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Accurate S-state helium wave functions in momentum space
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High-accuracy helium wave functions based on exponentials with random coefficients are transformed into
momentum space. The utility of the wave functions is demonstrated through calculation of the expectation
value of various operators needed to evaluate relativistic and QED corrections.

DOI: 10.1103/PhysReVvA.69.042515 PACS nuniber31.30.Jv, 31.16:-z, 31.15.Pf
I. INTRODUCTION 1
. .. ¢|(plap2) 3 f q= 2 2
In recent years a basis set consisting of random exponen- mdadBdy (P1- 9+«
tials has been used with increasing frequency to carry out 1 1
calculations in heliunj1-3]. For singlet and triple§ states it X = - - (5)
can be written as G+ 2 (B2 + 0+ B

L I o The integral overd®q has been carried out analytically in
B(F1,Fp) = 2 CleraAlz ey @'z AlTi2] (1) Ref.[5] and leads to

whereq;, B;, andy; are parameters that are chosen randomly &i(P1,Po) = _2 Li_ (6)
in certain ranges, and the spin wave functions are under- mIadBIyix
stood. Through careful choice of those ranges Korofdv
: where
has been able to obtain a ground state energy of
— = = |2 2 24, R 2
E=-2.903 724 377 034 119 598 311 159 a.u.(2) Y=z + Baf* + (et BT+ BV + o+ B17)
+ oy + B+ B0,

While even higher accuracies are possible with basis sets that I, prn o 5
incorporate known nonanalytic behaviors of the wave func- x =[Pz + Bul* + (a + B)ZI[P1* + (a + »)°]
tion [4], the simple form of the above wave function makes X[B2+ (B+ )] - Y2,

the evaluation of higher-order corrections coming from rela-

tivistic and QED corrections relatively straightforward. In -

this note we will present calculations based on the momen- _ VX
S 0= arctan —

tum space form of Eq(l), where the wave function is de-

fined through

()

While this equation forg;(p,,p,) seems quite compact, the
2 g action of the three derivatives leads to a considerably more
B(P1,Pp) = (2 ) Ve P2T2¢h(r, 7). () complicated expression. It simplifies if we introduce the aux-
iliary parameters

The Fourier transform is evaluated by first noting that

X = dx X, = dx X.= dx.
— f =Bl o— 1= 7 s 2= 3= T,
@ a1 B M= — & e e da dg dy
dadBdy Tifar v _dy v _dy v _dy.
(93 dq, gldify f dq i1z Y de’ 2 dg’ 3 dy’
CdadBay) 27 G2+ G+ d?x d?x d?x
i Xoa= ——, Xip=——, Xq3= :
" f d°q, €92 @ B7dpdy’ "7 deds’ "7 dady
N 2 2"
2m G+ Ty = XoXaa+ XoXaa+ XeXun Ty = Xy + Xg + Xs,
To simplify the following discussion, we Fourier transform Ta= Y1 Xos+ YoXgz+ YaXio, Ta=Yq+ Yo+ Ya,
only the above expression, and define it@§p;,p,), with
the generalization to Ed1) being clear. We see that Ts=X1Y2Y3+ XY Y3+ X3Y1Y5,
Te= Y1 XXz + YoX1 X3+ Y3X1 Xo. (8)
*Email address: jsapirst@nd.edu In terms of these we find
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. 0 y'(To+2yTy) perturbation theory to calculate energy shifts. In this ap-
#1(P1,P2) = g W[ZXT1—5X1X2X3]+T proach it is natural to work in momentum space, and the
operators are then Fourier transformed to coordinate space
LT HyTs  20x— 3y*)Y1Y,Ys for numerical evaluation. Here, however, because we have
D2 D3 D3 formed wave functions in momentum space, we avoid this

step, and work exclusively in momentum space. This has the
advantage of simplicity, but the disadvantage of being less

N (40xy° + 33¢y + 15y°) X, X,Xs

8x’D? accurate than coordinate space. We now give a brief rederi-
yTL(3y2+5%) 2T, 2 yation of the. Breit op_erators using effective—field theory, and
- == (9) illustrate their numerical evaluation in momentum space.
4xD b D The connection of the scattering amplitude of two elec-

trons with momentgp; and p, to scatter into states with
whereD=x+y? andy”=2(a+8+7). We note the following momentap; andp, to an energy shift is
symmetry properties of the momentum space wave function.
Because the basic functions that form the wave function, E =
and y, are invariant under the simultaneous replacement '(2m®
p1 < P, anda <« B, for singlet stategh(p,, P,) = P(P,,P;) and o a o e =
for triplet statesp(p,, P,) =—¢(P,, Py). Both symmetries also % Oi(P3, Pa; P1. P2) $(P1, P2)- (10
hold when the magnitudes @; andp, are switched. We work in the center-of-mass frame, with initial nuclear

There are various uses for the wave function of helium inmomentum $,—P, and final nuclear momentumgz—p;. If

momentum space, notably application to scattering calculaonly electron-electron interactioris-e) are considered, mo-
tions. While most work has been carried out with Fouriermentum conservation allows us to write
transforms of Hartree-Fock wave functions, an approach that

f d3p1d3p2d3p3d3p4¢* (P3,Ps)

includes correlation more completely is given in R&j. In O;%%(Pa, Pa; P1. P2)
that work, a Hylleraas basis set was Fourier transformed and _ 382 L5 =2 = > .2 >
applied to the calculation of a number of helium properties, = (2m)°6%(Pa+ s = P~ PIMi " (BaiPub2) (1D

notably the Compton profile. While the wave function used

/ with the associated energy shift
here gives a more accurate enefggd powers ofr,, were

not included in the basis set of Rg6]), we do not find .
appreciably different answers for any of the quantities calcu- E®e= (2m)? J d°p1d®p,d%p3¢h’ (Pa, By + B2 — B)

lated there. In particular, we find the same small difference

between using fully correlated wave functions and Hartree- X M;®€(P3;P1,P2) H(P1,P2) - (12

Fock wave functions for the Compton profile. Rather than ) ) ) )
pursuing this line of research we instead now discuss applif instead we consider diagrams in which one of the elec-
cations of the momentum space wave function to the calculfons, taken to be electron 1, interacts with the nucleus
lation of higher-order relativistic and QED corrections to the-N), and electron 2 does not participate, we can write
energies of the 1S,, 2 1S, and 23S, states of neutral he- I L ..

o 2 S0 and 2 OB, B B o) = (2B~ M5, o)

These corrections are obtained from a set of oper&grs (13
with associated energy shif§=(¢|O;|#). The first set of
operators was derived by Brdif], and describe corrections
of order &? a.u. The equation he used in the derivation has

with the energy shift

certain difficulties connected with negative energy stg8s EeN= Gy f d®p,d®p,dPp3b” (B3, )
but later treatments using the Bethe-Salpeter equ@@eh]]
treat negative energy states consistently and allow the sys- XM EN(Ba, Br) (B Bo) - (14)

tematic treatment of higher-order corrections.

Most recent calculations, however, use the technique oDiagrams with all three particles interacting have sfunc-
effective field theory[12] to derive the operators. We note in tions, and have to be evaluated with the 12-dimensional in-
particular the compact rederivation of the Douglas-Kfall] tegral of Eq.(10). In all cases we note that three of the
results for contributions to the fine structure of helium inintegration variables can be carried out trivially, and that the
ordera® a.u. of Ref[13], and the derivation of contributions adaptive Monte Carlo programeGAs [15] can be used to
to the energy of the ground state to the same order in Rehumerically evaluate the integrals, though with far less accu-
[14]. The idea of effective-field theory is to compare free-racy than available from coordinate-space techniques. This
particle scattering amplitudes in QED to an effective nonreldoss of accuracy is due entirely to the fact that the multidi-
ativistic theory, with operators added to the Schrédingemensional integrals have to be carried out numerically: the
Hamiltonian that account perturbatively for the difference ofwave functions themselves are quite accurate. In the calcu-
the amplitudes. Once the operators have been determindations presented here we use 600 basis functions, and the
from considering free-particle scattering, they are used asnergy eigenvalues are accurate to more than 14 digits for
perturbations in standard bound-state Rayleigh-Schrédingehe ground state and 11 for the excit8dtates.
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TABLE I|. Expectation of operators far=1 and 2S states of helium in units of? a.u. The notatiorH,
in Epr®€ indicates thes function is not included in the result.

Operator 115, 215, 235,
(S -13.52123) -10.279595) -10.458874)
Epc®® 0.33463) 0.027188) 0.0
EpctN 5.68792) 4.11392) 4.14792)
Ept®€(H,) -0.13932) -0.0092721) -0.001577)

We begin by evaluating the relativistic mass increase eN s = AraZ

(RMI) operator, which we treat as @e diagram. The con- M (Pa, Pr) = = —| Ba— Bil? (19
1

tribution to the scattering amplitude of this operator is
with associated energy shift

4, 4
EeR R A — sPitPo .
Mgwmi“(P3; P1.P2) = = (277) o 8(P3— Py, (19 L
m Ec®N=- P f d®p;d®p,d*psgb’ (Ba, B2)
which gives the energy shift draZ
e S s
1 Xm(ﬁ(pl,pz)- (20)
Erm®®=- ﬁ, J d*p:d3p, ¢ (P, 52)(p‘11+ pg)¢(ﬁ1, P2). s

Relativistic corrections are now obtained by introducing a
(16) Dirac spinor only for the electrotihe nucleus is treated here
in the infinite mass limit, and we find for exchange of a

The result is tabulated in the first row of Table I. Coulomb photon

We next turn to corrections to Coulomb scattering be-

tween the electrons. In this case the nonrelativistic scattering Nps = N |Bs - Pal?
operator is Mpc®(Ps, P) = M (Ps, Py | 1 T
S s o Ama i1 - (P X P)
Mc®(Pa;P1,P2) = == 5- (17 + 01 WP 2P | 21
Ps— P 4n? (21)

This corresponds to the coordinate space potentidf; Again only the Darwin term contributes f&states, but now
~F,|. To calculate relativistic corrections, we use Dirac corresponds tarZa/m?53(;), which we tabulate in the third
spinors to describe scattering and work in Coulomb gaugerow of Table I.

We introduce the notation DC to refer to the scattering am- The effect of transverse photon exchange between the
plitude with exchange of a Coulomb photon, and DT for theelectrons is simplified if we neglect retardation, which enters
scattering amplitude with exchange of a transverse photorin order ¢ a.u., and in this approximation we have

The DC scattering amplitude can then be Taylor expanded in

powers ofp/m, with the leading corrections given by Mpr®(Ps; Pa, P2)
s ma(p5-pD(P3-pd)  ma . .
Ps— pal? = = —5(P1+Pa) - (B2 + Pa)
Mpc®(Ps; B, p2)=MC&e(p3;p1,p2)[1—| 38mzl| m’q* mg? Put Pal P2 Pa
L L T, . . o e o 2ma. L
_ [ + igy - (P3 X Py - F(Ul'(fz‘gl'qffz‘q) _ng'(pz X Pg)
87 an? q
iGa - (B X B £ 2T ) (22)
o pZ)] 19 e 2 1P P

whereq=|p;—p,|. The first two terms, referred to as orbit-

with the understanding th@i=p; +p,— ps. The first two cor-  orbit terms or, following the notation of Bethe and Salpeter
rection terms are Darwin terms, and sum#a/m?s3(f,  [16], asH,, are usually evaluated by Fourier transforming
-r,) in coordinate space. The last two are spin-orbit operainto coordinate space. With the present approach, however,
tors, which do not contribute to tHestates considered here. they are quite easily treated, and the result presented in the
We tabulate the Darwin terms in the second row of Table Ifourth row of Table I. The third term is anothérfunction,

Considering now Coulomb scattering between an electromand the last terms again vanish for tBestates considered
and the nucleus, which we take to have chafgalthough here. The effect of transverse photon exchangesfidrscat-
only Z=2 will be considered here, the nonrelativistic limit is tering vanishes in the infinite nuclear mass limit used in this
given by work.
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The operators considered so far in this note have been TABLE Il. Expectation value o, for the ground state of he-
studied for many decades, and have all been evaluated witlym with the regulator|| <A for different values ofA. Units
much higher accuracy than presented Hé. The utility of @ a.u. for(V;) andma for A.
the present approach lies in the fact that operators that enter
in higher order, generally derived in momentum space, aré 100 200 300
both fairly complicated when Fourier transformed to coordi-
nate spa)ée, anpd in addition need to be evaluated with lesy? -26.91) -59.44) -90.96)
accuracy than the terms treated above. We illustrate this
point with relativistic corrections that contribute in order
o* a.u. to'S states. A complete set of operators for triplet
states has been derived by Pachydld] using an effective-
field theory approach, and we consider here the correctio

to one-Coulomb photon exchange, Eg0) of that paper, : . ) o
P ge, BRO) pap complete calculation a independent result will obtain in

_4ma 1 . 4. R R U the limit of largeA. By improving the accuracy found in this
1" 6ant qa- §(p3 X Pp) - (Ps X Po)(07 - 02) part of the calculation this procedure can be used to check
the results of Ref[3] without explicitly canceling the diver-
gences: work on this problem is in progress.

value of V,; for the ground state of helium with different
utoffs A, with the linear dependence ok clearly visible.
hen combined with other linearly divergent terms in a

5
210~ 09+ (53— p9)%)+ 3070} + p + i+ pg)] |
(23) II. CONCLUSIONS

This expression corresponds to the next term in piien We have presented the formula for the momentum space

expansion in Eq(18). While Ref.[18] treats triplet states, form of a powerful basis set for helium. While it has the
this particular result is also valid for the singlet case. Wepotentlal for proving useful for scatterln'g calculatlons on he-
note that the last term vanishes for triplet states because d§m. we have concentrated on evaluating expectation values
the symmetry ¢(py,B,) =—¢(p,,p;) mentioned earlier, as of operators that give relativistic and QED corrections to

also noted in Ref[18]. The resulting energy shift of the €NErgy levels. Because these operators are derived in mo-
2 33, state is mentum space, this allows one to work entirely in momen-

tum space. The next step in this research is the extension to
E®®=-0.00622)a" a.u. (24) states with nonvanishing angular momentum. The most im-

hil . f high h I)})ortant application we have in mind is to the fine structure of
While again not of high accuracy, we note the extremely, o ji,m p states, where recent high-precision measurements

simple nature of the coding, which is almost identical to theby Hessels and co-workefg2] have the potential of allow-
program that evaluates the Darwin term. This contrasts W|tri1ng a determination of the fine-structure constartb a pre-
the more complicated coordinate space calculation, Whergigion of 4 ppb. Unfortunately, the present state of theory is
numerous derivatives must be applied to wave functions,jear where the most complete calculation by Driga}

. - . - 4 L) )
leading to a much lengthier expression. As with the” e consistent with the fine-structure interugh measured
corrections, much hlghe_r accuracy is available from working, ret [22], is inconsistent with measurements of the inter-
in ccl)ordmate space, with —0.036 344t au. theknown o1 15455 This inconsistency has also been noted in
result[19]. However, we note the momentum space acCupret [2]. It is possible that the relative simplicity of the

racy corresponds to 3kHz, to be compared with the ex- 1 ath64 developed here can shed light on this situation.
perimental accurac}20] of 60 kHz.

While the formula forV, given above is valid for singlet
states, it gives a linearly divergent result in that case. It is
quite simple, however, to regulate this divergence in momen- This work was supported in part by NSF Grant No. PHY-
tum space, where one simply imposes the cuf@ffi<c A. An 0097641. Conversations with K. Pachucki and S. Morrison
application of this momentum space regulator to the case adre gratefully acknowledged, with particular thanks to the
ground-state positronium hyperfine splitting can be found irformer for providing details of his 3S calculation and help-
Ref. [21]. In Table Il we show results for the expectation ful comments on the manuscript.

ACKNOWLEDGMENTS

[1] V. I. Korobov, Phys. Rev. A66, 024501(2002. [6] F. Arias de Saavedra, E. Buendia, and F. J. Galvez, Z. Phys. D:
[2] K. Pachucki and J. Sapirstein, J. Phys.3B, 1783(2002. At., Mol. Clusters 38, 25 (1996.
[3] V. Korobov and A. Yelkhovsky, Phys. Rev. Let87, 193003 [7] G. Breit, Phys. Rev39, 616 (1932.

(2001). [8] G. E. Brown and G. Ravenhall, Proc. R. Soc. London, Ser. A
[4] C. Schwartz, J. Comput. Methods Sci. Eny.13 (2004). 208 552 (1951).
[5] R. R. Lewis, Phys. Rev102 537 (1956. [9] A. Araki, Prog. Theor. Phys17, 619 (1957.

042515-4



ACCURATE S-STATE HELIUM WAVE FUNCTIONS IN...

[10] J. Sucher, Phys. Re09, 1010(1958.

[11] M. Douglas and N. M. Kroll, Ann. PhygN.Y.) 82, 89(1974).

[12] W. E. Caswell and G. P. Lepage, J. Phys1B7, 437 (1986.

[13] K. Pachucki, J. Phys. B2, 137 (1999.

[14] A. Yelkhovsky, Phys. Rev. A64, 062104(2001).

[15] G. P. Lepage, J. Comput. Phy87, 192 (1978.

[16] H. A. Bethe and E. E. SalpeteQuantum Mechanics of One
and Two-Electron Atom@lenum Press, New York, 195See
Eq. (39.14.

[17] G. W. F. Drake, Nucl. Instrum. Methods Phys. Res.3B, 7
(1988.

[18] K. Pachucki, J. Phys. B1, 2489(1998; Phys. Rev. Lett.84,
4561(2000.

[19] K. Pachucki(private communication

PHYSICAL REVIEW A 69, 042515(2004

[20] C. Dorrer, F. Nez, B. de Beauvoir, L. Julien, and F. Biraben,
Phys. Rev. Lett.78, 3658(1997). This is a measurement of the
2 35,-3 3D, splitting, where the energy of the 3, state is
known with sufficient accuracy theoretically.

[21] A. H. Hoang, P. Labelle, and S. M. Zebarjad, Phys. Re®2\
012109(2000.

[22] M. C. George, L. D. Lombardi, and E. A. Hessels, Phys. Rev.
Lett. 87, 173002(2001).

[23] G. W. F. Drake, Can. J. Phy80, 1195(2002.

[24] C. H. Storry, M. C. George, and E. A. Hessels, Phys. Reuv. Lett.
84, 3274(2000.

[25] J. Castillega, D. Livingston, A. Sanders, and D. Shiner, Phys.
Rev. Lett. 84, 4321(2000.

042515-5



