2 is the binding energy of the valence electronsin
atomic unitsd, andA is the normalization factor.

The most accurate way to evaluate theA parameter is
tailoring the long-range asymptotic representation of the
electron wave function with that calculated by the Hartree-
Fock method, describing the behavior of the electron in the
vicinity of the parent nucleus.

We further simplify the problem by calculating theA pa-
rameter according to the following formula, basically valid
for s states of hydrogenic species and useful in determining
an upper limit for the parameter value inp-electron case
[18]:

A =
g3/2s2gd1/g

GS1

g
D . s4d

This assumption, which can be justified by the small sen-
sitivity of charge-transfer cross sections on the absolute
value of theA parameter, gives, however,A values close to
the corresponding ones calculated by the Hartree-Fock pro-

cedure. This point can be appreciated by comparing theA
values calculated by Eq.(4) and the “exact” ones calculated
by using the Hartree-Fock wave functions(Table I). The
magnitudes of the coefficientA for alkali-metal atoms and
for the low-lying excited states of nitrogen atom[i.e., for
statess2Dd ,s2Pd] were taken from the handbook[16]. An
additional calculation, at Hartree-Fock level, has been per-
formed in the case of the first quintet state of oxygen atom
s5Sd, using a basis set of Gaussian functionss9s,5pd con-
tracted tof4s,2pg [19], augmented by a diffused (exponen-
tial parameterz=0.85) function, and enriched by Rydberg-
like ssz=0.032,0.0066d and p sz=0.028,0.0054d functions.
Joining the calculated wave function to its asymptotic ex-
pression in the region outside the limits of the atomic core, a
value of the parameterA can be determined, which depends
on the selected electron-nucleus distancer. The value re-
ported in Table I has been obtained as a mean of the calcu-
lated quantityAsrd over the interval 4.0a0−8.0a0. Inspection
of Table I shows that for alkali-metal atoms the deviation
from the exactA value do not overcome 10%; a quite similar
situation was found for the5S state of oxygen, while the
difference increases up to 40% for low-lying excited states of
nitrogen. However, these differences do not propagate pro-
portionally in the charge-transfer cross sections. As an ex-
ample a 40% difference in theA value [case Ns2Pd] propa-
gates in 15%, 18%, and 22% errors in the corresponding
averaged cross sections, respectively, for 0.1 eV,1.0 eV, and
10.0 eV energies.

Values of the parameterA andg for the different atomic
states have been reported in Tables II and III(note that also
for the ground state of oxygens3Pd and nitrogens4Sd the

TABLE I. The magnitudes of parameterA, calculated for alkali-
metal atoms and for first excited states of atomic nitrogen by the
rigorous approach[16] and using the approximation formula(4).

Li Na K Rb Cs Os5Sd Ns2Dd Ns2Pd

g 0.63 0.615 0.565 0.554 0.535 0.573 0.945 0.898

A Eq. (4) 0.8 0.75 0.56 0.53 0.46 0.59 1.86 1.73

A exact 0.82 0.74 0.52 0.48 0.41 0.52 1.36 1.23

TABLE II. The magnitudes of the parameterA, calculated on
the basis of the rigorous approach(states 2p3) and the approximate
expression(4) (statesns) for some levels of nitrogen atom.

State Energy(eV) g sa.u.d A sa.u.d

Ns4S3/2d 0 1.034 1.5

Ns2Dd 2.384 0.945 1.36

Ns2Pd 3.576 0.898 1.23

Ns2p23s 2Pd 10.687 0.53 0.46

Ns2p24s 2Pd 12.919 0.344 0.037

Ns2p25s 2Pd 13.65 0.25 0.0013

Ns2p23s 4Pd 10.33 0.556 0.54

Ns2p24s 4Pd 12.857 0.35 0.043

Ns2p25s 4Pd 13.624 0.26 0.0022
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exact values were taken from Ref.[16]).
The exchange interaction potential, which is the differ-

ence between the gerade and ungerade electronic terms of a
quasimolecule, formed by an ion and the parent atom, is
derived from the above-given expression for the electron
wave function. The general expression for that depends on
the scheme of orbital and spin angular-momentum summa-
tion in atom and ion core. The most proper scheme for light
atoms isLScoupling: in this frame the fine-structure splitting
for an ion and the parent atom is negligible in comparison to
the energy difference for various angular-momentum projec-
tions of the valence electron onto the molecular axis. This
allows the separate consideration of states with different total
spin of a quasimolecule. Then the quantum numbers of the
molecular ion are the atomic quantum numbersL, S, ML, MS
and the relevant quantum numbers of the ion core are,, s, m,
ms. In such a scheme the orbital and spin angular momenta
of the valence electron,e and 1/2 are summed up with the
corresponding angular momenta of the ion core, ands into
the atomic angular momentaL and S, thereafter the atomic
spin S and the spin of the ion cores are summed into the
total spin of the molecular ionI. Due to the neglect of the
spin-orbit interaction the exchange interaction potential does
not depend on the total spin of a quasimoleculeI. In the
frame of this scheme the general expression for the exchange
interaction potential has the following form[14,15]:

Ds,em,,ms,LMLSd = NsG,s
LSd2I + 1/2

2s+ 1
F,e , L

m m m+ m
G

3F,e , L

m ML − m ML
GD,em. s5d

HereN is the number of valence electrons,G,s
LSs,e,Nd is the

genealogical or Racah coefficient, which is responsible for
formation of the atom from the parent ion and electron, the
expression in the squared brackets is the Clebsch-Gordan
coefficient, which is responsible for summation of electron
and ion angular momenta into the atom orbital angular mo-
mentum,m is the projection of the orbital angular momen-
tum of the valence electron on the axis of the quasimolecule,
D,em is the partial single-electron exchange interaction poten-
tial, determined by the following relation:

D,em = A2Rs2/g−1d es−Rg−1/gd s2,e + 1ds,e + umud!
s,e − umud ! umu ! sRgdumu , s6d

where ,e is the orbital angular momentum of the valence
electron, subjected to the transition,m is its projection on the
axis connecting the nuclei.

A remarkable feature of the exchange interaction poten-
tial, which follows from the expression(6), relates to the
additional selection rules, governing single-electron transi-
tions. Accordingly the transition of a singlep electron is
possible when

uL − ,u ø 1, uS− su ø 1/2. s7d

In particular, these conditions are violated for the resonant
single-electron transitions,

O+s4Sd + Os1D2d → Os1D2d + O+s4Sd, s8d

O+s4Sd + Os1S0d → Os1S0d + O+s4Sd, s9d

so that the resonant charge-exchange cross section for these
transitions is zero in the single-electron approximation. For
these transitions the process is possible only in the case of
simultaneous transition of two electrons, which is of rela-
tively low probability. This is indeed confirmed by the semi-
classical calculations reported in Ref.f2g.

The specific magnitudes of the genealogical coefficients
and Clebsch-Gordan coefficients depend on the specific sys-
tem under investigation. Let us start from the system

Ns2D3/2,5/2d + N+s3Pd → N+s3Pd + Ns2D3/2,5/2d, s10d

for which ,=1, ,e=1, and L=2. There is a set of states
which are differed from each other in projection of the elec-
tron angular momenta,, ,e, andL sm, m, andMLd onto the
quasimolecular axis. Since the total spin of the quasimole-
cule is a result of summation of total spins of atom and ion
s1/2 and 1, correspondinglyd, one can select from the whole
set of states subsets of doublets and quartets, with total spins
3/2 and 1/2, correspondingly. The degeneracy of the first
subset is as large as twice of the second one, which is similar
to the first one in all the rest features. Each of these subsets
is divided in its turn into the groups ofS and P terms,
differed from each other in the projection of the orbital an-
gular momentumm=0, 71 of the valence electron onto the
quasimolecular axis. For example, the Clebsch-Gordan coef-
ficients for the system N+s3Pd+espd→Ns2D3/2,5/2d are given
in Table IV.

III. CALCULATION AND RESULTS

The resonant charge-exchange cross section for the ex-
cited states of oxygen and nitrogen, listed in Tables II and III,
were calculated on the basis of the asymptotic approach
[13–15,18,20,21].

The probability of charge transfer,P12, can be written as
[13]

TABLE III. The magnitudes of the parameterA calculated on
the basis of the rigorous approach(state 2p4) and of the approxi-
mate expression(4) (statesns) for some levels of oxygen atom.

State Energy(eV) g sa.u.d A sa.u.d

Os2p4 3Pd 0 1 1.3

Os2p33s 5Sd 9.146 0.573 0.59

Os2p34s 5Sd 11.838 0.34 0.034

Os2p35s 5Sd 12.661 0.26 0.0022

Os2p33s 3Sd 9.521 0.549 0.515

Os2p34s 3Sd 11.93 0.352 0.043

Os2p35s 3Sd 12.7 0.26 0.0022
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whereR2=r2+v2t2 is valid for free motion of nuclei.
Due to the fact that the interaction potential has a decreas-

ing exponential character[see Eq.(6)] at large distances, the
integral in Eq.(1) can be divided in two parts, in the region
of smallr, P12srd oscillates rapidly between 0 and 1 and may
be replaced by its average value1

2, and in the second region
an exponential approximation can be used:

sL
I =

1

2
pr*2 + 2pE

r*

`

P12srdrdr ,
1

2
pr*2 . s12d

The problem of calculatingsL
I is then reduced to the es-

timation ofR0=r* and in the asymptotic approach this quan-
tity can be obtained requiring that the terms linear inR0 in
the cross section, coming from the integration in the second
region, must vanish[15]. As a resultR0 can be calculated by
solving the following transcendental equation:

E
−`

` DL
I sRd
2

dt =
e−C

2
= 0.28, s13d

DL
I sRd is the partial exchange interaction potential, related to

the specified state of a quasimolecule with the total spinI
and the projectionL of the electron orbital angular momen-
tum on the axis of the quasimolecule, andC=0.577 is the
Euler constant.

Neglecting the nonadiabaticity of the resonant charge-
transfer process, the different exit channels, corresponding to
different terms of the quasimolecule, can be considered sepa-
rately and an averaged resonant charge-exchange cross sec-
tion is evaluated through the following expression:

stsEd =
1

g
o
L,I

sL + 1ds2I + 1d sL
I sEd. s14d

Hereg=oL,IsL+1ds2I +1d is the total degeneracy forS and
P states of the quasimolecule at large internuclear distances.

More serious is, probably, the neglect of the coupling to
other molecular states. Eachg-u pair acts independently, so
that the present approach is similar to a two-state quantum
description. The effect of coupling is therefore neglected. To
estimate the dependence of the charge-transfer cross sections
on this factor we can use the calculations performed many
years ago by Malaviya[11], who compared the two-state
approximationsQc

2d with the eight-statesQc
8d approximation

for the process

Hs2s,2pd + H+ → H+ + Hs2s,2pd. s15d

Comparison between the two sets of cross sections shows
that at 200 eVQc

8 is 0.60Qc
2, i.e., the two-state approxima-

tion sand therefore the present resultsd can be considered
as an upper limit to the true cross sections. For higher
excited states one reasonably should expect higher differ-
ences due to the enormous increase of molecular states.
This point, together with the uncertainty on theA values,
limits the accuracy of the present calculations.

The partial magnitudessL
I sEd and the relevant magni-

tudes of the averaged resonant charge-exchange cross sec-
tion, calculated for some excited states of nitrogen and oxy-
gen atoms with the use of expressions(5), (6), and(12)–(14),
are given in Tables V and VI. In the case ofs-electron trans-
fer, the calculation is reduced to the solution of the following
transcendent equation:

pR0
2

2
=

p

2g2ln2SB

v
R0

s2/g−1/2dD , s16d

wherev is the collision velocity and the parameterB depends
on the asymptotic parameterA and on the quantum numbers
of the valence electron, the atom and the ion. Since the mag-
nitude of the cross section is determined by the values of
parametersA and g, the cross sections for states Osns 3Sd
and Osns 5Sd, which are characterized by similar values of
these parameters, are close to each other. So the magnitudes
of the cross section for the states Os4s 3Sd and Os5s 3Sd have
not been presented.

The above-evaluated velocity dependencies of the reso-
nant charge-exchange cross section for excited states of N
and O atoms have been used for calculating the relevant
transport cross sections̄*sTd, which is determined by the
known expressions

s̄*sTd =
1

2
E

0

`

s*sxde−xx2dx, x =
mrv

2

2kT
, s17d

s* =E
0

r0

2ps1 − cosudrdr. s18d

Hereu is the scattering angle andmr is the reduced mass of
the system. Neglecting the distortion of the rectilinear trajec-
tory of the colliding particles, one obtainsu=p and s*

=2st.
In the frame of the approximation used, the magnitudes*

with taking into account the relatively weak velocity depen-
dence of the resonant charge-exchange cross section, is ex-
pressed by the following approximate relation[18,20,21],

TABLE IV. Clebsch-Gordan coefficients for the system
N+s3Pd+espd→Ns2D3/2,5/2d [17].

m m ML

2 1 0 −1 −2

1 1 1

1 0 2−1/2

1 −1 6−1/2

0 1 2−1/2

0 0 s2/3d−1/2

0 −1 2−1/2

−1 1 6−1/2

−1 0 2−1/2

−1 −1 1
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which is well justified for the high-energy region, where the
elastic scattering is negligible in comparison with the reso-
nant charge-exchange process,

s̄*sTd = 2sts2.2vTd, vT = s2kT/mrd1/2. s19d

The magnitudes of the transport cross section, calculated by
the relationss17d–s19d for temperatures corresponding to the
relevant collision energies, are also presented in the Tables V
and VI. An evaluation of the contribution of elastic scatter-
ing on the N−N+ ground-state interaction based on a polar-
izability model f22g shows that this contribution is less than
10% for Tù104 K, which is within the characteristic ac-
curacy of the asymptotic approach applied. Moreover, re-
cently, a polarizability approach was employed to estimate
the dependence of diffusionsmomentum-transferd cross
sections for H++Hsnd on the principal quantum number
f23g. The comparison of the corresponding collision inte-
grals, up ton=5, with those of Ref.f2g, based on charge-
transfer cross sections, shows that elastic contribution is
still of the order of 10%.

The data for the ground-state systems N++N and O++O
are also compared in Table VII with the calculation data of
Refs.[2,24,25], as well as experimental data[26], obtaining
in general a satisfactory agreement. The same is also ob-
served between the present calculations and the diffusion
cross sections of low-lying excited states calculated in Ref.
[2]. Note that in all cases the results of Ref.[2] underesti-
mate the relevant cross sections.

It should be noted that the case(a) of Hund coupling is
used throughout. A more careful analysis[18] of the interac-
tion potentials acting, for example, in the case of Os3Pd
−O+s4Sd shows that the scheme of angular-momentum cou-
pling can change, depending on the collision energy, up to
case(c) of Hund, opening to question the choice of the quan-
tum numbers reported in Tables V and VI. However, the
differences in the averaged cross sections do not strongly
depend on the orbital and spin angular-momentum coupling
selection, while the partial contribution can depend on the
choice[27]. The present choice, which is similar to the one
used in Refs.[2,24,25], gives results in satisfactory agree-
ment with the experimental and theoretical ones[24–26],
thus confirming the small dependence of charge-transfer
cross sections on the coupling schemes. Note also that the

TABLE V. The partial and averaged magnitudes of the resonant
charge-exchange cross sections10−16cm2d and the relevant transport
cross sections, calculated for excited states of nitrogen on the basis
of formulas(12) and (13) with the use of expressions(5) and (6).

State L I Collision energy(eV)

0.1 1.0 10.0

Collision velocity
s105 cm/sd

1.66 5.24 16.6

N(4Sd
sg=1.034d

0 1/2 65.9 52.7 40.8

3/2 73.3 60.0 47.8

5/2 79.5 65.2 52.1

1 1/2 47.0 36.7 27.9

3/2 53.8 43.0 33.0

5/2 57.9 46.6 36.4

st 61.5 49.5 39.0

s̄*sTd 108 72.5 65.6

N(2D3/2,5/2d
sg=0.945d

0 1/2 62.2 50.8 39.5

3/2 72.0 56.0 43.8

1 1/2 36.3 23.3 15.9

3/2 42.9 28.5 20.0

st 50.0 36.1 27.2

s̄*sTd 85.2 60.0 43.9

N(2P1/2,3/2d
sg=0.898d

0 1/2 65.7 53.9 38.4

3/2 75.7 61.9 46.7

1 1/2 39.0 29.3 18.7

3/2 44.6 33.4 23.6

st 52.8 41.2 29.0

s̄*sTd 90.3 67.4 47.5

N(2p23s 2Pd
sg=0.53d

0 1/2 404 332 265

3/2 438 374 307

st 426 361 293

s̄*sTd 764 647 518

N(2p24s 2Pd
sg=0.344d

0 1/2 2690 2400 2130

3/2 2870 2580 2270

st 2800 2520 2220

s̄*sTd 5280 4720 4160

Ns2p25s 2Pd
sg=0.25d

0 1/2 4900 4300 3710

3/2 5290 4670 4090

st 5160 4540 3970

s̄*sTd 9700 8520 7400

N(2p23s 4Pd
sg=0.556d

0 1/2 201 149 100

3/2 233 179 129

5/2 274 216 161

st 249 192 140

s̄*sTd 390 288 200

N(2p24s 4Pd
sg=0.35d

0 1/2 1770 1520 1300

3/2 1910 1660 1440

5/2 2000 1750 1520

st 1930 1690 1460

s̄*sTd 3670 3150 2680

TABLE V. (Continued.)

State L I Collision energy(eV)

0.1 1.0 10.0

Collision velocity
s105 cm/sd

1.66 5.24 16.6

N(2p25s 4Pd
sg=0.26d

0 1/2 4310 3780 3260

3/2 4680 4090 3590

5/2 4850 4290 3760

st 4710 4140 3620

s̄*sTd 8860 7740 6750
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ratio of partial cross sections for theS states of Ns4Sd
−N+s3Pd interaction calculated in the present paper agree
very well with the same results reported in Ref.[28], ob-
tained by the Firsov approximation with Heitler-London po-
tentials.

IV. DISCUSSION

The above-presented calculations show that this approach
is a quite effective tool for solution of the complicated and
time-consuming problem of evaluation of the resonant

charge-exchange cross section for excited many-electron at-
oms. The accuracy of this approach is determined by the
accuracy of the asymptotic representation of the single-
electron wave function(3) and exchange interaction potential
(5) and (6). The relative uncertainty of the calculated cross-
section data is estimated assR0gd−1!1, whereR0 is the so-
lution of Eq. (16).

The second important simplification, which is inherent to
all approaches to the determination of the resonant charge-
exchange cross section, concerns the neglect of the change of
the quantum numberL during the collision. This allows a
separate consideration of partial resonant charge-exchange
cross sections related to various states of a quasimolecule,
resulting in the averaging formula(14). This change can be
due to the rotation of the molecular axis during the collision,
which can promote the violation of the angular-momentum
conservation law and a transition of a quasimolecule from
one term to another. Therefore, strictly speaking, the colli-
sion processes related to specific quasimolecular state cannot
be considered independently, which bears additional techni-
cal difficulties in calculating the cross section(see Refs.
[18,20,21]).

One more source of a possible uncertainty of the calcula-
tion result relates to type of coupling of the valence electron
orbital and spin angular momenta with those of ionic core,
and also of the variety of possible states of the ion core.
These issues are also analyzed in detail in Refs.[18,20,21].
Particularly, there has been stated that in the case of many-
electron atoms with not fully filled outer electron shell the
exchange interaction potential depends generally on the
angle between the quantization axis and the axis of the qua-
simolecule. The specific form of this dependence is deter-
mined by the scheme of angular-momentum addition and
therefore by the sort of the element under consideration. In
these cases the exchange interaction potential is changing
during the collision not only due to change in the internu-
clear distance, but also due to the rotation of the quasimo-
lecular axis. However, the detailed analysis, presented in
Refs.[18,20,21], shows a rather low sensitivity of the calcu-
lated resonant charge-exchange cross section to the choice of
the electron coupling and to account for the angular depen-
dence of the exchange interaction potential.

The influence of the resonant charge-exchange cross sec-
tion involving excited atomic states on transport properties
of an equilibrium low-temperature plasma can be established
having the data about the equilibrium composition of the
plasma under consideration as well as the scaling law for the
dependence of the resonant charge-exchange cross section on
the principal quantum number. These types of calculations
have been performed recently for hot equilibrium hydrogen
plasma[5], in which case the relevant scaling law for Hsnd
+H+ and Hsnd+Hsmd resonant electron transfer was deter-
mined on the basis of exact wave function. It is interesting to
estimate the scaling law for the above-considered systems
N+N+ and O+O+ and compare it with that for hydrogen
obtained in[5].

As it follows directly from the expression(16) with taking
into account the approximate relation(4), the scaling law for
the resonant charge-exchange cross section involving highly
excited atoms withn=1/g@1, is asymptotically close to the
following expression:

TABLE VI. The partial and averaged magnitudes of the reso-
nant charge-exchange cross sections10−16 cm2d and the relevant
transport cross sections, calculated for excited states of oxygen on
the basis of formulas(12) and (13) with the use of expressions(5)
and (6).

State L I Collision energy(eV)

0.1 1.0 10.0

Collision velocity s105 cm/sd
1.55 4.9 15.5

Os3Pdsg=1.0d

0 1/2 56.7 44.8 32.6

3/2 63.8 51.3 39.5

5/2 69.8 56.1 43.8

1 1/2 39.0 29.0 21.1

3/2 45.2 35.3 25.7

5/2 49.8 38.7 28.8

st 52.9 41.1 30.8

s̄*sTd 88.4 67.5 51.5

Os2p33s 5Sdsg=0.573d

0 1/2 308 255 207

3/2 344 286 233

5/2 365 306 254

7/2 381 320 268

st 367 312 261

s̄*sTd 664 558 462

Os2p34s 5Sdsg=0.34d

0 1/2 1890 1640 1390

3/2 2060 1800 1530

5/2 2160 1890 1630

7/2 2240 1970 1700

st 2150 1870 1620

s̄*sTd 4020 3470 2980

Os2p35s 5Sdsg=0.26d

0 1/2 4240 3710 3200

3/2 4590 4000 3520

5/2 4780 4170 3690

7/2 4940 4290 3840

st 4750 4150 3660

s̄*sTd 8950 7790 6890

Os2p33s 3Sdsg=0.549d

0 1/2 360 300 246

3/2 400 336 276

5/2 423 357 298

st 412 350 291

s̄*sTd 745 630 516
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st , na, a < 4. s20d

This dependence can be derived from the purely classical
consideration of the resonant charge exchange process, in
accordance with which the electron transfer is seen as an
overbarrier transition, but not underbarrier tunneling, as in
the case of the quantum consideration. The magnitude of the
classical resonant charge-exchange cross section averaged
over the quantum numbers, and m is represented by the
formula

scl = 8pe4/«H
2 = 32pe4n4, s21d

where«H=1/2n2 is the electron binding energy andn is the
principal quantum number. The calculation data of Tables V
and VI for n=5 are of the same order of magnitude as the
classical values obtained by Eq.s21d. The resonant charge
exchange for higher excited atoms should be indeed treated
as classical transition.

The fitting parametera, determined on the basis of calcu-
lated cross-section data, ranges in a rather wide interval be-
tween 3.0 and 5.0, while the parametera determined on the
basis of Hsnd−H+ transport cross sections[5] is about 2.7.
Therefore, the use of the scaling law(20) for evaluating the
transport characteristics of plasma with taking into account
excited atomic states is hardly justified, and state to state
calculation is necessary for this purpose.

V. CONCLUSIONS

The present results represent to the best of our knowledge
the first calculation on the resonant charge transfer cross sec-
tions involving excited atomic states for air components with
principal quantum number different from the ground state.

These results have been calculated by using the Firsov
approximation for charge-transfer cross section and the
asymptotic method for the differences of gerade-ungerade
potential energy curves. The method has been tested by com-
paring the results for ground and low-lying excited states.
The results show a dramatic increase of resonant charge-
transfer cross section with the principal quantum number of
the excited electron, confirming old calculations of resonant
charge-transfer cross sections for excited atomic hydrogen.

The obtained charge-transfer cross sections have been
used to derive diffusion-type collision integrals(transport
cross sections) of the systems O* +O+ and N* +N+. Work is
now in progress to use these data in determining the contri-
bution of excited states on transport properties(viscosity and
thermal conductivity) of nitrogen and oxygen plasmas.
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