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General time-dependent formulation of quantum scattering theory
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We derive and explain the key ideas behind a time-dependent formulation of quantum scattering theory,
applicable generally to systems with a finite-range scattering potential. The scattering is initiated and probed by
plane wave packets, which are localized just outside the range of the potential. The asymptotic limits of
conventional scattering theoiynitiation in the remote past; detection in the remote futiaee not taken.
Instead, the differential cross secti@dCS) is obtained by projecting the scattered wave packet onto the probe
plane wave packets. The projection also yields a time-dependent version of the DCS. Cuts through the wave
packet, just as it exits the scattering potential, yield time-dependent and time-independent angular distributions
that give a close-up picture of the scattering which complements the DCS. We have previously applied the
theory to interpret experimental cross sections of chemical readgogs S. C. Althorpe, F. Fernandez-Alonso,

B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nétorelon 416, 67 (2002]. This

paper gives the derivation of the theory, and explains its relation to conventional scattering theory. For clarity,
the derivation is restricted to spherical-particle scattering, though it may readily be extended to general mul-
tichannel systems. We illustrate the theory using a simple application to hard-sphere scattering.
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[. INTRODUCTION [2]. The analogous mapping has been used for some years in
i ) ) . electromagnetic wave scattering theg8y1Q], but it seems

In recent calculations on chemically reactive scattering,ot to have been used in quantum scattering before our work
[1-5], we have devised an approach for interpreting differ-4, chemical reaction§l—5]. The latter did not derive the

ential cross sectioneDCS) in terms of the scattering of & approach formally, but arrived at it on the basis of physical
plane wave packet. The plane wave packet is placed at thgy,ition.

shortest distance from the scattering center at which the in- may be useful, therefore, to present a derivation of our
teraction potential can be neglected, and contains a widgjane wave packet approach, since it is not restricted to
enough spread of momenta to localize the initial positions otpemical reactions, and might profitably be applied in other
the collision partners. The ensuing time evolution of thisyanches of quantum scattering. In this paper, we derive the
wave packet visualizes the dynamics of the collision, on andyynroach for the simplest case of spherical-particle scatter-
close to the scattering potential. The packet maps directlyyg The straightforward extension to multichannel scattering
onto the DCS, via a simple transformatif#f], and this map- || pe presented in a later paper. The aim here is to illustrate
ping is often able to decompose the DCS into contributionghe main ideas behind the approach, including the simple
from different scattering mechanisms. mapping between the wave packet and the DCS. To avoid
To our surprise, this intuitive approach seems not to hav@onfysion, we emphasize that we are dealing here with the
been applied elsewhere in the quantum scattering literaturgge of wave packets as amerpretational tool We do not
Textbook derivations[6-8| often employ a plane wave jscyss the other use of wave packets in quantum scattering
packet, but they assume that the spread of momenta in thgeory namely as a powerful numerical technique for solving

packet is very narrow, that the initial wave packet is preparegpe Schrédinger equatiqiil—17. Such techniques provide a

in the remote past, and that the scattering is detected in thgysral way of implementing the approach of this paper, but,

remote future. These assumptions result in the standardg \ye explain below, standard time-independent methods of
time-independent formulation of quantum scattering theorysolving the Schrédinger equation can also be used.

which is essentially a plane wave packet description, on the |5 Sec. |1, we summarize the key results of the plane wave
length and time scale of an experiméimt which the projec-  packet approach. In Sec. 11l we derive these results by mak-
tiles and the detector are a very large distance away from thﬁg a partia-wave analysis. In Sec. IV, we illustrate the

scattering centgr Our approach, by contrast, gives a planeiheqry by calculating time-evolving plane wave packets, and
wave packet description on the length and time scale of thgngjar distributions, for the simple example of hard-sphere
coII|5|(_)n. This _close-u_p picture of the scattering maps f)”toscattering. In Sec. V, we discuss how to apply the approach
the “distant” picture given by the DCS, through projectionsq ca|culations that use time-independent methods of solving

of the time-evolving wave packet onto a series of fixed planghe Schrgdinger equation. Section VI concludes the paper.
wave packets, each pointing in a desired scattering direction

II. PLANE WAVE PACKET FORMULATION
OF QUANTUM SCATTERING

*Email address: s.c.althorpe@ex.ac.uk; In this section, we summarize the key steps in our plane
URL: http://www.ex.ac.uktscalthor wave packet approach of quantum scattering theory, most of
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packet significantly overlapping the potential. The momen-

“RrobRr packet tum composition of the packet is given by
_ 1 (> _
Aoz = [ en®iononz @

and the average momentum in the posithdirection is?oh.
The dynamics of the particle at>0 is described by the
time-dependent wave packet

X(Rlko,2olt) = €y (R]kg, 20/0), 3)

whereH is the Hamiltonian. To separate the scattered part of
the wave packet from the unscattered part, we define the
wave packet

X°UT(Rlko, Zolt) = x(Rlko,olt) = X" M(Rlko, 2olt),  (4)

where x"W(R|ky, z[t) is given by

Rsin O

scattered packet

initial plane wave packet

—Rcos6 XPW(R|?OvZO|t) = e_iﬁot/ﬁX(R|?o,Zo|0) (5

FIG. 1. Schematic picture of the plane wave packet approaci@nNdHo is the free particle Hamiltonian. _
(adapted from Fig. 1 of Ref2]), showing ag=0 cut through the To relate the time-dependent wave packet to the time-
3D space in which the particle scatters. The initial plane wavendependent wave functioW(R|E) of conventional scatter-
packet is placed at the shortest distafzgefrom the origin at which  ing theory [6—8], we take the Fourier transform ovérto
the scattering potential can be neglected, and is traveling in thebtain
direction of thez axis. The DCS is obtained by projecting the scat-

tered wave packet onto a series of fixed, plane-wave probe packets. R_ E)= 1 fx glEVA R_ t)dt 6
One such probe packet is shown, pointing in the directiors),. é(Rlko.2[E) 2mh Jg X(Rlko zolt)dt. ©®

which have been applied previously by {6-5], without ~ The time-independent wave functiajiR|ko,z|E) is often
proof. We define the initial wave packet, the close-up angulagalled the “time-independent wave packeflWP) [18], and
distributions, and the mapping between the time-evolvings the solution of an inhomogeneous form of the time-
wave packet and the DCS. These results will be derived itndependent Schrédinger equation. One may sbappen-
Sec. lll. For simplicity of presentation, we consider only dix A) that W(R|E) is related to&(R|ky,Z|E) by
spherical-particle scattering, although the theory discussed in

this paper is easy to extend to general, multichannel scatter- V(RIE) = h2K f(RM) 2|E) @)
ing. mA(k|ko, Zo)
_ wherem is the mass of the particle, and(R|E) satisfies the
A. The time-dependent wave packet usual scattering boundary conditip@-8,
The scattering of the particle is described in terms of the f(0,E)
usual spherical polar coordinatBs=(R, 6, ¢), of whichR is V(R|E) — &+ T’e‘kR R— o, (8)

the distance of the particle from the scattering certtés,the
scattering angle with rgspect tq the initial appro.ach directionStriCﬂy speaking, Eq(7) breaks down when describing the
along thez axis, and¢ is the azimuthal angle. Since we are incoming part of the wave function at values of z, (see

treating §pherical-partic|e scattering_, the wave function iSAppendix A). This drawback is only minor, since the incom-
symmetric aboutp, and the angleb will often be dropped. ing part of W(R|E) is of course juse? for z<z,.

We assume that the scattering potentR) has a finite The goal of most scattering calculations is the scattering

range and may be neglected f&r Ry. _ amplitudef (6, E) which yields the DCS,
At the initial timet=0, the system is described by a plane

wave packef?2]

X(Rlko 20/0) = Az~ 20)€"e". (1) N
The packet is traveling in the direction of the positwaxis, The textbook[§—8] route to ob.tal.mngf(a,E) from ap lane
as shown schematically in Fig. 1. The envelof@-z) is  Wave packet is to take the limitg—~ and A(klko,Z)

chosen so as to localize the packet about a negatdis- — 5(k—?o), and then to obtain the scattering amplitude of the
tance, as close to the scattering center as possible without thieave packet in the limit— . However, as we discuss be-

do o - 2
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low, one does not need to take these limits, in order to obtaito the differential cross sectigmultiplied by an energy fac-
f(6,E) from the wave packet. We need the packet only up tdor). However, the aim is to keel, as small as possible, so
such a timetg, at which xOUT(R|ky, zo/t) has escaped the thato(6,t) and'(6,E) can distinguish between scattering
scattering potentiali.e., is confined toR>Ry). (In a nu- from different parts of the potential. Integrating6,E) over
merical calculation, the wave packet would be absorbed othe sphere does not yield the integral cross section, since
damped at some slightly greater tharR,.) The wave Some of the flux that would be traveling radially outwards at

packet x(R|ko,z|t) thus describes the dynamics of the large R, is traveling tangentially to the sphere at finRg. It
k . . seems that the close-up distributions, which reveal informa-
scattering on the length and time scale of the collision.

tion that complements the DCS, have not been used previ-

ously in quantum scattering calculations. As we show in Sec.
B. The close-up angular distributions Il C, the time-independent distributian( g, E) is readily ob-

It is useful to obtain the angular distribution of the wave fained from theS matrix, and hence from a standard scatter-

packet just as it exits the scattering potential. We thereforénd calculation(e.g., using the coupled-channel method
introduce the close-up angular distributiog6,t) and

a(#,E), which are time-dependent and time-independent an- C. Mapping the wave packet onto the DCS

gular distributions, taken over a sphere which just encloses

the scattering potential. These distributions give a local pic- The main idea behind our approach is that it is simple to
ture of the scattering, which separates out parts of the pack&tap the wave packet, which describes the scattering on and
that have scattered from different parts of the potential. Thé&lose to the potential surface, onto the D@#ich describes

information in the time-independent angular distributionthe scattering from a very large distapc@f course, one
(6,E) therefore complements the information in ttiene- ~ could obtain the DCS from the wave packet via an indirect

independentDCS. route, by extracting the partial-wa&@matrix elementg12].

To obtain the time-dependent distributi®é, t), we take However, what we propose is a direct mapping, which allows
a cut through the wave packet at the anglehen calculate features in the DCS to be explained in terms of events in the
the flux of the wave packet normal to a sphere that jusflynamics of the wave packet.

encloses the scattering potential. We do this by projecting the "€ mapping is analogous to a technique which, in elec-
— tromagnetic wave scattering, is called the “near-field to far-

Ioacliet onto a ratiial “probe” packg(Rky, Ry)/R, Whid} 'S field” transformatior[9,10. It is essentially an application of
ocalized aboutR=R, >Ry, and contains a spread of MO- Neytons first law to the motion of the wave packet for

menta pointing radially outwards, with average momentumg - R, which projects out the component of the packet
fik,. The use of such a probe or “test” packet is knd@f]  whose momentum vector points in the direction of a given
to be equivalent to acting with the radial flux operg®+8].  angles, and which will therefore scatter into this angle in the
The spread of momenta ';(7(R|kp,Rp) must be chosen so as limit R—cc. One could use a flux operator to apply the map-
to enclose the momenta containedA(k|?O,zo) of Eq. (2). ping or equivalently, as we have dofi&], one can project

This procedure yields the close-up scattering amplitude onto probe packets. The prpbe packets are a set of plane
wave packets, held tangentially to a sphere of radys

0=k T2, (001 Ean packet pots i o esied seatrn drectgpone
where we have omitted from(R|kp, Rp) andXOUT(R|kO,zO|t) ing a similar notation to Eq.l), we write these packets as
the variable(R) over which we have integrate(This con- B
Lenton i used ivougliout e panerhe close-up e MRl =AO- g (19
H6,1) = |?(0,t)|2. (12) The envelope functionA(q-g,) is chosen such that

x(R|6,.ky, ) is localized about the distance= g, along the
g axis (a vector pointing in the direction of,; see Fig. 1
The spread ofik| in x(R|6,,k,,q,) must enclose the spread
of Alk| in the initial wave packet,y(R|?0,zo|O). Projecting
B(6,E) = 1 f ) eiEt/h”f( o,t)dlt, (12) onto X(R|0p,?p,qp) effectively “captures” all those parts of

2mh Jo the packet which, in the limiR— o, will scatter into 6= 6,

The projection yields the time-dependent scattering am-
plitude

To obtain the corresponding time-independent distribution

we take the time-to-energy Fourier transform?ujﬂ,t) to
obtain

which gives the close-up, time-independent angular distribu
tion

5(6.6)=[OE. (3 (60 = (MO kp G X (o 2D),  (15)
It is important to realize that the close-up angular distri-
butionsa(6,t) anda(6,E) arenotdifferential cross sections. from which we obtain(dropping thep subscriptsthe “time-
If R, were allowed to tend to infinity the@m(¢, E) would tend  dependent differential cross section”
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do Application of Eq.(20) to the time-evolving wave packet
—(6,0) =f(6,1)]%. 16 — :
o (OO =110 10 (Rlko,zt) yields
The time-to-energy Fourier transform fif9,t) yields a time- _ 1> _
independent scattering amplitude x(Rlko,zolt) = EE i'2 + 1P (cosO) xi(Rlko, zolt).  (22)
1=0
1 . _
g(0,E) = EJO = (6,t)dt. (17 Each of the partial wave packets(Rko, z|t) satisfies
We will demonstrate belovSec. Ill D) thatg(6, E) is related xi(Rlkg,zolt) = "H"’h)(|(R|Po,Zo|O), (23
to f(6,E) by .
oE whereH; is the Hamiltonian
f(6,E) = %, (18) - 72 o? N+ D2 1)h?
F (Ko, Zo, Kp, Gp|E) H=-—=> +V(R) (24)

2de2 omR

where the energy fiIteF(?o,zo,fp,qp|E) is _
and x;(Rlkg,20|0) is the partial-wave component of the initial

A(k|ko zo)A(k|kp,qp) (19)  Pplane wave packet(R|kg,2|0). Using Eq.(2) to write the

F(KorZ0, Ky Gl E) = kzﬁz latter as

Hence, the mapping between the wave packet . © .

x°YT(R|kg,Z0|t) and the DCS involves simply the projec- X(R|ko,Zo|0):J **A(K|ko, z)dk (25
tion onto the probe packets, followed by a Fourier trans- -

form. A quantitative picture of the mapping, which helps gng expanding*? using Eq.(20), yields

to show which parts of the wave packet map onto which

features in the DCS, is given by the time-dependent DCS A(k|k0 )

do/dQ(6,t) [Eq. (16)]. Strictly speaking, do/d€Q(6,t) )(|(R|k(J 20|0) = J (KR ———dk. (26)
should not be called a “cross section,” since it is not a

ratio of scattered flux to incoming flux, and does not in__ . . . —
general have units of ard&20]. However, the name and This equation gives the general form @fRlko, 2|0) for a
notation seem appropriate given the close relation begiven momentum envelopa(klky,Z). To our knowledge,
tweendo/d()(6,t) and the(time-independentDCS. the integral ovek cannot be evaluated analytically for 0,

for any simple choice oh(ﬂko,zo) (such as a Gaussigrand

hence the form of the;(Rky,Z,|0) must be investigated nu-
In this section we derive the results summarized in Sec. limerically. This is done in Sec. IV A. Here, we point out
including the mapping betwe@(PUT(R|?0,zo|t) andf(6,E), some basic properties of thg(R|ky,z|0). These packets su-
by making a partial-wave analysis. This analysis also clariperpose to give the initial plane wave packgR|ky,z|0),
fies the relation with conventional Scatterlng theory, andand hence they are localized arouﬁdz|20| and are incom-

gives a practical way of implementing the plane wave packefng waves(traveling in the direction of decreasif). Now,

approach numericallgsee Sec. 1. In electromagnetic scat- the functlonj|(kR) is a linear combination of incoming and
tering theory, the analogous relations have been derive utgoing waves

[9,10 by an explicit application of Green’s theorem. Here
we are effectively following the same route, since the well- . 1~ R

known properties of the partial-wave series that we exploit Ji(kR) = E[hr(kR) - h (kR)] (27)
are themselves a consequence of Green’s theorem.

Ill. PARTIAL-WAVE ANALYSIS

and so the effect of integrating ovA(k|E0,zo) is to pick out
the incoming componer&’ (kR), and localize it about a posi-
tive value of R. The contribution of the outgoing wave to
. 1 . X,(R|k0 20|0) is negligible, since integrating 0ve‘¥(k|ko )
gk = H?E (21 + 1)i'j (kR Py(cos ), (20)  would localize it about a negative valueRfandR= 0). For
1=0 I=0, the integral in Eq(26) is simply a Fourier transform,
where P/(cos¢) are Legendre polynomialsj,(kR) are Which yields axo(Rlk,%|0) that is centered abouR=|z|.
Riccati-Bessel functions satisfying From Eqgs.(25) and (26), the distribution of momenta in
. _ Xo(R|k0,zo|Olis 1/k times the distribution in the plane wave
JikR) — sin(kR=1/2), (21) packety(R|ky,2,|0). Higher values of correspond to higher

and | is the (orbital) angular momentum of the scattering impact parameters and hence, from simple geometry we ex-
particle. pect that, asl increases, the value oR about which

A. Expanding the time-dependent wave packet

The derivation is based on the well-known expansion

©
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X|(R|Poizo|0) is centered moves further out, and the width of

xi(RIKg,2/0) increases.

We also define the partial wave packe"(Rlko,zlt)
and x™T(Rlko, zolt) = xi(Rlko, zo[t) = x1”"(Rlko, Zolt), which are
the analogous partial-wave componentsy&T(R|ky, Z|t)
andxPW(R|ko, zolt) of Egs.(4) and(5). Hence x™"(Rlko, zo|t)

describes the free evolution of an initial partial wave packe

X|(R|fo,zo|0), subject to a HamiltoniarH, of Eq. (24) in
which V(R) is zero.

B. Relation to the time-independent wave function

PHYSICAL REVIEW A 69, 042702(2004)

©

f(6,E) = ElkIE (21 + 1)Py(cosH)[S(E) - 1].
=0

(34)

As mentioned earlier, this gives us an alternative, indirect
route, of obtaining the DCS from the wave packet. Unlike
the projection onto probe packets, however, this indirect
route does not allow one to map events in the dynamics of
the wave packet onto features in the DCS.

C. Expanding the close-up angular distributions

Before deriving the mapping of the wave packet onto the
DCS, it is useful to expand the close-up angular distributions

The next step is to relate the partial wave packetgr(6,t) anda(6,E) of Sec. Il B, in terms of theS-matrix

xi(RIKg,Z/t) to the partial-wave component (RIE) of the
time-independent wave functio#(R|E), and thus to the
S-matrix elementsS(E). The ¥|(R|E) are defined6-8] by
the expansion

o0

W(R|E) = é}‘, (21 + 1)i'P,(cosOW(RIE) (28
1=0
and satisfy the boundary conditions
WRE — N KR-RRSEL (29

where S(E) are elements of th& matrix. Proceeding as in
Sec. Il A, we define the TIWP partial-wave components

6Ro2E =5 [ eVyRiozln (@

which satisfy

oo

1

Rl 2lE) = £ 30 /2 + DPi(cost)6(Rho 2B (3D

We then substitute Eq&28) and(31) into Eq.(7) and use the
orthogonality of theP,(cos#) to obtain

21,2

2K —
——§(Rko, 20|E).
mA(k|ko, Z)

¥(RE) = (32

The same relation holds betweef(Rlky,z|E) and

WPWRIE)=](kR], and between £V (Rky,z|E) and
WPYN(RIE). The latter is given by

VPYT(RE) = - iEﬁr(kR)[s(E) -1] for R>R,. (33

Thus Egs.(22) and (30)—(33) can be used to extract the
Smatrix elementsS(E) from the time-dependent wave

packet. These yield the scattering amplituti@,E), and
hence the DCS, through the well-known expression

elementsS(E). Substituting Eq(22) into Eq.(10) yields the
expansion

Ton = lE i'(21 + )Py (c0s 6) (x(Kp, Ro) XV (Ko, Zo]t))
=0

(35)
Substituting Eqs(30) and(31) into Eq. (12) yields

H(6,E) = .E i'(21 + 1)P,(cos6) (x(Ky, Ry)| €V (K, Z0|E))
=0

(36)

If we extractS(E) from £°VT(ky,z|E) using Eqs.(32) and
(33), then Eq.(36) becomes

[

9(0,E) = _"'1772—2“(0’20)2 i'(21 + DP(cos o)A (K ky,Ry)
1=0
X[S(E) - 1], (37)
where

— I e
ARy = 5 - fo (Rl R)TPF (KRR, (38)

Comparison of Eq(37) with Eq. (34) shows that it is the
I-dependent momentum envelopﬁqsk|kp,Rp) which ensure
that the close-up angular distributigng, E) is different from
the asymptotic angular distributioi{6,E). In the limit that
the radius of the spherf@,— =, the envelopes satisfy

Akl Rp) — Akl R)i ™, (39)

which ensures thai(6,E) tends tof(6,E), multiplied by an
energy filter. Equationi37) is very useful, because it gives us
a way of obtainingg(é,E), and hencés(0,E) and o(6,t),
from the S(E).

D. Mapping the wave packet onto the DCS

To complete the derivation of the mapping of the wave
packet onto the DCS, we need to expand the plane wave

probe packets((R|0p,kp,qp) of Eq. (14). Using the standard

042702-5
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partial wave expansiof6—8] for a plane wave function trav-
eling in the direction off,, we obtain

o |
47T N —
EE E I Y|m(0p10)Y|m(01 ¢)XI(R|kpan)

1=0 m=-1

X(R| apaﬁyqp) =

(40)

PHYSICAL REVIEW AG9, 042702(2004)

Note that the formulas of this section and Sec. Il give
several differentbut equivalentways of evaluating the pro-

jection integral of Eq.(15). One can evaluate the integral

directly, using the calculated(R|ko, zy|t) and x(R|6,, Ky, 0p);

one can evaluate separately the partial-wave integrals
<X,(kp,qp)|)(|OUT(ko,20|t)>, then superpose them using Eg.
(41); or one can obtain the integral indirectly, from the

Each functiorm(R|?p,qp) is a partial wave probe packet, and Smatrix elements, by reversing the steps in Egd)~(44).
has the same form as the partial-wave initial packetsWhich route is most convenient will depend upon which

X|(R|?O,zo|0) of Eqg. (26). We expand the projection onto the

probe packets, given in E¢15), by expandin@((R|Fo,zo|t)
and x(R|6,.k;,qp) using Eqs(22) and(40), and integrating
over 6, to obtain

[

f(Bpt) = 47% (21 + DPy(cos) (xi (Kp, U)XV (Ko, Zo1)) -

(41)

The Fourier transform of this expression yields

©

9(6,E) = 4w|2 (21 + 1)Py(cos 6){x(kp, )| €2V (Ko, 2o E))
=0

(42)

(where we have dropped tipesubscript. From Eqs(32) and
(33), the projection on the right-hand side is equal to

(ks 6|20, 2]ED) = 2 55 A Ko 20 [S(E) - 1

X J X1 (Rlko, Gy (KRYAR.
0

(43)

One can showAppendix B that the integral oveR is inde-

pendent of, and is equal tdmA*(k|?p,qp)/k. The expansion
of g(#,E) can therefore be written

9(6p,E) = F (Ko, 20,Kp, G| E)

1 oo
X ;2 (2 + 1P (cost,)[S(E) - 1]} . (44
ikizo

where the energy fiIteF(?O,zo,E,,qu) is as defined in Eq.
(19). The term in brackets is equal f06,E) [see Eq.(34)],
and so Eq(44) is equivalent to Eq(18).

numerical method has been used to solve the Schrddinger
equation(see Sec. Y.

E. Time-dependentS-matrix elements

As a postscript to the above, it is convenient to define the
“time-dependent-matrix”’ elements

S(t) - J‘O" I:(I<O’Z.+I(p’qp|lz)s(E)e—iEt/ﬁdE (45)
0
and the term
F(t) = f ’ —P—P—F(ko’z"’lf %lE) e EVgE. (46)
0

The expansion of(6,t) in Eqg. (41) can then be written

l oo
f(o,t) = 5.2 (2l + )P,(cosH)[S(t) - F(1)].  (47)
=0

Clearly, the interpretation of th&§(t) is that they are the
partial-wave components of the time-dependent scattering
amplitude f(6,t). They can be calculated from the time-
independenS-matrix elementsS(E), by specifying the ini-

tial and probe plane wave packets through the choice of en-

ergy filter F(ko,Zo,ky,0p|E). The termF(t) subtracts the
contribution of the unscattered plane wave packet

Y"Y(R|ko, zo|t) from f(8,1).

IV. NUMERICAL ILLUSTRATION

The formulas of Sec. lll give a straightforward way of
implementing the plane-wave scattering theory numerically.
As in a coupled-channel calculation, one can calculate each
partial wave separately, and truncate the seriet=#t,,,.
Such calculations have already been done, in our previous
applications of the multichannel version of the theory to
chemical reactions. Here we discuss a numerical application

This completes the derivation of the mapping of the waveto the simple model of scattering by a hard sphere, in order
packet onto the DCS. The plane wave packet approach givew illustrate some basic aspects of the theory. These include

in Sec. ll(and applied without proof in previous wofk—5])

the form of the initial partial wave packets, the convergence

is therefore a rigorous formulation of quantum scatteringof the plane wave packet with respect tg,, some graphical
theory, which is consistent with conventional scatteringdifficulties that are encountered, and the difference between

theory. Both formulations yield the same final res(he

time-independent DOSbut by different routes. The plane

the close-up and asymptotic angular distributions.
The scattering of a particle from a hard sphere is one of

wave packet approach obtains the DCS by projecting théhe classic models of quantum scattering thef@y8]. The
wave packet onto probe packets; conventional scatteringartial-wave components of the wave function are known

theory by summing the partial-wav&matrix elements.

analytically, and are obtained by substituting(E)
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FIG. 2. Probability distributionsx|(R|ko,Z|0)[* obtained from —R cos 6 (a.)
selected partial wave componem@|ko,zo|0) of the initial plane
wave packel(R|ko,2|0). The xi(Rlko,2|0) are obtained from Eq. FIG. 3. Probability distribution$x(R|ko, z|0)|* obtained by ex-
(26), using the momentum amplitud&(k|k,,z,) specified in Sec. panding the initial plane wave packgtR|ky,z|0) using Eq.(22),
IV A. and truncating the expansion at various values=df,,,.

=ex{ 2i ¢(K)] into Eq.(33), with ¢(K)=j,(ka)/f(ka), where ~ Gaussian along the radial coordinate, and has a spherical
ais the radius of the hard sphere. It is therefore not necessa#jistribution in the angular coordinatés, ¢). Taken in isola-
to propagate the time-dependent wave packet numericallyion, this packet would give a spherical description of the
since it can be obtained froM(R|E), by reversing the steps scattering: the sphere in Fig. 3 would implode, reach the
in Egs. (6) and (7). The same is true for the close-up and scattering center, then scatter spherically outwards. IFor
asymptotic angular distributions, which can be obtained di=1,2,... theisolated y;(R|ky,2|0) would give a description
rectly from theS-matrix elements, using the equations givenof the scattering that is shaped likgparbital, d orbital, and
in Secs. Il C and Il D. The “numerical” aspect of the cal- so on.
culation therefore consists in truncating the partial-wave se- Figure 3 shows that the effect of superposing just the first
ries atln,, and evaluating the integrals ovérandk by  two partial waves is enough to locate most of thpproxi-
quadrature. mate plane wave packets on the negatwexis. The pre-
dominant approach direction of the packet is now along the
A. Initial wave packets positive z direction. As partial waves are added up to about
_ Imax=D5, the initial plane wave packet becomes increasingly
The initial plane wave packet(R|ko,2|0) was taken to focused, concentrating into a blob abastz,. The addition
be a Gaussian along tlzecoordinate. The envelope function of further partial wavegl,,,,>5) behaves semi-classically:

A(z-2zy) of Eq. (1) is therefore each additional component widens the range of initial im-
1 (z- 7o) pact parameters, such thatR|ky,z,|0) resembles a diskn
Az-2) = — p{— 22 } (48)  the plane perpendicular to tizeaxis) of approximate radius
gy .

Imax/ Ko- 1N @ numerical calculation,,,, is chosen such that
The initial position, width, and average momentum took thethe radius of the disk is just wide enough to include all the
valuesz,=-6 a.u.,z=0.5 a.u., and,=10 a.u. impact parameters that will scatter. If desired, the entire

The initial wave packet was expanded in terms of a serieflane wave packeand its subsequent time evolutjoran be

of partial wave packets;(Rlkg.2,|0). according to Eqs22) recovered by adding onto the wave packet the term
and(26). To our knowledge, the integrals in E@®6) cannot

hole/ 1, - — PWRIL.
be evaluated analytically fdr>0, and so they were evalu- X (R ko. 2o Imadt) = X™(R ko, ]t)

ated usin_g Gauss-Hermite quadrature dueFigure 2 plots 'maX_I

the [x;(RIKo, 25|0)|? for selected values df As expected from - F_QE, (2l +1)Py(coso)

the discussion in Sec. Il A, the packets move further out and o

become wider, §1$ increases, this c_:qrresponding to an in- XXFW(R|ko,Zo|t), (49)
creasingly glancing cut through the initial plane wave packet,

as the impact parameter increases. which is the exact plane wave packet with a circular hole in

Superposing the partial wave packets, by truncating Eqi. o
(22) atl=lnqy produces an approximation to the initial plane  The probe packetg(R|6,.k,.q,), and their partial wave
wave packety(Rlko,2]0). Figure 3 illustrates the conver- componentsy(Rlk,,q,), have exactly the same forms as

gence ofx(R|k, 2|0) with respect tdna, Whenln,=0, the  y(R|k,,2|0), and x(Rko, z]0), except that they are rotated
initial wave packet is simplyxy(Rlko,2,|0)/R, which is a by an angle o#,. In a numerical calculation, the probe pack-

042702-7



STUART C. ALTHORPE PHYSICAL REVIEW AG9, 042702(2004)

T T T u T T T T T T T T T T T T T T T T T T T T T T T T
10 + ' 1k . 10 F 1t H{F e
5r 1r r 7 5F 1r 1r 1
| I I I I I p |
0F ofs 1 efs [ 126 ] 0T ofs 1T efs 1T 12fs ]
1 1 L L L L L 1 L L L L L 1 1 | 1 1 | 1 1 1 1 1 1 1 1 1

Rsin O (a.u.)
R sin O (a.u.)

10 105 0 5 10
—R cos 6 (a.u.) —R cos 0 (a.u.)

FIG. 4. Snapshots of the time-evolving probability distribution £z 5 game as Fig. 4 de(OUT(R|?0 2ot)|2R? (the scattered

|x(R|Ko, zo|t)|2R2, showing the scattering of the plane wave packetcomponent of the wave packet
from a hard-sphere potential, calculated as described in Sec. IV B.

R0 1.0 hus disk e ol sicul to chemical reactions is to represdfgPUT(R|ko, zo|t)|? and
ets x(R| 6,,Ky,0,) are thus disks in the plane perpendicular PWRIK. 2)2 tel th ot ltiolvi
to theq axis. These disks have the same radius as the initieif( t|( O|LIJ<$(’;O||E))| |s§|gaga;y font eﬂ:zamedp O,’ mudl.i)fylng
— . . Just |y A y the factor ofR¢, and using a differ-
packetx(Rlko,2/0), and are therefore just wide enough to ent set of contour levels for the two functions.

capture all of the scattered packet. There can be no surprises in Figs. 4 and 5, which repre-
sent one of the classic problems of scattering theory. The

B. Time-evolving wave packets main purpose here is to illustrate the theory of Secs. Il and

I1, in particular the relation between the the wave packet and
the close-up and asymptotic angular distributions. We em-

. . > phasize that in more complex systems, such as the chemical
truncated aly,,=40, which was found to pe sufﬁmgnt 0 reactions we looked at previous[it-5], the wave packets
converge the DCS over the range of collision energies con

! ; I often yield new insight into the dynamics of the scattering.
tained in the initial wave packet of E@8). The nonscatter- .
ing part of the plane wave pack@or | > 40) was added on We suggest also that, even for a simple model system such as

) . ) hard-sphere scattering, the visualization given by the time-
;J;'Qgrﬁﬂl(j% ;hue mass of the scattering particle was t":lk(:“nevolving wave packet may have pedagogical advantages. For
B " _ example, Fig. 4 gives a clear picture, at 24 fs, of the forma-
Figures 4 and 5 give snapshots [§{R|ko,2|)|’R* and  tion of the well-known shadow. Later, at 42—48 fs, it shows
IXPUT(R | ko, Zo|t)|?R2 at various times during the hard-sphere how the spreading of the edges of the packet into the shadow
collision. The plots illustrate some of the graphical difficul- produces the diffractive interference pattern that character-
ties encountered when attempting to represent on the sanies hard-sphere forward scattering. The scattered wave
plot the rectangular motion of the incoming plane wave agacket(Fig. 5 shows the part of the wave packet that cancels
well as the roughly spherical evolution of the scattered waveout the unscattered plane wave to generate the shadow. At
The latter spreads over a surface whose area scaRs asd 18 fs, this part appears as two surface waves, which move
will thus quickly disappear from the plots, unless the packe@round the sphere and meet up in the forward direction.
is multiplied by R? (as is done in Figs. 4 and).5SHowever,
the R? factor distorts the representation of the initial plane
wave packetwhich looks bent in Fig. % A related difficulty C. Close-up angular distributions and DCS
is that the amplitude of the unscattered part of the plane The close-up, time-dependent angular distribufign, t)
wave is much greater than the scattered part, and hence t@e Eq. (11) and the time-dependent D@/dQ(6,t) of Eq.
unscattered part dwarfs the scattered psee Fig. 4 Both (1) were obtained from th&matrix elements, using the
difficulties are sidestepped by plotting just the scattereGormylas of Sec. Ill. For the close-up distributions, this pro-
wave packet|x°YT(R|ko,z[t)]?R?, as is done in Fig. 5. A cedure was equivalent to taking radial cuts through the wave
convenient representation, used in some of our applicationgacket as a function o8, then projecting onto the radial

The wave packej(R|ko,z|t) was computed for a hard-
sphere radius cd=3.0 a.u. The partial wave expansion was
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FIG. 7. Acut(atE=1 eV) through the time-independent angular
45 1 distributions obtained from the scattered wave packet of Fig. 5.
Curve (a) is the close-up angular distributian( 6, E); curve (b) is
0 the time-independent DC8o/dQ(6,E). The curves have been
0 20 40 60 80 scaled to fit on the same plot.

t(fs
( ) Another difference betweeir(6,t) and do/dQ(6,t) is
FIG. 6. Comparison of the two types of time-dependent angulaevident in the forward direction, wherkr/dQ(6,t) shows a
distribution obtained from the scattered wave packet of Fig. 5narrowly focused forward peak, which contains oscillations
E’anel(a) is the close-up angular distributi@i(6,t); panel(b) is the in 6 caused by the diffractive interference. &(6,t), the
time-dependent DC8q/d(}(6,1). forward peak spreads over a wider range of angles, and does
— . not contain the diffractive oscillations. This is becaia$é,t)
probe pa.Cke.tXp.(R|kP’Rp)(R fO”OW"?g Eq. (10). .For. the detects the packet where it has just emerged from colliding
asymptotic distributions, it was equivalent to projecting onto,, i the hard sphere, and where the two edges of the
the plane wave probe packefR|6,,k,,qp) of Eq. (14).  forward-scattering packet have not yet come together and
Both types of probe packets were taken to be Gaussianfterfered. Henceg(6,t) shows that the forward interference
centered aroun®,=6 a.u., with the same width and averageis caused, not by the dynamics of the packet as it hits the
momentum as the initial packe{(R|ky,20|0) [see Eq(48)]. sphere, but later, as the particle scatters outwards. This very
The resultings(6,t) anddo/d€(6,t) are plotted in Fig. 6. well-known example illustrates how the time-dependent an-
As mentioned above, the close-up distributi®(®,t) is ex-  gular distributionso(6,t) anddo/d€(6,t) complement one
pected to give the more faithful representation of the scatter@nother.
ing of the wave packet, since it gives the angular distribution Figure 7 shows the close-up, time-independent angular
of the packet just after it has exited the scattering potentiadlistribution o(¢,E), and the time-independent DCS
(in this case 6 a.u. from the originThe time-dependent do/dQ(6,E), atE=1 eV. The forward scattering regidm
DCSdo/d€(6,1) is also computed at this distance, which is =0—-459 illustrates clearly the diffractive oscillations, which
why the two angular distributions cover roughly the sameas just discussed, are not present in the close-up distribution.

range oft. However, one should not forget thadr/dQ(6,t) Together, the four angular distributionsg(6,t),
predicts the angle into which the packet will have scatteredlo/d(}(0,t), o(0,E), and do/dQ(6,E) summarize the dy-
in the limit thatR— oo, namics of the wave packet shown in Figs. 4 and 5. In par-

Paradoxicallydo/d()(6,t) appears to give a more faithful ticular, the time-dependent DC®o/dQ(6,t) illustrates
representation of the roughly spherical “ring” into which the which parts of the wave packet map onto which parts of the
packet scatterésee Fig. 3, than does the close-up distribu- DCS. In this simple example, the mapping is obvious, since
tion o(0,t). This is because the latter detects that the ring isve know that the earlier parts of the packet scatter in the
not centered about the origin, but about a point onzh&is  backward direction, and so on. However, in more complex
at roughlyz=-2 a.u. The backward-scattered part of the ringsystems, such as chemical reactiofis-5], the time-
has therefore traveled a shorter distaribg about 4 a.y. dependent DCS is very useful at disentangling contributions
than the forward-scattered part, and has spread consideralfipm different scattering mechanisms.
less; this has the effect of concentrating the ringri@,t) in
the backward direction. By contrast, the time-dependent
DCS do/dQ)(6,t) does not detect that the scattering is off-
center. Like the time-independent DCS of conventional scat-
tering theory,do/d€(6,t) gives the angular distribution in The theory of Secs. Il and Ill uses wave packets as an
the limit R—oo, in which all of the scattering appears to interpretational tool, for visualizing collisions and interpret-
radiate from a central point. ing the DCS. This use of wave packets should not be con-

V. APPLYING THE THEORY IN TIME-INDEPENDENT
CALCULATIONS
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TABLE |I. Summary of the extent to which different types of time-indepen@&htscattering calculation
can make use of the plane wave packet theory of this paper—see Sec. V.

TI calculation yields x() o(6,E) a(6,t) do/dQ(6,1) S(t)
W (E) andf(6,E) over grid of E % I I I e
f(6,E) over grid ofE X [ [ [ e
S(E) for somel over grid of E X X X X e
f(8,E) for some values oE X e X X X

fused with the other use of wave packets in quantum scattepotential can be summarized by means of close-up time-
ing, which is a numerical method of solving the Schrédingerdependent and time-independent angular distributions.
equation[11-17. It seems natural to use the latter method in  The approach is a simple idea, but it has turned out to be
combination with the theory of Secs. Il and lll, since ana powerful tool for interpreting the cross sections of chemi-
existing time-dependent code can easily be modified teal reactiond1-5). These are systems in which the DCS is
propagate thémultichannel equivalent pfthe initial partial complicated by interference patterns between competing
wave packetg;(Rlky, Zo|0) of Eq. (26). However, we empha- Scattering processes, which the plane wave packet approach
size that the theory of Secs. Il and Il is also applicable wheriS a@blé to disentangle neatly. An advantage with treating
the Schrédinger equation is solved using a time-independerf’€mical reactions is that their dynamics is usually semiclas-
method, such as the coupled-chanfgd] or R-matrix [22] ~ Sical [23-2§, and is thus described naturally by localized
method. One has simply to compute the time-independert@ve packetsjust as unimolecular processes are described
wave function¥(R|E) and scattering amplitudi¢,E) over ~ Naturally by wave packets prepared in “femtochemistry” ex-
a grid of energies, then reverse the steps in Es(7), (17), periments[27]). It will be interesting, therefor_e, to see
and(18). This was how we calculated the hard-sphere resulté/nether the approach of this paper can also interpret the
of Sec. IV. dynamics of other systems which have competing scattering
In fact, the latter approach has the advantage that it ma{'€chanisms, but which are not semiclass{eay., electron-
be repeated any number of times, using different choices df'olecule scattering22]).

, — . The derivation in this paper was restricted to the simplest
the energy f'lte'F(kO’ZO’kP’qP|E)' One may therefore obtain case of spherical-particle scattering, in order to illustrate and

time-evolving wave packets and angular distributions fromprove the key ideatsuch as the mapping between the wave
W(RIE) that explore different energy ranges, impact paramy,, et and the DCS, and the differences between the various
eters, and initial conditions. Hence, it can even make sensenq ar distributions It is easy to extend this derivation to
when solving the Schrodinger equation by time-dependent, itichannel scattering, and this will be published shortly.
methods, to Fourier-transform the wave packet to the energyg, tar, we have restricted our derivation and applications of
domain, to obtain¥(R|E) andf(6,E) over a grid ofE. One  {he approach to systems in which the scattering potential has
can then Fourier transform back to the time domain, using & finite range. Extending the approach to treat systems with

variety of differentF(?o,zo,E,,qMEl This was the approach infinite-range potentials should be straightforwaedg., in
used in Ref[4] [where differenf(ky, 2y, k,, 0p|E) were used charged-particle scattering, the initial and probe plane wave
to isolate and focus a particular scattering mechahism packets would be superpositions of Coulomb functions

Of course, there are many examples of time-independertf—8). It may also be possibléalthough we have not ex-
calculations in which it is not practical to calculate the wavePlored this possibilityto extend the approach to scattering in

function andS-matrix elements over a grid & and over all  the presence of external fields.
the partial waves required to converfi@, E). The extent to

which the theory of Secs. Il and Ill can be applied to inter- ACKNOWLEDGMENTS
pret the results obtained from less comprehensive time-
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This paper has derived the plane wave packet approach &eript and making suggestions. Finally, | acknowledge the

quantum scattering which was applied previougbyn the  Royal Society for support.

basis of physical intuitionto chemically reactive scattering.

The derivation shows that there is a simple, rigorous map-

ping between a wave packet that is initiated and detected APPENDIX A i

close to the scattering potential, and the D@®ich is mea- To prove Eq.(7), we follow Ref.[18], which proves the

sured a large distance away from the poteptiEthe mapping analogous relation for the case of one-dimensi¢bB) scat-

can be illustrated graphically by means of a “time-dependentering. First, we give the formal expression #R|kq,z|E),

DCS.” In addition, the evolution of the packet as it exits thewhich is

VI. CONCLUSIONS
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© [

_ T —i(H-ie-E)t/ ™ PW o1 e 1 i(F B -
é(R|ko,2o|E) = lim o) © dtx(R|ko, 2[0), EM(R|ko,2o|E) = lim o) © dt A(z- zp)€"??,

e—0+ 0 e—0+ 0
(A1) (A8)

where the factor eXpet) ensures that the integral con- which reduces the problem to the 1D system treated in Ref.
verges at largeé. We can rewrite this schematically as  [18]. The latter showed that the right-hand side of &®) is
. equal to the right-hand side of E¢A7), except for those
é= I—G)((O), (A2) components off'(Z[E) which are produced by the<0 parts
2 of the wave packefi.e., the incoming wave, exikz), for
z<Zz)|. Hence, we have proved that E() is satisfied,
except for the incoming wave component ¥{R|E), for

z<2,.

recognizing that the integral oveis the Green’s functio
corresponding to outgoing wave boundary conditipfsg].
In this notation,G satisfies the Lippmann-Schwinger equa-

tion [6-§] APPENDIX B

G=G"W+GVGEY, (A3) To evaluate the integral in E¢43), we use a result of Ref.
[18], which is that, for a general choice of initial partial wave

where V represents, schematically, the scattering potential acket v (RI0). the partial-wave TIWR:(RIE) is related to
andG"W is the Green'’s function for the free particlee., ?P|(R|E)Xltgy| ) P Ri(RIE)

with H replaced byl:|0). We then have that

-2 i
£= &M GVE™, (A%) §(RIE)= 7B/ (WW(RE), ®1)
where
where
pw_ | oPw 1 (= .
€75, X0 (A5) B ()=~ fo x(ROA (KRdR. (B2)

Now, Eq.(A4) resembles the Lippmann-Schwinger equation

for the time-independent wave functioh(R|E): In the plane wave packet approach of this paper, the initial

wave packet has the specific form(R|0):X|(R|Po,zo|O),

where x(RKo, 2|0) is given in Eq.(26). In this case, the

where ¥PW=exp(ikz). Hence, to prove Eq(7) we have TIWP &(Rky,zlE) is also related toF(RE) by Eq. (32).

only to show(reverting to the full notationthat Comparing the latter with Eq(B1) shows that, when
— X1(RI0)=x(Rlko, 2/0),

mA(k“(Ouzo)eikZ | | | |k0 ZO|

h2k

V=PV GVPY, (AB)

PWR—’ E) = A7 _
£(Rlko, 2o E) (A7) Ak 20)

B/ (k) = X

A A o (B3)
If we replaceH in Eq. (A1) by Hg, and write outHy=T,
+T,+T, [whereT,=—42/(2m)d?/dx?, etc], then it is evident ~Hence, from Eq(B2), we see that the integral in EG3) is

that equal toi mA(k|ky, )/ k.
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