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We derive and explain the key ideas behind a time-dependent formulation of quantum scattering theory,
applicable generally to systems with a finite-range scattering potential. The scattering is initiated and probed by
plane wave packets, which are localized just outside the range of the potential. The asymptotic limits of
conventional scattering theory(initiation in the remote past; detection in the remote future) are not taken.
Instead, the differential cross section(DCS) is obtained by projecting the scattered wave packet onto the probe
plane wave packets. The projection also yields a time-dependent version of the DCS. Cuts through the wave
packet, just as it exits the scattering potential, yield time-dependent and time-independent angular distributions
that give a close-up picture of the scattering which complements the DCS. We have previously applied the
theory to interpret experimental cross sections of chemical reactions[e.g., S. C. Althorpe, F. Fernández-Alonso,
B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature(London) 416, 67 (2002)]. This
paper gives the derivation of the theory, and explains its relation to conventional scattering theory. For clarity,
the derivation is restricted to spherical-particle scattering, though it may readily be extended to general mul-
tichannel systems. We illustrate the theory using a simple application to hard-sphere scattering.
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I. INTRODUCTION

In recent calculations on chemically reactive scattering
[1–5], we have devised an approach for interpreting differ-
ential cross sections(DCS) in terms of the scattering of a
plane wave packet. The plane wave packet is placed at the
shortest distance from the scattering center at which the in-
teraction potential can be neglected, and contains a wide
enough spread of momenta to localize the initial positions of
the collision partners. The ensuing time evolution of this
wave packet visualizes the dynamics of the collision, on and
close to the scattering potential. The packet maps directly
onto the DCS, via a simple transformation[2], and this map-
ping is often able to decompose the DCS into contributions
from different scattering mechanisms.

To our surprise, this intuitive approach seems not to have
been applied elsewhere in the quantum scattering literature.
Textbook derivations[6–8] often employ a plane wave
packet, but they assume that the spread of momenta in the
packet is very narrow, that the initial wave packet is prepared
in the remote past, and that the scattering is detected in the
remote future. These assumptions result in the standard,
time-independent formulation of quantum scattering theory,
which is essentially a plane wave packet description, on the
length and time scale of an experiment(in which the projec-
tiles and the detector are a very large distance away from the
scattering center). Our approach, by contrast, gives a plane
wave packet description on the length and time scale of the
collision. This “close-up” picture of the scattering maps onto
the “distant” picture given by the DCS, through projections
of the time-evolving wave packet onto a series of fixed plane
wave packets, each pointing in a desired scattering direction

[2]. The analogous mapping has been used for some years in
electromagnetic wave scattering theory[9,10], but it seems
not to have been used in quantum scattering before our work
on chemical reactions[1–5]. The latter did not derive the
approach formally, but arrived at it on the basis of physical
intuition.

It may be useful, therefore, to present a derivation of our
plane wave packet approach, since it is not restricted to
chemical reactions, and might profitably be applied in other
branches of quantum scattering. In this paper, we derive the
approach for the simplest case of spherical-particle scatter-
ing. The straightforward extension to multichannel scattering
will be presented in a later paper. The aim here is to illustrate
the main ideas behind the approach, including the simple
mapping between the wave packet and the DCS. To avoid
confusion, we emphasize that we are dealing here with the
use of wave packets as aninterpretational tool. We do not
discuss the other use of wave packets in quantum scattering
theory, namely as a powerful numerical technique for solving
the Schrödinger equation[11–17]. Such techniques provide a
natural way of implementing the approach of this paper, but,
as we explain below, standard time-independent methods of
solving the Schrödinger equation can also be used.

In Sec. II, we summarize the key results of the plane wave
packet approach. In Sec. III we derive these results by mak-
ing a partial-wave analysis. In Sec. IV, we illustrate the
theory by calculating time-evolving plane wave packets, and
angular distributions, for the simple example of hard-sphere
scattering. In Sec. V, we discuss how to apply the approach
to calculations that use time-independent methods of solving
the Schrödinger equation. Section VI concludes the paper.

II. PLANE WAVE PACKET FORMULATION
OF QUANTUM SCATTERING

In this section, we summarize the key steps in our plane
wave packet approach of quantum scattering theory, most of
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which have been applied previously by us[1–5], without
proof. We define the initial wave packet, the close-up angular
distributions, and the mapping between the time-evolving
wave packet and the DCS. These results will be derived in
Sec. III. For simplicity of presentation, we consider only
spherical-particle scattering, although the theory discussed in
this paper is easy to extend to general, multichannel scatter-
ing.

A. The time-dependent wave packet

The scattering of the particle is described in terms of the
usual spherical polar coordinatesR=sR,u ,fd, of which R is
the distance of the particle from the scattering center,u is the
scattering angle with respect to the initial approach direction
along thez axis, andf is the azimuthal angle. Since we are
treating spherical-particle scattering, the wave function is
symmetric aboutf, and the anglef will often be dropped.
We assume that the scattering potentialVsRd has a finite
range and may be neglected forR.R0.

At the initial time t=0, the system is described by a plane
wave packet[2]

xsRuk̄0,z0u0d = Asz− z0deik̄0z. s1d

The packet is traveling in the direction of the positivez axis,
as shown schematically in Fig. 1. The envelopeAsz−z0d is
chosen so as to localize the packet about a negativez dis-
tance, as close to the scattering center as possible without the

packet significantly overlapping the potential. The momen-
tum composition of the packet is given by

Askuk̄0,z0d =
1

2p
E

−`

`

e−ikzxsRuk̄0,z0u0ddz s2d

and the average momentum in the positivez direction isk̄0".
The dynamics of the particle att.0 is described by the
time-dependent wave packet

xsRuk̄0,z0utd = e−iĤt/"xsRuk̄0,z0u0d, s3d

whereĤ is the Hamiltonian. To separate the scattered part of
the wave packet from the unscattered part, we define the
wave packet

xOUTsRuk̄0,z0utd = xsRuk̄0,z0utd − xPWsRuk̄0,z0utd, s4d

wherexPWsRuk̄0,z0utd is given by

xPWsRuk̄0,z0utd = e−iĤ0t/"xsRuk̄0,z0u0d s5d

and Ĥ0 is the free particle Hamiltonian.
To relate the time-dependent wave packet to the time-

independent wave functionCsRuEd of conventional scatter-
ing theory [6–8], we take the Fourier transform overt to
obtain

jsRuk̄0,z0uEd =
1

2p"
E

0

`

eiEt/"xsRuk̄0,z0utddt. s6d

The time-independent wave functionjsRuk̄0,z0uEd is often
called the “time-independent wave packet”sTIWPd f18g, and
is the solution of an inhomogeneous form of the time-
independent Schrödinger equation. One may showsAppen-

dix Ad that CsRuEd is related tojsRuk̄0,z0uEd by

CsRuEd =
"2k

mAskuk̄0,z0d
jsRuk̄0,z0uEd, s7d

wherem is the mass of the particle, andCsRuEd satisfies the
usual scattering boundary conditionf6–8g,

CsRuEd → eikz +
fsu,Ed

R
eikR as R→ `. s8d

Strictly speaking, Eq.s7d breaks down when describing the
incoming part of the wave function at values ofz,z0 ssee
Appendix Ad. This drawback is only minor, since the incom-
ing part ofCsRuEd is of course justeikz for z,z0.

The goal of most scattering calculations is the scattering
amplitudefsu ,Ed which yields the DCS,

ds

dV
su,Ed = ufsu,Edu2. s9d

The textbookf6–8g route to obtainingfsu ,Ed from a plane

wave packet is to take the limitsz0→−` and Askuk̄0,z0d
→dsk− k̄0d, and then to obtain the scattering amplitude of the
wave packet in the limitt→`. However, as we discuss be-

FIG. 1. Schematic picture of the plane wave packet approach
(adapted from Fig. 1 of Ref.[2]), showing af=0 cut through the
3D space in which the particle scatters. The initial plane wave
packet is placed at the shortest distanceuz0u from the origin at which
the scattering potential can be neglected, and is traveling in the
direction of thez axis. The DCS is obtained by projecting the scat-
tered wave packet onto a series of fixed, plane-wave probe packets.
One such probe packet is shown, pointing in the directionu=up.
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low, one does not need to take these limits, in order to obtain
fsu ,Ed from the wave packet. We need the packet only up to

such a timetmax at which xOUTsRuk̄0,z0utd has escaped the
scattering potentialsi.e., is confined toR.R0d. sIn a nu-
merical calculation, the wave packet would be absorbed or
damped at someR slightly greater thanR0.d The wave

packet xsRuk̄0,z0utd thus describes the dynamics of the
scattering on the length and time scale of the collision.

B. The close-up angular distributions

It is useful to obtain the angular distribution of the wave
packet just as it exits the scattering potential. We therefore
introduce the close-up angular distributionss̃su ,td and
s̃su ,Ed, which are time-dependent and time-independent an-
gular distributions, taken over a sphere which just encloses
the scattering potential. These distributions give a local pic-
ture of the scattering, which separates out parts of the packet
that have scattered from different parts of the potential. The
information in the time-independent angular distribution
s̃su ,Ed therefore complements the information in the(time-
independent) DCS.

To obtain the time-dependent distributions̃su ,td, we take
a cut through the wave packet at the angleu, then calculate
the flux of the wave packet normal to a sphere that just
encloses the scattering potential. We do this by projecting the

packet onto a radial “probe” packetxsRuk̄p,Rpd /R, which is
localized aboutR=Rp.R0, and contains a spread of mo-
menta pointing radially outwards, with average momentum

"k̄p. The use of such a probe or “test” packet is known[19]
to be equivalent to acting with the radial flux operator[6–8].
The spread of momenta inxsRuk̄p,Rpd must be chosen so as

to enclose the momenta contained inAskuk̄0,z0d of Eq. (2).
This procedure yields the close-up scattering amplitude

f̃su,td = kxsk̄p,RpduxOUTsuuk̄0,z0utdl, s10d

where we have omitted fromxsRuk̄p,Rpd andxOUTsRuk̄0,z0utd
the variablesRd over which we have integrated.sThis con-
vention is used throughout the paper.d The close-up, time-
dependent angular distribution is then

s̃su,td = u f̃su,tdu2. s11d

To obtain the corresponding time-independent distribution,

we take the time-to-energy Fourier transform off̃su ,td to
obtain

g̃su,Ed =
1

2p"
E

0

`

eiEt/" f̃su,tddt, s12d

which gives the close-up, time-independent angular distribu-
tion

s̃su,Ed = ug̃su,Edu2. s13d

It is important to realize that the close-up angular distri-
butionss̃su ,td ands̃su ,Ed arenot differential cross sections.
If Rp were allowed to tend to infinity thens̃su ,Ed would tend

to the differential cross section(multiplied by an energy fac-
tor). However, the aim is to keepRp as small as possible, so
that s̃su ,td and s̃su ,Ed can distinguish between scattering
from different parts of the potential. Integratings̃su ,Ed over
the sphere does not yield the integral cross section, since
some of the flux that would be traveling radially outwards at
largeRp is traveling tangentially to the sphere at finiteRp. It
seems that the close-up distributions, which reveal informa-
tion that complements the DCS, have not been used previ-
ously in quantum scattering calculations. As we show in Sec.
III C, the time-independent distributions̃su ,Ed is readily ob-
tained from theS matrix, and hence from a standard scatter-
ing calculation(e.g., using the coupled-channel method).

C. Mapping the wave packet onto the DCS

The main idea behind our approach is that it is simple to
map the wave packet, which describes the scattering on and
close to the potential surface, onto the DCS(which describes
the scattering from a very large distance). Of course, one
could obtain the DCS from the wave packet via an indirect
route, by extracting the partial-waveS-matrix elements[12].
However, what we propose is a direct mapping, which allows
features in the DCS to be explained in terms of events in the
dynamics of the wave packet.

The mapping is analogous to a technique which, in elec-
tromagnetic wave scattering, is called the “near-field to far-
field” transformation[9,10]. It is essentially an application of
Newton’s first law to the motion of the wave packet for
R.R0, which projects out the component of the packet
whose momentum vector points in the direction of a given
angleu, and which will therefore scatter into this angle in the
limit R→`. One could use a flux operator to apply the map-
ping or equivalently, as we have done[2], one can project
onto probe packets. The probe packets are a set of plane
wave packets, held tangentially to a sphere of radiusRp.
Each packet points in a desired scattering directionup; one
such probe packet is illustrated schematically in Fig. 1. Us-
ing a similar notation to Eq.(1), we write these packets as

xsRuup,k̄p,qpd = Asq − qpdeik̄pq. s14d

The envelope functionAsq−qpd is chosen such that

xsRuup, k̄p,qpd is localized about the distanceq=qp along the
q axis sa vector pointing in the direction ofup; see Fig. 1d.
The spread of"uku in xsRuup, k̄p,qpd must enclose the spread

of "uku in the initial wave packetxsRuk̄0,z0u0d. Projecting

onto xsRuup, k̄p,qpd effectively “captures” all those parts of
the packet which, in the limitR→`, will scatter intou=up.

The projection yields the time-dependent scattering am-
plitude

fsup,td = kxsup,k̄p,qpduxOUTsk̄0,z0utdl, s15d

from which we obtainsdropping thep subscriptsd the “time-
dependent differential cross section”
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ds

dV
su,td = ufsu,tdu2. s16d

The time-to-energy Fourier transform offsu ,td yields a time-
independent scattering amplitude

gsu,Ed =
1

2p"
E

0

`

eiEt/"fsu,tddt. s17d

We will demonstrate belowsSec. III Dd thatgsu ,Ed is related
to fsu ,Ed by

fsu,Ed =
gsu,Ed

Fsk̄0,z0,k̄p,qpuEd
, s18d

where the energy filterFsk̄0,z0, k̄p,qpuEd is

Fsk̄0,z0,k̄p,qpuEd =
4p2im

k2"2 Askuk̄0,z0dAskuk̄p,qpd* . s19d

Hence, the mapping between the wave packet

xOUTsRuk̄0,z0utd and the DCS involves simply the projec-
tion onto the probe packets, followed by a Fourier trans-
form. A quantitative picture of the mapping, which helps
to show which parts of the wave packet map onto which
features in the DCS, is given by the time-dependent DCS
ds /dVsu ,td fEq. s16dg. Strictly speaking, ds /dVsu ,td
should not be called a “cross section,” since it is not a
ratio of scattered flux to incoming flux, and does not in
general have units of areaf20g. However, the name and
notation seem appropriate given the close relation be-
tweends /dVsu ,td and thestime-independentd DCS.

III. PARTIAL-WAVE ANALYSIS

In this section we derive the results summarized in Sec. II,

including the mapping betweenxOUTsRuk̄0,z0utd and fsu ,Ed,
by making a partial-wave analysis. This analysis also clari-
fies the relation with conventional scattering theory, and
gives a practical way of implementing the plane wave packet
approach numerically(see Sec. IV). In electromagnetic scat-
tering theory, the analogous relations have been derived
[9,10] by an explicit application of Green’s theorem. Here
we are effectively following the same route, since the well-
known properties of the partial-wave series that we exploit
are themselves a consequence of Green’s theorem.

A. Expanding the time-dependent wave packet

The derivation is based on the well-known expansion

eikz =
1

kR
o
l=0

`

s2l + 1di l ĵ lskRdPlscosud, s20d

where Plscosud are Legendre polynomials,ĵ lskRd are
Riccati-Bessel functions satisfying

ĵ lskRd → sinskR− lp/2d, s21d

and l is the sorbitald angular momentum of the scattering
particle.

Application of Eq.(20) to the time-evolving wave packet

xsRuk̄0,z0utd yields

xsRuk̄0,z0utd =
1

R
o
l=0

`

i ls2l + 1dPlscosudxlsRuk̄0,z0utd. s22d

Each of the partial wave packetsxlsRuk̄0,z0utd satisfies

xlsRuk̄0,z0utd = e−iĤ lt/"xlsRuk̄0,z0u0d, s23d

whereĤl is the Hamiltonian

Ĥl = −
"2

2m

d2

dR2 +
lsl + 1d"2

2mR2 + VsRd s24d

andxlsRuk̄0,z0u0d is the partial-wave component of the initial

plane wave packetxsRuk̄0,z0u0d. Using Eq.s2d to write the
latter as

xsRuk̄0,z0u0d =E
−`

`

eikzAskuk̄0,z0ddk s25d

and expandingeikz using Eq.s20d, yields

xlsRuk̄0,z0u0d =E
−`

`

ĵ lskRd
Askuk̄0,z0d

k
dk. s26d

This equation gives the general form ofxlsRuk̄0,z0u0d for a

given momentum envelopeAskuk̄0,z0d. To our knowledge,
the integral overk cannot be evaluated analytically forl .0,

for any simple choice ofAskuk̄0,z0d ssuch as a Gaussiand, and

hence the form of thexlsRuk̄0,z0u0d must be investigated nu-
merically. This is done in Sec. IV A. Here, we point out

some basic properties of thexlsRuk̄0,z0u0d. These packets su-

perpose to give the initial plane wave packetxsRuk̄0,z0u0d,
and hence they are localized aroundRù uz0u, and are incom-
ing wavesstraveling in the direction of decreasingRd. Now,
the function ĵ lskRd is a linear combination of incoming and
outgoing waves

ĵ lskRd =
1

2i
fĥl

+skRd − ĥl
−skRdg s27d

and so the effect of integrating overAskuk̄0,z0d is to pick out

the incoming componentĥl
−skRd, and localize it about a posi-

tive value of R. The contribution of the outgoing wave to

xlsRuk̄0,z0u0d is negligible, since integrating overAskuk̄0,z0d
would localize it about a negative value ofR sandRù0d. For
l =0, the integral in Eq.s26d is simply a Fourier transform,

which yields ax0sRuk̄0,z0u0d that is centered aboutR= uz0u.
From Eqs.s25d and s26d, the distribution of momenta in

x0sRuk̄0,z0u0d is 1/k times the distribution in the plane wave

packetxsRuk̄0,z0u0d. Higher values ofl correspond to higher
impact parameters and hence, from simple geometry we ex-
pect that, asl increases, the value ofR about which
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xlsRuk̄0,z0u0d is centered moves further out, and the width of

xlsRuk̄0,z0u0d increases.

We also define the partial wave packetsxl
PWsRuk̄0,z0utd

andxl
OUTsRuk̄0,z0utd=xlsRuk̄0,z0utd−xl

PWsRuk̄0,z0utd, which are

the analogous partial-wave components ofxOUTsRuk̄0,z0utd
andxPWsRuk̄0,z0utd of Eqs.(4) and(5). Hence,xl

PWsRuk̄0,z0utd
describes the free evolution of an initial partial wave packet

xlsRuk̄0,z0u0d, subject to a HamiltonianĤl of Eq. (24) in
which VsRd is zero.

B. Relation to the time-independent wave function

The next step is to relate the partial wave packets

xlsRuk̄0,z0utd to the partial-wave componentsClsRuEd of the
time-independent wave functionCsRuEd, and thus to the
S-matrix elementsSlsEd. The ClsRuEd are defined[6–8] by
the expansion

CsRuEd =
1

kR
o
l=0

`

s2l + 1di lPlscosudClsRuEd s28d

and satisfy the boundary conditions

ClsRuEd → i

2
fĥl

−skRd − ĥl
+skRdSlsEdg, s29d

whereSlsEd are elements of theS matrix. Proceeding as in
Sec. II A, we define the TIWP partial-wave components

jlsRuk̄0,z0uEd =
1

2p"
E

0

`

eiEt/"xlsRuk̄0,z0utddt, s30d

which satisfy

jsRuk̄0,z0uEd =
1

R
o
l=0

`

i ls2l + 1dPlscosudjlsRuk̄0,z0uEd. s31d

We then substitute Eqs.s28d ands31d into Eq.s7d and use the
orthogonality of thePlscosud to obtain

ClsRuEd =
"2k2

mAskuk̄0,z0d
jlsRuk̄0,z0uEd. s32d

The same relation holds betweenjl
PWsRuk̄0,z0uEd and

Cl
PWsRuEdf= ĵ lskRdg, and between jl

OUTsRuk̄0,z0uEd and
Cl

OUTsRuEd. The latter is given by

Cl
OUTsRuEd = −

i

2
ĥl

+skRdfSlsEd − 1g for R. R0. s33d

Thus Eqs.s22d and s30d–s33d can be used to extract the
S-matrix elementsSlsEd from the time-dependent wave
packet. These yield the scattering amplitudefsu ,Ed, and
hence the DCS, through the well-known expression

fsu,Ed =
1

2ik
o
l=0

`

s2l + 1dPlscosudfSlsEd − 1g. s34d

As mentioned earlier, this gives us an alternative, indirect
route, of obtaining the DCS from the wave packet. Unlike
the projection onto probe packets, however, this indirect
route does not allow one to map events in the dynamics of
the wave packet onto features in the DCS.

C. Expanding the close-up angular distributions

Before deriving the mapping of the wave packet onto the
DCS, it is useful to expand the close-up angular distributions
s̃su ,td and s̃su ,Ed of Sec. II B, in terms of theS-matrix
elementsSlsEd. Substituting Eq.(22) into Eq. (10) yields the
expansion

f̃su,td = o
l=0

`

i ls2l + 1dPlscosudkxsk̄p,Rpduxl
OUTsk̄0,z0utdl.

s35d

Substituting Eqs.s30d and s31d into Eq. s12d yields

g̃su,Ed = o
l=0

`

i ls2l + 1dPlscosudkxsk̄p,Rpdujl
OUTsk̄0,z0uEdl.

s36d

If we extractSlsEd from jl
OUTsk̄0,z0uEd using Eqs.s32d and

s33d, then Eq.s36d becomes

g̃su,Ed =
− impAskuk̄0,z0d

k2"2 o
l=0

`

i ls2l + 1dPlscosudAlskuk̄p,Rpd

3fSlsEd − 1g, s37d

where

Alskuk̄p,Rpd =
1

2p
E

0

`

fxsRuk̄p,Rpdg* ĥl
+skRddR. s38d

Comparison of Eq.s37d with Eq. s34d shows that it is the

l-dependent momentum envelopesAlskuk̄p,Rpd which ensure
that the close-up angular distributiong̃su ,Ed is different from
the asymptotic angular distributionfsu ,Ed. In the limit that
the radius of the sphereRp→`, the envelopes satisfy

Alskuk̄p,Rpd → A0skuk̄p,Rpdi−l , s39d

which ensures thatg̃su ,Ed tends tofsu ,Ed, multiplied by an
energy filter. Equations37d is very useful, because it gives us
a way of obtainingg̃su ,Ed, and hences̃su ,Ed and s̃su ,td,
from theSlsEd.

D. Mapping the wave packet onto the DCS

To complete the derivation of the mapping of the wave
packet onto the DCS, we need to expand the plane wave

probe packetsxsRuup, k̄p,qpd of Eq. (14). Using the standard
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partial wave expansion[6–8] for a plane wave function trav-
eling in the direction ofup, we obtain

xsRuup,k̄p,qpd =
4p

R
o
l=0

`

o
m=−l

l

i lYlm
* sup,0dYlmsu,fdxlsRuk̄p,qpd.

s40d

Each functionxlsRuk̄p,qpd is a partial wave probe packet, and
has the same form as the partial-wave initial packets,

xlsRuk̄0,z0u0d of Eq. s26d. We expand the projection onto the

probe packets, given in Eq.s15d, by expandingxsRuk̄0,z0utd
andxsRuup, k̄p,qpd using Eqs.s22d and s40d, and integrating
over u, to obtain

fsup,td = 4po
l=0

`

s2l + 1dPlscosupdkxlsk̄p,qpduxl
OUTsk̄0,z0utdl.

s41d

The Fourier transform of this expression yields

gsu,Ed = 4po
l=0

`

s2l + 1dPlscosudkxlsk̄p,qpdujl
OUTsk̄0,z0uEdl

s42d

swhere we have dropped thep subscriptd. From Eqs.s32d and
s33d, the projection on the right-hand side is equal to

kxlsk̄p,qpdujl
OUTsk̄0,z0uEdl =

− im

2k2"2Askuk̄0,z0dfSlsEd − 1g

3 E
0

`

xl
*sRuk̄p,qpdĥl

+skRddR.

s43d

One can showsAppendix Bd that the integral overR is inde-

pendent ofl, and is equal toipA*skuk̄p,qpd /k. The expansion
of gsu ,Ed can therefore be written

gsup,Ed = Fsk̄0,z0,k̄p,qpuEd

3H 1

2ik
o
l=0

`

s2l + 1dPlscosupdfSlsEd − 1gJ , s44d

where the energy filterFsk̄0,z0, k̄p,qpuEd is as defined in Eq.
s19d. The term in brackets is equal tofsu ,Ed fsee Eq.s34dg,
and so Eq.s44d is equivalent to Eq.s18d.

This completes the derivation of the mapping of the wave
packet onto the DCS. The plane wave packet approach given
in Sec. II(and applied without proof in previous work[1–5])
is therefore a rigorous formulation of quantum scattering
theory, which is consistent with conventional scattering
theory. Both formulations yield the same final result(the
time-independent DCS), but by different routes. The plane
wave packet approach obtains the DCS by projecting the
wave packet onto probe packets; conventional scattering
theory by summing the partial-waveS-matrix elements.

Note that the formulas of this section and Sec. II give
several different(but equivalent) ways of evaluating the pro-
jection integral of Eq.(15). One can evaluate the integral

directly, using the calculatedxsRuk̄0,z0utd andxsRuup, k̄p,qpd;
one can evaluate separately the partial-wave integrals

kxlsk̄p,qpd uxl
OUTsk̄0,z0u tdl, then superpose them using Eq.

(41); or one can obtain the integral indirectly, from the
S-matrix elements, by reversing the steps in Eqs.(41)–(44).
Which route is most convenient will depend upon which
numerical method has been used to solve the Schrödinger
equation(see Sec. V).

E. Time-dependentS-matrix elements

As a postscript to the above, it is convenient to define the
“time-dependentS-matrix” elements

Slstd =E
0

` Fsk̄0,z0,k̄p,qpuEd
k

SlsEde−iEt/"dE s45d

and the term

Fstd =E
0

` Fsk̄0,z0,k̄p,qpuEd
k

e−iEt/"dE. s46d

The expansion offsu ,td in Eq. s41d can then be written

fsu,td =
1

2i
o
l=0

`

s2l + 1dPlscosudfSlstd − Fstdg. s47d

Clearly, the interpretation of theSlstd is that they are the
partial-wave components of the time-dependent scattering
amplitude fsu ,td. They can be calculated from the time-
independentS-matrix elementsSlsEd, by specifying the ini-
tial and probe plane wave packets through the choice of en-

ergy filter Fsk̄0,z0, k̄p,qpuEd. The term Fstd subtracts the
contribution of the unscattered plane wave packet

xPWsRuk̄0,z0utd from fsu ,td.

IV. NUMERICAL ILLUSTRATION

The formulas of Sec. III give a straightforward way of
implementing the plane-wave scattering theory numerically.
As in a coupled-channel calculation, one can calculate each
partial wave separately, and truncate the series atl = lmax.
Such calculations have already been done, in our previous
applications of the multichannel version of the theory to
chemical reactions. Here we discuss a numerical application
to the simple model of scattering by a hard sphere, in order
to illustrate some basic aspects of the theory. These include
the form of the initial partial wave packets, the convergence
of the plane wave packet with respect tolmax, some graphical
difficulties that are encountered, and the difference between
the close-up and asymptotic angular distributions.

The scattering of a particle from a hard sphere is one of
the classic models of quantum scattering theory[6–8]. The
partial-wave components of the wave function are known
analytically, and are obtained by substitutingSlsEd
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=expf2iflskdg into Eq.(33), with flskd= ĵ lskad / n̂lskad, where
a is the radius of the hard sphere. It is therefore not necessary
to propagate the time-dependent wave packet numerically,
since it can be obtained fromCsR uEd, by reversing the steps
in Eqs. (6) and (7). The same is true for the close-up and
asymptotic angular distributions, which can be obtained di-
rectly from theS-matrix elements, using the equations given
in Secs. III C and III D. The “numerical” aspect of the cal-
culation therefore consists in truncating the partial-wave se-
ries at lmax, and evaluating the integrals overE and k by
quadrature.

A. Initial wave packets

The initial plane wave packetxsRuk̄0,z0u0d was taken to
be a Gaussian along thez coordinate. The envelope function
Asz−z0d of Eq. (1) is therefore

Asz− z0d =
1

Îzl
Îp

expF−
sz− z0d2

2zl
2 G . s48d

The initial position, width, and average momentum took the

valuesz0=−6 a.u.,zl =0.5 a.u., andk̄0=10 a.u.
The initial wave packet was expanded in terms of a series

of partial wave packetsxlsRuk̄0,z0u0d, according to Eqs.(22)
and(26). To our knowledge, the integrals in Eq.(26) cannot
be evaluated analytically forl .0, and so they were evalu-
ated using Gauss-Hermite quadrature overk. Figure 2 plots

the uxlsRuk̄0,z0u0du2 for selected values ofl. As expected from
the discussion in Sec. III A, the packets move further out and
become wider, asl increases, this corresponding to an in-
creasingly glancing cut through the initial plane wave packet,
as the impact parameter increases.

Superposing the partial wave packets, by truncating Eq.
(22) at l = lmax, produces an approximation to the initial plane

wave packetxsRuk̄0,z0u0d. Figure 3 illustrates the conver-

gence ofxsRuk̄0,z0u0d with respect tolmax. Whenlmax=0, the

initial wave packet is simplyx0sRuk̄0,z0u0d /R, which is a

Gaussian along the radial coordinate, and has a spherical
distribution in the angular coordinatessu ,fd. Taken in isola-
tion, this packet would give a spherical description of the
scattering: the sphere in Fig. 3 would implode, reach the
scattering center, then scatter spherically outwards. Forl

=1,2, . . . theisolatedxlsRuk̄0,z0u0d would give a description
of the scattering that is shaped like ap orbital, d orbital, and
so on.

Figure 3 shows that the effect of superposing just the first
two partial waves is enough to locate most of the(approxi-
mate) plane wave packets on the negativez axis. The pre-
dominant approach direction of the packet is now along the
positivez direction. As partial waves are added up to about
lmax=5, the initial plane wave packet becomes increasingly
focused, concentrating into a blob aboutz=z0. The addition
of further partial wavesslmax.5d behaves semi-classically:
each additionall component widens the range of initial im-

pact parameters, such thatxsRuk̄0,z0u0d resembles a disk(in
the plane perpendicular to thez axis) of approximate radius

lmax/ k̄0. In a numerical calculation,lmax is chosen such that
the radius of the disk is just wide enough to include all the
impact parameters that will scatter. If desired, the entire
plane wave packet(and its subsequent time evolution) can be
recovered by adding onto the wave packet the term

xholesRuk̄0,z0,lmaxutd = xPWsRuk̄0,z0utd

−
1

R
o
l=0

lmax

i ls2l + 1dPlscosud

3xl
PWsRuk̄0,z0utd, s49d

which is the exact plane wave packet with a circular hole in
it.

The probe packetsxsRuup, k̄p,qpd, and their partial wave

componentsxlsRuk̄p,qpd, have exactly the same forms as

xsRuk̄0,z0u0d, andxlsRuk̄0,z0u0d, except that they are rotated
by an angle ofup. In a numerical calculation, the probe pack-

FIG. 2. Probability distributionsuxlsRuk̄0,z0u0du2 obtained from

selected partial wave componentsxlsRuk̄0,z0u0d of the initial plane

wave packetxsRuk̄0,z0u0d. ThexlsRuk̄0,z0u0d are obtained from Eq.

(26), using the momentum amplitudeAskuk̄0,z0d specified in Sec.
IV A.

FIG. 3. Probability distributionsuxsRuk̄0,z0u0du2 obtained by ex-

panding the initial plane wave packetxsRuk̄0,z0u0d using Eq.(22),
and truncating the expansion at various values ofl = lmax.
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ets xsR uup, k̄p,qpd are thus disks in the plane perpendicular
to theq axis. These disks have the same radius as the initial

packetxsRuk̄0,z0u0d, and are therefore just wide enough to
capture all of the scattered packet.

B. Time-evolving wave packets

The wave packetxsRuk̄0,z0utd was computed for a hard-
sphere radius ofa=3.0 a.u. The partial wave expansion was
truncated atlmax=40, which was found to be sufficient to
converge the DCS over the range of collision energies con-
tained in the initial wave packet of Eq.(48). The nonscatter-
ing part of the plane wave packet(for l .40) was added on
using Eq.(49). The mass of the scattering particle was taken
to bem=1470 a.u.

Figures 4 and 5 give snapshots ofuxsRuk̄0,z0utdu2R2 and

uxOUTsR u k̄0,z0u tdu2R2 at various times during the hard-sphere
collision. The plots illustrate some of the graphical difficul-
ties encountered when attempting to represent on the same
plot the rectangular motion of the incoming plane wave as
well as the roughly spherical evolution of the scattered wave.
The latter spreads over a surface whose area scales asR2, and
will thus quickly disappear from the plots, unless the packet
is multiplied by R2 (as is done in Figs. 4 and 5). However,
the R2 factor distorts the representation of the initial plane
wave packet(which looks bent in Fig. 4). A related difficulty
is that the amplitude of the unscattered part of the plane
wave is much greater than the scattered part, and hence the
unscattered part dwarfs the scattered part(see Fig. 4). Both
difficulties are sidestepped by plotting just the scattered

wave packetuxOUTsRuk̄0,z0utdu2R2, as is done in Fig. 5. A
convenient representation, used in some of our applications

to chemical reactions is to representuxOUTsRuk̄0,z0utdu2 and

uxPWsRuk̄0,z0utdu2 separately on the same plot, multiplying

just uxOUTsRuk̄0,z0utdu2 by the factor ofR2, and using a differ-
ent set of contour levels for the two functions.

There can be no surprises in Figs. 4 and 5, which repre-
sent one of the classic problems of scattering theory. The
main purpose here is to illustrate the theory of Secs. II and
III, in particular the relation between the the wave packet and
the close-up and asymptotic angular distributions. We em-
phasize that in more complex systems, such as the chemical
reactions we looked at previously[1–5], the wave packets
often yield new insight into the dynamics of the scattering.
We suggest also that, even for a simple model system such as
hard-sphere scattering, the visualization given by the time-
evolving wave packet may have pedagogical advantages. For
example, Fig. 4 gives a clear picture, at 24 fs, of the forma-
tion of the well-known shadow. Later, at 42–48 fs, it shows
how the spreading of the edges of the packet into the shadow
produces the diffractive interference pattern that character-
izes hard-sphere forward scattering. The scattered wave
packet(Fig. 5) shows the part of the wave packet that cancels
out the unscattered plane wave to generate the shadow. At
18 fs, this part appears as two surface waves, which move
around the sphere and meet up in the forward direction.

C. Close-up angular distributions and DCS

The close-up, time-dependent angular distributions̃su ,td
of Eq. (11) and the time-dependent DCSds /dVsu ,td of Eq.
(16) were obtained from theS-matrix elements, using the
formulas of Sec. III. For the close-up distributions, this pro-
cedure was equivalent to taking radial cuts through the wave
packet as a function ofu, then projecting onto the radial

FIG. 4. Snapshots of the time-evolving probability distribution

uxsRuk̄0,z0utdu2R2, showing the scattering of the plane wave packet
from a hard-sphere potential, calculated as described in Sec. IV B.

FIG. 5. Same as Fig. 4 foruxOUTsRuk̄0,z0utdu2R2 (the scattered
component of the wave packet).
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probe packetxpsRuk̄p,Rpd /R following Eq. (10). For the
asymptotic distributions, it was equivalent to projecting onto

the plane wave probe packetsxsRuup, k̄p,qpd of Eq. (14).
Both types of probe packets were taken to be Gaussians,
centered aroundRp=6 a.u., with the same width and average

momentum as the initial packetxsRuk̄0,z0u0d [see Eq.(48)].
The resultings̃su ,td andds /dVsu ,td are plotted in Fig. 6.

As mentioned above, the close-up distributions̃su ,td is ex-
pected to give the more faithful representation of the scatter-
ing of the wave packet, since it gives the angular distribution
of the packet just after it has exited the scattering potential
(in this case 6 a.u. from the origin). The time-dependent
DCSds /dVsu ,td is also computed at this distance, which is
why the two angular distributions cover roughly the same
range oft. However, one should not forget thatds /dVsu ,td
predicts the angle into which the packet will have scattered
in the limit thatR→`.

Paradoxically,ds /dVsu ,td appears to give a more faithful
representation of the roughly spherical “ring” into which the
packet scatters(see Fig. 5), than does the close-up distribu-
tion s̃su ,td. This is because the latter detects that the ring is
not centered about the origin, but about a point on thez axis
at roughlyz=−2 a.u. The backward-scattered part of the ring
has therefore traveled a shorter distance(by about 4 a.u.)
than the forward-scattered part, and has spread considerably
less; this has the effect of concentrating the ring ins̃su ,td in
the backward direction. By contrast, the time-dependent
DCS ds /dVsu ,td does not detect that the scattering is off-
center. Like the time-independent DCS of conventional scat-
tering theory,ds /dVsu ,td gives the angular distribution in
the limit R→`, in which all of the scattering appears to
radiate from a central point.

Another difference betweens̃su ,td and ds /dVsu ,td is
evident in the forward direction, whereds /dVsu ,td shows a
narrowly focused forward peak, which contains oscillations
in u caused by the diffractive interference. Ins̃su ,td, the
forward peak spreads over a wider range of angles, and does
not contain the diffractive oscillations. This is becauses̃su ,td
detects the packet where it has just emerged from colliding
with the hard sphere, and where the two edges of the
forward-scattering packet have not yet come together and
interfered. Hence,s̃su ,td shows that the forward interference
is caused, not by the dynamics of the packet as it hits the
sphere, but later, as the particle scatters outwards. This very
well-known example illustrates how the time-dependent an-
gular distributionss̃su ,td and ds /dVsu ,td complement one
another.

Figure 7 shows the close-up, time-independent angular
distribution s̃su ,Ed, and the time-independent DCS
ds /dVsu ,Ed, at E=1 eV. The forward scattering regionsu
=0–45°d illustrates clearly the diffractive oscillations, which
as just discussed, are not present in the close-up distribution.

Together, the four angular distributions,s̃su ,td,
ds /dVsu ,td, s̃su ,Ed, and ds /dVsu ,Ed summarize the dy-
namics of the wave packet shown in Figs. 4 and 5. In par-
ticular, the time-dependent DCSds /dVsu ,td illustrates
which parts of the wave packet map onto which parts of the
DCS. In this simple example, the mapping is obvious, since
we know that the earlier parts of the packet scatter in the
backward direction, and so on. However, in more complex
systems, such as chemical reactions[1–5], the time-
dependent DCS is very useful at disentangling contributions
from different scattering mechanisms.

V. APPLYING THE THEORY IN TIME-INDEPENDENT
CALCULATIONS

The theory of Secs. II and III uses wave packets as an
interpretational tool, for visualizing collisions and interpret-
ing the DCS. This use of wave packets should not be con-

FIG. 6. Comparison of the two types of time-dependent angular
distribution obtained from the scattered wave packet of Fig. 5.
Panel(a) is the close-up angular distributions̃su ,td; panel(b) is the
time-dependent DCSds /dVsu ,td.

FIG. 7. A cut(at E=1 eV) through the time-independent angular
distributions obtained from the scattered wave packet of Fig. 5.
Curve (a) is the close-up angular distributions̃su ,Ed; curve (b) is
the time-independent DCSds /dVsu ,Ed. The curves have been
scaled to fit on the same plot.
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fused with the other use of wave packets in quantum scatter-
ing, which is a numerical method of solving the Schrödinger
equation[11–17]. It seems natural to use the latter method in
combination with the theory of Secs. II and III, since an
existing time-dependent code can easily be modified to
propagate the(multichannel equivalent of) the initial partial

wave packetsxlsRuk̄0,z0u0d of Eq. (26). However, we empha-
size that the theory of Secs. II and III is also applicable when
the Schrödinger equation is solved using a time-independent
method, such as the coupled-channel[21] or R-matrix [22]
method. One has simply to compute the time-independent
wave functionCsRuEd and scattering amplitudefsu ,Ed over
a grid of energies, then reverse the steps in Eqs.(6), (7), (17),
and(18). This was how we calculated the hard-sphere results
of Sec. IV.

In fact, the latter approach has the advantage that it may
be repeated any number of times, using different choices of

the energy filterFsk̄0,z0, k̄p,qpuEd. One may therefore obtain
time-evolving wave packets and angular distributions from
CsRuEd that explore different energy ranges, impact param-
eters, and initial conditions. Hence, it can even make sense,
when solving the Schrödinger equation by time-dependent
methods, to Fourier-transform the wave packet to the energy-
domain, to obtainCsRuEd and fsu ,Ed over a grid ofE. One
can then Fourier transform back to the time domain, using a

variety of differentFsk̄0,z0, k̄p,qpuEd. This was the approach

used in Ref.[4] [where differentFsk̄0,z0, k̄p,qpuEd were used
to isolate and focus a particular scattering mechanism].

Of course, there are many examples of time-independent
calculations in which it is not practical to calculate the wave
function andS-matrix elements over a grid ofE, and over all
the partial waves required to convergefsu ,Ed. The extent to
which the theory of Secs. II and III can be applied to inter-
pret the results obtained from less comprehensive time-
independent calculations is summarized in Table I.

VI. CONCLUSIONS

This paper has derived the plane wave packet approach to
quantum scattering which was applied previously(on the
basis of physical intuition) to chemically reactive scattering.
The derivation shows that there is a simple, rigorous map-
ping between a wave packet that is initiated and detected
close to the scattering potential, and the DCS(which is mea-
sured a large distance away from the potential). The mapping
can be illustrated graphically by means of a “time-dependent
DCS.” In addition, the evolution of the packet as it exits the

potential can be summarized by means of close-up time-
dependent and time-independent angular distributions.

The approach is a simple idea, but it has turned out to be
a powerful tool for interpreting the cross sections of chemi-
cal reactions[1–5]. These are systems in which the DCS is
complicated by interference patterns between competing
scattering processes, which the plane wave packet approach
is able to disentangle neatly. An advantage with treating
chemical reactions is that their dynamics is usually semiclas-
sical [23–26], and is thus described naturally by localized
wave packets(just as unimolecular processes are described
naturally by wave packets prepared in “femtochemistry” ex-
periments [27]). It will be interesting, therefore, to see
whether the approach of this paper can also interpret the
dynamics of other systems which have competing scattering
mechanisms, but which are not semiclassical(e.g., electron-
molecule scattering[22]).

The derivation in this paper was restricted to the simplest
case of spherical-particle scattering, in order to illustrate and
prove the key ideas(such as the mapping between the wave
packet and the DCS, and the differences between the various
angular distributions). It is easy to extend this derivation to
multichannel scattering, and this will be published shortly.
So far, we have restricted our derivation and applications of
the approach to systems in which the scattering potential has
a finite range. Extending the approach to treat systems with
infinite-range potentials should be straightforward(e.g., in
charged-particle scattering, the initial and probe plane wave
packets would be superpositions of Coulomb functions
[6–8]). It may also be possible(although we have not ex-
plored this possibility) to extend the approach to scattering in
the presence of external fields.
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APPENDIX A
To prove Eq.(7), we follow Ref. [18], which proves the

analogous relation for the case of one-dimensional(1D) scat-

tering. First, we give the formal expression forjsRuk̄0,z0uEd,
which is

TABLE I. Summary of the extent to which different types of time-independent(TI) scattering calculation
can make use of the plane wave packet theory of this paper—see Sec. V.

TI calculation yields xstd s̃su ,Ed s̃su ,td ds /dVsu ,td Slstd

CsEd and fsu ,Ed over grid ofE U U U U U

fsu ,Ed over grid ofE 3 U U U U

SlsEd for somel over grid ofE 3 3 3 3 U

fsu ,Ed for some values ofE 3 U 3 3 3
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jsRuk̄0,z0uEd = lim
e→0+

1

2p"
E

0

`

e−isĤ−ie−Edt/"dtxsRuk̄0,z0u0d,

sA1d

where the factor exps−etd ensures that the integral con-
verges at larget. We can rewrite this schematically as

j =
i

2p
Gxs0d, sA2d

recognizing that the integral overt is the Green’s functionG
corresponding to outgoing wave boundary conditionsf6–8g.
In this notation,G satisfies the Lippmann-Schwinger equa-
tion f6–8g

G = GPW + GVGPW, sA3d

where V represents, schematically, the scattering potential,
andGPW is the Green’s function for the free particlesi.e.,

with Ĥ replaced byĤ0d. We then have that

j = jPW + GVjPW, sA4d

where

jPW =
i

2p
GPWxs0d. sA5d

Now, Eq.sA4d resembles the Lippmann-Schwinger equation
for the time-independent wave functionCsRuEd:

C = CPW + GVCPW, sA6d

where CPW=expsikzd. Hence, to prove Eq.s7d we have
only to showsreverting to the full notationd that

jPWsRuk̄0,z0uEd =
mAskuk̄0,z0d

"2k
eikz. sA7d

If we replaceĤ in Eq. sA1d by Ĥ0, and write outĤ0=T̂x

+T̂y+T̂z fwhereT̂x=−"2/ s2mdd2/dx2, etc.g, then it is evident
that

jPWsRuk̄0,z0uEd = lim
e→0+

1

2p"
E

0

`

e−isT̂z−ie−Edt/"dt Asz− z0deik̄0z,

sA8d

which reduces the problem to the 1D system treated in Ref.
f18g. The latter showed that the right-hand side of Eq.sA8d is
equal to the right-hand side of Eq.sA7d, except for those
components ofCszuEd which are produced by thet,0 parts
of the wave packetfi.e., the incoming wave, expsikzd, for
z,z0g. Hence, we have proved that Eq.s7d is satisfied,
except for the incoming wave component ofCsRuEd, for
z,z0.

APPENDIX B
To evaluate the integral in Eq.(43), we use a result of Ref.

[18], which is that, for a general choice of initial partial wave
packetxlsRu0d, the partial-wave TIWPjlsRuEd is related to
ClsRuEd by

jlsRuEd =
− 2mi

k"2 Bl
+skdClsRuEd, sB1d

where

Bl
+skd =

1

2p
E

0

`

xlsRu0dĥl
+skRddR. sB2d

In the plane wave packet approach of this paper, the initial

wave packet has the specific formxlsRu0d=xlsRuk̄0,z0u0d,
where xlsRuk̄0,z0u0d is given in Eq.s26d. In this case, the

TIWP jlsRuk̄0,z0uEd is also related toClsRuEd by Eq. s32d.
Comparing the latter with Eq.sB1d shows that, when

xlsRu0d=xlsRuk̄0,z0u0d,

Bl
+skd =

iAskuk̄0,z0d
2k

. sB3d

Hence, from Eq.sB2d, we see that the integral in Eq.s43d is

equal toipAskuk̄p,qpd /k.
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