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We present a theory that describes the interaction of hydrogen atoms with antihydrogen at subkelvin tem-
peratures. The formalism includes a nonlocal complex optical potential, whose imaginary component describes
the breakup of the H-H complex into positronium and protonium fragments. Usingab inito methods, we
construct the imaginary part of the optical potential and calculate the cross sections for fragmentation in
ultracold collisions of H andH. We find a 35% reduction in the value of the scattering length from that
obtained in the Born-Oppenheimer approximation. We estimate the lifetimes for quasibound states of this
complex to fragment into a protonium-positronium pair.
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I. INTRODUCTION

Recent advances[1–3] in the laboratory realization of
low-energy antihydrogen allow the prospect for high-
precision spectroscopic study of neutral antimatter. For pre-
cise measurements that may herald new bounds forCPT
violation and the weak equivalence principle[4], it is desir-
able to trap the antihydrogen in a cold or ultracold environ-
ment [5]. Following suggestions[6] that ultracold hydrogen
atoms may be useful as a buffer gas to cool trapped antihy-
drogen, we undertook[7–10] an investigation of hydrogen-
antihydrogen atom collisions at low energies. Our studies
revealed that elastic collisions drive and favor cooling at gas
temperatures above 0.1 K. However, at colder temperatures,
inelastic processes, in particular, the rearrangement reaction

H + H̄ → pp̄+ e+e−, s1d

and proton-antiproton in-flight annihilation dominatef8g and

may limit the utility of the sympathetic cooling of H¯by cold
H atoms. Other inelastic processes, such as lepton-antilepton
annihilation in flight f10g, and the association processf9g

H + H → HH + hn, s2d

also occur at very cold temperatures. Here HH is a quasi-
bound state of the hydrogen-antihydrogen molecule andhn is

the energy of an emitted photon during radiative association.
Though the rate for processs2d is small f9g, the emitted
radiation resulting from association could be exploited as a
diagnostic. Unlike the H2 system, in which dipole radiations
resulting from transitions between vibrational levels of the
ground electronic state are forbidden, the HH complex does
possess an electric dipole moment. This property of the sys-
tem may allow for the spectroscopic study of this novel four-
body matter-antimatter complex.

The main goal of this paper is to develop a theory that
provides a full quantum-mechanical description of the pro-
cesses itemized above. Though our previous work incorpo-
rated a state-of-the-art molecular Born-Oppenheimer(BO)
potential for the H-H system, as well as a Schrödinger de-
scription of atom dynamics, it is limited by the assumption of
a single channel Born-Oppenheimer approximation. In this
paper we address these limitations and develop a theory that
includes multichannel effects through the introduction of a
nonlocal optical potential[11]. It describes both the fragmen-
tation dynamics for process(1) and gives the leading-order
correction to the BO potential. The theory provides a frame-
work for the calculation of collision cross sections as well as
lifetimes and level shifts of the quasibound levels of the HH
molecule.

Estimates[12–15] for elastic and inelastic cross sections,
at collision energies corresponding to room temperatures and
higher, were based on a semiclassical description of the
heavy particle dynamics. At low collision energies a
Schrödinger description, used in several recent studies
[16–18], is necessary. The theory presented here provides a
multichannel description within the framework of a Born-
Oppenheimer separation of leptonic and baryonic motion.

In Sec. II we review the coordinate systems correspond-
ing to the various rearrangement channels that are used in
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setting up the relevant coupled equations. In Sec. III we out-
line the basic coupled-channel approach that we use to con-
struct the optical potential. We derive an expression for the
imaginary part of the complex scattering length and use it to
calculate fragmentation cross sections. We compare the pro-
cedure used here with that given in a previous formulation
[7,8] based on a post-prior treatment of fragmentation. We
show that the two formulations are equivalent within a
distorted-wave approximation but that the former involves
the use of a renormalized interaction.

In Sec. IV we present the results ofab initio calculations
for the parameters that characterize the optical potential. We
calculate the values of the BO coupling coefficients that de-
termine fragmentation rates, and calculate the cross sections
for process(1) at ultracold collision energies. We compare
the results obtained using the optical potential with those
obtained in a previous theoretical treatment[8]. We show
that the imaginary part of the optical potential leads to a 35%
reduction in the value of scattering length from that obtained
in the Born-Oppenheimer approximation. We use the optical
potential to calculate the lifetimes for quasibound levels of
the HH complex to fragment into protonium-positronium
pairs. Atomic units will be used, unless otherwise stated,
throughout.

II. COORDINATE SYSTEMS

The nonrelativistic Hamiltonian for a hydrogen-
antihydrogen atom pair is

H =
P1

2

2M
+

P2
2

2M
+

p1
2

2m
+

p2
2

2m
−

1

ur 1 − R1u
−

1

ur 2 − R2u

+
1

ur 1 − R2u
+

1

ur 2 − R1u
−

1

ur 1 − r 2u
−

1

uR1 − R2u
, s3d

where R1,R2,r 1,andr 2 are the proton, antiproton, elec-
tron, and positron position vectors, expressed in an arbi-
trary inertial coordinate system, respectively.P1,P2,p1,p2
are the corresponding conjugate momenta,M is the
baryon andm the leptonic mass. We introduce the column
vector Y ;sR1,R2,r 1,r 2d† and use the symbolY to label
this coordinate system. Because of the possibility for dif-
ferent arrangements, we employ the Jacobi coordinate sys-
tems and we labelXa,Xb,Xc, defined as follows;Xa
;sRcm,Ra,x1a,x2ad†, where

Xa = WaY , s4d

Wa ;1
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2sM + md
m

2sM + md
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2sM + md
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−
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−
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2
1 0

−
1

2
−

1

2
0 1

2 .

s5d

x1a,x2a are the leptonic position vectors whose origin is lo-
cated at the baryon center of mass, momentaPa are conju-

gate toXa and are related to momentaP, conjugate toY,
according to

Pa = Wa
−TP, s6d

whereWa
−T is the transpose of the inverse ofWa. We callXa

the molecular coordinate system, since it is the system in
which the BO approximation for the leptonic eigenstates is
made. The Jacobi systemXb=sRcm,Rb,x1b,x2bd† is useful
for describing the asymptotic eigenstates of the hydrogen-
antihydrogen fragment. It is related toY according toXb
=WbY, where

Wb ;1
M

2sM + md
M

2sM + md
m

2sM + md
m

2sM + md

−
M

M + m

M

M + m
−

m

M + m

m

M + m

− 1 0 1 0

0 − 1 0 1

2 .

s7d

The systemsXa andXb differ in thatRa represents the inter-
nuclear separation vector, whereasRb is the vector that joins
the hydrogen center of mass to the antihydrogen center of
mass and the position vectorsx1b,x2b, are defined with re-
spect to origins located at the parent baryon of the respective
lepton. Both systems include a common total center-of-mass
position vectorRc.m.. Finally, we introduce the systemXc
=sRc.m.,Rc,upn,upsd†, whereXc=WcY and

Wc ;1
M

2sM + md
M

2sM + md
m

2sM + md
m

2sM + md
1

2

1

2
−

1

2
−

1

2

− 1 1 0 0

0 0 − 1 1

2 .

s8d

Rc is the vector that joins the center of mass of thepp̄,
protonium, fragment to the center of mass of thee−e+, posi-
tronium, fragment.upn is thepp̄ separation vector andups the
leptonic separation vector. It is useful to partition Hamil-
tonians3d into terms involving fragment Hamiltonians and to
rewrite Eq.s3d in the form

H = H0b + Hb8

s9d

H0b ;
Pc.m.

2

4sM + md
+

Pb
2

2mi
+

p1b
2

2m
+

p2b
2

2m
−

1

ux1bu
−

1

ux2bu
,

wherePc.m.,Pb, are momenta conjugate toRc.m. andRb, re-
spectively, andp1b,p2b are the leptonic momenta conjugate
to x1b,x2b, respectively. The interactionHb8 contains all terms
in Eq. (3) that are not included inH0b, m=mM/ sM +md is the
reduced mass of the hydrogen(antihydrogen) atom, andmi
;sm+Md /2<M /2. The eigenstates ofH0b are asymptotic
eigenstates ofH and represent the fragment corresponding to
a free hydrogen and antihydrogen atom pair. In theXb Jacobi
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system, they have the form, apart from a normalization fac-
tor,

kXbuCbl . expsiK c.m.·Rc.m.dexpsiK b ·Rbdf1ssx1bdf1ssx2bd,

s10d

where K c.m. is the total momentum of the HH fragment,
and sincePc.m. commutes withH, it is conserved under
rearrangement. In the remaining discussion we will work
in an inertial frame whereK c.m.=0. In Eq. s10d, K b is the
relative momentum of the atom-antiatom pair andf1s is a
1s hydrogenic orbital. The eigenenergyE, for eigenstate
uCbl, is

E =
K b

2

2mi
+ es1sd + es1sd, s11d

wherees1sd is the ground-state energy of the hydrogen atom.
Throughout, we will specialize to low collision energies so
that for an incoming stateuCbl, only the ground 1s states of
the atom-antiatom are occupied.

If we assume a collision of atoms initially prepared in
uCbl we must allow for the possibility of a rearrangement to
a positronium-protonium fragment that is best described in
the Xc Jacobi system. For this fragment we define

H = H0c + Vf ,
s12d

H0c ;
Pc.m.

2

4sM + md
+

Pc
2

2m f
+

ppn
2

M
+

pps
2

m
−

1

uupnu
−

1

uupsu
,

wherePc are momenta conjugate toRc, ppn is the momentum
for the relative motion of the baryons in the protonium sys-
tem, pps the momentum for the relative leptonic motion in
the positronium system, andm f =2 mM/ sm+Md. Vf includes
all terms in Eq.(3) not contained inH0c. The eigenstates of
H0c are asymptotic eigenstates of the HamiltonianH and
represent the fragment corresponding to a free protonium
and positronium pair. In theXc Jacobi system, they have the
form

kXcuCcl . expsiK c ·Rcdcnlsupndwn8l8supsd, s13d

where K c is the momentum for the relative motion of the
protonium and positronium pair andcnl, wn8l8 are hydrogenic
orbitals for the protonium and positronium systems, respec-
tively. In this discussion we limit the quantum numbers for
the positronium atom to have the valuesn8=1,l8=0, but
relax this constraint in the latter sections. According to Eq.
s12d, the energy eigenvalue for stateuCcl is

E =
K c

2

2mf
+ epnsnld + epss1sd. s14d

Conservation of energy requires that the energy eigenvalue
E, corresponding to an incoming eigenstateuCbl, must sat-
isfy the equality

E =
K b

2

2mi
+ es1sd + es1sd =

K c
2

2m f
+ epnsnld + epss1sd. s15d

For molecular calculations we choose to work in theXa co-
ordinate system, and we express the fragment statesuCbl and
uCcl, defined in Eqs.s10d and s13d, respectively, using the
coordinates defined in theXa system. Thus,

CbsRa,x1a,x2ad ; kXauCbl

. expSi
mK b · sx1a − x2ad

M + m
Df1ssx1a + Ra/2d

3f1ssx2a − Ra/2d s16d

and

CcsRa,x1a,x2ad ; kXauCcl

. exp fiK c · sx1a + x2ad/2g

3cnlsRadw1ssx2a − x1ad. s17d

III. CLOSE-COUPLING EQUATIONS

Motivated by the discussion leading to Eqs.(16) and(17),
we introduce a close-coupling ansatz for the system wave

function uCl that describes the collision of H with H¯ and
allows for fragmentation intopp̄+e+e−. We define

kXauCl ; FbsRadkXaubl + o
c

FcsRadkXaucl,

kXaubl ; ubsRa,x1a,x2ad, s18d

kXaucl ; ucsRa,x1a,x2ad,

where the indexc refers to positronium fragments with
center-of-mass energykc

2/2m f and according to relations(16)
and (17), we require thatubl and ucl tend to the asymptotic
limits,

ubsRa,x1a,x2ad → expSi
mK b · sx1a − x2ad

M + m
D

3f1ssx1a + Ra/2df1ssx2a − Ra/2d

< f1ssx1a + Ra/2df1ssx2a − Ra/2d, s19d

ucsRa,x1a,x2ad → expsikcux1a + x2au/2d
ux1a + x2au/2

w1ssx2a − x1ad.

s20d

Up to a normalization factor, Eq.s20d represents the outgo-
ing wave, with radial momentumkc, for a positronium atom
in its 1s state.

In the remaining discussion we work exclusively in the
Xa frame and henceforth drop all frame subscripts. For the
sake of economy in notation we represent all amplitudes as
ket vectors. For example, in this notation the amplitude
ubsRa,x1a,x2ad defined in Eq.(18) is equivalently written as
ubsR ,x1,x2d or simply ubl. In the asymptotic limitR→`,
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ubsRa,x1ax2ad approaches the ground asymptotic eigenstate
of the leptonic adiabatic, or Born-Oppenheimer, Hamiltonian

He−e+ ;
p1

2

2m
+

p2
2

2m
+

p1 ·p2

2M
−

1

Ux1 +
R

2
U −

1

Ux2 −
R

2
U

+
1

Ux1 −
R

2
U +

1

Ux2 +
R

2
U −

1

ux1 − x2u
−

1

uRu
, s21d

provided that we ignore the lepton translation factor. The
summation in Eq.s18d over positronium fragments involves
a continuum but since we are interested in low-energy
s-wave collisions we are allowedf8g to restrict the con-
tinuum functions in expansions18d to s waves. It is useful to
introduce cavity normalized states according to the prescrip-
tion

uknl ;
1

Î2pR0

sinsknRcd
Rc

w1ssjd,

kn =
pn

R0
,

s22d
Rc ; uRcu = usx1 + x2du/2,

j ; ups= sx1 − x2d,

where n is an integer andR0 is the cutoff radius for the
spherical cavity. The ketuknl is a direct product of the posi-
tronium continuum function, which is regular at the origin,
w1s is state function that represents the relative motion of the
constituent positronium leptons, andRc is the distance be-
tween the positronium atom and the center of mass of the
protonium system. The kets have the property

kknukml = dnm, s23d

where the bracket notation implies integration over all lepton
coordinates,k u l→ed3x1ed3x2. In the continuum limit, a sum
over kn of an arbitrary functionfsknd is equal to the integral

o
n

fsknd → R0

p
E

0

`

dkfskd s24d

asR0→`. In this notation, ansatzs18d is rewritten as

uCl = FsRduãl + o
n

fkn
sRduknl, s25d

where

uãl ;
Pual

ÎkauPual
,

P ; 1 − o
n

uknlkknu, s26d

He−e+ual = esRdual

and esRd is the BO potential for the Born-Oppenheimer
eigenstateual that correlates to the ground atomic eigenstate

of the Hs1sd+H̄s1sd fragment. It follows from definitions
(26) and (23) that P2=P is a projection operator. We define
Q=1−P=on uknlkknu and note that Quknl= uknl and
kauPuknl=0. In the limit R→` the free positronium ampli-
tudesuknl are orthogonal to the ground-Born Oppenheimer
stateual, anduãl→ ual in this limit. Therefore ansatz(25) has
the desired properties;(i) in the limit R→` it correlates to

the approximate asymptotic state for the Hs1sd+H̄s1sd frag-
ment,(ii ) it accounts for the possibility of fragmentation into
the asymptotic positronium states that are described by the
channel functionsuknl. We have included the projection op-
eratorP in ansatz(25) in order that the channel statesuãl and
uknl remain orthogonal at all internuclear distances. Because
we limit the projection operator sum in Eq.(26) to fragment
channels that are orthogonal to the BO ground stateual in the
asymptotic region, we satisfy the relationPual→ ual, as R
→`. The choice for projection operatorP is not unique, but
we also require thatkauPualÞ0, for if kauPual→0 in some
region ofR, ansatz(25) describes an expansion of an over-
complete set of states in that region. If that is the case, ansatz
(25) should be replaced by an alternative description.

We obtain an effective Schrödinger equation for ampli-
tudeFsRd by requiring that

kãuHe−e+uCl = EkãuCl,

s27d
kknuHe−e+uCl = EkknuCl,

whereH is given by Eq.(3) expressed in theXa system and
E is the collision energy in the center-of-mass frame. Using
ansatz(25), recognizing thatkãu ãl=1 andkknukml=dnm, we
find that, if we neglect nonadiabatic couplings[19], Eqs.(27)
are equivalent to

P2

2mi
FsRd + kãuPHe−e+PuãlFsRd − EFsRd

+ o
n

kãuPHe−e+Quknlfkn
sRd = 0,

s28d
P2

2mi
fkn

sRd + o
m

kknuQHe−e+Qukmlfkm
sRd − Efkn

sRd

= − kknuQHe−e+PualFsRd.

We evaluate the matrix element

kknuQHe−e+Qukml < dmnS kn
2

2m f
+ epss1sdD + dmnVpp̄sRd,

Vpp̄sRd ; −
1

R
+ kknuVfuknl, s29d
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Vf ; −
1

Ux1 +
R

2
U −

1

Ux2 −
R

2
U +

1

Ux1 −
R

2
U +

1

Ux2 +
R

2
U ,

where we have neglected the off-diagonal elements that con-
tribute toVpp̄sRd. The integrand in Eq.(29) is odd under the
interchange of lepton coordinates and since, according to
definition (22), uknl is invariant under this symmetry opera-
tion, the matrix element of the operatorVf vanishes. Thus, in
the approximation where off-diagonal elements in Eq.(29)
are ignored,Vpp̄sRd=−1/R.

We define the eigenfunctionsfmsRd that are solutions of
the equation

P2

2mi
fmsRd + Vpp̄sRdfmsRd − emfmsRd = 0, s30d

where em is the mth eigenvalue. Using Eq.s30d, we can
rewrite Eq.s28d in integral form

P2

2mi
FsRd + ṼaaFsRd − EFsRd + o

n

Ṽakn
fkn

sRd = 0,

s31d

fkn
sRd =E d3R8o

m

fmsRdfm
† sR8d

E − em −
kn

2

2m f
− epss1sd

ṼknaFsR8d,

where

ṼaasRd ;
kauPHe−e+Pual

kauPual
,

ṼknasRd ;
kknuQHe−e+Pual

ÎkauPual
,

Ṽakn
sRd ;

kauPHe−e+Quknl
ÎkauPual

. s32d

The above expression for the amplitudefkn
sRd contains a

sum over discrete values for quantum indexm as well as a
continuum contribution. We use the summation symbol to
represent both. In the limit of cold collisions, energy conser-
vation [8] requires thatfkn

sRd→0 in the limit R→0, that is,
only bound protonium fragments are allowed in the exit
channels.

Combining the two terms in Eq.(31), we obtain

P2

2mi
FsRd + ṼaasRdFsRd − EFsRd

+E d3R8o
m

o
n

fmsRdfm
† sR8d

E − em −
kn

2

2m f
− epss1sd

Ṽakn
sRd

3ṼknasR8dFsR8d = 0. s33d

The optical potential

From the above definition we note that

ṼaasRd =
1

det S
skauHe−e+ual − o

n

skauHe−e+uknlSkna

+ Sakn
kknuHe−e+uald + o

n
o
m

kknuHe−e+ukmlSakn
Skmad,

s34d

where we define the overlap matrix

Sakn
; kauknl,

s35d
kauPual = 1 −o

n

ukauknlu2 = 1 −o
n

uSakn
u2 ; det S.

SinceHe−e+ual=esRdual, we find using Eq.(29),

ṼaasR =
1

det SFesRdS1 − 2o
n

uSakn
u2D

+ o
n
S kn

2

2m f
+ epss1sd + Vpp̄sRdDuSakn

u2G
= esRd + o

n

uSakn
u2DesRdkn

det S
,

DesRdkn
;

kn
2

2m f
+ epss1sd + Vpp̄sRd − esRd, s36d

and

Ṽakn
sRd = Ṽkna

* sRd =
− DesRdkn

Sakn

Îdet S
. s37d

We reexpress this matrix element by noting that

DesRdkn
Sakn

= kauDesRdkn
uknl

= kau
kn

2

2m f
+ epss1sd + Vpp̄sRd − esRduknl

= − kauVfuknl s38d

or

Ṽakn
sRd = Ṽkna

* sRd =
kauVfuknl
Îdet S

. s39d

Also

ṼaasRd = esRd + o
n

uṼakn
sRdu2

DesRdkn

. s40d

Combining the above results, we rewrite Eq.(33) in the
form
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P2

2mi
FsRd + esRdFsRd − EFsRd +E d3R8VopsR,R8dFsR8d

= 0, s41d

where the optical potentialVopsR ,R8d is given by

VopsR,R8d = o
m

o
n

fmsRdfm
† sR8d

E − em −
kn

2

2m f
− epss1sd

ṼknasRdṼakn
sR8d

+ d3sR − R8do
n

uṼakn
sRdu2

DesRdkn

. s42d

In the continuum limit, we get

VopsR,R8d = o
m
E

0

`

de
fmsRdfm

† sR8d
E − em − e − epss1sd

ŨesRdŨe
*sR8d

+ d3sR − R8dE
0

`

de
uŨesRdu2

DesRd
, s43d

where e=k2/2m f is the kinetic energy of the positronium
fragment,

ŨesRd ; keuṼfual = keuVfual/ÎVsRd,

keuVfual ;Î m f

2kp2 E d3x1d
3x2

sinskRcd
Rc

w1ssjdVfCsx1,x2,Rd,

VsRd ; det S= 1 −E
0

`

deukeualu2 = 1 −E
0

`

de
ukeuVfualu2

uDesRdu2
,

s44d

Rc andj are defined in Eq.(22). Csx1,x2,Rd=kX ual is the
adiabatic eigenstate anduel is thes-wave positronium wave
function that is energy normalizedfke ue8l=dse−e8d
=dsk2/2m f −k82/2m fdg. The statesuel obey the closure rela-
tion,

o
e

kx1x2uelkeux18x28l =
1

4p

dsRc − Rc8d
RcRc8

w1ssjdw1ssj8d.

s45d

It is instructive to examine the second term in Eq.s25d,
C frag;on fkn

sRduknl, so that its asymptotic form is explicit.
Using Eqs.s25d ands31d, and invoking the continuum limit,
we get

C frag = − o
m
E d3R8

4p
E d3x18E d3x28fmsRdfm

† sR8d

3FsR8d
Vf

ÎV
w1ssjdw1ssj8dCsx18,x28,R8dGkm

sRc,Rc8d,

s46d

where

Gkm
sRc,Rc8d ;

4m f

p
E

0

`

dk
sinskRcdsinskRc8d

Rc8Rcsk2 − km
2 d

,

s47d
km

2 ; 2m f„E − em − epss1sd….

The manner in which we integrate around the poles of the
Green’s function Gkm

sRc,Rc8d determines the asymptotic
boundary condition. We adopt the Feshbach prescription[11]
1/sk2−km

2 d→1/fsk2−km
2 d− ihg, whereh is a positive infini-

tesimal, and get

Gkm
sRc,Rc8d =

2m f

kmRcRc8
expsikmRc.dsinskmRc,d, s48d

where Rc, , Rc. is the lesser, greater ofRc,Rc8, respec-
tively, and km.0. Inserting the retarded Green’s function
into Eq. s46d we obtain for the fragment wave function

C frag , − o
m

Î m f

2km

expsikmRcd
Rc

w1ssjdfmsRdTskmd,

s49d

Tskmd ; E d3RfmsRdFsRdkCauṼfueskmdl,

where we have taken the limitRc→`, used definition(44),
and definedueskmdl;ue=k2/2m fl.

Equation (49) has the desired asymptotic limit for the
fragment wave function, an outgoings wave describing a
positronium atom-protonium system. Using Eq.(49), we ob-
tain an expression for the differential cross section for the
rearrangement process(1),

ds =
s2pd3

2ki
2 o

m

uTskmdu2dV, s50d

whereki is the wave number of the incident waveFincsRd
=Îkimi / s2pd3 expsikizd in the elastic channel,V is the
solid angle, with respect to the quantization axisz, in
which the positronium-protonium fragment is found. Ex-
pressions50d predicts fragmentation cross sections for the
case where the positronium atom is found in the ground 1s
state. A generalization is given later in the paper. If we
further assume thatTskmd is isotropic, we obtain for the
total fragmentation cross section,

s frag =
s2pd4

ki
2 o

m

uTskmdu2. s51d

In the discussion that follows we enforce the Feshbach
prescription by the application of the following identity:

1

sk2 − km
2 d − ih

=
P

sk − kmdsk + kmd
+ pidsk2 − km

2 d, s52d

when evaluating the energy integral in the expression for the
optical potentials43d.

Using relation(52) in expression(43) we obtain two dis-
tinct contributions to the optical potential,
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VopsR,R8d = Vop
I sR,R8d + Vop

R sR,R8d, s53d

where

Vop
I sR,R8d = − pio

m

fmsRdfm
† sR8dŨeskmdsRdŨeskmd

* sR8d,

s54d
eskmd ; E − em − epss1sd,

and

Vop
R sR,R8d = o

m
E

0

`

defmsRdfm
† sR8dŨesRdŨe

*sR8d

3 FP
1

E − em − e − epss1sd

+ P
1

e + epss1sd + Vpp̄sRd − esRdG , s55d

symbol P standing for the principal value of the integral. In
deriving Eq.s55d we made use of the closure property of the
statesfmsRd and definitions36d. VIsR ,R8d is an absorptive
potential and it accounts for the loss of flux, in the elastic

channel, due to the fragmentation of the Hs1sd+H̄s1sd into
pp̄+e−e+. The potentialVop

R sR ,R8d is a correction to the
Born-Oppenheimer energyesRd.

IV. DISTORTED-WAVE APPROXIMATION

We seek solutions to the Schrödinger equation,

−
¹2

2mi
FsRd + esRdFsRd − EFsRd +E d3R8VopsR,R8dFsR8d

= 0, s56d

where the optical potentialVopsR ,R8d is given in Eq.s53d.
The real part,Vop

R sR ,R8d, of the optical potential represents a
nonadiabatic correction to the BO ground-state potential
esRd, and the imaginary part,Vop

I sR ,R8d, determines the rate

for the reaction, Hs1sd+H̄s1sd→pp̄+e+e−. Because the opti-
cal potential is complex, so is thes-wave scattering phase
shift. In the discussion below we show that a distorted wave
treatment of Eq.s56d leads to an expression for the imagi-

nary part of the Hs1sd+H̄s1sd scattering length that is in
harmony with that obtained using a post-prior description
f8g.

We restrict our discussion to the energy regime where
s-wave scattering dominates and where the phase shift is
given by the effective range expansion

k cot d = −
1

a
+

1

2
r0k

2, s57d

whered is thes-wave phase shift,a the scattering length,r0
the effective range, andk=Î2miE the wave number corre-
sponding to the motion, during the initial approach, of the

H+H̄ system.
In the limit wheres-wave scattering dominates we obtain,

from Eq. (56), the radial equation for thes-wave amplitude,

−
1

2mi

d2FsRd
dR2 + esRdFsRd − EFsRd

+E
0

`

dR8R8RVopsR,R8dFsR8d = 0, s58d

where

VopsR,R8d ; E dVE dV8Y00sVdVopsR,R8dY00sV8d

= o
m
E

0

`

defmsRdfm
† sR8dŨesRdŨe

*sR8d

3 F 1

E − em − e − epss1sd + ih

+ P
1

e + epss1sd + Vpp̄sRd − esRdG s59d

and the summ is restricted tol =0 protonium states. In defi-
nition s59d, fmsRd are l =0 radial functions and in deriving
this expression, we used Eqs.s54d ands55d and invoked the

approximationŨesRd→ kŨesRdl=ŨesRd where the brackets
imply averaging over all angles of the internuclear vectorR.

We rewrite Eq.(58) in integral form,

FsRd = fskRd + 2miE
0

`

dR8R8gsR,,R.d

3E
0

`

dR9R9VopsR8,R9dFsR9d, s60d

where the Green’s functiongsR, ,R.d is given by

gsR,,R.d = − kfskR,dhskR.d s61d

andhfskRd ,hskRdj=u are independent solutions of the homo-
geneous equation

d2usRd
dR2 − 2miesRdusRd + k2usRd = 0 s62d

that satisfy the boundary conditions

fskRd → sinskR+ d0d
k

,

s63d

hskRd → cosskR+ d0d
k

as R→`. The phase shiftd0 is a consequence of elastic
scattering by the BO potentialesRd, and we refer to it as the
BO phase shift. In the asymptotic limitR→`, Eq. (60) be-
comes
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FsRd = fskRd − 2mikhskRdE
0

`

dR8R8fskR8d

3E
0

`

dR9R9VopsR8,R9dFsR9d

=
sinskR+ d0d

k
+

cosskR+ d0d
k

tan d, s64d

tan d = − 2mikE
0

`

dR8 R8fskR8dE
0

`

dR9 R9VopfsR8,R9dFsR9d.

s65d

Equations65d is an integral equation for the phase shiftd
=dT−d0, the difference of the total phase shiftdT and the BO
phase shiftd0. We now invoke the distorted-wave approxi-
mation, in which the radial functionFsRd in the integral in
Eq. s65d is replaced byfskRd. Applying it we obtain an ex-
pression for the imaginary part of the phase shiftb,

b ; Imsdd = 2mikpo
m
UE

0

`

dRRfskRdfmsRdŨeskmdsRdU2

,

s66d

where we ignored the real part of optical potential and set
tan d<d.

BecauseFsRd is normalized to unit incident flux, we can
use the expression[20]

sabs=
4p

k2 b =
4p2

k
2mio

m
UE

0

`

dRRfskRdfmsRdŨeskmdsRdU2

s67d

that relates the absorption cross section, due to an absorptive
complex optical potential, to the imaginary part of the phase
shift. Because the imaginary part of the optical potential de-
scribes the fragmentation reaction Hs1sd+Hs1sd→pp̄+e+e−,
we equatesabs with the fragmentation cross sections frag.
Using Eqs.s67d and s44d we get

s frag =
s2pd4

k2 o
m
UE d3RF0sRdfmsRdkauṼfueskmdlU2

,

s68d

whereF0sRd is a solution to the homogeneous Schrödinger
equation

−
1

2mi
¹2F0sRd + esRdF0sRd =

k2

2mi
F0sRd s69d

that satisfies the asymptotic boundary condition,

F0sRd ,Î kmi

s2pd3Hexpsikzd + fsufd
expsikRd

R
J s70d

and wherefsufd is the BO elastic scattering amplitude.

Expression(68) is in harmony with the derivation for the
fragmentation cross section given in Eq.(51). However, in
that expressionFsRd is a solution to the fully coupled equa-
tion (41). If we replaceFsRd by F0sRd in Eq. (51), we obtain
the result given above.

An expression similar to Eq.(68) was derived in a previ-
ous treatment[7,8,21] of the collision process. The major
difference between the two approaches, for the expression of
the fragmentation cross sections, involves the higher-order
effect of the projection operatorP. Here, the coupling ele-

ments involve the use of a renormalized interactionṼf

;Vf /ÎV, where V is defined in Eq.(44). In the former
treatment matrix elements are calculated using interactionVf.
The effect of the real part of the optical potential on the
scattering length will be discussed elsewhere.

V. CALCULATIONS

A. Fragmentation cross section

The construction of the optical potential requires a calcu-

lation of the rearrangement coupling coefficientsŨesRd de-
fined in Eq. (44). They are overlap integrals of the Born-
Oppenheimer wave function for the ground state of the H
-H system with the free positronium statesuel and the inter-

action Ṽf.
The BO wave functions take the form

Csr e,r ē,Rd = o
i

ciexpf− asl1 + l2d − bsm1 − m2dg

3 l1
pil2

sim1
qim2

tir12
mi , s71d

whereli, mi are the prolate spheroidal coordinates

li ;
sr ia + r ibd

R
,

s72d

mi ;
sr ia − r ibd

R
,

and r1a,r1b are the distances of the electron from the proton
center and antiproton center, respectively, andr2a,r2b are the
corresponding distances for the positron. The proton is cen-
tered at −R/2 and the antiproton atR/2 along thez axis. The
parametersa ,b ,ci ,pi ,si ,ti ,qi ,mi are variational parameters
chosen to minimize the BO eigenvalue. A full discussion
concerning the details of this wave function is presented in
Ref. [8]. Using the optimized Born-Oppenheimer wave func-

tions, we calculated the integrals defined in Eq.(44) ŨesRd
=UesRd /ÎV ;UesRd;keuVfual. Since the integrals involve
wave functions for different lepton arrangements, numerical
evaluation was necessary. We employed Monte Carlo inte-
gration and found that acceptable convergence is achieved by
sampling about 108 points in a six-dimensional cavity of ra-
dius R<12a0, for the interbaryon separations considered.
The results for the coupling parameterUesRd are shown, as a
function of positronium momentumk in Figs. 1(a) and 1(b).
The graphs correspond to the coupling functions for various
proton-antiproton separations that are identified in the figure.
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We imposed a self-consistency test to gauge the integrity
of the wave functions used in the calculations for the cou-

pling parameterŨe. According to Eq. (38) the identity
DesRdkn

kauknl=−kauVfuknl must hold if the BO stateual and
the cavity normalized stateueskndl are good eigenstates of
their respective Hamiltonians. The identity must also hold if
we replace the cavity normalized functions with continuum
normalized states, i.e.,uknl→ uel. In Fig. 2. we compare the
values of the integralskauVfuel (open circles) with the ones
given byDesRdkkauel (open squares). We find that, and show
in Fig. 2, there is good to excellent agreement for the values
obtained using the different methods.

With the coupling parametersŨe we can calculate both
the real and imaginary components of the optical potential.
In Fig. 3 we plot the dependence of the couplingUesRd ma-
trix on the BO distanceR for e=kf

2/2m f =0.0469, the energy
of the fragment where the protonium is found in then=24
state and positronium in its ground state. In that figure we

also plot the renormalized couplingŨ obtained by dividing

the former by the quantityV1/2sRd and whose values are
plotted in Table I. We note that asR decreases so doesV.
The question arises, what is the value forVsRd at R
=Rcritical, the BO distance at which the leptons are no longer
bound to the nuclear centers[23]? This question is addressed

in Appendix A where we conclude thatŨe→0 as R
→Rcritical from above. Likewise, we show thatV becomes
small but must remain finite in this limit. In Fig. 3 this be-
havior is illustrated by the dashed lines, which are extrapo-
lations of the calculated data(our minimum value forR
=0.85a0) to R=Rcritical, which we take to have the value

Rcritical =0.74a0 [24]. For R,Rcritical we setŨe=0 (see Ap-
pendix A).

The results of our calculation for the fragmentation cross
sections are tabulated in Table II. We compare the results
obtained in the distorted-wave approximation with those ob-

FIG. 1. (a) Coupling coefficientsUesRd as a function of the
protonium-positronium relative momentumk, wheree=k2/2m f, for
the valuesR=0.85a0,1.00a0,1.2a0,1.4a0. (b) Coupling coefficients
for the valuesR=1.6a0,2.0a0,3.0a0,4.0a0.

FIG. 2. Matrix elements keuVfual (open squares), and
DesRdkkauel (open circles), as a function of the relative momentum
k. The proton-antiproton separation has the valueR=1.2a0.

FIG. 3. Coupling elementsUesRd (dot-dashed line) and renor-

malized couplingŨesRd (solid line), as a function of internuclear
distance for positronium fragment energye=0.0469. Dashed line is
an extrapolation.
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tained using full solutions to the Schrödinger equation in-
cluding the imaginary component of the optical potential.
Using the unrenormalized couplingVf, we find good agree-
ment in the predictions of both approaches. However, with

the renormalized interactionṼf we find that the distorted-
wave approximation considerably overestimates the frag-
mentation cross sections. The cross sections corresponding to

the n=24,23 protonium fragments, and obtained usingṼf,
are in good agreement with the results recently obtained by
Armour and Chamberlain[22] using a Kohn variational
theory. However, we also find significant fragmentation into
then=22,21 states whereas Armour and Chamberlain find a
very small contribution into these states.

We also find a significant effect on the calculated value
for the elastic scattering length. This is illustrated in Fig. 4
where we plot the real part of the wave function using both
the BO approximation and that obtained including the imagi-
nary part of the optical potential. We find that the scattering
length for the latter case has a value 5.6a0, compared with
8.1a0 [8] obtained in the BO approximation.

B. Lifetimes of quasi bound HH levels

The time-dependent Schrödinger equation for the H-H
system is

−
1

2mi
¹2csR,td + esRdcsR,td +E d3R8VopsR,R8dcsR8,td

= i
] csR,td

] t
, s73d

whereVopsR ,R8d is given in Eq.s53d. The proton-antiproton
annihilation in-flight rate is largely determined by the value
of the proton-antiproton wave function at their point of coa-
lescencef8g, and so we can ignore this process for states in
which the relative angular momentum, for the atom-antiatom
pair j .0. We also ignore the effects of lepton annihilation

TABLE I. Calculated values for renormalization parameterVa

defined in Eq.(44). The second column listsV obtained by direct
evaluation of the matrix elementsuke ualu. Data listed in the third
column are obtained by calculation ofukauVfuelu and the use of iden-
tity (37).

R V V

4 0.807 0.807

3 0.674 0.674

2 0.497 0.496

1.6 0.398 0.397

1.4 0.336 0.334

1.2 0.262 0.257

1.0 0.193 0.185

0.85 0.186

TABLE II. Cross sections for fragmentation into protonium
states, of principal quantum numbern, and positronium in its
ground state. The cross sections are expressed asC/Îe, wheree is
the collision energy andC is a constant listed in the columns.

Distorted wave Optical potential

n Vf Ṽf Vf Ṽf Ref. [8] Ref. [22]

24 0.15 0.38 0.13 0.32 0.09 0.21

23 0.24 1.40 0.21 0.48 0.45

22 0.002 0.02 0.01 0.14 0.01

21 0.02 0.13 0.025 0.10

20 0.001 0.004 0.001 0.04

19 0.003 0.017 0.004 0.03

18 0.0 0.002 0.0 0.003

Total 0.39 1.95 0.38 1.1 0.09 0.67

FIG. 4. (a) Solid line is the amplitude for the elastic scattering
radial wave function,f0sRd, in the Born-Oppenheimer approxima-
tion. It is characterized by the scattering lengtha=8.10a0. The
dashed line represents the real part of the radial wave function,
fsRd, obtained by including the imaginary part of the optical poten-
tial to the BO potential.(b) Dependence of the radial integrand on
the choice for the real part of the radial wave function.
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in-flight f10g. From Eq. s73d we obtain the conservation
equation,

i
] Pstd

] t
= 2E d3R8E d3Rc*sR,tdVop

I sR,R8dcsR8,td,

s74d

Pstd ; E d3Rc*sR,tdcsR,td.

We assume that the probabilityPstd for the system to be
found in statecsR ,td at time t has the formPstd=P0exp
s−Gtd. BecauseVop

I sR ,R8d is of finite range, we assume that
csR ,td=exps−iEtdexps−G /2tdcsRd, wherecsRd is normal-
ized to unity, and it follows

G = 2po
m

uE
0

`

fmsRdŨeskmdsRdcsRddRu2, s75d

where we used Eq.s54d. fmsRd is the radial protonium wave
function with principal quantum numberm, and we made the
isotropic approximation Eq.s59d. We make the additional
approximation that the radial wave functioncsRd is a bound-
state solution to the equation

−
1

2mi

d2csRd
dR2 +

js j + 1d
2miR

2 csRd + esRdcsRd − EcsRd = 0,

s76d

whereE is its energy eigenvalue. We label these states and
energies by the radial quantum numbern and angular-
momentum quantum numberj . We define a lifetime, which
according to Eq.s75d is given by

tn ;
1

Gn
,

s77d

Gn = 2puE
0

`

fnsRdŨeskndsRdcn jsRddRu2,

for a quasibound state with quantum numbern j to fragment
into a pp̄snjd ande+e−s1sd pair.

In Table III, we tabulate the partial lifetimes for selected
high-lying, j .0, levels of the HH system. We find that frag-
mentation is most probable into then=24,23 protonium
states. A more accurate calculation, including the real part of
the optical potential, is the focus of current efforts.

TABLE III. Fragmentation lifetimes for selected quasibound states of HH. n is the radial quantum
number, wheren−1 is the number of nodes in the radial wave function, andj is the orbital angular momen-
tum, En j is the dissociation energy. −En is the bound protonium energy with principal quantum numbern, e
is the fragment energy, andt, in units of seconds, is the partial lifetime for state HHsn jd.

n j En j n En e t

27 1 1.239310−5 24 0.7969 0.0469 5.7310−13

27 1 1.239310−5 23 0.8676 0.1177 2.9310−13

27 1 1.239310−5 22 0.9484 0.1984 3.4310−11

27 1 1.239310−5 21 1.0409 0.2909 2.5310−12

26 1 5.561310−4 24 0.7969 0.0464 1.6310−13

26 1 5.561310−4 23 0.8676 0.1172 7.5310−14

26 1 5.561310−4 22 0.9484 0.1979 8.2310−12

26 1 5.561310−4 21 1.0409 0.2903 6.6310−13

25 1 5.709310−3 24 0.7969 0.0412 1.9310−14

25 1 5.709310−3 23 0.8676 0.1120 5.1310−15

25 1 5.709310−3 22 0.9484 0.1927 2.8310−13

25 1 5.709310−3 21 1.0409 0.2852 4.9310−14

25 2 3.833310−4 24 0.7969 0.0466 1.6310−13

25 2 3.833310−4 23 0.8676 0.1174 9.8310−14

25 2 3.833310−4 22 0.9484 0.1980 2.6310−11

25 2 3.833310−4 21 1.0409 0.2905 8.2310−13

24 2 5.285310−3 24 0.7969 0.0417 1.3310−14

24 2 5.285310−3 23 0.8676 0.1125 5.0310−15

24 2 5.285310−3 22 0.9484 0.1931 5.2310−13

24 2 5.285310−3 21 1.0409 0.2856 4.6310−14

23 3 4.650310−3 24 0.7969 0.0423 8.8310−15

23 3 4.650310−3 23 0.8676 0.1131 5.0310−15

23 3 4.650310−3 22 0.9484 0.1938 2.6310−12

23 3 4.650310−3 21 1.0409 0.2863 4.3310−14
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In this discussion we restricted the fragmentation chan-
nels to positronium atoms in their ground 1s state which is
justified by the observation[8] that in the limit of ultracold
collisions it is the dominant fragmentation channel. If we
relax the constraints imposed in the discussion of the previ-
ous sections, expression(54) and Eq.(55) are generalized to

Vop
I sR,R8d = − pio

m
o
nl

fmsRdfm
† sR8d

3Ũeskmd,nlsRdŨeskmd,nl
* sR8d,

eskmd ; E − em − epssnld, s78d

Vop
R sR,R8d = o

m
o
nl
E

0

`

defmsRdfm
† sR8d

3Ũeskd,nlsRdŨeskd,nl
* sR8dFP

1

E − em − e − epssnld

+ P
1

e + epssnld + Vpp̄sRd − esRdG , s79d

wherenl are the principal and angular momentum, quantum

numbers of the positronium atom, Ũeskd,nlsRd
;keskdnluṼfual, and where thes-wave positronium con-
tinuum function is replaced by ueskdl
;Îkm f /2p3exp fik ·sx1+x2d /2g. We will apply Eqs. s78d
and s79d in future studies to find the probability for rear-
rangement that involves excited states of the positronium
fragment. As pointed out in Sec. III, care must be exer-
cised so that the basis set is not overcomplete.

VI. SUMMARY AND DISCUSSION

Equation(56) states the central result of this paper and
describes an effective Schrödinger equation that provides a
description of hydrogen-atom–antihydrogen-atom interac-
tions at very low collision energies. The Born-Oppenheimer
potentialesRd gives the leading-order interaction between the
H andH atoms, but even at ultracold collision energies the
H-H system is degenerate and embedded in a continuum of
states involvingpp̄ ande+e− fragments. In addition to elastic
scattering of the atoms, there exists the possibility of frag-
mentation into protonium and positronium. The single chan-
nel BO picture does not accommodate that possibility and a
multichannel description is necessary. In Eq.(56) multichan-
nel effects are incorporated by the introduction of the nonlo-
cal optical potentialVop. Its imaginary component describes
the breakup of the atom-antiatom pair into protonium and
positronium fragments.

We showed, using a distorted-wave treatment of the opti-
cal potential, how to recover the post-prior theory employed
in our previous calculations. We showed that the optical po-
tential includes a renormalized interaction strength that gov-
erns the fragmentation process. We calculated the cross sec-
tions for fragmentation using the imaginary part of the
optical potential and compared the results with those ob-

tained in a distorted-wave treatment. For the renormalized
interaction, we find that the distorted-wave approximation
overestimates the fragmentation cross sections. We also find
a significant higher-order effect induced by the imaginary
component of the optical potential. Its inclusion in the
Schrödinger equation leads to a scattering length having the
valuea=5.6a0, a 35% decrease in value from that obtained
in the Born-Oppenheimer approximation[8]. The partial
cross sections for fragmentation into then=24,23 protonium
states are in good agreement with recent values obtained us-
ing a Kohn variational approach[22], however, we also find
significant fragmentation into then=22,21 states. Our total
fragmentation cross section is 1.1/Îe, wheree is the colli-
sion energy. We used the imaginary part of the optical poten-
tial to estimate the lifetimes for quasibound states of this
complex to fragment into protonium-positronium pairs. The
theory presented here provides a framework for additional
and more accurate calculations that include the real part of
the optical potential.
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APPENDIX A
In order to study the nature of the positronium-nuclei in-

teraction at values forR,Rcritical, we representVf by a mul-
tipole series whose leading term is

Vf <
j ·R

uRcu3
−

3sj ·RcdsR ·Rcd
uRcu5

, sA1d

wherej, Rc are the positronium coordinates defined in Eq.
s22d. In deriving Eq.sA1d we have assumed thatuju! uRcu
and uRcu@ uRu. EquationsA1d represents the interaction be-
tween two electric dipoles and it is an appropriate description
for the asymptotic interaction between the positronium atom
and nuclei at BO separationsR,Rcritical. Since the positro-
nium atom in its ground state does not have a permanent
dipole momentVf contributes only in second order. Consider
the leptonic Hamiltonian

Hlepton=
pc

2

2m f
+

pps
2

m
−

1

uju
+ Vf , sA2d

which, when taken to second order, leads to the effective
positronium-protonium interaction

Vef =
− C6sR,Rcd

Rc
6 ,
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C6sR,Rcd = o
n

fdn ·R − 3sdn · R̂cdsR · R̂cdg2, sA3d

dn ; kf1sujufnl/suE1s − Enud,

where fn is an unperturbed positronium state with energy
eigenvalueEn.

We can always express the Born-Oppenheimer wave
function in the form

CsR,j,Rcd = o
n

FnsRcdfnsjd, sA4d

whereFnsRcd is a positronium atom amplitude, it is under-
stood thatFn is parametrized by the BO separation vectorR
andn is an index representing both discrete and continuous
components. Using Eq.sA4d, the partial wave expansion,

FnsRcd = o
lm

Fn
lmsRcd
Rc

YlmsV̂cd, sA5d

we obtain for the expression defined in Eq.s44d,

V = S1 −E
0

`

dRcuFn=1
l=0 sRcdu2D1/2

. sA6d

In the regionR.Rcritical C is normalizable and

o
n

o
lm
E

0

`

dRcuFn
lmsRcdu2 = 1. sA7d

ThereforeV is either positive definite or vanishes. In the
region R,Rcritical we enforce the conditionkC uCl=1 by
employing box normalization as in Sec. III for the fragment
functions. In that case the normalization factor for amplitude
FnsRd is proportional to 1/ÎV, whereV is the cavity vol-
ume. However,V remains independent of cavity volume.
According to Eq.sA7d equalityV=0 can only be satisfied
if Fn

lm=0 for all n.1. BecauseVf mixes the positronium
ground state with states ofn.1 at all R swith the excep-
tion of the originR=0d, we argue that 0.Vø1 for all R.
This inequality was satisfied in our numerical calcula-
tions.

We now study the behavior of the matrix element
kekuVfuCl defined in Eq.(44). If we represent the BO stateC
by expansion(A4) we obtain an effective radial equation for
the s-wave amplitudefsRcd;Fn=1

l=0 sRcd, in the region where
Rc@R,

−
1

2m f

d2fsRcd
dRc

2 −
C6sRd

Rc
6 fsRcd = efsRcd, sA8d

where

C6sRd ; kC6sR,R̂cdl sA9d

is a spherical average over all angles of the positronium co-
ordinateRc defined with respect to a coordinate system in
which the BO vectorR is directed along thez axis. Though
this s-wave average vanishes for the dipole-dipole interaction
given by Eq. sA1d, it can be shown that the average of

C6sR,Rcd does not vanish and that it is positive definite.
We study bound-state solutions to Eq.(A8) whose energy

eigenvaluese are near, but below, the first excitation thresh-
old energy of −0.25. Figure 5(b) illustrates the asymptotic
potential included in Eq.(A8) and the bound-state energy
eigenvaluee is shown by the dashed line in that figure. For a
given BO separationR.Rcritical, the value fore is primarily
determined by the inner range potential, not included in Eq.
(A8) but represented by the quantityF, the contribution to
the total action from the potential in the inner region. If, at
this R, e is slightly below the threshold shown in Fig. 5(b),
small, continuous, shifts ofR toward Rcritical continuously
shift e toward the ionization limit. The outer classical turning
point is determined by the value of the long range potential
given in Eq. (A9) and the value fore. As e→−0.25 from
below and for largeRc, the wave functionfsRcd assumes the
form

fsRcd < CRcexpf− Î2m fDeRcg, sA10d

where C<s2m fDed3/4 is a normalization constant andDe
;ueu−0.25 is thebinding energy. Using expressionssA10d
and sA4d we evaluate the coupling matrix element
keskd uCl defined in Sec. III,

keskduCl =E d3RcÎ m f

2p2k

sinskRcd
Rc

F1ssRcd

=Î2m f

pk
E

0

`

dRcsinskRcdfsRcd

= 2Îm fk

p

s2m fDed5/4

sk2 + 2m fDed2 , sA11d

FIG. 5. (a) Graphical representation of coordinates defined in
Appendix A.(b) Effective long-range component of the protonium-
positronium interaction.F represents the contribution to the action
from the region whereRc, uRu.
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where k is the wave number associated with the fragment
kinetic energy. According to relationsA11d, the coupling
matrix element tends to zero asDe→0. By the same token,
keskduVfuCl→0 asDe→0 where we have used relations38d
and the fact that the energy defect does not vanish for frag-
ments of finite kinetic energy. In the regionR,Rcritical the
overlap integralkeskd uCl does not necessarily vanish. In our
formulation,uCl is cavitysboxd normalizedsin the same way
the functionsuknl are normalizedd in this region. Thus, for
R,Rcritical, uCl=1/ÎVuC8l where uC8l is a continuum
function with respect to coordinateRc. However,
keskduVfuC8l remains finite sinceVf has the asymptotic
form sA3d. Thus in the limit V→` the optical potential

coupling elements, defined in Eq.s39d, Îdet SṼakn
=kCuVfuknl→1/VkC8uVfueskdl since bothuCl and uknl are
cavity normalized. Proceeding as in Eqs.s42d ands43d, we
find that the optical potential vanishes in theV→` limit.
We stress that for R.Rcritical the matrix element
kCuVfuknl→1/ÎVkCuVfueskdl and leads to the nontrivial
continuum limit Eq.s53d. A simple model is introduced in
Appendix B, which provides more physical insight into
the mechanism by which the optical potential vanishes as
a bound state merges into a continuum state.

According to Eq. (A11) the coupling matrix element
keskd uCl has a maximum peak at fragment energy

Emax=
kmax

2

2m f
=

De

7
. sA12d

In our calculations we have seen that the peaks in the cou-
pling matrix elements shift to lower fragment energies as we
approachRcritical, behavior that is consistent with the predic-
tion of Eq. sA11d. At R=1a0 the binding energy of the pos-
itronium has a valuef24g 0.0244, andaccording to Eq.
sA12d a peak in the coupling matrix element, correspond-
ing to this binding energy, would occur atEmax=0.0035. In
our calculations, we observe a maximum atEmax=0.01
ssee Fig. 1d within the same order of magnitude as the
value predicted by Eq.sA12d.

APPENDIX B
We express the equation

sH − EduCl = 0 sB1d

in the form f11g

PHPuCPl + PHQuCQl = EuCPl,

sB2d
QHQuCQl + QHPuCPl = EuCQl

where the projection operators obey the relationsP+Q=1,
P2=P, Q2=Q, QP=0, andCP; PuCl, CQ;QuCl. It fol-
lows that[11]

SPHP+ PHQ
1

H − E
QHPDuCPl = EuCPl. sB3d

If H=H0+V so thatfP,H0g=fQ,H0g=0 we further simplify

SPH0P + PVP+ PVQ
1

H − E
QVPDuCPl = EuCPl,

sB4d

where 1/sH−Ed;sH−Ed−1.
We consider a particle in one dimension subjected to pe-

riodic boundary conditions atx= ±L /2. We define periodic
basis functionsuknl so that

kxuknl ; unsxd =
expsiknxd

ÎL
,

sB5d

kn =
2np

L
, n = 0, ± 1, ± 2,...

and kknukml=dnm. They are eigenstates ofH0,

H0uknl =
k2

2
uknl sB6d

and are complete so that

o
n

uknlkknu = 1 sB7d

in the domain −L /2øxøL /2. Let P= uknlkknu, then Q
=omÞn ukmlkkmu. V is an arbitrary short-range potential and

kknuVukml =
vnm

L
, sB8d

wherevnm is independent of the boundary dimensionL. For
example, ifVsxd=gdsxd thenvnm=g. The optical potential

U ; PVQ
1

H − E
QVP sB9d

can be expressed as the sum

PVQ
1

H0 − E
QVP− PVQ

1

H0 − E
V

1

H0 − E
QVP+ ¯

sB10d

or

unlknuS 1

L2 o
mÞn

vnmvmn

skm
2 /2 − EdD − unlknu

3S 1

L3 o
mÞn

o
qÞn

vnmvmqvqn

skm
2 /2 − Edskq

2/2 − EdD + ¯ ,

where we have used Eq.sB8d. We take the continuum limit
om→Ledk asL→` and obtain

U → unlknu
L

Ũnn, sB11d

where
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Ũnn ;E dk
vnkvkn

sk2/2 − Ed
−E dkE dk8

vnkvkk8vk8n

sk2/2 − Edsk82/2 − Ed

+ ¯ sB12d

is independent of the boundary dimensionL. Defining the
amplitudeCPsxd;kxuPuCl=kxuCPl using

kxuPVPuCl =
vnn

L
CPsxd,

sB13d

kxuPH0PuCl =
kn

2

2
CPsxd = −

1

2

d2CPsxd
dx2 .

We obtain the continuum limit of Eq.(B3),

−
1

2

d2CPsxd
dx2 +

1

L
fvnn + ŨnngCPsxd = ECPsxd. sB14d

The optical potential vanishes in this limit and Eq.sB14d for
CPsxd is that of a free particle. The above exercise could
have been avoided if we recognized that for a solution to Eq.
sB1d Csxd=kxuCl, the projected function

CPsxd = unsxdknuCl sB15d

is a free particle solution in the limitL→`. The optical
potential must vanish, in this limit, in order for the equations
to be consistent. We recognize that ifP projects onto a true
bound statefsxd, so that LimL→`e−L/2

L/2 dxf*sxdVsxdfsxd is
independent ofL, the optical potential is also independent
of L, and leads to a nontrivial interaction in theL→`
limit.

We introduced this simple model in order to illustrate a
mechanism that is at work, and discussed in Appendix A, in
our general treatment of the H-H optical potential. In that
discussion, we projected onto true bound BO wave function
at R.Rcritical. This led to an optical potential that describes
the interaction of the bound state with the continuum. How-
ever, forR,Rcritical, the BO wave function merges into the
continuum and the optical potential vanishes, in the infinite
box limit, via a mechanism that is analogous to that seen in
the simple model discussed above.

In order to treat the continuum-continuum interaction at
R,Rcritical we need to relax and extend the assumptions em-
ployed in the present approach. The off-diagonalkkmuVfuknl
terms in Eq.(29), treated here as a higher-order contribution
to the optical potential, need to be included in a multichannel
continuum treatment. One possibility is to exploit an
R-matrix approach in this region. This is beyond the scope of
the present discussion and will be the subject of future in-
vestigations.
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