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We present a theory that describes the interaction of hydrogen atoms with antihydrogen at subkelvin tem-
peratures. The formalism includes a nonlocal complex optical potential, whose imaginary component describes
the breakup of the HH complex into positronium and protonium fragments. Usaty inito methods, we
construct the imaginary part of the optical potential and calculate the cross sections for fragmentation in
ultracold collisions of H andH. We find a 35% reduction in the value of the scattering length from that
obtained in the Born-Oppenheimer approximation. We estimate the lifetimes for quasibound states of this
complex to fragment into a protonium-positronium pair.
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[. INTRODUCTION the energy of an emitted photon during radiative association.
. L Though the rate for proces®) is small [9], the emitted
Recent advancegl-3) in the laboratory realization of giation resulting from association could be exploited as a
low-energy antihydrogen allow the prospect for high-yiagnostic. Unlike the Kisystem, in which dipole radiations
precision spectroscopic study of neutral antimatter. For pregegyiting from transitions between vibrational levels of the
cise measurements that may herald new boundsClel  ground electronic state are forbidden, thel lHomplex does
violation and the weak equivalence princip#, it is desir-  possess an electric dipole moment. This property of the sys-
able to trap the antihydrogen in a cold or ultracold environ-tem may allow for the spectroscopic study of this novel four-
ment[5]. Following suggestion§6] that ultracold hydrogen body matter-antimatter complex.
atoms may be useful as a buffer gas to cool trapped antihy- The main goal of this paper is to develop a theory that
drogen, we undertook7—10 an investigation of hydrogen- provides a full quantum-mechanical description of the pro-
antihydrogen atom collisions at low energies. Our studiexzesses itemized above. Though our previous work incorpo-
revealed that elastic collisions drive and favor cooling at gasated a state-of-the-art molecular Born-OppenheiitiBD)
temperatures above 0.1 K. However, at colder temperaturepotential for the HH system, as well as a Schrodinger de-
inelastic processes, in particular, the rearrangement reactiodcription of atom dynamics, it is limited by the assumption of
a single channel Born-Oppenheimer approximation. In this
H+H— pp+e'e, (1)  Ppaper we address these limitations and develop a theory that
includes multichannel effects through the introduction of a
and proton-antiproton in-flight annihilation domind& and  nonlocal optical potentigii1]. It describes both the fragmen-

may limit the utility of the sympathetic cooling of Hy cold  tation dynamics for procesd) and gives the leading-order
H atoms. Other inelastic processes, such as lepton-antilept@®rrection to the BO potential. The theory provides a frame-

annihilation in flight[10], and the association proce$ work for the calculation of collision cross sections as well as
o o lifetimes and level shifts of the quasibound levels of thd H
H+H— HH +hy, (2)  molecule.

Estimateg12-15 for elastic and inelastic cross sections,
at collision energies corresponding to room temperatures and
higher, were based on a semiclassical description of the
heavy particle dynamics. At low collision energies a
Schrédinger description, used in several recent studies

*Also at MIT-Harvard Center for Ultracold Atoms, Cambridge, [16—18, is necessary. The theory presented here provides a
MA 02139, USA; Electronic address: bernard@physics.unlv.edu multichannel description within the framework of a Born-

also occur at very cold temperatures. Herl i$ a quasi-
bound state of the hydrogen-antihydrogen moleculerand

"Electronic address: alejandro.saenz@physik.hu-berlin.de Oppenheimer separation of leptonic and baryonic motion.
*Electronic address: piotr.froelich@kvac.uu.se In Sec. Il we review the coordinate systems correspond-
SElectronic address: Svante.Jonsell@tp.umu.se ing to the various rearrangement channels that are used in
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setting up the relevant coupled equations. In Sec. Il we outgate toX, and are related to momenB conjugate toY,
line the basic coupled-channel approach that we use to comccording to

struct the optical potential. We derive an expression for the T

imaginary part of the complex scattering length and use it to Pa=W, P, (6)
calculate fragmentation cross sections. We compare the PrOiherew"
cedure used here with that given in a previous formulatiorthe molgc
[7.8] based on a post-prior treatment of frggmentatl_oq. W%Nhich the BO approximation for the leptonic eigenstates is
show that the two formulations are equivalent within a

. - T .
distorted-wave approximation but that the former involvesmade' The_ Jacobi systen, i (RC_m’vaxlb’Xzb) is useful
. : . for describing the asymptotic eigenstates of the hydrogen-
the use of a renormalized interaction. antihydrogen fragment. It is related % according toX
In Sec. IV we present the results alb initio calculations ydrog 9 ' 9 b

for the parameters that characterize the optical potential. WEWbY’ where

is the transpose of the inverse\&f,. We call X,
ular coordinate system, since it is the system in

calculate the values of the BO coupling coefficients that de- M M m m
termine fragmentation rates, a_nc_i calculatg the cross sections 2M+m) 2M+m) 2M+m) 2(M+m)
for process(1) at ultracold collision energies. We compare

the results obtained using the optical potential with those \,, _ | - M M __m m
obtained in a previous theoretical treatmé¢8i. We show b M+m M+m M +m M +m
that the imaginary part of the optical potential leads to a 35% -1 0 1 0

reduction in the value of scattering length from that obtained
in the Born-Oppenheimer approximation. We use the optical 0 -1 0 1
potential to calculate the lifetimes for quasibound levels of (7)
the HH complex to fragment into protonium-positronium
pairs. Atomic units will be used, unless otherwise stated
throughout.

The system&, andX,, differ in thatR, represents the inter-
huclear separation vector, wherddgis the vector that joins

the hydrogen center of mass to the antihydrogen center of
II. COORDINATE SYSTEMS mass and the position vectoxs,,X,,, are defined with re-
spect to origins located at the parent baryon of the respective
lepton. Both systems include a common total center-of-mass
position vectorR ,. Finally, we introduce the systed,

The nonrelativistic Hamiltonian for a hydrogen-
antihydrogen atom pair is

:P_i N P_§+p_'f+ p; 11 =(Rems RerUpn, Upd T, whereX.=W,Y and
2M  2M  2m 2m |r;-Ry |r,—-Ry M M m m
N 1 N i1 1 3) 2M+m) 2M+m) 2(M+m) 2(M+m)
ri=Ro| [rp=Ry|l [ri=ry] |[Ri=Ryl’ 1 1 1 1
W, = - = -= -=
where R;,R,,r;,andr, are the proton, antiproton, elec- 2 2 2 2
tron, and positron position vectors, expressed in an arbi- -1 1 0 0
trary inertial coordinate system, respective®{,P,,p;,p2 0 0 -1 1
are the corresponding conjugate momenh, is the
baryon andm the leptonic mass. We introduce the column (8)

— t , . _
vectorY =(Ry,R;,r,r;)" and use the symbdf to label g 'is the vector that joins the center of mass of g
this coordinate system. Because of the possibility for dif-protonjum, fragment to the center of mass of éhe*, posi-

ferent arrangements, we employ the Jacobi coordinate SY$ronium, fragmentu,,, is thepp separation vector ang the
tems and we labelX,, Xp, X, defined as follows;Xa  |eptonic separation vector. It is useful to partition Hamil-

= (RemsRa,X1a,X20)", where tonian(3) into terms involving fragment Hamiltonians and to
Xa=W,Y, (4)  rewrite Eq.(3) in the form
H=Hg,+H;,
M M m m b= b ©
2M+m) 2(M+m) 2(M+m) 2(M+m) o Pem? +P_bz+prz+pr2_i_i
_ Ob — ’
1 1 0 0 AM+m) 2 2p 2w [Xgp| (X
W, = 1 1 . .
a -= - = 1 0 whereP. ,,Pp, are momenta conjugate ®. ,, andRy, re-
2 2 spectively, andpq,, pop are the leptonic momenta conjugate
1 1 0 1 to X1p, X2p, respectively. The interactidd;, contains all terms
"2 T2 in Eq.(3) that are not included iklg,, w=mM/(M+m) is the

5) reduced mass of the hydrogéantihydrogem atom, andy;
=(m+M)/2=M/2. The eigenstates dfiy, are asymptotic

X1a, X2 @re the leptonic position vectors whose origin is lo- eigenstates dfl and represent the fragment corresponding to

cated at the baryon center of mass, momé®tare conju- a free hydrogen and antihydrogen atom pair. InXhelacobi
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system, they have the form, apart from a normalization fac- K2 K .2

_ b —
tor, E= 2 +e(1s) + e(1s) = 2—; + €pn(Nl) + €pd(1). (15)
(Xp| ¥y = expliK ¢ m - Rem)eXpliKy, - Rp) h1s(X1p) Prs(Xap) For molecular calculations we choose to work in ¥gco-
(10) ordinate system, and we express the fragment stétigsand

|W.), defined in Eqs(10) and (13), respectively, using the

where K., is the total momentum of the i fragment, coordinates defined in thk, system. Thus,

and sinceP. ;, commutes withH, it is conserved under W (R, X;,,X25) = (X, ¥p)
rearrangement. In the remaining discussion we will work

in an inertial frame wher& . ,,=0. In Eq.(10), K, is the _ exp(i mK, - (X]_a_XZa)>¢l (Xea + RS/2)
relative momentum of the atom-antiatom pair apd is a M+m s e
1s hydrogenic orbital. The eigenenerdy for eigenstate _
|\Pb>y is ><¢1:;(X2a Ralz) (16)
and
K 2
E=2 > +e(ls) +e(ls), (11) Wo(RaX1aXz0) = (Xa Vo)
| = expliK - (Xza+X2)/2]
wheree(1s) is the ground-state energy of the hydrogen atom. X (R o) @16(Xog = X12) - (17)

Throughout, we will specialize to low collision energies so
that for an incoming statgP,), only the ground 4 states of
the atom-antiatom are occupied.

If we assume a collision of atoms initially prepared in
|'¥,,) we must allow for the possibility of a rearrangement to  Motivated by the discussion leading to E¢s6) and(17),
a positronium-protonium fragment that is best described irwe introduce a close-coupling ansatz for the system wave

IIl. CLOSE-COUPLING EQUATIONS

the X Jacobi system. For this fragment we define function | W) that describes the collision of H with ldnd
allows for fragmentation intpp+e*e”. We define
H= HOC+ Vf,
(12) (X W) = Fy(R)(X4[b) + 2 Fe(Ra)(X,[0),
2 2 2 2
Hoc Pem” P Pon  Pps 1 1 ‘

TaMAm 2u M om o Jugd und
( ) Mt | pn| | p5| <Xa|b> = ub(Ra,XlayXZa), (18)

whereP_ are momenta conjugate Ry, p,, is the momentum

for the relative motion of the baryons in the protonium sys- (Xale) = ue(Ra,X1a,X20)

tem, pps the momentum for the relative leptonic motion in \yhere the indexc refers to positronium fragments with
the positronium system, and:=2 mM/(m+M). Vyincludes  center-of-mass energyf/2u; and according to relation4.6)

all terms in Eq.(3) not contained irHo.. The eigenstates of anq(17), we require thatb) and|c) tend to the asymptotic
Hoc are asymptotic eigenstates of the Hamiltontdnand  |imits,

represent the fragment corresponding to a free protonium

and positronium pair. In th¥ . Jacobi system, they have the MK p - (X152 = X22)
fOrmp P ‘ Y Y Up(RasX1a,X20) — eX%I M—+jn

(XdWo) = expliK - R Yri(Upr) i (U, (13 X 12+ R D) 1sXea = Ra/2)
~ p15(X1a + Ra/2) p1s(X2a = RA2), (19
where K, is the momentum for the relative motion of the
protonium and positronium pair ang,, .- are hydrogenic expli kgX1a + X24//2)
orbitals for the protonium and positronium systems, respec- Ue(Ra,X1a,X2a) —
tively. In this discussion we limit the quantum numbers for
the positronium atom to have the values=1,l’=0, but (20)

relax this constrai_nt in the latter sectiops. According to Eq.Up to a normalization factor, EG20) represents the outgo-

(12), the energy eigenvalue for stat) is ing wave, with radial momenturr,, for a positronium atom
in its 1s state.

(14) In the remaining discussion we work exclusively in the
X, frame and henceforth drop all frame subscripts. For the
sake of economy in notation we represent all amplitudes as

Conservation of energy requires that the energy eigenvaluket vectors. For example, in this notation the amplitude

E, corresponding to an incoming eigenstiig), must sat-  Up(Ra,X1a,X25) defined in Eq(18) is equivalently written as

isfy the equality Up(R,X1,X,) or simply |b). In the asymptotic limitR — o,

Xoq = X14) -
|X1a +X2a| /2 <Pls( 2a 1a)

2
E= 2—; + pn(N) + €,4(19).
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U,(Ra,X1aX2,) approaches the ground asymptotic eigenstate Heeta) = e(R)|a)
of the leptonic adiabatic, or Born-Oppenheimer, Hamiltonian
2 9 and e(R) is the BO potential for the Born-Oppenheimer
Heet = Py + P2 + P1-P2 _ 1 - 1 eigenstatea) that correlates to the ground atomic eigenstate
2m 2m  2M of the H(1s)+H(1ls) fragment. It follows from definitions
(26) and(23) that P>=P is a projection operator. We define
1 1 1 1 Q=1-P=3, |k){k,| and note that Q|x,=|x, and

X, + =
2‘

+ T R[ " xi-x] RI (21)  (a|P|k,)=0. In the limit R—oc the free positronium ampli-
X1 — = X, + —‘ 172 tudes|«,) are orthogonal to the ground-Born Oppenheimer
2 2 state|a), and[&)— |a) in this limit. Therefore ansat#5) has

provided that we ignore the lepton translation factor. Thethe desweq properties) |n.the limit R—c it correlates to
summation in Eq(18) over positronium fragments involves the approximate asymptotic state for thélk) +H(1s) frag-

a continuum but since we are interested in |OW_energy’nent,(ii) it accounts for the pOSSlblllty of fragmentation into
s-wave collisions we are a”owetB] to restrict the con- the asymptotic pOSitroniUm states that are described by the
tinuum functions in expansiofi8) to s waves. It is useful to ~channel functions,,). We have included the projection op-
introduce cavity normalized states according to the prescriperatorP in ansatz25) in order that the channel stat@ and

tion |, remain orthogonal at all internuclear distances. Because
we limit the projection operator sum in E6) to fragment
1 sin(kRe) channels that are orthogonal to the BO ground stgti the
|kn) = \r'%TO R, ¢15(8), asymptotic region, we satisfy the relatidtia) — |a), asR
— o0, The choice for projection operat®ris not unique, but
we also require thata|P|a)# 0, for if (alP|a)—0 in some
Ky = 77_”, region of R, ansatz(25) describes an expansion of an over-
Ry complete set of states in that region. If that is the case, ansatz
(22 (25) should be replaced by an alternative description.
R.= R =|(x1 +x,)|/2, We obtain an effective Schrodinger equation for ampli-

tude F(R) by requiring that

§=Ups=(Xg = x2),
e @He-e![¥) = EGY),

wheren is an integer andR, is the cutoff radius for the (27)
spherical cavity. The ke, is a direct product of the posi- (Kkn|Heet| W) = E(k|¥),
tronium continuum function, which is regular at the origin,
¢1s is state function that represents the relative motion of thg,nereH is given by Eq(3) expressed in th, system and
constituent positronium leptons, aml is the distance be- g s the collision energy in the center-of-mass frame. Using
tween_the positronium atom and the center of mass of th%nsatz(ZS), recognizing thata|a)=1 and(ky| k)= Sy We
protonium system. The kets have the property find that, if we neglect nonadiabatic couplind®], Eqs.(27)

(ol 1r) = S (23 are equivalent to

where the bracket notation implies integration over all lepton
coordinates(|) — [d3k, [ d®x,. In the continuum limit, a sum
over k, of an arbitrary functiorf(k,) is equal to the integral

2
ZP—F(R) + ('é|PHe-e+P|"é)F(R) -EF(R)
Mi

+ 2 (@PHgeQl i, (R) =0,
St — = fo dki(k) (24) 29

P2
—f (R)+ Ho-ot f. (R)-Ef. (R
asRy— . In this notation, ansat¢l8) is rewritten as 2u «(R) % (Kol QHe-erQlrem T (R) (R)

W) =F(R)[@ + 2 f, (R)|xy), (25) == (k| QHe-e-Pl2)F(R).
' We evaluate the matrix element
where
2
|5_> = P|a> <Kn|QHe‘e+Q|Km> = 5mn<2K_n + Eps(15)> + 5mnvp_p(R):
(alPla)’ M
P=1- % | kKl (26) Vy(R) = - é + (k| Vil k1), (29)
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1 1 1 1 The optical potential
Vf = - ‘ - +

R
X1+E

From the above definition we note that

X2__ X2+_
2

Xq —
2 1

2
where we have neglected the off-diagonal elements that con- aa( )= (<a|He erla) - E ((@He- e+|K”>S'< a
tribute toV,5(R). The integrand in Eq:29) is odd under the

interchange of lepton coordinates and since, according to + S, (kn[He- e+|a>)+2 2<Kn|He | K Sae Sec a)
definition (22), |, is invariant under this symmetry opera- ot
tion, the matrix element of the operatdy vanishes. Thus, in (34)
the approximation where off-diagonal elements in E2f)
are ignoredVy5(R)=-1/R. where we define the overlap matrix
We define the eigenfunctiong,(R) that are solutions of

the equation Sax, = (@ kn),

P2 (35

Z%(R) +V(R)bn(R) — Emdbn(R) =0, (30) @Pla)=1-2 [(alk)*=1-2 IS, |* = detS.

i n n

where e, is the mth eigenvalue. Using Eq.30), we can  SinceH+|a)=€e(R)|a), we find using Eq(29),
rewrite Eqg.(28) in integral form

p2 - - V. (R= eR) (1 22 Su 2)
2. F(R) + ValF(R) ~EF(R) + 2 Va,, 1 (R) =0, 0 de ts{ o
Mi n non
31 2
SRR - (3D) + 2 ( + epd19) +vp%R)>|saK | ]
:fd3R’E >0 V. F(R'), .
m Kn " S, [‘Ae(R)
E_em___fps(ls) :e(R)+E'<f‘—
21t . detS
where
K2
R (a|PHg-¢+P|a) AeR), = 2—” + €,4(19) + V5(R) - &(R), (36)
= " 2y
Vs (alP|a)
and
~ <Kn|QHe‘e+P|a>
V, J(R) = e - - Ae(R >KnsaKn
n? \{(a|P|a) Vac (R) =V, o(R) = —F—— (37
n n vdetS
~ (8| PHe-¢+Q| k) We reexpress this matrix element by noting that
Vae,(R) = W- (32
! Ae(R), S, = (aAe(R), |rp)
The above expression for the amplitud,gn(R) contains a 2
sum over discrete values for quantum indexas well as a = <a| + €pd(19) + Vi5(R) — e(R)|kp)
continuum contribution. We use the summation symbol to 241
represent both. In the limit of cold collisions, energy conser- =—(a|V¢|xy) (38)
vation [8] requires thafKn(R)—>0 in the limit R— 0, that is,
only bound protonium fragments are allowed in the exitoOr
channels.
Combining the two terms in Eq31), we obtain vaKn(R) =v:<na(R) _ <a| |Kn> (39)
p2 ~ \'detS
25T (R + Ve RF(R) ~EF(R) Also
R)¢I(R) ~ ~
i [ary s —8RGRD G g _ Vo (RIP
o K " VaoR) = 6(R) + 2 — . (40)
E-e,- 2— - €,{19) o Ae(R),
it "

Combining the above results, we rewrite £83) in the

xVKna(R’)F(R') =0. 33 form
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2
P—F(R) +e(RF(R) - EF(R) +f dSR’VOp(R,R’)F(R’)
2

=0, (41)

where the optical potential,(R,R’) is given by

nRGL(R) ~
VRR)=3 S — ARG 7, R
"o E_em_z_,urjf_fps(ls)
+8&R-R)D Va, ROP 42
R-ROZ (42

In the continuum limit, we get

0 mR :’nRr
)= [ ae IR

E-en—e—edl9)

U(R)ULR)

2
+53(R—R’)J gl ORI 43)

0 AeR) '

where e=k?/2u; is the kinetic energy of the positronium
fragment,

UR) = (e|Vi|a) = (V[ VQ(R),

<E|Vf|a> =1\ 2(<L_;2 J' d3X1d3X2

Q(R)=detS=1 —J de|<e|a>|2 =1 —J de
0 0

sin(kR;)

e1(EVi ¥ (X1, X2, R),

KelVila)[?
[Ae(R)P?
(44)

R. and & are defined in Eq(22). W(x4,X,,R)=(X|a) is the
adiabatic eigenstate aré) is the s-wave positronium wave
function that is energy normalized(e|e’)=d(e—¢€')
=8(k?/ 2us—k'?/2u5)]. The statege) obey the closure rela-
tion,

3R~ R)

E (XXl €)(elx1%5) = Zr RR.

P1(§ p1s(€').

(45)

It is instructive to examine the second term in E@5),
Wirag=Zn fKn(R)|Kn>, so that its asymptotic form is explicit.
Using Eqgs.(25) and(31), and invoking the continuum limit,
we get

d°R’

f d* f xR AR

V
xF(Rn\,—récpls(f)gols(g’)q«xi.xé.R’)kamc.Ré>,
(46)

where

PHYSICAL REVIEW A 69, 042715(2004)

Au, [ sin(kR)sin(kR)
dk——————,
o(ReRe) = Jo RIR(K* =~ k&)

K2 = 2ui(E - en— €419)).

(47)

The manner in which we integrate around the poles of the
Green’s function ka(Rc,Rg) determines the asymptotic
boundary condition. We adopt the Feshbach prescrigfidh
1/(K2-Kk%) — 1/[(k*-k2)—i7], where 7 is a positive infini-
tesimal, and get

———expikpRe=)sin(kyR.<),  (48)

chRc

where R.., R.. is the lesser, greater d® R/, respec-
tively, and k,,>0. Inserting the retarded Green’s function
into Eq. (46) we obtain for the fragment wave function

k
R emecch 1D (R T(ky),

Gy, (R R) =

\I’frag

(49)
T(ky) = f PR b RIF(RI(W 4 Vi (k).

where we have taken the limiR.— o, used definition44),
and definede(k,,)) =|e=k?/2u;).

Equation (49) has the desired asymptotic limit for the
fragment wave function, an outgoirggwave describing a
positronium atom-protonium system. Using E49), we ob-
tain an expression for the differential cross section for the
rearrangement process),

(2m)?
2

wherek; is the wave number of the incident wa¥g,.(R)
=\kiui/ (2m)2 explik;z) in the elastic channelQ) is the
solid angle, with respect to the quantization azisin
which the positronium-protonium fragment is found. Ex-
pression(50) predicts fragmentation cross sections for the
case where the positronium atom is found in the grousid 1
state. A generalization is given later in the paper. If we
further assume that(k,,) is isotropic, we obtain for the
total fragmentation cross section,

do=

E |T(kp)[?dQ2, (50)

Ofrag = (277) E |T(km)|2 (51)

In the discussion that follows we enforce the Feshbach
prescription by the application of the following identity:

1
—12)—in  (k—kp(k+ky)

when evaluating the energy integral in the expression for the
optical potential(43).

Using relation(52) in expression43) we obtain two dis-
tinct contributions to the optical potential,

+midk2-K2), (52

042715-6
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" —\/! ' R , P
Vop(R,R) = V(R,R’) + Vg, (R,R"), (53) 1 &FR) + o(RF(R — EF(R)
where 2u; dR?
V:)p(R*R’) =-m> ¢m(R)¢L(R')Oe(km)(R)Dz(km)(R'), + fo dRR'RV,,(RR)F(R) =0, (59)
(54
e(km) = E— e~ €,419), where
and

. o VooRR)) = J dQ J dQ' Yool ) Vop(R,R") Yoo(©2)
VE(RR)=2 fo dedn(R) (RU(R)U(R")

=> fo dedr(R pH(R)HURUL(R')

. {p !
E-en—€— g4l { 1
+p 1 , (55) E-en—e—gdls)+in
e+ €,415) + Voi(R) - e(R) 1
+P (59
symbol P standing for the principal value of the integral. In €+ €pd19) + V(R —e(R)

deriving Eq.(55) we made use of the closure property of the

states¢(R) and definition(36). V!/(R,R’) is an absorptive  and the summ is restricted td =0 protonium states. In defi-
potential and it accounts for the loss of qux,E the elasticnition (59), ¢(R) arel=0 radial functions and in deriving
channel, due to the fragmentation of th¢ls)+H(1s) into  this expression, we used Ed54) and(55) and invoked the
pp+e’e’. The potentialVi(R,R’) is a correction to the approximationU(R) —(U.(R))=U.(R) where the brackets
Born-Oppenheimer energy(R). imply averaging over all angles of the internuclear ve®or

We rewrite Eq.(58) in integral form,
IV. DISTORTED-WAVE APPROXIMATION

We seek solutions to the Schrodinger equation, F(R) = f(kR) + ZMJOC dRR'g(R_,R.)
0
VZ
- —F(R) +e(RF(R) -EF(R) + J ®*R'V,(R,R)F(R) *
2p; X f dR'R"V,,(R',R)F(R"), (60)
-0, (56) °

where the optical potential,,(R,R’) is given in EQ.(53).  where the Green'’s functiog(R-,R.) is given by
The real part,\/sp(R ,R’), of the optical potential represents a
nonadiabatic correction to the BO ground-state potential g(R-,R.) = — kf(kR)h(kR.) (61)

e(R), and the imaginary par\('op(R,R’), determines the rate

for the reaction, Kils)+H(1s) — pp+e‘e”. Because the opti- and{f(kR),h(kR}=u are independent solutions of the homo-
cal potential is complex, so is thewave scattering phase geneous equation
shift. In the discussion below we show that a distorted wave
treatment of Eq(56) leads to an expression for the imagi- d2u(R)
nary part of the Kils)+H(1s) scattering length that is in aRR - 2uie(RU(R) +kK2u(R) =0 (62
harmony with that obtained using a post-prior description
[8].

We restrict our discussion to the energy regime wher
s-wave scattering dominates and where the phase shift is

éhat satisfy the boundary conditions

given by the effective range expansion HKR) sin(kR+ &)
k L
11
kcot5=—=+=rgk?, (57) (63
a 2 h(kR cogkR+ &)
where§ is thes-wave phase shifia the scattering lengttr, - k

the effective range, anki=\2u;E the wave number corre-

sponding to the motion, during the initial approach, of theas R— . The phase shifis, is a consequence of elastic

H+H system. scattering by the BO potentialR), and we refer to it as the
In the limit wheres-wave scattering dominates we obtain, BO phase shift. In the asymptotic limR— <, Eq. (60) be-

from Eg. (56), the radial equation for thewave amplitude, comes
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R : Expression68) is in harmony with the derivation for the
F(R) =f(kR) - Zﬂikh(kR)f dR'R'f(kR) fragmentation cross section given in E§1). However, in
0 that expressiofr(R) is a solution to the fully coupled equa-
* . A , tion (42). If we replaceF(R) by Fo(R) in Eqg. (51), we obtain
Xfo dRRVo(R,RO)F(RY) the result given above.

An expression similar to Eq68) was derived in a previ-

_ sin(kR+ &) . cogkR+ 5o)t s (64 OUS treatmen{7,8,21 of the collision process. The major
B k k an o, difference between the two approaches, for the expression of
the fragmentation cross sections, involves the higher-order

effect of the projection operatd?. Here, the coupling ele-

tan 5:—2,uikf dR R'f(kR') | dR" R"V,,f(R",R)F(R"). ments_involve the use of a renormalized mteractMn
0 0 —Vf/\Q where Q) is defined in Eq.(44). In the former
(65)  treatment matrix elements are calculated using interastjon
The effect of the real part of the optical potential on the
Equation(65) is an integral equation for the phase shift scattering length will be discussed elsewhere.
= &r— &y, the difference of the total phase sh#ftand the BO

phase shifts,. We now invoke the distorted-wave approxi- V. CALCULATIONS

mation, in which the radial functio(R) in the integral in

Eq. (65) is replaced byf(kR). Applying it we obtain an ex- A. Fragmentation cross section

pression for the imaginary part of the phase shift The construction of the optical potential requires a calcu-
o 2 lation of the rearrangement coupling coefficieEIg(R) de-

fined in Eq.(44). They are overlap integrals of the Born-
Oppenheimer wave function for the ground state of the H

(66)  -H system with the free positronium states and the inter-

. . . action V.

where we ignored the real part of optical potential and set The BO wave functions take the form

tan 6= é.

BecauseF(R) is normalized to unit incident flux, we can V(rersR) = > ciexd— a\; +\y) = By — o)
use the expressioj20] i

B=1m(8) = 2ukr> 0 dRRIKR ¢RIV (R

4 472 o 2 X NN wgr 3, (71)
— 7T — )
Tabs™ Fﬂ‘ TZ"“% fo dRRIKR) ¢m(R)U k) (R) where),, u; are the prolate spheroidal coordinates
(67) N = (Fia * I'p)
[ R 1
that relates the absorption cross section, due to an absorptive (72)
complex optical potential, to the imaginary part of the phase ( . )
shift. Because the imaginary part of the optical potential de- . Tia = Fip)
scribes the fragmentation reactiorfld) +H(1s) — pp+e'e, R
we equateo,,s with the fragmentation cross sectienag.  andr,,,ry, are the distances of the electron from the proton
Using Egs.(67) and(44) we get center and antiproton center, respectively, B, are the
(277) ) corresponding distances for the positron. The proton is cen-
Tirag = L f dPRFo(R) dr(R)(@ V| (k) | tered at R/2 and the antiproton &/2 alpn_g thez axis. The
m parametersy, 8,Ci, P, S\ t, 0, M are variational parameters

chosen to minimize the BO eigenvalue. A full discussion
(698 . . . T .
concerning the details of this wave function is presented in

whereFo(R) is a solution to the homogeneous SchrédingerRef- [8]. Using the optimized Born-Oppenheimer wave func-
equation tions, we calculated the integrals defined in E4d) U (R
=U(R/VQ;U (R =(¢Via). Since the integrals involve
wave functions for different lepton arrangements, numerical
evaluation was necessary. We employed Monte Carlo inte-
gration and found that acceptable convergence is achieved by

2
~ L VR + eRF(R) = 2 FgR)  (69)
2ui 2

that satisfies the asymptotic boundary condition, sampling about points in a six-dimensional cavity of ra-
dius R=12a,, for the interbaryon separations considered.
| ku explikR) The results for the coupling parametggR) are shown, as a
Fo(R) ~ (2 )3{exp(|kz) +1(69) R } (70 function of positronium momenturkiin Figs. Xa) and Xb).
The graphs correspond to the coupling functions for various
and wheref(0¢) is the BO elastic scattering amplitude. proton-antiproton separations that are identified in the figure.
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0.4

FIG. 1. (a) Coupling coefficientsU.(R) as a function of the
protonium-positronium relative momentusnwheree=k?/ 2, for
the valuesR=0.85y,1.008y, 1.23,, 1.4a,. (b) Coupling coefficients
for the valuesR=1.6ay,2.08y, 3.08y,4.08g. o5

We imposed a self-consistency test to gauge the integrity
of the wave functions used in the calculations for the cou-

pling parameterU.. According to Eg.(38) the identity
Ae(R), (a] kn)=—(a]Vi|x,) must hold if the BO stat¢a) and 04
the cavity normalized statke(«,)) are good eigenstates of =
their respective Hamiltonians. The identity must also hold if &
we replace the cavity normalized functions with continuum &
normalized states, i.€l«,) —|€). In Fig. 2. we compare the =
values of the integraléa|V;|e) (open circleg with the ones 0.2
given byAe(R)(a|€) (open squargsWe find that, and show

in Fig. 2, there is good to excellent agreement for the values
obtained using the different methods.

With the coupling parameterd, we can calculate both 0
the real and imaginary components of the optical potential.
In Fig. 3 we plot the dependence of the coupllddR) ma-
trix on the BO distanc& for e:k$/2m:0.0469, the energy
of the fragment where the protonium is found in the24

03 -

PHYSICAL REVIEW A 69, 042715(2004)

FIG. 2.

Matrix elements (V¢ a) (open squares and
Ae(R)(a] €) (open circley, as a function of the relative momentum
_ k. The proton-antiproton separation has the vahsel.2a,.

the former by the quantitf2?(R) and whose values are
plotted in Table I. We note that d8 decreases so doés.
The question arises, what is the value f(R) at R
=R.iitical: the BO distance at which the leptons are no longer
bound to the nuclear centdi&3]? This question is addressed

in Appendix A where we conclude that),.—0 as R
— Rgiticar from above. Likewise, we show th& becomes
small but must remain finite in this limit. In Fig. 3 this be-
havior is illustrated by the dashed lines, which are extrapo-
lations of the calculated dat@ur minimum value forR
=0.85;) to R=Riica» Which we take to have the value
Reritical =0.7480 [24]. For R<Ryijca We setU, =0 (see Ap-
pendix A).

The results of our calculation for the fragmentation cross
sections are tabulated in Table II. We compare the results
obtained in the distorted-wave approximation with those ob-

0

2
R (units of a,)

FIG. 3. Coupling elementt (R) (dot-dashed lineand renor-
malized couplingU (R) (solid line), as a function of internuclear

state and positronium in its ground state. In that figure Weyistance for positronium fragment energy0.0469. Dashed line is

also plot the renormalized coupliri?j obtained by dividing

042715-9
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TABLE I. Calculated values for renormalization parameiky 4
defined in Eq(44). The second column list® obtained by direct £(R) (@) //
evaluation of the matrix elementée|a)|. Data listed in the third S f?R) J/
column are obtained by calculation [¢&V{|€)| and the use of iden- 1 4
tity (37). %
3
&
R Q Q g
£
4 0.807 0.807 3
3 0.674 0.674 E
2 0.497 0.496 §
1.6 0.398 0.397
1.4 0.336 0.334
1.2 0.262 0.257
1.0 0.193 0.185 o 2 4 6 8 10
0.85 0.186 R(units of a,)

0.4

tained using full solutions to the Schrodinger equation in-
cluding the imaginary component of the optical potential.
Using the unrenormalized coupling, we find good agree- 02
ment in the predictions of both approaches. However, with’

the renormalized interactioﬁf we find that the distorted-
wave approximation considerably overestimates the frags o
mentation cross sections. The cross sections corresponding <

the n=24,23 protonium fragments, and obtained usifg 5
are in good agreement with the results recently obtained by3
Armour and Chamberlairj22] using a Kohn variational
theory. However, we also find significant fragmentation into
then=22,21 states whereas Armour and Chamberlain find &
very small contribution into these states. -0.4 73 T
We also find a significant effect on the calculated value R(units of a,)

for the elastic scattering length. This is illustrated in Fig. 4

where we plot the real part of the wave function using both  FIG. 4. (a) Solid line is the amplitude for the elastic scattering

the BO approximation and that obtained including the imagi-radial wave function,fO(R), in the Born-Oppenheimer approxima-

nary part of the optical potential. We find that the scatteringtion. It is characterized by the scattering length8.10s,. The

length for the latter case has a valued,6compared with  dashed line represents the real part of the radial wave function,

8.1a, [8] obtained in the BO approximation. f(R), obtained by including the imaginary part of the optical poten-
tial to the BO potential(b) Dependence of the radial integrand on

] o ~ the choice for the real part of the radial wave function.
TABLE Il. Cross sections for fragmentation into protonium

states, of principal quantum number and positronium in its
ground state. The cross sections are express& ag wheree is

ts)

rary uni

t

p (:

B. Lifetimes of quasi bound HH levels

the collision energy an@ is a constant listed in the columns. The time-dependent Schrodinger equation for thed H-
system is
Distorted wave  Optical potential

Y Y 1

n Vf Vf Vf Vf Ref. [8] Ref. [22] - 2_V21,[/(R,t) + e(R)lﬁ(R,t) +f dSR,VOp(R,R,)I,[/(R,,t)
m
24 0.15 0.38 0.13 0.32 0.09 0.21 I
(R,

23 024 140 021 048 0.45 =j— (73)
22 0002 002 001 014 0.01 ot
21 0.02 0.13 0.025 0.10 hereV (R R’ is gi in Eq(53). Th .
20 0001 0.004 0001 0.04 whereV,,(R,R’) is given in Eq.(53). The proton-antiproton

annihilation in-flight rate is largely determined by the value
19 0.003 0017 0.004 0.03 of the proton-antiproton wave function at their point of coa-
18 0.0 0.002 0.0 0.003 lescencd 8], and so we can ignore this process for states in
Total  0.39 1.95 0.38 11 0.09 0.67  Which the relative angular momentum, for the atom-antiatom
pair j>0. We also ignore the effects of lepton annihilation
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TABLE llI. Fragmentation lifetimes for selected quasibound states bf W is the radial quantum
number, wheres—1 is the number of nodes in the radial wave function, amithe orbital angular momen-
tum, E,; is the dissociation energy.; is the bound protonium energy with principal quantum nunes
is the fragment energy, ang in units of seconds, is the partial lifetime for statélt#j).

v j E.j n E, € T

27 1 1.23% 10°° 24 0.7969 0.0469 510713
27 1 1.23% 10°° 23 0.8676 0.1177 29101
27 1 1.23% 10°° 22 0.9484 0.1984 34104
27 1 1.23% 10°° 21 1.0409 0.2909 281012
26 1 5.561x 107 24 0.7969 0.0464 181013
26 1 5.561x 107 23 0.8676 0.1172 7810
26 1 5.561x 107 22 0.9484 0.1979 8210712
26 1 5.561x 107 21 1.0409 0.2903 6610713
25 1 5.709< 1073 24 0.7969 0.0412 19104
25 1 5.709< 1073 23 0.8676 0.1120 5410715
25 1 5.709% 1073 22 0.9484 0.1927 281013
25 1 5.709< 1073 21 1.0409 0.2852 49104
25 2 3.833« 107 24 0.7969 0.0466 1810718
25 2 3.833 10 23 0.8676 0.1174 981014
25 2 3.833 10 22 0.9484 0.1980 281011
25 2 3.833< 10 21 1.0409 0.2905 8210718
24 2 5.285< 1072 24 0.7969 0.0417 1810
24 2 5.285< 1072 23 0.8676 0.1125 5R10°1°
24 2 5.285< 1073 22 0.9484 0.1931 521013
24 2 5.285< 1072 21 1.0409 0.2856 481014
23 3 4.650< 1073 24 0.7969 0.0423 8810715
23 3 4.650< 1073 23 0.8676 0.1131 5R10°1°
23 3 4.650< 1073 22 0.9484 0.1938 2810712
23 3 4.650< 1073 21 1.0409 0.2863 481014

in-flight [10]. From Eq.(73) we obtain the conservation 1 d?pR j(j+1)
equation, T + 2R #R) +e(RYUR)-E¥R) =0,
i%ﬁt):zfd3R’fd3Rz,/f(R,t)vgp(R,R’)zp(R',t), (79

(74) whereE is its energy eigenvalue. We label these states and
energies by the radial quantum numberand angular-

P(t) = J dCRY (ROUR,Y). momentum quantum numbégr We define a lifetime, which
according to Eq(75) is given by

We assume that the probabilify(t) for the system to be

found in statey(R,t) at timet has the formP(t)=Pyexp = i,

(-T't). Because/Lp(R,R’) is of finite range, we assume that Ly
HR,t)=exp(-iEt)exp(-T'/2t) (R), where /(R) is normal- B (77
zed to unity, and it follows My=2a fo (R g1 (R (RIARE,

=27, |f0 ¢m(R)De(km)(R)¢(R)dR|2y (75)

for a quasibound state with quantum numbg¢ito fragment
into app(nj) ande*e (1s) pair.

where we used Eq54). ¢(R) is the radial protonium wave In Table IlI, we tabulate the partial lifetimes for selected
function with principal quantum numben, and we made the high-lying, j >0, levels of the HH system. We find that frag-
isotropic approximation Eq(59). We make the additional mentation is most probable into the=24,23 protonium
approximation that the radial wave functighiR) is a bound-  states. A more accurate calculation, including the real part of
state solution to the equation the optical potential, is the focus of current efforts.

042715-11



ZYGELMAN et al. PHYSICAL REVIEW A 69, 042715(2004)

In this discussion we restricted the fragmentation chantained in a distorted-wave treatment. For the renormalized
nels to positronium atoms in their ground 4tate which is interaction, we find that the distorted-wave approximation
justified by the observatiofB] that in the limit of ultracold overestimates the fragmentation cross sections. We also find
collisions it is the dominant fragmentation channel. If wea significant higher-order effect induced by the imaginary
relax the constraints imposed in the discussion of the previcomponent of the optical potential. Its inclusion in the
ous sections, expressi@b4) and Eq.(55) are generalized to Schrédinger equation leads to a scattering length having the

valuea=5.6ay, a 35% decrease in value from that obtained
Voo(R,R) == 7 > > n(R)GHR') in the Born-Oppenheimer approximatid8]. The partial
mnl cross sections for fragmentation into the24,23 protonium
T o / states are in good agreement with recent values obtained us-
XUt R0V iR, ing a Kohn vgriationgl approadi22], however, we also find
significant fragmentation into the=22,21 states. Our total
é(kp) = E—en— dnl), (78)  fragmentation cross section is 1,k wheree is the colli-
sion energy. We used the imaginary part of the optical poten-

. . * oo, tial to estimate the lifetimes for quasibound states of this

Vop(R,R") = 2 dedn(R) dn(R") complex to fragment into protonium-positronium pairs. The
m nl Y0 . ..

theory presented here provides a framework for additional

~ ~ 1 and more accurate calculations that include the real part of
’
XU (R)U o ni(R ){PE —en—e—epdnl) the optical potential.
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APPENDIX A

In order to study the nature of the positronium-nuclei in-
Equation(56) states the central result of this paper andteraction at values foR< Rgca, We represeny; by a mul-

describes an effective Schrodinger equation that provides #pole series whose leading term is
description of hydrogen-atom—antihydrogen-atom interac-
: >3 ) ; £-R 3(£-R)(R-Ry
tions at very low collision energies. The Born-Oppenheimer Vi = 3 : ,
potentiale(R) gives the leading-order interaction between the IR IR

H andH atoms, but even at ultracold collision energies thevvhereg, R. are the positronium coordinates defined in Eq.
H-H system is degenerate and embedded in a continuum QQZ). In deriving Eq.(A1) we have assumed thi <|R|
states i_nvolvingpp ande*e” fragme_nts. In additio_n_t_o elastic gng IR/>|R|. Equation(Al) represents the interaction be-
scattering of the atoms, there exists the possibility of fragyyeen two electric dipoles and it is an appropriate description
mentation into protonium and positronium. The single chantoy the asymptotic interaction between the positronium atom
nel BO picture does not accommodate that possibility and &nd nuclei at BO separatiof< R Since the positro-
multichannel description is necessary. In Esf) multichan-  nium atom in its ground state does not have a permanent

nel effects are incorporated by the introduction of the nonloipole moment; contributes only in second order. Consider
cal optical potentiaV,,. Its imaginary component describes the |eptonic Hamiltonian

the breakup of the atom-antiatom pair into protonium and

VI. SUMMARY AND DISCUSSION

(A1)

ositronium fragments. :op 1
P “lsing a distorted- - Hiepon= 3.+ 22— 4, (A2)
We showed, using a distorted-wave treatment of the opti PonTou m €

cal potential, how to recover the post-prior theory employed _
in our previous calculations. We showed that the optical powhich, when taken to second order, leads to the effective

tential includes a renormalized interaction strength that govPOsitronium-protonium interaction

erns the fragmentation process. We calculated the cross sec-

- : . . . _~Cs(R,Ry)
tions for fragmentation using the imaginary part of the Vo= 5 ,
optical potential and compared the results with those ob- R
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Co(R,R) = 2 [dy-R=3(dy-RIR-RJTZ,  (A3) (@) .
n
d,= <¢1s|§| ¢n>/(|Els_ En|)r
where ¢,, is an unperturbed positronium state with energy Re

eigenvaluek,,
We can always express the Born-Oppenheimer wave
function in the form

YR ER) =S FR) (8, (A2 ./‘
" R

whereF(R,) is a positronium atom amplitude, it is under-

stood thatF,, is parametrized by the BO separation ved®r (b)
andn is an index representing both discrete and continuous e=—0.25
components. Using EqA4), the partial wave expansion, —  coocoooioos
£ c, /&
FIN(Ry) o/Re
FolR) =2~ Ym0, (A5) >
region
we obtain for the expression defined in Ed4),
" 1/2
Q= <1 ‘f dRc| 1(Rc)|2) : (A6) FIG. 5. (@) Graphical representation of coordinates defined in
0 Appendix A.(b) Effective long-range component of the protonium-
In the regionR> Reiica ¥ is Normalizable and positronium interactiond represents the contribution to the action
from the region wher®.<|R|.
Im 2 _
% % 0 dRJFy'(Ro)|*=1. (A7) Cs(R,R,) does not vanish and that it is positive definite.

We study bound-state solutions to E§8) whose energy

Therefore() is either positive definite or vanishes. In the ejgenvalues are near, but below, the first excitation thresh-
region R<Rjicas We enforce the conditiogW|W)=1 by  old energy of —0.25. Figure(b) illustrates the asymptotic
employing box normalization as in Sec. Il for the fragment potential included in Eq(A8) and the bound-state energy
functions. In that case the normallzanon factor for amplitudeeigenvaluec is shown by the dashed line in that figure. For a

Fo(R) is proportional to 1{V, whereV is the cavity vol- given BO separatioR> R iical, the value fore is primarily
ume. However{) remains independent of cavity volume. determined by the inner range potential, not included in Eq.
According to Eq.(A7) equalityQ)=0 can only be satisfied (A8) but represented by the quantidy, the contribution to
if F'nm:O for all n>1. Becausé/; mixes the positronium the total action from the potential in the inner region. If, at
ground state with states of>1 at all R (with the excep- this R, € is slightly below the threshold shown in Fig(l®,
tion of the originR=0), we argue that Q<1 for all R. small, continuous, shifts oR toward Ri;ca Continuously
This inequality was satisfied in our numerical calcula- shift e toward the ionization limit. The outer classical turning
tions. point is determined by the value of the long range potential

We now study the behavior of the matrix elementgiven in Eq.(A9) and the value fore. As e——0.25 from
(&/V4|P) defined in Eq(44). If we represent the BO statt  below and for largeR,, the wave functiorf(R.) assumes the
by expansior(A4) we obtain an effective radial equation for form

: _l=0 ; ; R
t;lcis-F\eNave amplitudef(R) =F,Z;(Ry), in the region where f(R) ~ CRex— V2urheRd, (A10)
5 where C=~ (2usA€)®* is a normalization constant anfle
_ 1 dHRY CG(R)f(RC) f(R), (A8) =|¢-0.25 is thebinding energy. Using expressios10)
2 dI% RC and (A4) we evaluate the coupling matrix element
(e(k)| W) defined in Sec. I,
where
. ui Sin(kR)
Ce(R) = (C4(R,Ry)) (A9) (e(k)| W)= J R \/ fk Fis(Ro)
is a spherical average over all angles of the positronium co- 2
ordinateR; defined with respect to a coordinate system in = \/ﬂf dRsin(kR)f(R.)
which the BO vectoR is directed along the axis. Though 7k Jo
this s-wave average vanishes for the dipole-dipole interaction K (2uAe)
given by Eqg.(Al), it can be shown that the average of Z\I’M—f%, (Al11)
7w (K°+ 2usAe
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wherek is the wave number associated with the fragment 1

kinetic energy. According to relationA11), the coupling (PH0P+PVP+ PVQﬁQVF’)N’PFEN’P%
matrix element tends to zero a¥— 0. By the same token,

(e(K)|V{|¥)— 0 asAe— 0 where we have used relati¢ds) (B4)

and the fact that the energy defect does not vanish for frag- BV (g -1
ments of finite kinetic energy. In the regidR<Ryiical the Sihere LUH-B)=(H-B) "~
overlap integral e(k) | ¥) does not necessarily vanish. In our
formulation,|¥) is cavity (box) normalized(in the same way
the functions|x,) are normallze)jm this region. Thus, for

We consider a particle in one dimension subjected to pe-
riodic boundary conditions at=+L/2. We define periodic
basis functionsx,) so that

R<Ryiicals |¥)=1/\V|¥') where [¥') is a continuum expli k,X)

function with respect to coordinateR.. However, () = Up(¥) = ——F7=—,

(e(k)|V{|¥") remains finite sinceV; has the asymptotic VL

form (A3). Thus in the limitV—o the optical potential 2 (BS)
coupling elements, defined in EQq(39), \detSVaK Kn:ﬂ, n=0,+1,+2,...
=(W|Vi|x,) — LIV(W' [V e(K)) since both|W) and |« are L

cavity normalized. Proceeding as in E¢42) and(43), we  gnd (x| k)=, They are eigenstates bf,,
find that the optical potential vanishes in the- « limit.

We stress that forR>R.ics the matrix element K2

(W|Vi| k) — LIWV(P|V;|e(k)) and leads to the nontrivial H0|Kn>:E|Kn> (B6)

continuum limit Eq.(53). A simple model is introduced in

Appendix B, which provides more physical insight into and are complete so that

the mechanism by which the optical potential vanishes as

a bound state merges into a continuum state. AN AN (B7)
According to Eq.(Al1l) the coupling matrix element

(e(k)| ¥y has a maximum peak at fragment energy ) .
in the domain +/2<x<L/2. Let P=|k,){k,|, then Q

K2 Ae =3 4n |kmX{Kq. V is an arbitrary short-range potential and
Emax= == (A12)
2,(,Lf 7
i - (olV] s = 1 (88)
In our calculations we have seen that the peaks in the cou- niETm L’

pling matrix elements shift to lower fragment energies as we

approachR.iical, Dehavior that is consistent with the predic- wherev,,, is independent of the boundary dimensionFor
tion of Eq.(All). At R=1a, the binding energy of the pos- example, ifV(x)=gd(x) thenv,,,=g. The optical potential
itronium has a valug24] 0.0244, andaccording to Eq.

(A12) a peak in the coupling matrix element, correspond- 1

ing to this binding energy, would occur Bt,,,=0.0035. In U= PVQH - EQVP (B9)
our calculations, we observe a maximum Bf,,=0.01

(see Fig. 1 within the same order of magnitude as thecan be expressed as the sum

value predicted by EqA12).

PVQ—QVP PVQ—V ZQVP+ -
APPENDIX B Ho—E Ho-
We express the equation (B10)
(H-E)|¥)=0 (B  or
in the form[11]
|n><n|( > ¢> - [rn
PHP|Wp) + PHQ W) = E[Vp), L? min (k32 —E)

QHQN’Q) + QHP|Wp) = E|‘I’Q>

where the projection operators obey the relati®sQ=1, ) o
P2=P, Q*=Q, QP=0, andVp=P|¥), ¥o=Q[¥). It fol- where we have used E@B8). We take the continuum limit
lows that[11] 2n—L[dk asL— and obtain

|n>(”|0nn’ (B11)

(B2) ( sy UnmPmPqn )+

m;ﬁnq#n (Kmlz E)( Z/Z_E)

1
(PHP+ PHQ —ZQH P>|\Irp> =EVp). (B3 U—
If H=Hy+V so that{P,Hy]=[Q,Hy]=0 we further simplify  where
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COLD COLLISIONS OF ATOMIC HYDROGEN WITH..
fd def dx’
(K

+ .
is independent of the boundary dimensibnDefining the
amplitudeWp(x) = (x|P|¥)=(x| ¥p) using

UniUkk'Uk'n

212 -E)(k'%2 —E)
(B12)

Uy = _ Unklkn

(122 -E)

(XIPVRIY) = g0,
(B13)

2 2
_ kn __1dWp(x)
(X|PHoP|¥) = > Wp(x) = > a2

We obtain the continuum limit of EqB3),

1d*Wp(x)

e L[vnn+unn] o) = EVp(x). (B14)

The optical potential vanishes in this limit and EB14) for

PHYSICAL REVIEW A 69, 042715(2004)

Wp(X) = Uy(X)(n| W) (B15)

is a free particle solution in the limik —o. The optical
potential must vanish, in this limit, in order for the equations
to be consistent. We recognize thaPifprOJects onto a true
bound stateg(x), so that Lim_..[ LL,2 dxg (X)V(X) H(X) is
independent of, the optical potential is also independent
of L, and leads to a nontrivial interaction in the—«
limit.

We introduced this simple model in order to illustrate a
mechanism that is at work, and discussed in Appendix A, in
our general treatment of the H-optical potential. In that
discussion, we projected onto true bound BO wave function
at R>Ricai- This led to an optical potential that describes
the interaction of the bound state with the continuum. How-
ever, forR<Ricai, the BO wave function merges into the
continuum and the optical potential vanishes, in the infinite
box limit, via a mechanism that is analogous to that seen in
the simple model discussed above.

In order to treat the continuum-continuum interaction at
R<Rgiica We need to relax and extend the assumptions em-
ployed in the present approach. The off-diagofial| V| «,,)
terms in Eq(29), treated here as a higher-order contribution
to the optical potential, need to be included in a multichannel
continuum treatment. One possibility is to exploit an

Wp(x) is that of a free particle. The above exercise couldr-matrix approach in this region. This is beyond the scope of
have been avoided if we recognized that for a solution to Edthe present discussion and will be the subject of future in-

(B1) ¥(x)=(x|¥), the projected function

vestigations.
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