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A quantum-classical hybrid(or semiclassical) method is applied to protonium formationp̄+H2
+→ p̄p+H

and dissociationp̄+H2
+→ p̄+p+H at kinetic energies up to 200 eV. The electronic motion is accurately solved

quantum mechanically, while the motion of the heavy particlesp̄ and p is described by classical mechanics.
The p̄-p-p collinear configuration is assumed as a preliminary to three-dimensional calculations, and to assess
the validity of the adiabatic approximation. Vibrational excitation to the dissociative continuum is crucial inp̄p
formation in contrast to the importance of electron emission for theatomic-hydrogen target. For this reason,p̄p
formation occurs efficiently even well beyond the ionization threshold if the target is a molecule.
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I. INTRODUCTION

Antiprotonic atoms afford an opportunity to study extraor-
dinary atomic physics and the fundamental principles of
physics by the way of matter-antimatter symmetry[1,2]. This
has stimulated much recent efforts toward high-resolution
spectroscopy of antiprotonic atoms, such as antihydrogen

sH̄=e+p̄d, protoniumsp̄pd, and antiprotonic heliumsHe2+ep̄d
[3–6]. For such spectroscopy, we need to know which type
of atomic or molecular collision processes can serve as a
means to produce enough number of antiprotonic atoms.

In the present paper, we develop a theoretical study of the
formation process of protonium atoms in antiproton and mol-
ecule collisions. So far, a lot of theoretical studies have been
made for protonium formation[7–17]. However, most of
them are for collisions with hydrogen atoms, i.e.,p̄+H
→ p̄p+e. The only theoretical attempt for a molecular target
appears to be that of the systemp̄+H2 by Cohen[10,11],
using fermion molecular dynamics(FMD). The FMD
method is similar to a classical trajectory Monte Carlo
(CTMC) method, but takes some quantum correction into
account.

If the target is a neutral hydrogen atom, electronically
bound states are absent for a close approach of an antiproton,
and the electron emission plays a key role in the protonium
formation. For positive-ion targets, however, the electrons
are tightly bound even when the antiproton comes close to
the nucleus. For this reason, the electronic excitation chan-
nels are considered to be negligible when the kinetic energy
is low [20]. In addition, the successful application of the
adiabatic(Born-Oppenheimer) approximation to the study of
the moleculelike structure in antiprotonic heliums=p̄+He+d
[21,22] suggests that it may work nicely also for the system
of an antiproton and a molecular(positive) ion. Then, the
problem is similar to chemical reactions on a single
potential-energy surface(PES).

In the present paper, we choose an ionic target and con-
sider the processes

p̄ + H2
+ → p̄p + H s1d

→ p̄ + p + H s2d

at kinetic energies!1 keV. If the adiabatic approximation
is satisfactory, these processes can be treated as three-
body sp̄,p,Hd collisions on the adiabatic PES. The pur-
pose of the present paper is to assess the validity of the
adiabatic approximation for the present system. To take
account of the nonadiabatic process, we introduce a
quantum-classical sQCd hybrid si.e., semiclassicald
method, in which the heavy particle motions are described
by classical mechanics while the electronic motions are
accurately described by quantum mechanics. The QC
method was applied to the calculations of protonium for-
mation and muon capturesm−+H→m−p+ed for the
hydrogen-atom targetf14,18g. The results have been com-
pared in detail with those of full quantal calculations
f15,16,19g, which have clarified under which circum-
stances the QC method is reasonably accurate. Although
the QC approximation makes the collision calculation
much manageable, a full description of all the degrees of
freedom is still laborious. Here, we further assume a col-
linear configuration for the three heavy particlessp̄,p,pd,
as is often the case with chemical reaction studies. No
such restrictions are imposed on the electronic motion.
The collinear treatment is very useful for the present pur-
pose, and is also an important preliminary to a subsequent
three-dimensionals3Dd study of the processess1d and s2d
using the adiabatic PESf23g.

II. THEORY

A. Adiabatic electronic states of H2
+

As defined in Fig. 1, lets1 ands2 be the position vectors
of the electron measured from the outer and inner protons,
ands from the midpoint between the two protons. No use is
made of the adiabatic approximation for the electronic states
of the hydrogen molecular ion H2

+ in the present QC calcu-
lation. Nevertheless, it is convenient to start from the account*Email address: sakimoto@pub.isas.jaxa.jp
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of this approximation, which very accurately describes elec-
tronic states of H2

+. The Schrödinger equation for the elec-
tron for a fixed internuclear distancer is given by

H̃0F = esrdF, s3d

where

H̃0 = −
1

2
¹s

2 −
1

s1
−

1

s2
s4d

andesrd is the electronic energy. Here and in the following,
we use atomic units unless otherwise stated. To take account
of the two-center Coulomb nature of the molecule, we intro-
duce coordinatessj ,hd defined by

j = − r + s1 + s2, 0 ø j , `, s5d

h =
− s1 + s2

r
, − 1ø h ø + 1, s6d

which are similar to spheroidalf24–26g or perimetric coor-
dinatesf27g. Using the coordinatessj ,hd and assuming a
vanishing angular momentum around the internuclear axisr,

we can express the HamiltonianH̃0 as

H̃0 =
2

G
F−

]

] j
js2r + jd

]

] j
−

]

] h
s1 − h2d

]

] h
− 2sr + jdG ,

s7d

where

Gsr,j,hd = js2r + jd + r2s1 − h2d. s8d

The volume element is given bydv=1/8Gdjdh.
Although Eq. (3) with the Hamiltonian(7) is separable

with respect toj and h [24], here we consider another ap-
proach that is more convenient for later use in the following
section. A definition offsj ,hd by

Fsj,hd = fjs2r + jdg−1/2fsj,hd s9d

casts Eq.s3d into a form

sT̃ + Udf = e
G

2js2r + jd
f, s10d

where

T̃ = −
]2

] j2 −
1

4j2 −
1

js2r + jd
]

] h
s1 − h2d

]

] h
, s11d

Usr,j,hd =
4r + j

4js2r + jd2 −
2sr + jd
js2r + jd

. s12d

We use a discrete-variable-representationsDVRd technique
f28–30g, and calculate the wave function directly on the grid
points defined in the configuration space. Theh part of the

operator T̃ is identical to the differential operator for the
Legendre polynomialsPnsxd. Therefore, the zero points
h js j =1,2, . . . ,Md of Pn=Mshd are chosen to be theh grid

points. Thej part of the operatorT̃ has a singularity −1/4j2

as j→0, which could, in principle, raise a severe difficulty
in the numerical calculation. Fortunately, however, the gen-
eralized Laguerre polynomialsLn

sadsxd with a=1 may be
used, in practice, to avoid this singularityf28g. Therefore, we
construct thej grid from the zero pointsji si =1,2, . . . ,Nd of
Ln=N

sa=1dsjd.
We expand the eigenfunctionf as

fsj,hd = o
i j

fi j f isjdgjshd s13d

in terms of the DVR basis functions

f isjd =
fWsjdg1/2LN

s1dsjd
vi

1/2fdLN
s1dsjid/djgsj − jid

, s14d

gjshd =
PMshd

v j
1/2fdPMsh jd/dhgsh − h jd

. s15d

Here, Wsjd=je−j is the weight function ofLN
s1dsjd, vi the

quadrature weight ofLN
s1dsjd, andv j that of PMshd. The co-

efficientsfi j are defined by

fi j = F viv j

Wsjid
G1/2

fsjih jd. s16d

Using the orthogonal properties off isjd and gjshd f31g and
the Gaussian quadrature rule, we can derive from Eq.s10d
linear algebraic equations forfi j :

o
i8 j8

Tij ,i8 j8fi8 j8 + Usr,ji,h jdfi j = e
Gsr,ji,h jd
2jis2r + jid

fi j , s17d

where explicit forms of the matrix elements

Tij ,i8 j8 =E f isjdgjsh jdT̃f i8sjdgj8shddjdh s18d

have been obtained by Baye and Heenenf28g and Sakimoto
f30g.

FIG. 1. Coordinates of thep̄+H2
+ system.
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The introduction of the two-center coordinatessj ,hd is
essential in the efficient calculation of the electronic state. If
we used single-center coordinates such as polar coordinates,
the DVR calculation of the electronic state would be grossly
inefficient because at least one of the Coulomb singularities
is impossible to handle properly. Unlike the usual dimension-
less spheroidal coordinates, the variablej defined by Eq.(5)
has the dimension of the length. This has an advantage be-
cause the electronic wave function is always well localized
around the protons, as seen later. Largej is unimportant, and
we may use the same value ofN over the whole range of the
internuclear distancer. If we definedj by s−r +s1+s2d / r,
then larger values ofN would have to be chosen for largerr.
Furthermore, we may set a cutoff valuejc for j to carry out
calculations with a smaller number of grid points, i.e.,i
=1,2, . . . ,Nc,N, wherejNc

.jc.

B. Electronic motion in the QC method for p̄+H2
+

Now we turn to the collision system involving four par-
ticles sp̄,p,p,ed. The quantal equation of the electronic mo-
tion is solved in a numerically accurate mannerwithout the
adiabatic approximation. The three heavy particles are as-
sumed to preserve a collinear configuration as shown in Fig.
1, and their positions are described by the Jacobi coordinates
sR,rd. In the QC method, these coordinates are treated in
classical mechanics. Assuming that the time dependence ofR
and r is known, we solve the time-dependent Schrödinger
equation for the electron

i
]

] t
Csj,h,td = H̃eCsj,h,td, s19d

whereH̃e is the electronic part of the Hamiltonian

H̃e = H̃0 + Vep̄ s20d

with the Coulomb potential

Vep̄sR,r,j,hd =
1

s3
= HSR−

r

2
D2

+
1

4
sr + j + rhd2

+ SR−
r

2
Dfr + sr + jdhgJ−1/2

s21d

between the electron and the antiproton. Since this interac-
tion is repulsive, the two centers at the protons are more
important than the third center at the antiproton in the calcu-
lation of the electronic state. Therefore, the coordinates
sj ,hd are useful also for the present four-body system. Put-
ting

Csj,h,td = fjs2r + jdg−1/2csj,h,td s22d

in a manner similar to Eq.s9d, we have

iG

2js2r + jd
] c

] t
= HT̃ + U +

G

2js2r + jdFVep̄+
idr/dt

2r + j
GJc.

s23d

Since the adiabatic approximation is accurate for the elec-
tronic state of the molecule before the collision, the initial
conditioncst=0d may be given by

csj,h,t = 0d = fsj,hd. s24d

The time evolution ofcstd is studied by using a DVR tech-
nique similar to that explained in Sec. II A. The wave func-
tion c is expanded as

csj,h,td = o
i j

ci jstdf isjdgjshd, s25d

where

ci jstd = F viv j

Wsjid
G1/2

csjih j,td. s26d

Equation s25d substituted into Eq.s23d leads to time-
dependent linear equations forci jstd:

i
] ci j

] t
=

2jis2r + jid
Gsr,ji,h jd Foi8 j8

Tij ,i8 j8ci8 j8 + Usr,ji,h jdci jG
+ FVep̄sR,r,ji,h jd +

idr/dt

2r + ji
Gci j . s27d

If the electron escapesor ionizationd is negligible, it suffices
to use only the grid pointsi =1,2, . . . ,Nc,N of j in Eq.
s27d.

C. Classical trajectories of the heavy particles

The Hamiltonian of the whole systemp̄+H2
+ is

H̃ =
1

2m
PR

2 +
1

2m
Pr

2 + H̃e + Vppp̄, s28d

where m smd is the reduced mass ofp̄+H2
+ sp+Hd, and

PR sPrd the momentum conjugate toR srd. The potential
Vppp̄=Vppp̄sR,rd is the sum

Vppp̄=
1

r
−

1

R+ r/2
−

1

R− r/2
+

sL + 1/2d2

2msR− r/2d2 s29d

of the Coulomb potentials for the three-body systemsp,p, p̄d
and the centrifugal potential between the inner proton and
the antiproton. The introduction of the artificial centrifugal
term with the Langer modification is to avoid the Coulomb
singularity in −sR−r /2d−1 occurring atR=r /2 in the collin-
ear collision. The quantityL may also be regarded as the
angular-momentum quantum number of the produced proto-
nium.

In the QC method, there is no unique way to determine
the time dependence of the classical variablesRstd and rstd.
Here, we adopt common trajectories as in previous studies
[14,18] by using the equations of motion

dR

dt
=

PR

m
, s30ad
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dPR

dt
= −KCU ] H̃

] R
UCLkCuCl−1

= −KCU ] Vep̄

] R
UCLkCuCl−1 −

] Vppp̄

] R
, s30bd

dr

dt
= ± H 2

m
FEtot −

1

2m
PR

2 −
kCuH̃euCl

kCuCl
− Vppp̄,GJ1/2

,

s30cd

with the total energyEtot=E+E0, E being the initial center-
of-mass kinetic energyf=s1/2mdPR

2st=0dg andE0 being the
energy of the quantum-mechanical ground vibrational state.

D. Adiabatic potential-energy surface ofp̄+H2
+

For examining the validity of the adiabatic approximation
by comparison with the nonadiabatic QC calculation, here
we discuss the ground adiabatic electronic state of the system
p̄+H2

+, obtained by diagonalizing the Hamiltonian(20) for
each fixedR and r, i.e.,

H̃eQsj,hd = eadsR,rdQsj,hd. s31d

The numerical method of diagonalization is the same as ex-
plained in Sec. II A. The adiabatic electronic energyeadsR,rd
satisfies relations

lim
R→r/2

eadsR,rd = − 1
2 s32d

and

lim
R→`

eadsR,rd = esrd. s33d

The PES is given by

VadsR,rd = eadsR,rd + Vppp̄sR,rd, s34d

on which the processess1d ands2d will be considered in the
adiabatic approximation. Then, we obtain the classical trajec-
toriesRstd and rstd by solving equations

dR

dt
=

PR

m
, s35ad

dPR

dt
= −

] Vad

] R
, s35bd

dr

dt
=

Pr

m
, s35cd

dPr

dt
= −

] Vad

] r
. s35dd

III. NUMERICAL CALCULATIONS

Table I shows the convergence of the electronic energies
esrd of H2

+ with respect toN, M, andjc. The last line con-

tains accurate numerical results obtained by series expansion
of the separable solution[25,26]. A choice of N=200, M
=6, andjc=10 is seen to yield energies with absolute errors
uDesrdu less than 0.006 except for the smallestr of 0.1 [for
which uDes0.1du=0.01] and the largestr of 20.0 fuDes20.0d u
=0.05g. The valuesN=200, M =8, andjc=15 were used in
the collision calculations, since the increase ofM into 8 re-
ducesues20.0du by a factor of,6, and since accurate elec-
tronic energies up tor .10.0 is sufficient for the purpose of
establishing the criterion for dissociation to have occurred.

The convergence rate of the adiabatic energieseadsR,rd of
the systemp̄+H2

+ with respect toN, M, andjc was found to
be similar to that ofesrd of H2

+. A choiceN=200, M =12,
andjc=15 was made to calculateeadsR,rd, shown in Fig. 2,
at 2703270 points in a regionsRøR0=20,r ø r0=40d, and
interpolation between these points was made by using qua-
dratic polynomials for the classical-trajectory calculation of
Eq. (35); eadsRùR0,rd was assumed to be Coulombic.

The adiabatic PESVadsR,rd excludingthe centrifugal po-
tential is presented in Fig. 3. Here, the reactant channelp̄
+H2

+ may be understood as the motion along the valley
running along theR axis at r ,2. The bottomless valley
alongR=r /2, representing the product channelp̄p+H, origi-
nates in the Coulomb singularity. The plateau extending to-
ward large values ofr and R−r /2 leads to the dissociation
channelp̄+p+H.

Figure 4 showsVadsR,rd for L=60. The Coulomb singu-
larity is absent here owing to the repulsive centrifugal poten-
tial. The Coulomb plus centrifugal potential for the proto-
nium has a minimum, which becomes nearly equal to the
potential minimum of the hydrogen molecular ion whenL
=Lc,67. ForL,Lc, therefore, the system is more stable to
form a protonium atom than to form a hydrogen molecular
ion, that is, protonium formation is expected to be important
at low kinetic energies.

We choseN=200, M =8, andjc=15 in the QC calcula-
tion. This cutoff valuejc givesNc=34 for N=200. From the
dependence of the probabilityPp̄p of protonium formation on
the choice of the numerical parameters(see Table I), the
absolute error inPp̄p is estimated to be less than 0.01. The
valuejc=15 is large enough forE!1 keV since the electron
escape is negligible. ForE*1 keV, however, a larger cutoff
value must be chosen.

Using an angle variableq of the initial molecular vibra-
tion defined in terms of the action variableJ by

q =
]

] J
Er

Prdr, s36d

the probability of protonium formation is expressible as

Pp̄p =
1

2p
E

p̄p
dq, s37d

where the integral is to be calculated for the initial conditions
that lead to protonium formation in the trajectory calcula-
tions. If the energy of thep̄-p system,
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TABLE I. Variation of the electronic energiesesrd (in a.u.) of H2
+ with respect toN, M, andjc (in a.u.) for several values ofr (in a.u.).

Acc.: Accurate values obtained by series expansion of the separable solution.

r 0.1 0.5 1.0 5.0 10.0 20.0

N M=6, jc=15

50 −2.0221 −1.7174 −1.4296 −0.7148 −0.5885 −0.4979

100 −1.9991 −1.7260 −1.4403 −0.7195 −0.5928 −0.5012

200 −1.9884 −1.7304 −1.4460 −0.7219 −0.5950 −0.5029

300 −1.9849 −1.7319 −1.4479 −0.7227 −0.5958 −0.5035

400 −1.9832 −1.7727 −1.4488 −0.7231 −0.5962 −0.5038

500 −1.9822 −1.7331 −1.4494 −0.7234 −0.5964 −0.5039

600 −1.9815 −1.7335 −1.4500 −0.7235 −0.5966 −0.5040

M N=200,jc=15

2 −0.1988 −1.7294 −1.4402 −0.6266 −0.3796 −0.2172

4 −1.9884 −1.7304 −1.4460 −0.7169 −0.5464 −0.3860

6 −1.9884 −1.7304 −1.4460 −0.7219 −0.5950 −0.5029

8 −1.9884 −1.7304 −1.4460 −0.7219 −0.5981 −0.5418

10 −1.9884 −1.7304 −1.4460 −0.7219 −0.5982 −0.5473

12 −1.9884 −1.7304 −1.4460 −0.7219 −0.5982 −0.5476

jc M =6, N=200

5 −1.9825 −1.7238 −1.4370 −0.7015 −0.5724 −0.4822

10 −1.9884 −1.7304 −1.4460 −0.7218 −0.5949 −0.5027

15 −1.9884 −1.7304 −1.4460 −0.7219 −0.5950 −0.5029

20 −1.9884 −1.7304 −1.4460 −0.7219 −0.5950 −0.5029

Acc. −1.9782 −1.7350 −1.4518 −0.7244 −0.6006 −0.5500

FIG. 2. Adiabatic energieseadsR,rd of p̄+H2
+.

FIG. 3. Adiabatic potential-energy surfaceVadsR,rd (in a.u.) of
p̄+H2

+, without inclusion of the centrifugal potential, as a function
of the distancesR and r (in a.u.).
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Ep̄p =
m

2
SdR

dt
−

1

2

dr

dt
D2

−
1

R− r/2
+

sL + 1/2d2

2msR− r/2d2 s38d

becomes a negative constant after the collision, the proto-
nium is known to have been formed in the collision.

IV. RESULTS AND DISCUSSION

The time evolution of the distancesR and r /2 and of the
energy Ep̄p of the p̄-p pair is illustrated in Fig. 5 forE
=10 eV andL=60 and for two typical choices of the initial
valueq/2p=0.2475 and 0.7525. The oscillation ofrstd seen
at t,1000 is due to the molecular vibration before the col-
lision. The minimum ofRstd represents the primary close
encounter, occurring between the antiproton and the inner
proton(cf. Fig. 1), while the minimum ofrstd occurring soon
after that represents the secondary close encounter between
the recoil proton and the outer proton. The latter is then
knocked off, and consequently the two protons depart from
each other, i.e., the molecule breaks up. The momentum
transfer from the antiproton to the molecule through these
two close encounters is very efficient due to the same mass
of the three heavy particles. Forq/2p=0.7525, all the three
particles finally get separated from each other, and hence
result in dissociation(2). For q/2p=0.2475, however, the
inner proton stays near the antiproton, and protonium forma-
tion (1) takes place. These different kinds of events are
clearly identified by observing the energyEp̄p, which be-
comes positive forq/2p=0.7525 and negative forq/2p
=0.2475 after the collision.

The time evolution of the electron distributionsr1sj ,td
andr2sh ,td, defined by

r1sj,td =E uCsj,h,tdu2
G

8
dhkCuCl−1, s39ad

r2sh,td =E uCsj,h,tdu2
G

8
djkCuCl−1, s39bd

may be directly monitored in the QC calculation. They are
illustrated in Fig. 6 for a protonium formation eventsq/2p
=0.2475d. A periodic structure is seen inr1sj ,td at t,1000
because the electron follows the nuclear vibration. After the
successive two close encountersst*1250d, the periodic
structure inr1sj ,td disappears and the wave packet remains
localized around smallj, while a wave packet inh becomes

FIG. 4. Adiabatic potential-energy surfaceVadsR,rd (in a.u.) of
p̄+H2

+ for L=60 as a function of the distancesR and r (in a.u.).

FIG. 5. Time evolution of the distancesRstd and rstd /2 (upper
panel) and of the energyEp̄pstd of the p̄-p pair (lower panel) in the
quantum-classical calculations forE=10 eV, L=60, andRst=0d
=30 a.u., and for two different initial conditionsq/2p
=0.2475frst=0d=2.1 a.u.,Prst=0d,0g and q/2p=0.7525frst
=0d=2.1 a.u.,Prst=0d.0g.

FIG. 6. Time evolution of the electron distributions,r1sj ,td (left
panel) and r2sh ,td (right panel), in the quantum-classical calcula-
tion for E=10 eV, L=60, Rst=0d=30 a.u., andq/2p=0.2475frst
=0d=2.1 a.u.,Prst=0d,0g.

KAZUHIRO SAKIMOTO PHYSICAL REVIEW A 69, 042710(2004)

042710-6



localized aroundh=1. Thus, the electron is bound only by
the outer proton after the collision, forming an atomic hydro-
gen. A very similar time evolution has been found for disso-
ciation sq/2p=0.7525d, although not shown here. The final
value of the energyEp̄p calculated by the QC method is
plotted versusq/2p for E=10 eV andL=10 in Fig. 7. The
positiveEp̄p implies no protonium formation, which is seen
to occur for 0.60,q/2p,0.93. The inspection of the trajec-
tories reveals that all the events leading toEp̄p.0 are disso-
ciative, and nonreactive collisionsp̄+H2

+→ p̄+H2
+ never

occur.
Figure 7 also includesEp̄p calculated using the adiabatic

approximation. The results agree with the QC values very
well, supporting the validity of the adiabatic approximation
at low energies. To assess the reliability of the adiabatic ap-
proximation more directly at other collision energies, we cal-
culate the occupation probability of the nonadiabatic states
defined by

Pnonadstd = 1 − ukQuCstdlu2kCuCl−1, s40d

where Q is the adiabatic wave function in Eq.s31d. This
probability, shown in Fig. 8 for energiesE=100, 250, 500,
and 1000 eV isvery small s,0.015d throughout the colli-
sion if Eø250 eV, but can exceed 0.1 ifE.500 eV. This
leads to the conclusion that the adiabatic approximation is
satisfactory forE!1000 eV.

Any significant electronic excitation would deteriorate the
common-trajectory method(30) in the QC calculation. Com-
mon trajectories were used also for protonium formation in
collisions p̄+H [15], which is one of the most inappropriate

cases for this method because of the significant ionization.
Figure 8 assures that electronic excitation is much less im-
portant in and common trajectories are much more reliable
for p̄+H2

+ than p̄+H even at fairly high energies.
The probability(37) of protonium formation forL=60 at

kinetic energies up toE=250 eV is plotted in Fig. 9. That
calculated in the adiabatic approximation agrees fairly well
with the QC results. The probabilities of dissociation and
nonreactive collisions are also included in Fig. 9; only the
simpler adiabatic(and no QC) calculations were carried out
since the long-time propagation of a trajectory is needed to
distinguish between dissociation and no reaction. Except at
low energiessE,8 eVd, the collisions are always reactive,
i.e., either protonium formation or dissociation. This peculiar
feature may have resulted from the collinear collision as-
sumption. Cohen[10,11] found the molecular target to be
much more efficient in protonium formation than the atomic
target. Also in the present collinear collisions, Fig. 9 shows a
very large probability of protonium formation even at high
energiessE@13.6 eVd, unlike the case of the atomic target.
This may be understood as follows. The molecule can be
easily excited to the vibrational continuum by the incident
antiproton when the kinetic energy is above the dissociation
limit s=2.65 eVd, as seen in Fig. 5. Then, promptly after that,
the strong attractive Coulomb force combines the antiproton
with the inner proton, promoting protonium formation.

The L dependence of the QC probabilityPp̄p is also re-
produced very well in the adiabatic approximation, as is
found in Fig. 10 forE=100 eV. For smallL, the attractive

FIG. 7. Final energiesEp̄p of the p̄-p pair as a function of the
initial angle variableq for E=10 eV andL=60. The results of the
quantum-classical and adiabatic-approximation calculations are
compared.

FIG. 8. Time evolution of the nonadiabatic occupation probabil-
ity Pnonadstd due to the quantum-classical calculations forL=60,
Rst=0d=30 a.u., andq/2p=0.7034frst=0d=2.0 a.u.,Prst=0d,0g,
shown for kinetic energiesE=100, 250, 500, and 1000 eV.
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interaction between the antiproton and the inner proton is so
strong that a protonium atom is always formed. The critical
angular momentumLcs,67d for protonium formation, sug-
gested in Sec. III, can be confirmed by the inspection of Fig.
10. As L increases beyond,Lc, protonium formation be-
comes negligible.

For L somewhat larger thanLc, we may expect almost all
collisions to induce dissociation(2). For extremely largeL,
however, the collisions will be nonreactive because the at-
tractive interaction between the antiproton and the inner pro-
ton becomes very weak. This feature is seen in Fig. 11,
where the trajectories calculated in the adiabatic approxima-
tion are plotted. ForL=300, the molecule remains bound

after the collision. The lower panel of Fig. 11 shows the time
dependence of the vibrational energyEvib of the hydrogen
molecular ion measured from the dissociation limit. The final
constant vibrational energyEvib is positive (meaning disso-
ciation) for L=150 and negative(bound vibrational states)
for L=300. ForL=50, Evib never approaches a constant be-
cause a protonium atom is produced.

Finally, Fig. 12 shows the probabilities of protonium for-
mation, dissociation, and nonreactive collisions, calculated in
the adiabatic approximation forE=100 eV as functions of

FIG. 9. Probabilities of protonium formationsp̄+H2
+→ p̄p

+Hd, dissociation s→p̄+p+Hd, and nonreactive collisions→p̄
+H2

+d for L=60 calculated as functions of the collision energyE by
using the quantum-classical and adiabatic-approximation methods.

FIG. 10. Probability of protonium formationsp̄+H2
+→ p̄p+Hd

at E=100 eV calculated as a function of the angular momentumL
by using the quantum-classical and adiabatic-approximation
methods.

FIG. 11. Time evolution of the distancesRstd andrstd /2 (upper
panel) and of the vibrational energyEvibstd of the hydrogen molecu-
lar ion (lower panel) for E=100 eV, Rst=0d=200 a.u.,q/2p
=0.7034frst=0d=2.0 a.u.,Prst=0d.0g, and for three values of
Ls=50,150,300d, obtained in the adiabatic approximation.

FIG. 12. Probabilities of protonium formationsp̄+H2
+→ p̄p

+Hd, dissociation s→p̄+p+Hd, and nonreactive collisions→p̄
+H2

+d at E=100 eV calculated as functions of the angular momen-
tum L in the adiabatic approximation.
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Ls=50−350d. Over a wide range ofL, the probability of dis-
sociation is almost unity. This fact confirms again the impor-
tance of vibrational excitation to the continuum in the reac-
tion dynamics.

V. SUMMARY AND REMARKS

We have studied protonium formation inp̄+H2
+ colli-

sions by assuming the collinear configuration for the three
heavy particles, using both the QC(quantum-classical) hy-
brid method and the adiabatic approximation. We have found
that the adiabatic approximation is highly satisfactory at en-
ergies much less than 1 keV. The adiabatic PES has been
found to provide an almost thorough understanding of the
protonium formation dynamics in low-energy collisions, just
as in chemical reaction studies; vibrational excitation to the
continuum at any energies higher than the dissociation en-
ergy 2.65 eV, followed by the capture of the antiproton by
the inner proton, is the efficient formation mechanism. For
this reason, the formation probability is appreciable even at
fairly high energies. This distinguishes clearly the molecular
target from the atomic target, as was indicated by the FMD
study by Cohen[10,11]. It should be noted, however, that the
collinear treatment might overestimate the effects of vibra-

tional excitation. A definitive quantitative conclusion must
await a 3D calculation.

An extension to 3D calculations in the adiabatic approxi-
mation would provide a deeper understanding of the dynam-
ics including the effects of molecular rotation on protonium
formation. A CTMC calculation for the 3D collisions on the
adiabatic PES will be reported elsewhere[23]. However, the
quantum nature of the vibrational or rotational motion must
be important especially at low energies. A full quantal treat-
ment would be also highly desirable.

For high energiess*1 keVd, the adiabatic approximation
is no more reliable since electronic excitation and ionization
are important. The QC method may still be useful in study-
ing such high-energy collisions.
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