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High-accuracy helium wave functions based on exponentials with random coefficients are transformed into
momentum space. The utility of the wave functions is demonstrated through calculation of the expectation
value of various operators needed to evaluate relativistic and QED corrections.
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I. INTRODUCTION

In recent years a basis set consisting of random exponen-
tials has been used with increasing frequency to carry out
calculations in helium[1–3]. For singlet and tripletSstates it
can be written as

fsrW1,rW2d = o
i

Cife−air1−bir2−gir12 ± e−air2−bir1−gir12g, s1d

whereai, bi, andgi are parameters that are chosen randomly
in certain ranges, and the spin wave functions are under-
stood. Through careful choice of those ranges Korobovf1g
has been able to obtain a ground state energy of

E = − 2.903 724 377 034 119 598 311 159 a.u.s2d

While even higher accuracies are possible with basis sets that
incorporate known nonanalytic behaviors of the wave func-
tion f4g, the simple form of the above wave function makes
the evaluation of higher-order corrections coming from rela-
tivistic and QED corrections relatively straightforward. In
this note we will present calculations based on the momen-
tum space form of Eq.s1d, where the wave function is de-
fined through

fspW1,pW2d =E d3r1d
3r2

s2pd3 e−ipW1·rW1e−ipW2·rW2fsrW1,rW2d. s3d

The Fourier transform is evaluated by first noting that

e−ar1−br2−gr12 = −
]3

] a ] b ] g

e−ar1−br2−gr12

r1r2r12

= −
]3

] a ] b ] g
E d3q1

2p2

eiqW1·rW1

qW1
2 + a2 E d3q

2p2

eiqW·rW12

qW2 + g2

3E d3q2

2p2

eiqW2·rW2

qW2
2 + b2 . s4d

To simplify the following discussion, we Fourier transform
only the above expression, and define it asfispW1,pW2d, with
the generalization to Eq.s1d being clear. We see that

fispW1,pW2d = −
1

p3

]3

] a ] b ] g
E d3q

1

spW1 − qWd2 + a2

3
1

qW2 + g2

1

spW2 + qWd2 + b2 . s5d

The integral overd3q has been carried out analytically in
Ref. f5g and leads to

fispW1,pW2d = −
2

p

]3

] a ] b ] g

u

Îx
, s6d

where

y = gfupW2 + pW1u2 + sa + bd2g + bsg2 + a2 + pW 1
2d

+ asg2 + b2 + pW 2
2d,

x = fupW2 + pW1u2 + sa + bd2gfpW 1
2 + sa + gd2g

3fpW 2
2 + sb + gd2g − y2,

u = arctanSÎx

y
D . s7d

While this equation forfispW1,pW2d seems quite compact, the
action of the three derivatives leads to a considerably more
complicated expression. It simplifies if we introduce the aux-
iliary parameters

X1 =
dx

da
, X2 =

dx

db
, X3 =

dx

dg
;

Y1 =
dy

da
, Y2 =

dy

db
, Y3 =

dy

dg
;

X23 =
d2x

dbdg
, X12 =

d2x

dadb
, X13 =

d2x

dadg
;

T1 = X1X23 + X2X13 + X3X12,T2 = X1 + X2 + X3,

T3 = Y1X23 + Y2X13 + Y3X12, T4 = Y1 + Y2 + Y3,

T5 = X1Y2Y3 + X2Y1Y3 + X3Y1Y2,

T6 = Y1X2X3 + Y2X1X3 + Y3X1X2. s8d

In terms of these we find*Email address: jsapirst@nd.edu
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fispW1,pW2d = −
2

p
F 3u

8x7/2f2xT1 − 5X1X2X3g +
y9sT2 + 2yT4d

D2

+
T3

D2 −
4yT5

D3 +
2sx − 3y2dY1Y2Y3

D3

+
s40xy3 + 33x2y + 15y5dX1X2X3

8x3D3

−
yT1s3y2 + 5xd

4x2D2 −
2T1

D3 −
2

D
G , s9d

whereD=x+y2 andy9=2sa+b+gd. We note the following
symmetry properties of the momentum space wave function.
Because the basic functions that form the wave function,x
and y, are invariant under the simultaneous replacement
pW1↔pW2 anda↔b, for singlet statesfspW1,pW2d=fspW2,pW1d and
for triplet statesfspW1,pW2d=−fspW2,pW1d. Both symmetries also
hold when the magnitudes ofpW1 andpW2 are switched.

There are various uses for the wave function of helium in
momentum space, notably application to scattering calcula-
tions. While most work has been carried out with Fourier
transforms of Hartree-Fock wave functions, an approach that
includes correlation more completely is given in Ref.[6]. In
that work, a Hylleraas basis set was Fourier transformed and
applied to the calculation of a number of helium properties,
notably the Compton profile. While the wave function used
here gives a more accurate energy(odd powers ofr12 were
not included in the basis set of Ref.[6]), we do not find
appreciably different answers for any of the quantities calcu-
lated there. In particular, we find the same small difference
between using fully correlated wave functions and Hartree-
Fock wave functions for the Compton profile. Rather than
pursuing this line of research we instead now discuss appli-
cations of the momentum space wave function to the calcu-
lation of higher-order relativistic and QED corrections to the
energies of the 11S0, 2 1S0, and 23S1 states of neutral he-
lium.

These corrections are obtained from a set of operatorsOi,
with associated energy shiftsEi =kfuOiufl. The first set of
operators was derived by Breit[7], and describe corrections
of order a2 a.u. The equation he used in the derivation has
certain difficulties connected with negative energy states[8],
but later treatments using the Bethe-Salpeter equation[9–11]
treat negative energy states consistently and allow the sys-
tematic treatment of higher-order corrections.

Most recent calculations, however, use the technique of
effective field theory[12] to derive the operators. We note in
particular the compact rederivation of the Douglas-Kroll[11]
results for contributions to the fine structure of helium in
ordera4 a.u. of Ref.[13], and the derivation of contributions
to the energy of the ground state to the same order in Ref.
[14]. The idea of effective-field theory is to compare free-
particle scattering amplitudes in QED to an effective nonrel-
ativistic theory, with operators added to the Schrödinger
Hamiltonian that account perturbatively for the difference of
the amplitudes. Once the operators have been determined
from considering free-particle scattering, they are used as
perturbations in standard bound-state Rayleigh-Schrödinger

perturbation theory to calculate energy shifts. In this ap-
proach it is natural to work in momentum space, and the
operators are then Fourier transformed to coordinate space
for numerical evaluation. Here, however, because we have
formed wave functions in momentum space, we avoid this
step, and work exclusively in momentum space. This has the
advantage of simplicity, but the disadvantage of being less
accurate than coordinate space. We now give a brief rederi-
vation of the Breit operators using effective-field theory, and
illustrate their numerical evaluation in momentum space.

The connection of the scattering amplitude of two elec-
trons with momentap1 and p2 to scatter into states with
momentap3 andp4 to an energy shift is

Ei =
1

s2pd6 E d3p1d
3p2d

3p3d
3p4f*spW3,pW4d

3OispW3,pW4;pW1,pW2dfspW1,pW2d. s10d

We work in the center-of-mass frame, with initial nuclear
momentum −pW1−pW2 and final nuclear momentum −pW3−pW4. If
only electron-electron interactionsse-ed are considered, mo-
mentum conservation allows us to write

Oi
e-espW3,pW4;pW1,pW2d

= s2pd3d3spW3 + pW4 − pW1 − pW2dMi
e-espW3;pW1,pW2d s11d

with the associated energy shift

Ei
e-e =

1

s2pd3 E d3p1d
3p2d

3p3f*spW3,pW1 + pW2 − pW3d

3Mi
e-espW3;pW1,pW2dfspW1,pW2d. s12d

If instead we consider diagrams in which one of the elec-
trons, taken to be electron 1, interacts with the nucleusse
-Nd, and electron 2 does not participate, we can write

Oi
e-NspW3,pW4;pW1,pW2d = s2pd3d3spW4 − pW2dMi

e-NspW3,pW1d
s13d

with the energy shift

Ei
e-N =

1

s2pd3 E d3p1d
3p2d

3p3f*spW3,pW2d

3Mi
e-NspW3,pW1dfspW1,pW2d. s14d

Diagrams with all three particles interacting have nod func-
tions, and have to be evaluated with the 12-dimensional in-
tegral of Eq. s10d. In all cases we note that three of the
integration variables can be carried out trivially, and that the
adaptive Monte Carlo programVEGAS [15] can be used to
numerically evaluate the integrals, though with far less accu-
racy than available from coordinate-space techniques. This
loss of accuracy is due entirely to the fact that the multidi-
mensional integrals have to be carried out numerically: the
wave functions themselves are quite accurate. In the calcu-
lations presented here we use 600 basis functions, and the
energy eigenvalues are accurate to more than 14 digits for
the ground state and 11 for the excitedS states.

J. SAPIRSTEIN PHYSICAL REVIEW A 69, 042515(2004)

042515-2



We begin by evaluating the relativistic mass increase
(RMI) operator, which we treat as ane-e diagram. The con-
tribution to the scattering amplitude of this operator is

MRMI
e-espW3;pW1,pW2d = − s2pd3p1

4 + p2
4

8m3 dspW3 − pW1d, s15d

which gives the energy shift

ERMI
e-e = −

1

8m3 E d3p1d
3p2f*spW1,pW2dsp1

4 + p2
4dfspW1,pW2d.

s16d

The result is tabulated in the first row of Table I.
We next turn to corrections to Coulomb scattering be-

tween the electrons. In this case the nonrelativistic scattering
operator is

MC
e-espW3;pW1,pW2d =

4pa

upW3 − pW1u2
. s17d

This corresponds to the coordinate space potentiala / urW1
−rW2u. To calculate relativistic corrections, we use Dirac
spinors to describe scattering and work in Coulomb gauge.
We introduce the notation DC to refer to the scattering am-
plitude with exchange of a Coulomb photon, and DT for the
scattering amplitude with exchange of a transverse photon.
The DC scattering amplitude can then be Taylor expanded in
powers ofp/m, with the leading corrections given by

MDC
e-espW3;pW1,pW2d = MC

e-espW3;pW1,pW2dF1 −
upW3 − pW1u2

8m2

−
upW4 − pW2u2

8m2 +
isW 1 · spW3 3 pW1d

4m2

+
isW 2 · spW4 3 pW2d

4m2 G , s18d

with the understanding thatpW4=pW1+pW2−pW3. The first two cor-
rection terms are Darwin terms, and sum topa /m2d 3srW2

−rW1d in coordinate space. The last two are spin-orbit opera-
tors, which do not contribute to theS states considered here.
We tabulate the Darwin terms in the second row of Table I.

Considering now Coulomb scattering between an electron
and the nucleus, which we take to have chargeZ although
only Z=2 will be considered here, the nonrelativistic limit is
given by

MC
e-NspW3,pW1d = −

4paZ

upW3 − pW1u2
s19d

with associated energy shift

EC
e-N = −

1

s2pd3 E d3p1d
3p2d

3p3f*spW3,pW2d

3
4paZ

upW3 − pW1u2
fspW1,pW2d. s20d

Relativistic corrections are now obtained by introducing a
Dirac spinor only for the electronsthe nucleus is treated here
in the infinite mass limitd, and we find for exchange of a
Coulomb photon

MDC
e-NspW3,pW1d = MC

e-NspW3,pW1dF1 −
upW3 − pW1u2

8m2

+
isW 1 · spW3 3 pW1d

4m2 G . s21d

Again only the Darwin term contributes forSstates, but now
corresponds topZa /m2d 3srW1d, which we tabulate in the third
row of Table I.

The effect of transverse photon exchange between the
electrons is simplified if we neglect retardation, which enters
in ordera3 a.u., and in this approximation we have

MDT
e-espW3;pW1,pW2d

=
pasp3

2 − p1
2dsp2

2 − p4
2d

m2q4 −
pa

m2q2spW1 + pW3d · spW2 + pW4d

−
pa

m2 ssW 1 · sW 2 − sW 1 · q̂sW 2 · q̂d −
2pia

m2q2 sW 1 · spW2 3 pW4d

+
2pia

m2q2 sW 2 · spW3 3 pW1d, s22d

whereq= upW3−pW1u. The first two terms, referred to as orbit-
orbit terms or, following the notation of Bethe and Salpeter
f16g, as H2, are usually evaluated by Fourier transforming
into coordinate space. With the present approach, however,
they are quite easily treated, and the result presented in the
fourth row of Table I. The third term is anotherd function,
and the last terms again vanish for theS states considered
here. The effect of transverse photon exchange fore-N scat-
tering vanishes in the infinite nuclear mass limit used in this
work.

TABLE I. Expectation of operators forn=1 and 2S states of helium in units ofa2 a.u. The notationH2

in EDT
e-e indicates thed function is not included in the result.

Operator 11S0 2 1S0 2 3S1

ERMI
e-e −13.5212s3d −10.27959s5d −10.45887s4d

EDC
e-e 0.3346(3) 0.02718(8) 0.0

EDC
e-N 5.6879(2) 4.1139(2) 4.1479(2)

EDT
e-esH2d −0.1393s2d −0.00922s1d −0.00157s7d
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The operators considered so far in this note have been
studied for many decades, and have all been evaluated with
much higher accuracy than presented here[17]. The utility of
the present approach lies in the fact that operators that enter
in higher order, generally derived in momentum space, are
both fairly complicated when Fourier transformed to coordi-
nate space, and in addition need to be evaluated with less
accuracy than the terms treated above. We illustrate this
point with relativistic corrections that contribute in order
a4 a.u. to S states. A complete set of operators for triplet
states has been derived by Pachucki[18] using an effective-
field theory approach, and we consider here the corrections
to one-Coulomb photon exchange, Eq.(20) of that paper,

V1 =
4pa

q2

1

64m4Fq4 −
4

3
spW3 3 pW1d · spW4 3 pW2dssW 1 · sW 2d

+
5

2
fsp4

2 − p2
2d2 + sp3

2 − p1
2d2g + 3q2sp1

2 + p3
2 + p2

2 + p4
2dG .

s23d

This expression corresponds to the next term in thep/m
expansion in Eq.s18d. While Ref. f18g treats triplet states,
this particular result is also valid for the singlet case. We
note that the last term vanishes for triplet states because of
the symmetryfspW1,pW2d=−fspW2,pW1d mentioned earlier, as
also noted in Ref.f18g. The resulting energy shift of the
2 3S1 state is

Ee-e = − 0.0062s2da4 a.u. s24d

While again not of high accuracy, we note the extremely
simple nature of the coding, which is almost identical to the
program that evaluates the Darwin term. This contrasts with
the more complicated coordinate space calculation, where
numerous derivatives must be applied to wave functions,
leading to a much lengthier expression. As with thema4

corrections, much higher accuracy is available from working
in coordinate space, with −0.006 344 7a4 a.u. theknown
result f19g. However, we note the momentum space accu-
racy corresponds to 3.7kHz, to be compared with the ex-
perimental accuracyf20g of 60 kHz.

While the formula forV1 given above is valid for singlet
states, it gives a linearly divergent result in that case. It is
quite simple, however, to regulate this divergence in momen-
tum space, where one simply imposes the cutoffupW iu,L. An
application of this momentum space regulator to the case of
ground-state positronium hyperfine splitting can be found in
Ref. [21]. In Table II we show results for the expectation

value of V1 for the ground state of helium with different
cutoffs L, with the linear dependence onL clearly visible.
When combined with other linearly divergent terms in a
complete calculation aL independent result will obtain in
the limit of largeL. By improving the accuracy found in this
part of the calculation this procedure can be used to check
the results of Ref.[3] without explicitly canceling the diver-
gences: work on this problem is in progress.

II. CONCLUSIONS

We have presented the formula for the momentum space
form of a powerful basis set for helium. While it has the
potential for proving useful for scattering calculations on he-
lium, we have concentrated on evaluating expectation values
of operators that give relativistic and QED corrections to
energy levels. Because these operators are derived in mo-
mentum space, this allows one to work entirely in momen-
tum space. The next step in this research is the extension to
states with nonvanishing angular momentum. The most im-
portant application we have in mind is to the fine structure of
helium P states, where recent high-precision measurements
by Hessels and co-workers[22] have the potential of allow-
ing a determination of the fine-structure constanta to a pre-
cision of 4 ppb. Unfortunately, the present state of theory is
unclear, where the most complete calculation by Drake[23],
while consistent with the fine-structure intervaln01 measured
in Ref. [22], is inconsistent with measurements of the inter-
val n12 [24,25]. This inconsistency has also been noted in
Ref. [2]. It is possible that the relative simplicity of the
method developed here can shed light on this situation.
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