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We review the shift and broadening of hyperfine resonance lines of alkali-metal atoms in buffer gases. We
present a simple theory both for the shift and the broadening induced by He gas. The theory is parametrized by
the scattering length of slow electrons on He atoms and by the measured hyperfine intervals and binding
energies of theS states of alkali-metal atoms. The calculated shifts and their temperature dependence are in
good agreement with the published experimental data. The calculated broadening is 1.6 times smaller than the
recent measurements, and more than 20 times smaller than the earlier measurements. We attribute much of the
linewidth in the earlier experiments to possible small temperature gradients and the resulting inhomogeneous
line broadening from the temperature dependence of hyperfine frequency shift at constant buffer-gas pressure.
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I. INTRODUCTION

The magnetic-resonance frequencies of optically pumped
alkali-metal atoms in buffer-gas cells have long been used in
compact, portable frequency standards[1] and magnetome-
ters[2]. The buffer gas is needed to slow down the diffusion
of optically pumped atoms to the cell walls, which tend to
depolarize the atoms. The buffer gas broadens the linewidth
and shifts the frequency of the microwave resonance by an
amount that depends on temperature and is proportional to
buffer-gas pressure. Higher buffer-gas pressures will be
needed to mitigate the faster diffusional losses of polarized
atoms to the cell walls in proposed miniaturized atomic
clocks[3,4]. Thus there is renewed interest in the frequency
shift and line broadening induced by the buffer gases. The
shifts measured in different laboratories are in fairly good
agreement with each other[5–8]. However, there appear to
be only two experiments[9,10] from which microwave reso-
nance linewidths can be inferred. These results differ from
each other by more than a factor of 10. It would be thus
useful to understand this large discrepancy.

In this paper we consider alkali-metal atoms in helium
gas, a system for which simple and fairly reliable theoretical
estimates of the pressure shifts and damping rates are pos-
sible. The estimates obtained in this work are in good agree-
ment with previous measurements of the frequency shifts
and their temperature dependence. The homogeneous line
broadening recently measured by Walteret al. [9] is about
1.6 times larger than the theoretical predictions of this paper,
but the earlier measurements of Vanieret al. [10] imply a
linewidth that is more than 20 times larger. As we discuss
below, it appears that much of the linewidth in the earlier
experiments was due to small temperature gradients[11] and
the resulting inhomogeneous line broadening from the tem-
perature dependence of the frequency shift.

For optically pumped alkali-metal atoms in He gas, most
of the physics is captured by the Fermi pseudopotential[12]

VFsr ,Rd =
2p"2a

me
dsr − Rd, s1d

where r and R are the displacements of the alkali valence
electron and the He nucleus, respectively, from the nucleus

of the alkali-metal atom. The electron mass isme, and the
scattering length for slow electrons on He atomsf13g is a
=0.63 Å. The simplepotentials1d was first introduced by
Fermi f12g to account for the pressure shifts of optical
absorption lines in alkali-metal vapors. The interactions
between alkali-metal atoms and heavier, more polarizable
buffer gasessfor example, Ar atoms or N2 moleculesd
have non-negligible long-range interactions that cannot be
described by the Fermi pseudopotential alone. Thus we
will consider only He in this work.

II. BORN-OPPENHEIMER POTENTIALS

The Born-Oppenheimer potentialV=VsRd is the energy
required to bring an alkali-metal atom and a buffer-gas atom
from infinite separation to a separationR. PotentialsV can be
found that are consistent with the cross sections of alkali-
metal atom scattering from buffer-gas atoms, notably from
the noble-gas atoms[14]. However, these experimentally
based potentials are not unique, and they do not seem to be
available for He gas.

We denote the unperturbed wave function of the valence
electron in the alkali-metal atom byfgljmsr ,sd. The
electron-spin variable iss= ±1/2. Theground-state princi-
pal quantum numbersg are 3, 4, 5, and 6 for Na, K, Rb, and
Cs atoms, respectively. The orbital, total, and azimuthal
angular-momentum quantum numbers arel =0, j =1/2, and
m= ±1/2. Wetake the Born-Oppenheimer potential to be the
expectation value of the Fermi potential as follows:

VsRd =E d3r ufgljmsr ,mdu2VFsr ,Rd =
"2aPg0

2 sRd

2meR
2

. s2d

We assume valence-electron wave functions of the form

fnljmsr ,sd =
Pnl

r
o
mlms

Ylml
xms

Cl,ml,1/2,ms

jm . s3d

Here Pnl=Pnlsrd is the radial wave function, the spherical
harmonicYlml

=Ylml
su ,fd is a function of the colatitude angle

u and azimuthal anglef of r , the spin basis function is
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xms
=xms

ssd=dsms
, andCl,ml,1/2,ms

jm is a Clebsch-Gordan coef-
ficient f15g. We will use atomic units, with distancesr mea-
sured in Bohr radiisaB=5.29310−9 cmd, and energiesEnlj

measured in hartreess27.2 eVd.
We have evaluated Eq.(2), and the results are plotted in

Fig. 1. For Na, K, and Rb we used the conveniently tabulated
Hartree-Fock wave functions of Clementi and Roetti[16].
The tables of Clementi and Roetti include atoms withZ
ø54. For Cs withZ=55 we used the Coulomb wave func-
tions, discussed in connection with Eq.(11) below. The Cou-
lomb wave functions differ only by a few percent from the
Clementi-Roetti wave functions for the valuesr ù4 of inter-
est for this work. The potentials of Eq.(2) are nearly the
same as those estimated by Pascale[17].

III. MODIFICATION OF THE HYPERFINE COUPLING

The He atom will perturb the ground-state wave function
of the valence electron of the alkali-metal atom. We write the
perturbed wave function as

cgljmsr ,R,sd = fgljmsr ,sd + dfgljmsr ,R,sd. s4d

We assume that we can use the Fermi potential of Eq.s1d
and the first-order perturbation theory to write

dfgljmsr ,R,sd

=
2p"2a

me
o

fnl8 j8m8sr dfnl8 j8m8
* sR,sdfgljmsR,sd

Eglj − Enl8 j8
.

s5d

The sum extends over all excited statesfnl8 j8m8sr ,sd of the
valence electron. The unperturbed energies of the excited
states areEnl8 j8 and the unperturbed energy of the ground
state isEglj.

The scalar magnetic-dipole couplingAI ·S of the nuclear
spin I of a ground-state alkali-metal atom to the electron spin
S has a coupling coefficient[18]

A =
8pgSmBmI

3I
ucgljms0,R,mdu2. s6d

Here I is the nuclear-spin quantum number, the Bohr mag-
neton ismB=9.274310−21 erg G−1, theg factor of the elec-
tron is gS=2.0023, and the magnetic moment of the alkali
nucleus ismI. By symmetry, the coupling coefficientA
=AsRd depends on the magnitude, but not on the direction
of R. According to Eq.s4d, the spherical symmetry of the
valence-electron wave function is perturbed by the buffer-
gas atom, so an anisotropic magnetic-dipole hyperfine in-
teraction and an electric quadrupole interaction with the
nucleus will be induced. These anisotropic hyperfine in-
teractions will produce zero-frequency shift after averag-
ing over all orientations, and the numerical estimates by
Walter et al. [19] show that they are not large enough to
appreciably affect the spin relaxation(line broadening), so
we will ignore them.

The magnetic-dipole coupling coefficient(6) can be writ-
ten as

A = Ag + dAg, s7d

where the coupling coefficient for a free atom in anS state
with l =0 is

An =
8pgSmBmI

3I
fnljm

2 s0,md. s8d

We assume thatfnljms0,md is a real number.
To first order indfgljms0,R ,md, the shift of the ground-

state coupling coefficient(6) is

dAg =
16pgSmBmI

3I
fgljms0,mddfgljms0,R,md. s9d

Combining Eqs.s9d and s6d, we find that the collisionally
induced shift of the hyperfine coupling coefficient is

dAg

Ag
=

"2a

meR
2 o

n.g

ÎAn

Ag

Pn0sRdPg0sRd
Eglj − Enlj

. s10d

The sum extends over all excitedS statessl =0 and j =1/2d
with n.g.

For the ground-state wave functions of Na, K, and Rb we
used the tabulated values of Clementi and Roetti[16]. For
the ground state of Cs and for the excitedS states of all
alkali-metal atoms, we used Coulomb-approximation wave
functions[20]:

Pn0 = o
q=0

p

cqe
−r/n*

rn*−q, s11d

where the effective quantum numbern* is written as

n* =
1

Î2sE` − Enljd
, s12d

with E` denoting the ionization energy of the atom. The
coefficientscq of the sum can be calculated starting fromc0,
using the recurrence formula

FIG. 1. Theoretical Born-Oppenheimer potentialsVsRd for
alkali-metal atoms interacting with He atoms, calculated from
Eq. (2).
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cq = −
n*sn* − qdsn* − q + 1d

2q
cq−1. s13d

The upper limitp of the asymptotic series of Eq.s11d was
chosen to get the best convergence forr =1, slightly inside
the core of the atom. The wave functions were normalized
such thate1

`Pn0
2 dr=1. The small probability to find the elec-

tron at r ,1 was negligible, even for the ground state. For
temperatures on the order of 100 °C, thethermal energy is
so small compared to the repulsive Born-Oppenheimer po-
tential that helium and alkali-metal atoms almost never
get closer to each other thanr =4. The binding energies
Enlj needed in Eq.s12d were taken from the experimental
data tabulated by Mooref21g, and the hyperfine coupling
coefficientsAn are experimental values taken from the re-
view article of Arimondoet al. [22]. The sum in Eq.(10)
was extended ton=` by assuming that the binding energies
E`−Enlj, the hyperfine interaction coefficientsAn, and the
radial wave functionsPn0sRd scale as power laws inn, which
is expected and is also observed from the experimental data
[21,22].

We have evaluated Eq.(10), the relative shift in resonance
frequency as a function ofR, for the alkali-metal atoms Na
through Cs, and sketched the results in Fig. 2.

IV. EVOLUTION OF THE DENSITY MATRIX

It is convenient[9] to discuss the properties of existing
isotopes of alkali-metal atoms in terms of a hypothetical iso-

tope with nuclear-spin quantum numberĪ =1/2 andnuclear
magnetic momentmĪ =mN=eh/2mpc. From Eq.(6), we see
that the ratio of the hyperfine coupling coefficientAn of an
existing isotope with magnetic momentmI and nuclear-spin

quantum numberI to the coupling coefficientĀn of the hy-
pothetical isotope is

hI = An/Ān =
mI

2ImN
. s14d

At the center of a ground-state alkali-metal atom, the
valence-electron spin produces a magnetic field of magni-

tude B=Āg/4mN=0.121, 0.393, 0.581, 1.22, and 2.05 MG
for Li, Na, K, Rb, and Cs, respectively. Numerical values

of Āg/h for the ground states of the alkali-metal atoms are
summarized in Table I.

The pressure shift is caused by the interaction

Vps= dAgI ·S, s15d

which acts during binary collisions between helium and
alkali-metal atoms. The density matrixr of the alkali-metal
atoms will evolve due to interactions15d at the rate

ṙ =
kdAgl

i"
fI ·S,rg +

hI
2GC

2
s2hI ·SjrhI ·Sj − hI ·Sj2r

− rhI ·Sj2d. s16d

Here the collision-induced changedAg in the coupling coef-
ficient for an existing isotope will be related to that of the

hypothetical isotope bydAg=hIdĀg.
From Eq.(16) we see that the rate of change of the den-

sity matrix is parametrized by the mean shiftkdAgl of the
hyperfine coupling coefficient and by the Carver rateGC [9].
We discuss both parameters in more detail below.

V. THEORETICAL PRESSURE SHIFT

For alkali-metal atoms at relatively low magnetic fields
(like those of atomic clocks), the energy-basis statesufml are
well described by a total angular-momentum quantum num-
ber f =a= I +1/2 or f =b= I −1/2 and by anazimuthal quan-
tum numberm. The basis states are very nearly eigenstates of
I ·S with 2I ·Suaml= I uaml and 2I ·Subml=−sI +1duaml.

If we take the matrix elements of Eq.(16) between the
initial state ua,mal and ub,mbl of a typical clock transition,
we find

kamauṙubmbl = s− idv − gdkamaurubmbl + ¯ , s17d

whereg is defined in the beginning of Sec. VI below and
“¯” denotes coupling to other components of the density
matrix. The frequency shift is

dv =
fIgkdAgl

2"
= NaB

3v0l, s18d

wherefIg denotes 2I +1, N is the number density of He at-
oms, andv0=fIgAg/2" is the unperturbed frequency of the
clock transition. The dimensionless, isotope-independent pa-
rameterl was introduced by Bean and Lambertf8g. Experi-

FIG. 2. Relative shift in hyperfine frequency, induced by helium
gas on alkali-metal atoms, calculated from Eq.(10).

TABLE I. Hyperfine coupling coefficientsĀg/h for hypothetical

alkali-metal atoms with a nuclear-spin quantum numberĪ =1/2, and
with a nuclear moment of one nuclear magneton. The small
hyperfine-structure anomalies, less than 1% for the heaviest atoms,
have been ignored.

Atom Li Na K Rb Cs

Ground state 22S 32S 42S 52S 62S

Āg/h (GHz) 0.370 1.198 1.772 3.734 6.238
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mentally, l=dv /v0NaB
3 is determined in accordance with

Eq. s18d from measured values of the frequency shiftdv in a
gas of number densityN. Bean and Lambertf8g show thatl
can be obtained theoretically from the statistical average

l =
1

aB
3E

0

` dAg

Ag

e−V/kT4pR2dR, s19d

where k=1.38310−16 erg K−1 is the Boltzmann constant
and T is the absolute temperature. The results of evaluating
Eq. s19d with the values ofV from Eq.s2d anddAg from Eq.
s10d are shown in Figs. 3 and 4, together with the experimen-
tal data evaluated according to Eq.s18d. The theory is in
reasonably good agreement with the systematic experimental
measurements ofl by Bean and Lambertf23g for Na, K, and
Rb, and in fair agreement with other experimental determi-
nations ofl.

VI. THEORETICAL CARVER RATE

The damping rate from Eq.(17) is

g =
hI

2fIg2GC

8
. s20d

We assume that the orbit of the colliding pair is a classical
path, defined by the Born-Oppenheimer potentials2d, the
impact parameterb, and the initial relative velocityv at in-
finite separationR=`, whereVsRd=0. For problems of this
type, it is known that classical-path theories give the same
answer as partial-wave theories to 1% or betterf28g. The
radial speedu=usRd= udR/dtu at the separationR is

u = vÎ1 −
b2

R2 −
2V

Mv2 , s21d

where M is the reduced mass of the pair. We choose the
origin of time such that the closest approach distances
=ssb,vd, defined byussd=0, is attained att=0. In a classical-
path approach the Carver ratef9g is given by

GC = NE
0

`

dvwvE
0

`

db2pbf2. s22d

Here the phasef=fsb,vd, accumulated as the result of a
collision between an alkali-metal atom and a buffer-gas
atom, is

f =E
−`

` dt

"
dĀg = 2E

s

` dR

"u
dĀg. s23d

The initial relative speedv of the colliding pair has the
Maxwell distribution,w=wsv ,Td,

w = 4pv2S M

2pkT
D3/2

e−Mv2/2kT. s24d

The temperature dependence of the Carver rate at constant
helium density is given by

GC8 =
] GC

] T
= NE

0

`

dv
] w

] T
vE

0

`

db2pbf2, s25d

where from Eq.s24d we find

FIG. 3. Relative shiftsl for Na and K atoms, induced by helium
gas. The solid lines are obtained theoretically from Eq.(19). The
dashed lines are the temperature-dependent measurements of Bean
and Lambert[23]. Additional experimental data points are from
Bloom and Carr[24] for K, and from Ramsey and Anderson[25]
for Na.

FIG. 4. Relative shifts for Rb and Cs atoms, induced by helium
gas. The solid lines are obtained theoretically from Eq.(19). The
temperature-dependent measurements are shown with the dashed
line for Rb (Bean and Lambert[23]) and with the dash-dotted line
for Cs (Arditi and Carver[7]). Additional experimental data points
are from Ref.[5] for Rb and from Refs.[6,26,27] for Cs, as indi-
cated in the legend.
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] w

] T
=

w

T
SMv2

2kT
−

3

2
D . s26d

Numerical values ofGC and GC8 , calculated from Eqs.s22d
ands25d, are summarized in Table II. The helium density in
amagats is

fHeg =
N

NL
, s27d

where the Loschmidt constantNL =2.686831019 cm−3 is de-
fined as the number density of an ideal gas at a pressure
p=760 torr s1 atmd and temperatureT=273.15 Ks0 °Cd.

VII. CARVER RATE MEASUREMENTS

We know of only two direct or implicit Carver rate mea-
surements: the pioneering study by Vanieret al. [10] of 85Rb
relaxation in4He, from which Carver rates can be inferred,
and more recent direct measurements of Carver rates of Rb
in 3He by Walteret al. [9]. Since the experimental results are
so different from each other, and since the rates measured in
Ref. [10] are so much larger than either our theoretical pre-
dictions or the measurements of Ref.[9], we will review
both experimental procedures in some detail and comment
on what we think the cause of the large discrepancy is.

Vanier et al. [10] made systematic measurements of the
damping rates of85Rb in the gases4He, Ne, N2, and Ar. A
spherical quartz cell, with a radiusRc<3.5 cm, contained a
buffer gas and a small amount of85Rb metal. The cell was
centered in a TE011 cylindrical microwave cavity. A small
static field, on the order of 1 G in magnitude, was directed
along the axis of the cavity. Resonant light from a85Rb lamp
passed through a87Rb filter cell that absorbed light that
could have pumped85Rb atoms from the hyperfine multiplet
with f =a=3. The filtered pumping light passed along the
axis of the cavity into the cell and produced a population
inversion, with more85Rb atoms in the high-energy multiplet
with f =a=3 than in the low-energy multiplet withf =b=2.
The light was unpolarized, so there should have been very
nearly equal populations of sublevels with different azi-
muthal quantum numbersm but within the same multipletf.
Some slight inequalities of the populations with different val-
ues ofumu (a small tensor polarization) could have been pro-

duced[29,30], but they would have had negligible effect on
the experimental observations.

The atoms were optically pumped long enough to reach
steady-state conditions. Then the pumping light was turned
off, and a short time later a pulse of microwaves was trans-
mitted to the cavity. The microwave frequency equaled that
of the “0-0 resonance” between the sublevelsufml= u30l and
ufml= u20l. The magnetic moment of the atoms, coherently
oscillating during the 0-0 transition, coupled some of their
microwave power into the cavity, and part of this power
emerged from the cavity via a transmission line, where it was
monitored with a heterodyne detector. The amplitude of the
free induction decay(FID) signal as a function of timet was
fit to an envelopee−g2t, to extract the decay rateg2. By
varying the He pressurep, it was determined that the depen-
dence of the decay rate on pressure was well described by

g2 =
p2

Rc
2D0

p0

p
+ Nv̄s2 + g2

se. s28d

The first term describes the losses of coherently oscillating
Rb atoms due to diffusion through the buffer gas to the cell
walls. The diffusion coefficient at the reference pressurep0
=760 torr isD0. The second term describes the homoge-
neous damping due to collisions of85Rb atoms with He
atoms of number densityN. The thermally averaged cross
section iss2, and the mean relative velocity of a colliding
He-Rb pair isv̄=Î8kT/pM =1.293105 cm s−1, where the
reduced mass of the pair isM =3.82 a.u. and T
=300.15 K is theabsolute temperature of the experiments
s27 °Cd. The final termg2

se=g2
sesTd describes the damping

due to spin-exchange collisions between pairs of Rb at-
oms, which were assumed to have the density of a satu-
rated vapor at the temperatureT.

The homogeneous, collisional damping rate of the 0-0
coherence, described by the cross sections2, is a linear com-
bination of two rates:(1) The Carver rateGC due to the
pressure shift interaction of Eq.(15); and(2) the S-damping
rate Gsd due to the spin-rotation interactiongS·N during
Rb-He collisions[31,32].

In analogy to Eq.(16), the contribution of spin-rotation
interactions to the evolution of the density matrix isṙ
=Gsds−3r /4+S·rSd. Substitutingr= ua0lkb0u into this ex-

TABLE II. Calculated Carver ratesGC/ fHeg and their temperature coefficientsGC8 / fHeg, where[He] is the
helium gas density in amagats. The values were calculated for a temperatureT=100 °C with the Born-

Oppenheimer potentialsVsRd of Fig. 1 and with the hyperfine coupling perturbationsdĀg that follow from
Fig. 2.

3He 4He

Alkali GC/ fHeg GC8 / fHeg GC/ fHeg GC8 / fHeg
metal ss−1 amagat−1d ss−1 amagat−1 K−1d ss−1 amagat−1d ss−1 amagat−1 K−1d

Na 6.20 0.0043 7.12 0.0048

K 23.6 0.012 26.5 0.014

Rb 123.3 0.051 139.5 0.056

Cs 334.1 0.065 377.3 0.073
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pression, and evaluating the self-coupling term, we see that
S-damping makes a contribution34Gsd to g2. The contribution
to g2 from the Carver rate is given by Eq.(20), so the mea-
sured values2=294310−24 cm2 should be determined by

Nv̄s2 =
3

4
Gsd+

hI
2fIg2GC

8
. s29d

For 85Rb, I = 5
2, mI /mN=1.3527, andhI =0.2706.

Vanier et al. also measured the initial amplitude of the
FID as a function of the delay timetd between the termina-
tion of the optical pumping and the application of the micro-
wave pulse. They found that the initial amplitude decayed
exponentially ase−g1td. They were able to fit their measured
valuesg1 versus the gas pressurep to obtain an expression
analogous to Eq.(28), and they deduced a longitudinal re-
laxation cross sections1, which is related to theS-damping
rateGsd by

Gsd

fXg
= NLv̄s1. s30d

Here the number density of the buffer gasX in amagats is
fXg=N/NL, in analogy to Eq.s27d. Combining Eqs.s29d and
s30d, we find

GC

fXg
=

8NLv̄

hI
2fIg2Ss2 −

3

4
s1D . s31d

The valuess1 were too small to measure for He or Ne.
Recently, Walteret al. have measured the dependence of

the most slowly damping longitudinal mode of spin polariza-
tion for Rb atoms in He, N2, and Ar buffer gases as a func-
tion of magnetic field, ranging from nearly zero to many
thousands of gauss. The slowing down of this late-time re-
laxation rate as the magnetic field increases is called mag-
netic decoupling. The spin relaxation due toS-damping is
slowed down by a factorkSzl / kFzl, the fraction of the total
spinkFzl=kSzl+kIzl that is carried by the electron. This slow-
ing down of the relaxation is sometimes called the “nuclear
flywheel” effect, since it is due to the replenishment of the
electron-spin polarization destroyed in anS-damping colli-
sion (hence, the name “S-damping”) by the hyperfine cou-
pling to the still-polarized nuclear-spin[9] in the time be-
tween collisions. The magnetic decoupling curve has its
minimum width when both the Carver rate and the spin-
exchange rate are negligible compared to theS-damping rate.
The spin-exchange rate is very temperature dependent, since
the Rb number density in a saturated vapor increases rapidly
with temperature. TheS-damping rate coefficient also has a
substantial temperature dependence[9,33]. The temperature
dependence of the Carver rate was too small to measure in
the work of Walteret al., and as one can see from Table II,
little experimental temperature dependence is predicted theo-
retically. By quantitatively analyzing the magnetic decou-
pling curves of85Rb and87Rb in cells with various gas pres-
sures and at different temperatures, Walteret al. [9] were
able to determine both the Carver rates and theS-damping
rates for Rb in3He, N2, and Ar gases.

The experimental measurements of Carver rates and
S-damping rates for Rb in various buffer gases as well as the
theoretical predictions of the Carver rate for He are summa-
rized in Table III. Neither measurement in helium gas is
equal to the theoretical predictions, but the measurement of
Ref. [9] is only a factor of 1.6 larger than theory. The theo-
retical prediction of the Carver rate in Eq.(22) involves the

square of the theoretically estimated value ofdĀg, integrated
over a classical path. This will magnify small discrepancies

in dĀg, compared to the shift calculation of Eq.(19), which

involve only a Boltzmann statistical average overdĀg. Given
the good, but not perfect, agreement between the theoretical
and the experimental values of the shift in Figs. 3 and 4, a
discrepancy by a factor of 1.6 in the broadening is not un-
reasonable.

VIII. INHOMOGENEOUS BROADENING

Recent measurements[34] of the linewidths of Zeeman
and microwave resonances of87Rb in N2 are fully consistent
with the linewidths predicted using the data of Ref.[9] and
inconsistent with the data of Ref.[10]. From inspection of
Table III we see that there is actually a very good agreement
between the data of Refs.[9] and[10], except for the Carver
ratesGC of He and N2, where the results differ by about a
factor of 10. Both experiments measure very small Carver
rates for Ar. As we explain in this section, we think that the
rates measured in Ref.[10] included inhomogeneous damp-
ing due to a small temperature spreadDT,1 °C in the rela-
tively large sample cells[11].

Bean and Lambert[23] have measured the microwave
frequenciesn for 23Na, 39K, and85Rb in the buffer gases He,
Ne, Ar, and N2 for temperaturesT ranging from about
−125 °C to 800 °C. They summarize their measurements
with a quantity

sn − n0d/P = b. s32d

The microwave frequency for free atoms with no buffer gas
is n0, andP is defined asP=p/p10, wherep10=10 torr.

The parameterb=bsTd depends only on temperatureT
and it is the shift of the ground-state hyperfine frequency at

TABLE III. A comparison of experimental values of the Carver
ratesGC and theS-damping ratesGsd for Rb in the buffer gases He,
Ne, N2, and Ar at 27 °C. Theoretical predictions ofGC from Table
II are also shown for Rb in3He and4He, the gases used by Refs.
[9,10], respectively. The experimental values ofGsd rates of Ref.[9]
have been extrapolated to 27 °C with the linear temperature depen-
dencies quoted therein.

Gas, GC/ fXg ss−1 amagat−1d Gsd/ fXg ss−1 amagat−1d

X Ref. [9] Theory Ref.[10] Theory Ref.[9] Ref. [10]

He 191 120 3093 135 8.5 <0

Ne 2828 <0

N2 395 3062 115 118

Ar <0 14 610 637
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the temperatureT in a buffer gas with the number densityNB
of an ideal gas at a pressure of 1 cm Hgs10 torrd and a
temperature of 300 °C,

NB =
1

76
NL

273.15

300
= 3.21933 1017 cm−3. s33d

The hyperfine frequencyn for the alkali-metal isotope in a
gas of number densityN and temperatureT is therefore

n = nsN,Td = n0 + b
N

NB
. s34d

We assume that the buffer gases obey the ideal-gas law, so
the gas pressurep is

p = NkT. s35d

We can use Eqs.s34d and s35d to write n as a function ofp
andT,

n = nsp,Td = n0 +
bp

NBkT
. s36d

We note that the parameterb of Eq. s32d, measured and
tabulated in Ref.f23g, is related to the dimensionless param-
eterl of Eq. s19d, measured and tabulated in Ref.f8g, by

l =
b

NBaB
3n0

. s37d

The sealed-off cells used by Vanieret al. [10] were iso-
baric, but they may have had small temperature gradients,
e.g., with the gas at the top of the cell slightly hotter than the
gas at the bottom.

Using Eq.(36) and the data of Bean and Lambert[23], we
have plotted in Fig. 5 the frequency shift versus temperature
for cells with 1 atm of gas pressure. We have also indicated
the inhomogeneous line broadeningDnp that would occur for
a temperature spread of 20 °C. This is an unrealistically
large gradient, chosen to illustrate the point, not to imply that
gradients that large are suspected for the experiments of Ref.
[10]. From Fig. 5 it is clear that Ar is about ten times less
sensitive to the line broadening due to temperature gradients
than are He, Ne, or N2 gases.

To estimate how large the temperature gradient would
have had to be to account for a substantial fraction of the
damping observed by Vanieret al. [10], let us assume that
the temperature in sealed-off cells can be written as

T = T̄ + dT, s38d

whereT̄ is the mean temperature anddT=dTsr cd is a small
inhomogeneity that depends on the locationr c within the
cell. The gas in the cell will be at a constant pressurep, so
we can use Eq.s38d to show that the resonant frequency at
the pointr c is

n = nsp,T̄d + dTS ] n

] T
D

p

, s39d

where the rate of change of resonant frequency with tem-
perature at a constant pressure is

S ] n

] T
D

p

=
p

NBk
S d

dT
Db

T
= −

N

NBT
Sb −

T

Tr

db

dx
D . s40d

HereT is the temperature in kelvins,T−T0 is temperature in
°C, and

x =
T − T0

Tr
s41d

is the parameter used by Bean and Lambertf23g for the
convenient polynomial fits to their data. The characteristic
temperature interval isTr =1000 K.

We can estimate the temperature spreadDT needed to
entirely account for the values ofg2 measured in Ref.[10] by
noting that for coherence that damps ase−g2t, the full width
at half maximumDn of the Fourier transform isDn=g2/p.
Then

g2 = Nv̄s2 = pU ] n

] T
U

p

DT. s42d

Solving Eq.s42d for DT with the values ofs2 from Ref.f10g
and with u]n /]Tup values that follow from Eq.s40d and the
data of Ref.f23g, we find that temperature spreads of only
about 0.75 °C aresufficient to cause the large measured
85Rb damping ratesg2 in 4He, Ne, and N2 in Ref. f10g. In
contrast, the measuredg2 rate in Ar f10g is much lower,
and is consistent with recent dataf9g. We believe the Ar
g2 data in Ref.f10g are not dominated by inhomogeneous

FIG. 5. Absolute hyperfine frequency shifts of85Rb induced by
the buffer gases at a constant pressurep=760 torr, inferred from the
data of Bean and Lambert[8]. Also shown are the spreads in fre-
quencyDnp that would be caused by a spread in temperatureDT
=20 °C centered at 30 °C. The line broadening due to temperature
inhomogeneities in Ar is about ten times less than that in He, Ne,
or N2.
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broadening, since a much larger temperature spread of
3.8 °C would be required.

IX. CONCLUSIONS

We have critically reviewed the literature on pressure
shifts and damping rates of microwave transitions of alkali-
metal atoms in buffer gases. For the buffer gas He we have
developed a simple theory that is in good agreement with
pressure shift measurements in Na, K, Rb, and Cs. The
Carver rates reported in Ref.[10] for He and N2 are more
than a factor of 10 larger than those measured more recently
[9] by a method that is independent of temperature gradients,
and they are larger than the theoretical predictions of this
paper by more than a factor of 20. However, there is good
agreement between the two measurement methods for Ar,

which is relatively insensitive to temperature gradients. The
much smaller(compared to Ref.[10]) linewidths in N2 that
can be inferred from Carver rates reported in Ref.[9] have
been confirmed in the recent experiments by Jauet al. [34].
This new evidence suggests that the homogeneous broaden-
ing of the microwave resonance lines of Rb vapor in He, Ne,
and N2 buffer gases is much smaller than that reported in
Ref. [10] thirty years ago. A plausible reason for this discrep-
ancy is a presence of small temperature gradients[11] that
have led to inhomogeneous line broadening.

ACKNOWLEDGMENTS

We are grateful to A. Dalgarno, J. Vanier, T. Walker, D.
Walter, E. Miron, and M. Romalis for discussions. This work
was supported by AFOSR and DARPA.

[1] J. Vanier and C. Audoin,The Quantum Physics of Atomic Fre-
quency Standards(Hilger, Philadelphia, 1989).

[2] W. E. Bell and A. L. Bloom, Phys. Rev.107, 1559(1957).
[3] N. Cyr, M. Tetu, and M. Breton, IEEE Trans. Instrum. Meas.

42, 640 (1993).
[4] J. Kitching, S. Knappe, and L. Hollberg, Appl. Phys. Lett.81,

553 (2002).
[5] P. L. Bender, E. C. Beaty, and A. R. Chi, Phys. Rev. Lett.1,

311 (1958).
[6] M. Arditi and T. R. Carver, Phys. Rev.112, 449 (1958).
[7] M. Arditi and T. R. Carver, Phys. Rev.124, 800 (1961).
[8] B. L. Bean and R. H. Lambert, Phys. Rev. A12, 1498(1975).
[9] D. K. Walter, W. M. Griffith, and W. Happer, Phys. Rev. Lett.

88, 093004(2002).
[10] J. Vanier, J.-F. Simard, and J.-S. Boulanger, Phys. Rev. A9,

1031 (1974).
[11] J. Vanier kindly informed us that although great care was taken

to avoid temperature gradients, it is still possible that the op-
tical radiation incident on the cell may have caused such a
gradient. However, its size is unknown.

[12] E. Fermi, Nuovo Cimento11, 157 (1934).
[13] T. F. O’Malley, Phys. Rev.130, 1020(1963).
[14] U. Buck and H. Pauly, Z. Phys.208, 390 (1968).
[15] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,

Quantum Theory of Angular Momentum(World Scientific,
Singapore, 1988).

[16] E. Clementi and C. Roetti, At. Data Nucl. Data Tables14, 177
(1974).

[17] J. Pascale, Phys. Rev. A28, 632 (1983).
[18] R. M. Herman, Phys. Rev.137, A1062 (1965).

[19] D. K. Walter, W. Happer, and T. G. Walker, Phys. Rev. A58,
3642 (1998).

[20] D. R. Bates and A. Damgaard, Philos. Trans. R. Soc. London,
Ser. A 242, 101 (1949).

[21] C. E. Moore,Atomic Energy Levels, Natl. Bur. Stand.(U.S.)
Circ. No. 467(U.S. GPO, Washington, D.C., 1952), Vol. II-III.

[22] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys.
49, 31 (1977).

[23] B. L. Bean and R. H. Lambert, Phys. Rev. A13, 492 (1976).
[24] A. L. Bloom and J. B. Carr, Phys. Rev.119, 1946(1960).
[25] A. T. Ramsey and L. W. Anderson, J. Chem. Phys.43, 191

(1965).
[26] E. C. Beaty, P. L. Bender, and A. R. Chi, Phys. Rev.112, 450

(1958).
[27] F. Strumia, N. Beverini, A. Moretti, and G. Rovera, Proc. Sym-

pos. Freq. Control 30, 468(1976).
[28] Y.-Y. Jau, N. N. Kuzma, and W. Happer, Phys. Rev. A67,

022720(2003).
[29] M. A. Bouchiat and F. Grossêtete, J. Phys.(Paris) 27, 353

(1966).
[30] B. S. Mathur, H. Y. Tang, and W. Happer, Phys. Rev. A2, 648

(1970).
[31] R. A. Bernheim, J. Chem. Phys.36, 135 (1962).
[32] S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A.

R. Young, and W. Happer, Phys. Rev. A58, 1412(1998).
[33] A. B. A. Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A.

R. Young, G. D. Cates, and W. Happer, Phys. Rev. Lett.80,
2801 (1998).

[34] Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Ro-
malis, and W. Happer, Phys. Rev. Lett.92, 110801(2004).

ORETOet al. PHYSICAL REVIEW A 69, 042716(2004)

042716-8


