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A density-matrix formalism is developed based on the one-particle density-matrix of a single-determinantal
reference state. Unlike traditional density-functional-theory approaches, thev-representable problem doesnot
appear in the proposed method, nor the need to introduce functionals defined by a constrained search. The
correlation-energy functionals are nonuniversal, in the sense that they depend on the external potential. Nev-
ertheless, model systems can still be used to derive universal energy functionals. Variational and nonvariational
energy functionals are introduced that yield the target-state energy when the reference state—or its correspond-
ing one-particle density matrix—is constructed from Brueckner orbitals. Nonvariational energy functionals
yield generalized Hartree-Fock equations involving a nonlocal correlation potential and the Hartree-Fock
exchange operator; these equations are obtained by imposing the Brillouin-Brueckner condition. The same
equations—for the most part—are obtained from variational energy functionals using functional minimization,
yielding the(kernel of the) correlation potential as the functional derivative of correlation-energy functionals.
Approximations for the correlation-energy functions are introduced, including a one-particle-density-matrix
variant of the local-density approximation, a variant of the Colle-Salvetti functional, and a linear combination
of the two that is a variant of the correlation-energy functional within the hybrid, three-parameter, Becke-Lee-
Yang-Parr density functional(B3LYP).
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I. INTRODUCTION

Many variants of density-functional theory(DFT) [1–6]
share common features with the Hartree-Fock approach. In
particular, the Kohn-Sham method[7] uses orbital equations
that appear similar, in certain respects, with the ones from
Hartree-Fock theory. On the other hand, unlike the Hartree-
Fock wave function, the Kohn-Sham determinantal state
shares only a common density with the exact wave function,
and isnot considered an approximation of the ground state.
Furthermore, in contrast to the exchange potential from
Hartree-Fock theory, the Kohn-Sham exchange-correlation
potential is a local operator.

DFT approaches that use hybrid functionals[8–11] intro-
duce a component of exact exchange energy, where justifi-
cation, in part, for this modification comes from the adiabatic
connection[12–16], yielding an approach that, again, has
more similarities with Hartree-Fock, especially since the ex-
change component yields a nonlocal potential—the Hartree-
Fock exchange—that depends on the one-particle density
matrix of the Kohn-Sham determinantal state. The most cel-
ebrated hybrid functional, the three-parameter, Becke-Lee-
Yang-Parr density functional(B3LYP) [8,17], contains two
correlation-energy functionals, the Dirac-exchange func-
tional with a correction, and, of course, exact exchange. The
LYP (Lee, Yang, and Parr) density functional[18]—a key
component of B3LYP—is derived from the Colle-Salvetti
correlation-energy functional[19], where this functional de-
pends on a one-particle density matrix, sayg̃, andg̃ is from

the Hartree-Fock reference state—and not from anexact
eigenstate—indicating a further evolutionary step of DFT
methods towards a Hartree-Fock generalization with inclu-
sion of electron correlation.

In the Hartree-Fock Kohn-Sham approach[20], the ex-
change energy is treated in an exact manner and the nonlo-
cal, Hartree-Fock exchange potential appears in the orbital
equations. A generalization of this approach by Lindgren and
Salomonson[21] yields, in addition, a nonlocal correlation
potential and orbitals that, they believe, are very similar to
Brueckner orbitals. Other workers also suggest that Brueck-
ner and Kohn-Sham orbitals are very similar[22].

Brueckner orbital theory[21,23–37] is a generalization of
Hartree-Fock theory that utilizes a single-determinantal state
that has the maximum overlap with an exact eigenfunction
[38,39]. Below we use this formalism to develop a density-
matrix theory, in which a variety of variational and nonva-
riational energy functionals are introduced that depend on the
one-particle density matrix, sayg. Unlike other approaches,
whereg is the one-particle density matrix of an exact eigen-
function [40–45], the introduced method—calledreference-
state one-particle density-matrix theory—hasg arising from
a single-determinantal reference state, where the energy
functionals yield the exact energy wheng is the one from the
Brueckner reference state.

Below, generalized Hartree-Fock equations are obtained
containing the exact exchange potential and a nonlocal cor-
relation potential, where these equations are obtained using
the Brillouin-Brueckner condition, from nonvariational en-
ergy functionals, and functional minimization, from varia-
tional functionals. Both variational and nonvariational ap-
proaches lead to the same correlation potential and
generalized Fock operator.(The correlation potentials and*Electronic address: james.finley@enmu.edu
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generalized Fock operator from either approach are the same,
in the sense that the Brueckner orbitals obtained from the
variational approach can differ only from the orbitals ob-
tained from thenonvariationalapproach by a unitary trans-
formation.)

One advantage that this density-matrix approach has over
traditional density-functional formalisms—or other one-
particle density-matrix formalisms—is that there is no
v-representable problem[1,2,46] nor the need to introduce
functionals defined by a constrained search[43,47,48]. Fur-
thermore, the necessary conditions for a one-particle density
matrix g to come from a single determinant are known, so
they can be expressed as constraints when minimizing
variational-energy functionals that depend ong [49,50].

In contrast to Kohn-Sham DFT, the correlation-energy
functionals introduced below depend on the external poten-
tial, and are, therefore, in this sense, nonuniversal function-
als. Nevertheless, approximate functionals can still be de-
rived from model systems. For example, as discussed below,
the electron-gas correlation energy can be used in an
electron-gas approximation, where, unlike the local-density
approximation(LDA ) [7], the gas is not required to be uni-
form; furthermore, the Colle-Salvetti functional[19]—
derived from the helium atom—is also a reasonable approxi-
mation within the proposed method, even though it is a
universal functional.

Section II presents a short review of perturbation and
coupled cluster theory that emphasizes the dependence, of
the operators from these methods, on the determinantal ref-
erence state. Four trial wave functions are introduced in Sec.
IV that generate the exact, or target state of interest, when the
Brillouin-Brueckner condition—reviewed in Sec. III—is sat-
isfied, or, equivalently, when the reference states for the trial
wave functions are constructed from Brueckner orbitals.
Also in Sec. IV, nonvariational correlation-energy function-
als are introduced that depend on the reference state, and
these functionals generate the exact correlation energy when
the reference state is the one constructed from Brueckner
orbitals. Using the trial wave functions, a nonvariational
Brueckner-orbital formalism is presented in Sec. V, yielding
generalized, or exact, Fock operators, permitting the determi-
nation of the Brueckner reference state that can be used to
obtain the exact correlation energy from the correlation-
energy functionals.

Because of the one-to-one correspondence between the
set of determinant states and their one-particle density matri-
ces, the correlation-energy functionals—or any functionals
that depend on the reference state—can be written as func-
tionals of the one-particle density matrix, as indicated in Sec.
VI. A variational formalism is presented in Sec. VIII, permit-
ting correlation potentials to be determined from the func-
tional derivative of correlation-energy functionals. Approxi-
mations for the correlation-energy functions are introduced
in Secs. VII and VIII.

Elsewhere[51], using time-independent many-body per-
turbation theory[52–54], diagrammatic expansions are given
for the nonvariational energy functionals that are expressed
in terms of orbitals and orbital energies. When severe restric-
tions are placed on the orbital energies, the individual dia-
grams are shown toexplicitly depend on the one-particle

density matrix of the reference state.(The diagrammatic ex-
pansions for the variational-energy functionals can also be
generated[55].) In addition, the correlation-energy function-
als can be partitioned into individual terms that are—to a
varying degree—universal, yielding another approach to de-
rive approximate functionals from model systems[51].

II. PERTURBATION AND COUPLED CLUSTER THEORY

A. The exact and correlation energies

We seek a solution of the time-independent Schrödinger
equation,

HuCl = EuCl, s1d

whereuCl is an eigenstate of the Hamiltonian operator,

H = o
i j

fi uĥu jgai
†aj +

1

2o
i jkl

fi j uklgai
†ak

†alaj , s2d

and the integrals are written using chemist’s notationf56g:

fi uĥu jg = FiUS−
1

2
¹2DU jG + fi uvu jg, s3d

fi j uklg = o
v2v2

E ci
*sx1dc jsx1dr12

−1ck
*sx2dclsx2ddr 1dr 2, s4d

where the spatial and spin coordinates,r andv, are denoted
collectively byx.

The wave function of interestuCl, or target state, can be
generated by a wave operatorVF:

VFuFl = uCl, s5d

where uFl is any determinantal state that overlaps with the
target state:kF uClÞ0.

The reference stateuFl is completely defined by its occu-
pied orbitals; we denote these orbitals byhco→Fj; the set of
unoccupied orbitals—the virtual orbital set—is denoted by
hcu→Fj. The virtual sethcu→Fj also determines the occu-
pied set, since the two sets are orthogonal, and the union of
the two sets is a complete set. Hence,hcu→Fj also deter-
minesuFl. Unless stated otherwise, two sets of either occu-
pied or unoccupied orbitals that differ by a unitary transfor-
mation are considered equivalent.

We use the following orbital convention: Arbitrary orbit-
als are denoted byi and j ; occupied orbitals are denoted by
w, x, andy; virtual orbitals are denoted byr, s, andt:

cw,cx,cy P hco → Fj, s6ad

cr,cs,ct P hcu → Fj, s6bd

ci,c j,ck P hco → Fj ø hcu → Fj. s6cd

Explicitly, our spin orbitalscisxd have the following form:

cisxd = xissr dssvd, s = a or b, s7d

where the spin and spatial portions are given byssvd and
xissr d, respectively, and the spatial functionsxissr d are per-
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mitted to be unrestricted—two spin orbitals do not, in gen-
eral, share the same spatial function.

By multiplying the Schrödinger equation(1) from the left
by kFu, and requiring intermediate normalization to be satis-
fied,

kFuCl = kFuVFuFl = 1, s8d

we get

E = kFuHuCl = E1fFg + EcofFg, s9d

where the first-order energy is

E1fFg = kFuHuFl = o
wPhco→Fj

FwUS−
1

2
¹2D

+ v + 1
2sJF − KFdUwG , s10d

and the CoulombJFsr d and exchangeKFsxd operators have
their usual forms

fi uJFu jg = o
xPhco→Fj

fxxui j g, s11d

fi uKFu jg = o
xPhco→Fj

fxiu jxg; s12d

furthermore, the correlation energyEcofFg, given by

EcofFg = kFuHuCQF
l, s13d

is obtained from the correlation function:

uCQF
l = QFuCl, s14d

where the orthogonal-space projector satisfies

1 = QF + PF, s15d

and the reference-space projector is given by

PF = uFlkFu. s16d

The first-order energy can also be written as

E1fFg = kFuHuFl = sHdcl, s17d

where the cl subscript indicates the closed portion—the fully
contracted terms that, diagrammatically speaking, have no
external free linesf53,54,57,58g. Appendix A presents parti-
tioning of second-quantized operators intoclosedand open
portions in a slightly different manner than is done by other
authors.

Similar to the first-order energy, for the correlation energy
we have

EcofFg = sHxFdcl, s18d

where the correlation operatorxF, defined by

VF = 1 +xF, s19d

generates the correlation functionuCQF
l when operating on

the reference state:

xFuFl = uCQF
l. s20d

As indicted by Eq.s9d, the sum of Eqs.s17d and s18d gives
the exact energy

E = sHVFdcl. s21d

Let us also write down the expression for the exchange-
correlation(XC) energy

ExcfFg = EcofFg − ExfFg, s22d

where the exchange energyExfFg is the last term on the right
side of Eq.s12d:

ExfFg =
1

2 o
wPhco→Fj

fwuKFuwg. s23d

B. The linked cluster theorem

The wave operatorVF can be expressed in an exponential
form [54,57–64],

VF = eSF = 1 +SF +
1

2!
SF

2 +
1

3!
SF

3 + ¯ , s24ad

where the cluster operatorSF can be written as a sum of
one-, two-, and higher-body terms,

SF = S1
F + S2

F + S3
F + ¯ , s24bd

and these amplitudes are defined by the following relations:

S1
F = o

rw

srw
F ar

†aw, s25ad

S2
F =

1

2! orwsx

srwsx
F ar

†as
†axaw, s25bd

S3
F =

1

3! o
rwsxty

srwsxty
F ar

†as
†at

†ayaxaw, s25cd

A

which use the orbital convention given by Eqs.(6). The clus-
ter operatorSF and its amplitudesSn

F are invariant to a uni-
tary transformation of the occupied or virtual orbitals[30].

SinceSF—given by Eq.(24b)—is open, only connected
(cn) portions contribute to the correlation and exact energies,
EcofFg andE, given by Eqs.(18) and(21). Therefore, we can
write

EcofFg = sHxFdcl,cn, s26d

E = sHVFdcl,cn, s27d

where the additional cn subscripts indicate that only the con-
nected portions contribute—contractions in which allSF am-
plitudes are connected together byH.

Equation(27) indicates that the closed part ofsHVFdcn

gives the energy of interest,E; the vanishing of the open part
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is the mathematical statement of the linked-cluster theorem
[54,57,58,61–64]:

sHVFdop,cn= 0. s28d

C. Rayleigh-Schrödinger perturbation theory and the Bloch
equation

For a perturbative treatment, we partition the Hamiltonian
into a zeroth-order HamiltonianH0 and a perturbationV:

H = H0 + V. s29d

Substituting this expression into the operator form of the
Bloch equationf65g,

HVFPF = VFPFHVFPF, s30d

gives f62,66,67g

sE0 − H0dVFPF = QFsVVF − VFPFVVFdPF, s31d

where intermediate normalization, given by Eq.s8d, is re-
quired.

In order to solve the above equation, the wave operator
VF is partitioned into an order-by-order expansion:

VF = VF
s0d + VF

s1d + VF
s2d + ¯ . s32d

Substituting this expression into Eq.s31d and equating the
individual orders givesf54,66g

sE0 − H0dVF
sndPF = QFFVVF

sn−1d − o
m=1

n−1

VF
sn−mdPFVVF

sm−1dGPF,

s33d

where the second term on the right side does not appear for
sn=1d.

Now let the zeroth-order Hamiltonian be a one-body op-
erator:

H0 = o
i j

ei jai
†aj , s34d

and this operator is defined by its matrix elements; we
choose them by requiring the following relation to be satis-
fied:

ei j = e ji = ei j
F, s35ad

where

ewr
F = 0, s35bd

ewx
F = kcwu f̂ o

Fucxl, s35cd

ers
F = kcru f̂ u

Fucsl, s35dd

and the one-body operators,f̂ o
F and f̂ u

F, are determined by

the reference stateuFl, but the dependence off̂ o
F and f̂ u

F

uponuFl is at our disposal. The orbital subspaces are, again,
defined by Eqs.s6d.

Using the above choice, our zeroth-order Hamiltonian be-
comes

H0
F = o

w,xPhco→Fj
ewx

F aw
†ax + o

r,sPhcu→Fj
ers

Far
†as, s36d

where the appendedF superscript indicates thatH0
F now

depends on the reference stateuFl, and this state is at our
disposal.

A diagonal form for our one-body operatorH0
F is obtained

by requiring its orbital sets—hco→Fj andhcu→Fj—to sat-
isfy the following conditions:

kcwu f̂ o
Fucxl = dwxew

F, s37ad

kcru f̂ u
Fucsl = drser

F, s37bd

where, henceforth, we denote these particular sets of orbitals

by hco←F , f̂ o
Fj and hcu←F , f̂ u

Fj, indicating that they are
uniquely determined byuFl and their one-particle operators

f̂ o
F and f̂ u

F.
Using these orbitals,H0

F can be written as

H0
F = o

wPhco←F, f̂o
Fj

ew
Faw

†aw + o
rPhcu←F, f̂u

Fj

er
Far

†ar , s38d

and our partitioning is

H = H0
F + VF. s39d

When the zeroth-order Hamiltonian is in the diagonal,
one-body form, as in Eq.(38), it can be shown that the wave
operatorVF satisfies alinked diagram theorem[54,62]:

sE0 − H0
FdVFPF = QFsVFVFdlPF, s40d

where the individual orders, defined by Eq.s32d, satisfy

sE0 − H0
FdVF

sndPF = QFsVFVF
sn−1ddlPF, s41d

and the additionall subscripts indicate that only the linked
portions contribute—all disconnected terms are open.

In order to solve Eq.(40), the wave operatorVF is written
as a sum of one-, two-, and higher-body excitations,

VF = 1 +V1
F + V2

F + V3
F + ¯ , s42d

where the individual amplitudes are given by expressions
that are similar to Eqs.s25d, for example,

V1
F = o

rw

xrw
F ar

†aw. s43d

As in the cluster operatorSF, the wave operatorVF and its
amplitudesVn

F are invariant to a unitary transformation of its
occupied,hco→Fj, or its virtual orbitals,hcu→Fj.

III. BRILLOUIN-BRUECKNER CONDITION

Consider the Slater determinantal state, sayuQl, that sat-
isfies the Brillouin-Brueckner condition[26,24,38,68,69]:

kQw
r uHuCl = 0, s44d

for any single excitation fromuQl:
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uQw
r l = ar

†awuQl, s45d

where both the occupied and virtual orbitals determine the
Brueckner determinantal-stateuQl:

cw P hco → Qj, s46ad

cr P hcu → Qj. s46bd

Using Eqs.(1) and(44), it is easily demonstrated that the
wave functionuCl contains no single excitations fromuQl:

1

E kQw
r uHuCl = kQw

r uCl = 0. s47d

Furthermore, since the single excited statesuQw
r l are linearly

independent, the wave function satisfies the following con-
dition:

P11
Q uCl = 0, s48d

where the projector for the singly excited states is

P11
Q = o

wPhco→Qj
o

rPhcu→Qj
uQw

r lkQw
r u, s49d

and this subspace is completely determined byuQl; P11
Q is

also invariant to a unitary transformation of occupied, or
virtual, orbitalsf30g.

Using Eqs.(48) and (49), Eq. (44) can be generalized:

P11
Q Hs1 − P11

Q duCl = 0. s50d

The occupied set of orbitalshco→Qj that satisfy Eq.s50d
are called Brueckner orbitals. However, since these orbitals
are invariant to a unitary transformation, Eq.s50d actually
defines the Brueckner-determinantal stateuQl, whereuQl de-
terminesP11

Q .
A coupled cluster variant of equation(50) is obtained by

first noting the following identities:

V1
Q = 0, s51ad

S1
Q = 0, s51bd

where the first identity is obtained by substituting Eq.(5)
into Eq. (48) and using Eqs.(42) and (43) for sF=Qd; the
second identity uses Eqs.(24a), (24b), and (25). Therefore,
from Eq. (51b), we have

VQ = e−S1
Q
VQ. s52d

Multiplying this equation from the right byuQl and using Eq.
s5d gives

uCl = e−S1
Q
uCl. s53d

Substituting this equation into Eq.s44d, and using Eq.s49d,
we get

P11
Q He−S1

Q
uCl = 0. s54d

This equation is the Brillouin-Brueckner condition for
coupled cluster theoryf30g. As in Eq. s50d, the Brueckner

orbitals that satisfy Eq.s54d are invariant to a unitary trans-
formation, so Eq.s54d defines the determinantal stateuQl,
whereuQl determinesP11

Q andS1
Q.

IV. TRIAL WAVE FUNCTIONS AND ENERGY
FUNCTIONALS

A. General requirements

Consider four trial wave functions, denoted byuCF
shdl,

where h=I , II , III , and IV. Each of these four states de-
pends on the reference stateuFl, satisfies intermediate nor-
malization,

kFuCF
shdl = 1, s55d

has no components within the singly excited subspace,

uCF
shdl = s1 − P11

F duCF
shdl, s56d

and yields the exact state of interest whenuFl is the Brueck-
ner determinantal state:

uCQ
shdl = uCl. s57d

Substituting Eq.(57) into Eq.(50), and using Eq.(56) for
suFl= uQld, gives the Brillouin-Brueckner condition for the
trial wave functions:

P11
Q HuCQ

shdl = 0. s58d

From the trial wave functionsuCF
shdl, we can construct

nonvariational energy functionals

EhfFg = kFuHuCF
shdl = E1fFg + Eco

shdfFg, s59d

where the correlationscod energy functionals are given by

Eco
shdfFg = kFuHuCQF

shdl; s60d

the trial correlation functions are given by

uCQF

shdl = QFuCF
shdl, s61d

andE1fFg is given by Eq.s10d. Operating on Eq.s57d by QQ

and using Eqs.s14d and s61d, we have

uCQQ

shdl = uCQQ
l. s62d

Let us also define XC energy functionals

Exc
shdfFg = Eco

shdfFg − ExfFg, s63d

where the exchange energyExfFg is given by Eq.s23d.
Equations(9), (57), and (59), indicate that the energy

functionalsEhfFg yield the exact energyE when the refer-
ence stateuFl is the Brueckner determinantal stateuQl

E = EhfQg, s64d

and from Eqs.s13d, s22d, s60d, s61d, ands63d, the following
identities are obtained for the correlation and exchange-
correlation energies,EcofQg andExcfQg:

EcofQg = Eco
shdfQg, s65d

ExcfQg = Exc
shdfQg. s66d
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As in the correlation energy, given by Eq.(18), the
correlation-energy functionals, given by Eq.(60), can be
written as

Eco
shdfFg = sHxF

h dcl, s67d

where the trial correlation operatorsxF
h generate the trial

correlation functions:

xF
h uFl = uCQF

shdl. s68d

Substituting Eqs.s18d and s67d into Eq. s65d for suFl= uQld,
we get

xQ
h = xQ, s69d

and this expression indicates that we can use any of the trial
correlation operators—xQ

I , xQ
I , xQ

III , and xQ
IV—to obtain the

Brueckner one,xQ.
We now define the explicit forms of these trial wave func-

tions and give expressions for their correlation-energy func-
tionals.

B. The first trial wave function

The first trial wave function is given by

uCF
sIdl = s1 − P11

F duCl. s70d

It follows from Eqs.s42d and s43d that V1
F exclusively gen-

erates the singly excited portion of the orthogonal space:

P11
F V1

FuFl = V1
FuFl, s71ad

P11
F Vn

FuFl = 0, n Þ 1; s71bd

therefore, this trial wave function can be written as

uCF
sIdl = sVF − V1

FduFl. s72d

Using this expression and Eq.s19d, after substituting Eq.
s61d into Eq. s60d, yields the first correlation-energy func-
tional

Eco
sIdfFg = fHsxF − V1

Fdgcl, s73d

where we have used the following identity:

PFsxF − V1
FduFl = 0. s74d

C. The second trial wave function

The second trial wave function is given by

uCF
sII dl = e−S1

F
uCl. s75d

Using Eqs.s5d and s24ad, this equation becomes

uCF
sII dl = esSF−S1

FduFl, s76d

where we have used the identity, given by

e−S1
F
VF = esSF−S1

Fd, s77d

and this relation follows from Eqs.s24ad ands24bd, sinceSF

andS1
F commute.

Using Eq. (76) after substituting Eq.(61) into Eq. (60)
gives the second correlation-energy functional

Eco
sII dfFg = fHsesSF−S1

Fd − 1dgcl, s78d

where we have used the following identity:

kFuHPFesSF−S1
FduFl − kFuHuFl = 0. s79d

D. The third trial wave function

The third trial wave functionuCF
sIII dl can be generated by

its wave operator:

V̂FuFl = uCF
sIII dl, s80d

which can be expressed in an exponential form,

V̂F = eŜF = 1 + ŜF +
1

2!
ŜF

2 +
1

3!
ŜF

3 + ¯ , s81ad

whereŜF can be written as a sum ofn-body excitations, with
the exclusion of a one-body operator:

ŜF = Ŝ2
F + Ŝ3

F + ¯ . s81bd

The individual amplitudes are defined by the following equa-
tions:

Ŝ2
F =

1

2! orwsx

ŝrwsx
F ar

†as
†axaw, s82ad

Ŝ3
F =

1

3! o
rwsxty

ŝrwsxty
F ar

†as
†at

†ayaxaw, s82bd

where the orbital convention, Eqs.s6d, remains valid.
Using Eqs.(80) and(81a), after substituting Eq.(61) into

Eq. (60), gives the third correlation-energy functional

Eco
sIII dfFg = fHseŜF − 1dgcl, s83d

where we have used the following:

kFuHPFeŜFuFl − kFuHuFl = 0. s84d

We defineV̂F as a solution to the following variant of Eq.
s28d:

s1 − P11
F dsHV̂Fdop,cn= 0, s85d

which defines the trial functionaluCF
sIII dl using Eq.s80d.

Additional relations for the third trial wave function are
presented in Appendix B, including demonstrating that
uCF

sIII dl is a valid trial wave function: Eq.(57) and the other
relations from Sec. IV A are satisfied.

E. The fourth trial wave function

The fourth trial wave function is a solution of the
Schödinger equation within the subspace that neglects the
singly excited states:
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s1 − P11
F dHuCF

sIV dl = EIVfFguCF
sIV dl. s86d

From the variational theorem, it follows that the above en-
ergy functional provides an upper bound to the exact energy:

EIVfFg ù E. s87d

Appendix C gives some additional relations and proves that
the trial wave function and energy satisfy Eqs.s57d ands64d,
for h=IV.

V. EXACT FOCK OPERATORS

Consider generalized, or exact, Fock operatorsF̂F
shd that

are defined, in part, by the following matrix elements:

kcruF̂F
shducwl = kFw

r uHuCF
shdl, h = I,II,III,IV, s88d

where thew and r orbitals are occupied and unoccupied
within uFl, respectively, as noted by Eqs.s6d. By multiplying
Eq. s58d from the left bykQw

r u, using Eq.s49d, and comparing
the resulting relation to the above equation, we have

kcruF̂Q
shducwl = 0, s89d

where the orbitals are defined by Eq.s46d. When satisfied by
all orbitals, this expression is equivalent to the Brillouin-
Brueckner condition, given by Eq.s58d.

Inserting the identity operator—defined by Eq.(15)—into
Eq. (88), and using Eq.(55), we have

kcruF̂F
shducwl = kFw

r uHuFl + kFw
r uHuCQF

shdl, s90d

where the trial-correlation functionsuCQF

shdl are given by Eq.
s61d; the first term on the right side of Eq.s90d is the off-

diagonal block of the Fock operatorF̂F:

kcruF̂Fucwl = kFw
r uHuFl, s91d

and this operator is given by

F̂F = −
1

2
¹2 + v + JF − KF, s92d

where the Coulomb and exchange operators are given by
Eqs.s11d and s12d.

Let the second term on the right side of Eq.(90) define
the off-diagonal block of correlation potentialsvco

Fhsxd:

kcruvco
Fhucwl = kFw

r uHuCQF

shdl. s93d

Similarly, exchange-correlation potentialsvxc
Fhsxd are de-

fined, in part, by

kcruvxc
Fhucwl = kcruvco

Fhucwl − kcruKFucwl. s94d

Using Eqs.s90d, s91d, ands93d, and with no loss of general-

ity, our exact Fock operatorsF̂F
shd can be written as

F̂F
shd = F̂F + vco

Fh. s95d

Multiplying Eq. s95d from the left and right bykcru anducwl,
and using the one-body partitioning method of Eqs.sA2d,
gives

kcruF̂F
shducwl = kcrusF̂Fdexucwl + kcrusvco

Fhdexucwl; s96d

the Brillouin-Brueckner conditions89d becomes

sF̂Qdex = 0, s97d

where

F̂Q = F̂Q + vco
Q , s98d

and theh superscript is suppressed, since from Eqs.s93d,
s68d, ands69d, we have

svco
Qhdex = svco

Qh8dex = svco
Q dex. s99d

The remaining matrix elements ofvco
Fh—fcwuvco

Fhucxg and
kcruvco

Fhucsg are at our disposal. By defining these matrix el-
ements in a manner that is independent ofh, but dependent

on uFl, vco
Q sxd and F̂Q are completely and unambiguously

determined; our exact Fock operator can be diagonalized:

F̂Qci
Qsxd = «i

Qci
Qsxd, s100d

where orbital energies«i
Q can be defined to give exact ion-

ization potentials and electron affinities—exact Koopman’s
theoremsf21,70g.

Since the operators presented in Eqs.(35a), f̂ o
F and f̂ u

F

(that defineH0
F), and the exact Fock operatorsF̂F

shd are not
mutually exclusive, one tempting choice is

F̂F
shd = f̂ o

F = f̂ u
F. s101d

For the remainder of this section, we obtain some addi-

tional relations involving the exact Fock operatorsF̂F
shd and

relate the correlation potentialsvco
Fhsxd to the trial

correlation-operatorsxF
h .

Returning to Eq.(89), we have

k̂QF̂Q
shdĝQ = 0, s102d

whereĝF is the one-particle, density-matrix operator for the
determinantal stateuFl f71–74g,

ĝF = o
xPhco→Fj

ucxlkcxu; s103d

k̂F is the projector into the virtual-orbital subspace:

k̂F = o
rPhcu→Fj

ucrlkcru, s104d

and the identity operatorÎ can be expressed as

Î = ĝF + k̂F. s105d

Multiplying Eq. s102d from the left and right bykcru anducwl
gives Eq.s89d.
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Since all of our generalized Fock operators—F̂Q
sId, F̂Q

sII d,

F̂Q
sIII d, and F̂Q

sIV d—satisfy Eq.(102), any one can be used to

define an exact Fock operatorF̂Q:

k̂QF̂QĝQ = k̂QF̂Q
shdĝQ = k̂QF̂Q

sh8dĝQ, s106d

and the Brillouin-Brueckner condition, Eq.s102d, becomes

k̂QF̂QĝQ = 0. s107d

Using Eq.s105d, this equation can be written as

sÎ − ĝQdF̂QĝQ = 0. s108d

SinceĝQ is idempotent,

ĝQĝQ = ĝQ, s109d

Eq. s108d can be expressed as

sF̂QĝQ − ĝQF̂QdĝQ = 0. s110d

By requiringF̂Q to be, at least in part, Hermitian,

ĝQF̂Qk̂Q = 0 s111d

yields the following identity:

sF̂QĝQ − ĝQF̂Qdk̂Q = 0. s112d

Using Eq. s105d and adding together Eqs.s110d and s112d
indicates thatĝQ and F̂Q commute:

fF̂Q,ĝQg = 0. s113d

Equation s113d is a generalization of the one obtained for
Hartree-Fock theoryf2,49,50g.

Note that for any reference state, sayuF8l, we can find a
corresponding state,uFl, in which the following relation is
satisfied:

k̂FF̂F8
shdĝF = 0. s114d

Solving this expression in an iterative and self-consistent-
field manner leads to the Brillouin-Brueckner condition, Eq.
s107d, being satisfied, since whenuFl= uF8l, we haveuFl
= uQl.

Consider now the following application of the identity
operator:

F̂Fucwl = ÎF̂Fucwl = o
xPhco→Fj

«xw
F ucxl + o

rPhcu→Fj
«rw

F ucrl,

s115d

where

«i j
F = kciuF̂Fuc jl. s116d

SettingF=Q, and using Eq.s89d, gives exact Hartree-Fock
equations

F̂Qucwl = o
xPhco→Qj

«xw
Q ucxl, s117d

where the orbitalucwl is also from the sethco→Qj.
Returning to Eq.(90), and using Eqs.(91) and (68), we

have

kcruF̂F
shducwl = kcruF̂Fucwl + kFw

r uHxF
h uFl

= kcrusF̂Fdopucwl + kcrufsHxF
h d1gopucwl,

s118d

where we use the more restrictive definition of an opensopd
operator, presented in Appendix A.

Setting sF=Qd, and using Eqs.(69) and (89), gives an-
other variant of the Brillouin-Brueckner condition

fF̂Q + sHxQd1gop = 0, s119d

where this expression acts within the one-body sector of the
Hilbert space, even though the subscript, op, indicates the
open portion, defined by theN-body sector.

Comparing Eq.(118) with Eq. (96), and using Eq.(A8),
we have

svco
Fhdex = fsHxF

h d1gop. s120d

By using this relation, diagrammatic expansions forsvco
Fhdex

can be obtained that are a subset of the open, one-body
diagrams ofHxF f55g.

VI. FUNCTIONALS OF THE ONE-PARTICLE DENSITY
MATRIX g

It is well known that there is a one-to-one correspondence
between the set of determinant stateshuFlj and their one-
particle density matrices[2,50] hgj, where these density-
matrices are given by[49,71–74]

gsx,x8d = o
wPhco→Fj

cwsxdcw
* sx8d. s121d

Because of this correspondence, determinantal states are
uniquely determined by their one-particle density matrix:
uFsgdl; functionals, or functions, that depend onuFl can be
written as ones depending ong. For example, the total en-
ergyE, Eq. s9d, and our energy functionalsEhfFg, Eq. s59d,
can be written in the following manner:

E = E1fgg + Ecofgg, s122d

Ehfgg = E1fgg + Eco
shdfgg, s123d

and, in addition, our trial wave functionsuCFsgd
shd l can be de-

noted byuCg
shdl.

For simplicity, we require the external potentialvsr d to be
a spin-free operator, so the first-order energy—Eqs.
(10)–(12)—can be written as
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E1fgg =E F−
1

2
¹r

2gsx,x8dG
x8=x

dx +E vsr dgsx,xddx

+ EJfgg − Exfgg, s124d

where the Coulomb and exchange energies are

EJfgg =
1

2
E E r12

−1gsx1,x1dgsx2,x2ddx1dx2, s125d

Exfgg =
1

2
E E r12

−1gsx1,x2dgsx2,x1ddx1dx2, s126d

and an integration overxi implies a summation over the spin
variablevi and an integration over the spatial portionr i.

Similarly, the one-body operatorsF̂F
shd, Eq. (95), can be

written as

F̂g
shd = F̂g + vco

gh, s127d

where, instead of Eq.s92d, the Fock operator is given by

F̂g = −
1

2
¹2 + v + Jg − Kg, s128d

and the CoulombJg and exchangeKg operators satisfy

Jgfsx1d =E r12
−1gsx2,x2dfsx1ddx2, s129d

Kgfsx1d =E r12
−1gsx1,x2dfsx2ddx2. s130d

The identity operator, given by Eq.s105d, can be written as

Î = ĝ + k̂g, s131d

where the density-matrix operatorĝ is defined by its kernel
gsx ,x8d f74g,

ĝfsxd =E gsx,x8dfsx8ddx8, s132d

andkgsx ,x8d is the kernel of the virtual-space projector,

k̂gfsxd =E kgsx,x8dfsx8ddx8, s133d

where

kgsx,x8d = o
rPhcu→gj

crsxdcr
*sx8d, s134d

and k̂F is given by Eq.s104d. Similarly, the one-particle
density matrix for the Brueckner state, saytsx ,x8d, and its
density-matrix operator, sayt̂, are given by the following
expressions:

tsx,x8d = o
wPhco→Qj

cwsxdcw
†sx8d, s135d

t̂fsxd =E tsx,x8dfsx8ddx8, s136d

where we have

uQl = uFstdl. s137d

Since the one-particle density matrixt̂ also satisfies

t̂ = ĝQ, s138d

whereĝQ is given by Eq.s103d, the Brillouin-Brueckner con-
dition, given by Eq.s107d, and its complex conjugate, given
by Eq. s111d, become

k̂tF̂tt̂ = 0, s139ad

t̂F̂tk̂t = 0; s139bd

furthermore, the commutation condition, Eq.(113), can be
written as

fF̂t,tg = 0, s140d

and the exact Hartree-Fock equations117d is

F̂tucwl = o
xehco→tj

exw
t ucxl, s141d

where the occupied orbitalucwl is also fromhco→tj.
In addition, the other Brillouin-Brueckner condition, Eq.

(97), can be written as

sF̂tdex = 0, s142d

where Eq.s98d becomes

F̂t = F̂t + vco
t . s143d

Elsewhere[51] we illustrate how the correlation energy
and correlation-energy functionals,Ecofgg and Eco

shdfgg, can
be obtained from many-body perturbation theory, in which
all terms(or diagrams) explicitly depend ong. [An explicit
expression for the first-order energyE1fgg is given by Eq.
(124).]

VII. APPROXIMATIONS

Density-functional theory uses a universal exchange-
correlation functional, independent of the external potential,
permitting approximations to be derived from model sys-
tems, where, in the vicinity of the model systems, the general
form of the exchange-correlation functional is known. In
contrasts, our correlation-energy functionals depend on the
external potentialvsr d: Eco

shdfg ,vg. Therefore, in this sense,
these functionals are nonuniversal. Nevertheless, as demon-
strated below, model systems can still be used to obtain ap-
proximations forEco

shdfg ,vg.
In the approximations we consider, we often assume that

theEcofg ,vg andEco
shdfg ,vg functionals can be expressed in a

simplified form, for example, as integrals involving the co-
ordinates of only two electrons:
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Ecofg,vg =
1

2
E E Gcosx1,x2ddx1dx2, s144ad

Eco
shdfg,vg =

1

2
E E Gco

shdsx1,x2ddx1dx2, s144bd

where the integrands,Gcosx1,x2d and Gco
shdsx1,x2d, explicitly

depends upongsx1,x2d, gsx2,x1d, vsr 1d, andvsr 2d, and can
include gradients or higher-order derivatives, e.g.,
¹1

2gsx1,x2d.
Now let Eco

shdfg ,vg be known for some model system, say
the helium atom, in the vicinity of some one-particle density
matrix, say the Brueckner one. In that case, the following
prescription yields an approximate correlation-energy func-
tional:

Eco
shdfg,vg < Eco

shdftHe,vHegstHe=g,vHe=vd, s145d

where tHe is the Brueckner, one-particle, density matrix
for the helium atom andvHe is the external potential for
this system. Using Eq.s65d, we have

Eco
shdfg,vg < EcoftHe,vHegstHe=g,vHe=vd, s146d

or for the general case

Eco
shdfg,vg < Ecoftx,vxgstx=g,vx=vd, s147d

wherevx is the external potential associated with a Brueck-
ner one-particle density matrixtx.

In the limit of g→tx, necessarily, many terms from
Ecofg ,vxg must vanish[51]. Since, apparently, many, or all,
of these vanishing diagrams are also excluded in the
Eco

sIII dfg ,vxg expansion, most probably, the above approxima-
tion, Eq. (147), is most appropriate forh=III:

Eco
sIII dfg,vg < Ecoftx,vxgstx=g,vx=vd. s148d

Furthermore, since the Brueckner density matrix for the he-
lium atom,tHe, is approximately equal to the Hartree-Fock
one, sayt̃He, for Eq. s146d, we can write

Eco
sIII dfg,vg < Ecoft̃He,vHegst̃He=g,vHe=vd. s149d

Assuming that the terms arising from the helium potential
vHe are small, neglecting to make the substitutionvHe=v,
should yield only a small error:

Eco
sIII dfgg < Ecoft̃He,vHegst̃He=gd. s150d

This assumption seems reasonable since the dominant por-
tion of the correlation energyEco comes from electron-
electron interactions and the external potentialv is treated
well in first order, sincev is a one-body operator.

A well-known approximation forEcoft̃He,vHeg is given by
the Colle and Salvetti functional[18,19], sayEco

csft̃Heg; so we
have

Eco
sIII dfgg < Eco

csft̃Hegst̃He=gd, s151d

where we have suppressed any mention ofvHe, since the
Colle-Salvetti functional is universal; it has no explicit

dependence on the external potential. However, this func-
tional can still possess an implicit dependence onvHe,
since, for example, its four empirical parameters are de-
termined by using data from the helium atom. As an al-
ternative to Eq.s151d, an approach that fits the method
more appropriately would use the approximation given by
Eq. s149d. Unfortunately, at this time—as far as we
know—no functional exists that has an external potential
dependence.

Now consider the approximation given by Eq.(148), but
let the known system be an electron gas:

Eco
sIII dfg,vg < Ecoftg,vggstg=g,vg=vd, vg = const, s152d

wheretg is the Brueckner, one-particle, density matrix for an
electron gas andvg is the external potential, a constant, i.e.,
vgsr d does not depend onr . If periodic boundary conditions
are used, the Brueckner orbitals—which are also Hartree-
Fock orbitals—are known to be plane wavesf2,52,75–77g,
so tg is known. Furthermore, it is well known that the cor-
relation energyEco of an electron gas does not depend on
its constant potential, so there is no place to make the
substitutionsvg=vd in the above equation. Hence, we ob-
tain an approximation—an electron-gas approximation—
that yields a universal functional

Eco
sIII dfgg < Eco

sgasdftggstg=gd, s153d

whereEco
sgasd denotes the correlation energy of an electron

gas, i.e., the term on the right side of Eq.s152d:

Eco
sgasdfgg = Ecofg,v = constg, s154d

and this definition is valid for any one-particle density
matrix g.

Equation(153) shares many similarities with the LDA of
density-functional theory[2,1,7], where this approach con-
structs approximate energy functionals from expressions de-
rived from auniform electron gas, and this system has both
an infinite volume and an infinite number of particles. In this
limiting case, the density of the Brueckner reference state
uQl, sayrug, is identical to the density of the target stateuCl,
both being a constant; the correlation energy of a uniform
electron gas, sayEco

sgasdsrugd, is a function of this density, not
a functional [52,75–77]. In the LDA, a functional is con-
structed using the functionEco

sgasdsrugd divided by the number
of electrons—the correlation energy per particle. An analo-
gous approach may be necessary when constructing the func-
tional Eco

sgasdftgg, although the one-particle density matrix for
an electron gas is not a constant[2,52,76]. Furthermore,
when evaluating the diagrams forEco

sgasdsrugd, as in the
random-phase approximation(RPA) [52,75–77], the summa-
tions over the occupied, plane-wave states are replaced by
integrals. For an exact treatment ofEco

sgasdftgg, this approach
cannot be used, and, mathematically speaking, this is the
difference betweenEco

sgasdftgg andEco
sgasdsrugd.

We also mention that the correlation potentialsvco
g can be

treated in a similar manner as the correlation-energy func-
tionalsEco

shdfg ,vg, since they also depend on the external po-
tentialvco

g fvg. However, we now pursue a different approach,
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permitting correlation potentials to be obtained as functional
derivatives of variation correlation-energy functionals, as in
Kohn-Sham DFT.

VIII. VARIATIONAL FORMALISM

We now introduce variational energy functionalsEhfgg.
By functional differentiation of these functionals with re-
spect to the one-particle density matrixg, generalized Fock
operators are defined. These operators—denoted by

ẑt
shd—satisfy the same Brillouin-Brueckner and commutation

relations, Eqs.(139a) and (140), as the corresponding non-

variational ones,F̂t
shd. (A brief comparison with theexact

self-consistent-field theory by Löwdin is presented elsewhere
[51]. Lindgren and Salomonson[21] also present a varia-
tional Brueckner-orbital formalism, based on an orbital ap-
proach and many-body perturbation theory.)

Using our trial wave functions from Sec. IV, we can con-
struct variational energy functionals

Ehfgg =
kCg

shduHuCg
shdl

kCg
shduCg

shdl
= E1fgg + Eco

shdfgg, s155d

where the last relation defines the variational correlation-
energy functionalsEco

shdfgg as Ehfgg−E1fgg, and the first-
order energyE1fgg is given by Eq.s124d. fAn alternative
to Eq. s155d that exploits normal ordering is given else-
wheref51g.g

Let us also define variational XC energy functionals

Exc
shdfgg = Eco

shdfgg − Exfgg, s156d

where the exchange energyExfgg is given by Eq.s126d.
The exact energy, given by Eq.(9), is also given by

E =
kCuHuCl
kCuCl

= E1fgg + Ecofgg, s157d

where the last relation defines the correlation energyEcofgg.
From the variational theorem, the fourth trial wave func-

tions are equal:

EIVfgg = EIVfgg, s158d

and we have

Eco
sIV dfgg = Eco

sIV dfgg. s159d

From the variational theorem, for all four cases, we also
have

Ehfgg ù E, s160d

where Eqs.s57d, s157d, s155d, s156d, and s22d give the fol-
lowing equalities that appear for the Brueckner one-particle
density matrixt:

E = Ehftg = Ehftg, s161d

Ecoftg = Eco
shdftg = Eco

shdftg, s162d

Excftg = Exc
shdftg = Exc

shdftg, s163d

and the latter relations use Eqs.s64d–s66d.
Equations(160) and (161) indicate that the minimization

of Ehfgg occurs att.We now pursue, in a formal way, the
minimization of Ehfgg, using an approach that is similar to
the procedure used by Parr and Yang[2] in their treatment of
Hartree-Fock theory, whereEhfgg is subject to the constraint
that the one-particle density-matrix comes from a single-
determinantal stategsuFld. This condition is imposed by re-
quiring the one-particle density matrixg to have a trace
equal to the number of electronsNg, and that it is also idem-
potent[49,50]:

E E gsx3,x4ddsx4 − x3ddx3dx4 = Ng, s164ad

E gsx3,x5dgsx5,x4ddx5 = gsx3,x4d. s164bd

The normalization constraint, given by Eq.(164a), is consis-
tent with g being constructed fromNg orbitals, as in Eq.
(121); Eq. (164b) insures that the density-matrix operator
ĝ—when acting within the one-particle Hilbert space—is a
projector into the occupied subspace, as indicated by Eq.
(103), where g serves as the kernel of the one-particle
density-matrix operatorĝ, as indicated by Eq.(132).

Using the above constraints, the variational problem is
expressed as

dLfggt = 0, s165d

where

Lfgg = Ehfgg − bFE E gsx3,x4ddsx4 − x3ddx3dx4 − NgG
−E E dx3dx4asx4,x3dFE gsx3,x5dgsx5,x4ddx5

− gsx3,x4dG , s166d

and wherea andb are the Lagrangian multipliers. Equation
s165d is satisfied when the functional derivative ofL van-
ishes:

U dLfgg
dgsx2,x1d

U
t

= 0, s167d

where the definition of the functional derivative is

dLfgg =E E dLfgg
dgsx2,x1d

dgsx2,x1ddx1dx2. s168d

Substituting Eq.(166) into Eq. (167) yields

zt
shdsx1,x2d −E dx3ftsx1,x3dasx3,x2d + asx1,x3dtsx3,x2dg

+ asx1,x2d − bdsx1 − x2d = 0, s169d

where
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zt
shdsx1,x2d = U dEhfgg

dgsx2,x1d
U

t

. s170d

Let the two-body functions,asx1,x2d and zt
shdsx1,x2d,

serve as kernels of operators,â and ẑt
shd; explicitly, we have

âfsx1d =E asx1,x2dfsx2ddx2, s171d

ẑt
shdfsx1d =E zt

shdsx1,x2dfsx2ddx2. s172d

Using this notation, the operator form of Eq.s169d is given
by

ẑt
shd − t̂â − ât̂ + â − b = 0, s173d

wheret̂ is defined by Eq.s136d.
The identity operatorÎ, defined by Eq.(131), and ex-

pressed as

I = t̂ + k̂t, s174d

can be used to obtain the following relation:

â − t̂â − ât̂ = Isâ − t̂â − ât̂dI = k̂tâk̂t − t̂ât̂, s175d

which we substitute into Eq.s173d; this procedure gives

ẑt
shd − t̂ât̂ + k̂tâk̂t − b = 0, s176d

and yields the following requirements:

k̂tẑtt̂ = 0, s177ad

t̂ẑtk̂t = 0, s177bd

where we have dropped theh superscript since, forsg=td,
all operators are equal within these blocks:

k̂tẑt
shdt̂ = k̂tẑt

sh8dt̂ = k̂tẑtt̂, s178ad

t̂ẑt
shdk̂t = t̂ẑt

sh8dk̂t = t̂ẑtk̂t. s178bd

Equation (177a) is yet another representation of the
Brillouin-Brueckner condition; comparing Eqs.(139) and
(177) give

k̂tẑtt̂ = k̂tF̂tt̂, s179ad

t̂ẑtk̂t · = t̂F̂tk̂t, s179bd

and it is easily verified that the commutation relation, Eq.

(140), also holds for the variational one-body operatorsẑt:

fẑt,t
ˆ

g = 0. s180d

An alternative to the exact Hartree-Fock equation(141) is

ẑt
shducwl = o

xPhco→tj
jxw

thucxl, s181d

where the appendedh superscripts appear since the
occupied-block matrix elementsjxw

th, perhaps, depend onh.

However, we can redefine the variational operatorsẑt
shd to

remove this dependence, since Eqs.s177d still holds. In any

event, we assume thatẑt
shd is independent ofh and choose

orbitals that diagonalizejxw
t , giving a generalized Hartree-

Fock equation that is an alternative to Eq.s100d:

ẑtci
tsxd = ji

tci
tsxd. s182d

Substituting Eq.s155d into Eq. s170d for t=g gives

zg
shdsx1,x2d = Fgsx1,x2d + nco

ghsx1,x2d, s183d

where

Fgsx1,x2d =
dE1fgg

dgsx2,x1d
, s184d

nco
ghsx1,x2d =

dEco
shdfgg

dgsx2,x1d
, s185d

andFgsx1,x2d is the kernel of the Fock operatorF̂g:

Fgsx1,x2d = dsx2 − x1dF−
1

2
¹2

2 + vsr 2dG
+ dsx2 − x1dE r23

−1gsx3,x3ddx3 − r12
−1gsx1,x2d;

s186d

nco
ghsx1,x2d are the kernels of the variational correlation

potentialsn̂co
gh.

The operator form of Eq.(183) is

ẑg
shd = F̂g + n̂co

gh. s187d

Substituting this equation into Eq.s178d indicates that we
have

k̂tn̂co
tht̂ = k̂tn̂co

th8t̂ = k̂tn̂co
t t̂, s188ad

t̂n̂co
thk̂t = t̂n̂co

th8k̂t = t̂n̂co
t k̂t. s188bd

Substituting Eqs.(187) and (143) into Eq. (179) and using
the two above definitions yields

k̂tn̂co
t t̂ = k̂tvco

t t̂, s189ad

t̂n̂co
t k̂t · = t̂vco

t k̂t. s189bd

In order to acquire the kernels of the generalized Fock
operatorszt

shdsx1,x2d, given by Eq.(183), it is necessary to
obtain the functional derivatives ofE1fgg and Eco

shdfgg, as
indicated by Eqs.(184) and(185). The functional derivative
for E1fgg can be evaluated using Eqs.(124)–(126), yielding
Eq. (186). The functional derivative of the diagrammatic
terms of Eco

shdfgg can also be obtained; the details are pre-
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sented elsewhere[55]. (Here we only mention that by impos-
ing the same occupied and virtual orbital degeneracies as in
the diagrammatic expansions presented elsewhere[51], each
diagram in the expansion is given by a product of one-
particle density matrices, and can, therefore, be differentiated
in the same manner as in the treatment ofE1fgg. After the
functional derivative is taken, the nondegeneracy of the or-
bitals can be restored, since the entire expansion is invariant
to the choice of orbital energies, but this removes the explicit
dependence ong for each term.)

By considering Eqs.(161) and (162), it is easily deter-
mined that all approximations presented in Sec. VII are valid
whenEco

shd is replaced byEco
shd. In particular, the electron-gas

approximation, Eq.(153), and the Colle-Salvetti functional,
Eq. (151),

Eco
sIII dfgg < Eco

sgasdftggstg=gd, s190d

Eco
sIII dfgg < Eco

csft̃Hegst̃He=gd. s191d

Assuming both approximations are reasonable ones, we can
use a linear combination of the two:

Eco
sIII dfgg < acEco

csft̃Hegst̃He=gd + s1 − acdEco
sgasdftggstg=gd,

s192d

whereac is an empirical parameter. This approximation is an
alternative to the B3LYP functionalf8,17g which uses analo-
gous correlation-energy functionals: They use the LYP
correlation-energy functionalf18g, derived from Colle-
Salvetti oneEco

cs, and a uniform-electron-gas functional, de-
rived from the RPAf78g; they setac=0.81.
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APPENDIX A: PARTITIONING OF SECOND-QUANTIZED
OPERATORS

We find it convenient to partition one-body operators, say

ĥ,

ĥ = o
i j

ĥi j , sA1d

into the following four components:

ĥ = ĥex + ĥde+ ĥoc + ĥun, sA2ad

where the excitationsexd, deexcitationsded, occupiedsocd,
and unoccupiedsund parts are given by the following expres-
sions:

ĥex = o
wr

hrwar
†aw, sA2bd

ĥde= o
wr

hwraw
†ar , sA2cd

ĥoc = o
wx

hwxaw
†ax, sA2dd

ĥun = o
rs

hrsar
†as, sA2ed

and the orbitals are defined with respect to a reference state
uFl, as indicated by Eqs.(6).

Any second-quantized operator, sayÔ, can be partitioned
into open and closed portions with respect to a single-
reference or multireference space[54,79,80]. In our case,
where the reference space is only spanned by a single-

determinantal state, the closed portion ofÔ, sayÔcl, is sim-
ply a constant—as in Eqs.(17) and(18)—and is given by the

fully contracted part ofÔ, where the operator is written in
normal-ordered form with respect to the reference stateuFl
[53,54,57,58]. Explicitly, we have

Ôcl = Ô0 = kFuÔuFl, sA3d

where the 0 subscript indicates the zero-body term.

The open portion ofÔ, sayÔop, is usually defined as the
remaining portion; it is given by the one-, two- and higher-
body terms, where, again, the operator is written in normal-
ordered form. However, for our purposes, we use a more

restrictive definition forÔop, and define it by the necessary,

or minimal, portion ofÔ that is needed to satisfy the follow-
ing condition:

ÔopuFl = QFÔuFl. sA4d

We define the remaining portionÔre by the following:

Ô = Ôcl + Ôop + Ôre, sA5d

so the following identities are satisfied;

sÔcl + ÔopduFl = ÔuFl, sA6d

ÔreuFl = 0. sA7d

The remaining portionÔre has at least one hole or particle

annihilation operator.Ôop has at least one pair of hole-
particle creation operators and no hole or particle annihi-

lation operators. In terms of diagrams,Ôre has at least one

external line below the vertex;Ôop has no lines below the
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vertex and at least one pair of external lines above it;Ôcl
has no external free lines.

Note that for a one-body operator, the open and excited
portions are identical:

ĥex = ĥop. sA8d

APPENDIX B: ADDITIONAL RELATIONS FOR THE
THIRD TRIAL WAVE FUNCTION

The operator productHV̂F can be written as a sum of
zero-, one-, two-, and higher-body excitations:

HV̂F = EIII fFg + sHV̂Fd1 + sHV̂Fd2 + sHV̂Fd3 + ¯ ,

sB1d

where we use the identity given by

EIII fFg = sHV̂Fdcl = sHV̂Fd0, sB2d

and this relation follow from Eqs.s59d and s80d. sSee also
Appendix A.d

Substituting Eq.(B1) into Eq. (85) yields

sHV̂Fdop,cn− fsHV̂Fd1gop,cn= 0. sB3d

Using expansionsB1d again and noting that each term is
linearly independent, we have

fsHV̂Fdngop,cn= 0, n ù 2. sB4d

This relation can be used to obtain the coupled cluster equa-

tions for theŜn
F amplitudes.

We now demonstrate thatuCF
sIII dl is a valid trial wave

function: Eq.(57) and the other relations from Sec. IV A are
satisfied.

Consider a determinantal state, sayuQ8l, that we require
to satisfy the following condition:

P11
Q8sHV̂Q8dop,cn= 0. sB5ad

Using Eq.sB1d, we can easily verify that the following con-
ditions causes Eq.sB5ad to be satisfied:

fsHV̂Q8d1gop,cn= 0. sB5bd

Adding Eqs.sB3d andsB5ad, for suFl= uQ8ld, and comparing
the result with Eq.s28d, indicates that

V̂Q8 = VQ8, sB6d

and therefore we have

uCQ8
sIII dl = uCl. sB7d

Multiplying Eq. (B7) by P11
Q8 and using Eqs.(80), (81a),

and (81b) gives

P11
Q8uCl = 0. sB8d

Comparing this equation with Eq.s48d indicate thatuQ8l is
the Brueckner state:

uQ8l = uQl. sB9d

Substituting this result into Eq.sB7d indicates that Eq.s57d is
satisfies. All other relations from Sec. IV A are easily veri-
fied. For example, Eqs.s64d–s66d follow from Eq. s59d
through Eq.s63d.

Substituting Eq.(B9) into Eqs.(B5a) and(B5b) yields the
following identities:

P11
Q sHV̂Qdop,cn= 0, sB10ad

fsHV̂Qd1gop,cn= 0. sB10bd

These equivalent relations are alternative representations of
the Brillouin-Brueckner condition, since if they satisfied,

then Eq.(58) is also satisfied. Note thatV̂F does not possess

a single-excitation operator,. i.e.,Ŝ1
F is absent in Eq.(81b).

Using the definition of an open operator, Eqs.(85) and
(B10a) can be represented by the following:

Q̃FsHV̂FdcnPF = 0, sB11d

P11
Q sHV̂QdcnPQ = 0, sB12d

where

Q̃F = QF − P11
F . sB13d

Elsewhere[51] a general and transparent perturbative
treatment of coupled cluster theory is presented that is also
useful to obtain a perturbative expansion for the third
correlation-energy functionalEco

sIII d.

APPENDIX C: ADDITIONAL RELATIONS FOR THE
FOURTH TRIAL WAVE FUNCTION

The proof that Eqs.(57) and (64) are satisfied uses the
Schrödinger equation(1), which can be written

P11
Q HuCl + s1 − P11

Q dHuCl = EP11
Q uCl + Es1 − P11

Q duCl,

sC1d

where he have added, and also subtracted,P11
Q terms. Equa-

tions s44d, s48d, and s49d indicate that the first terms on
the right and left sides vanish, so we have

s1 − P11
Q dHuCl = Es1 − P11

Q duCl. sC2d

Equationss57d and s64d, for h=IV, are obtained by com-
paring Eqs.s86d and sC2d, and using Eq.s56d. All other
relations from Sec. IV A are easily verified.

As in the exact wave function of interestuCl, the trial
wavefunctionuCF

sIV dl can be generated by a wave operator

ṼF:

ṼFuFl = uCF
sIV dl, sC3d

whereṼF is similar toVF—defined by Eqs.s42d ands43d—
except that there is no excitation operator intoP11

F :
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ṼF = 1 + Ṽ2
F + Ṽ3

F + ¯ , sC4d

where

Ṽ2
F =

1

2! orwsx

x̃rwsx
F ar

†as
†axaw, sC5ad

Ṽ3
F =

1

3! o
rwsxty

x̃rwsxty
F ar

†as
†at

†ayaxaw, sC5bd

Using Eqs.(C3) and(C4), after substituting Eq.(61) into
Eq. (60), gives the fourth correlation-energy functional

Eco
sIV dfFg = fHsṼF − 1dgcl, sC6d

where we added

kFuHPFsṼF − 1duFl = 0. sC7d

By using the definition ofQ̃F, given by Eq.(B13), and by
requiringH0

F to satisfy

P11
F H0

Fs1 − P11
F d = 0, sC8d

it is easily proven thatṼF is a solution to the following
variants of Eqs.s32d and s33d:

ṼF = 1 + ṼF
s1d + ṼF

s2d + ¯ , sC9d

sE0 − H0
FdṼF

sndPF = Q̃FFVFṼF
sn−1d − o

m=1

n−1

ṼF
sn−md

3PFVFṼF
sm−1dGPF. sC10d
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