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A density-matrix formalism is developed based on the one-particle density-matrix of a single-determinantal
reference state. Unlike traditional density-functional-theory approaches;rgresentable problem doast
appear in the proposed method, nor the need to introduce functionals defined by a constrained search. The
correlation-energy functionals are nonuniversal, in the sense that they depend on the external potential. Nev-
ertheless, model systems can still be used to derive universal energy functionals. Variational and nonvariational
energy functionals are introduced that yield the target-state energy when the reference state—or its correspond-
ing one-particle density matrix—is constructed from Brueckner orbitals. Nonvariational energy functionals
yield generalized Hartree-Fock equations involving a nonlocal correlation potential and the Hartree-Fock
exchange operator; these equations are obtained by imposing the Brillouin-Brueckner condition. The same
equations—for the most part—are obtained from variational energy functionals using functional minimization,
yielding the(kernel of the correlation potential as the functional derivative of correlation-energy functionals.
Approximations for the correlation-energy functions are introduced, including a one-particle-density-matrix
variant of the local-density approximation, a variant of the Colle-Salvetti functional, and a linear combination
of the two that is a variant of the correlation-energy functional within the hybrid, three-parameter, Becke-Lee-
Yang-Parr density functiongB3LYP).
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[. INTRODUCTION the Hartree-Fock reference state—and not from axact
i i ) eigenstate—indicating a further evolutionary step of DFT
Many variants of density-functional theoFT) [1-6]  methods towards a Hartree-Fock generalization with inclu-
share common features with the Hartree-Fock approach. I8jon of electron correlation.
particular, the Kohn-Sham meth¢d] uses orbital equations In the Hartree-Fock Kohn-Sham approai@?], the ex-
that appear similar, in certain respects, with the ones fronghange energy is treated in an exact manner and the nonlo-
Hartree-Fock theory. On the other hand, unlike the Hartreeeal, Hartree-Fock exchange potential appears in the orbital
Fock wave function, the Kohn-Sham determinantal stateequations. A generalization of this approach by Lindgren and
shares only a common density with the exact wave functionSalomonsori21] yields, in addition, a nonlocal correlation
and isnot considered an approximation of the ground statepotential and orbitals that, they believe, are very similar to
Furthermore, in contrast to the exchange potential fronBrueckner orbitals. Other workers also suggest that Brueck-
Hartree-Fock theory, the Kohn-Sham exchange-correlationer and Kohn-Sham orbitals are very simifae].
potential is a local operator. Brueckner orbital theoryz_1,23—3]_is a generali_zation of
DFT approaches that use hybrid functiongds-1]] intro- ~ Hartree-Fock theory that utilizes a single-determinantal state
duce a Component Of exact exchange enerQY, Where Jusuﬂhat haS the maximum 0_Ver|ap Wlth an exact EIgenfunC_tIOI’l
cation, in part, for this modification comes from the adiabatic[38,39- Below we use this formalism to develop a density-

connection[12-16, yielding an approach that, again, has maprix theory, in whig:h a variety of variational and nonva-
more similarities with Hartree-Fock, especially since the ex.iational energy functionals are introduced that depend on the
change component yields a nonlocal potential—the Hartreeqr;]e'part_'d?hdens'ty m?tlr'xasay-_tunllk(t% _Othfer approatch_es,
Fock exchange—that depends on the one-particle densiﬁfv ereyis e one-particie density matrix of an exact eigen-

dinction [40-43, the introduced method—callegference-

matrix of the Kohn-Sham determinantal state. The most cel- 1 - - L
. . state one-particle density-matrix theeshasy arising from
ebrated hybrid functional, the three-parameter, Becke-Lee: P y Y g

. ; . a single-determinantal reference state, where the energy
Yang-Parr density functlpna(BSLYP) [8,.lﬂ, contains tWo ¢ ctionals yield the exact energy whetis the one from the
correlation-energy functionals, the Dirac-exchange func

tional with i d of t h Th'Brueckner reference state.
ngga KV' %correc |3n|,3an d’ 0 _ct:oufrse,t_exaci 1?3XC ankge. € Below, generalized Hartree-Fock equations are obtained
(Lee, Yang, and Parrdensity functional18]—a key containing the exact exchange potential and a nonlocal cor-

complo?_ent of B3LfYPT'S dfglvedh frorr;hth? CC)tI.le'Sf‘g/Ett' relation potential, where these equations are obtained using
correlation-energy functiondll9], where this functional de- the Brillouin-Brueckner condition, from nonvariational en-

pends on a one-particle density matrix, sayandy is from ergy functionals, and functional minimization, from varia-
tional functionals. Both variational and nonvariational ap-
proaches lead to the same correlation potential and

*Electronic address: james.finley@enmu.edu generalized Fock operatofThe correlation potentials and

1050-2947/2004/69)/04251416)/$22.50 69 042514-1 ©2004 The American Physical Society



JAMES P. FINLEY PHYSICAL REVIEW A69, 042514(2004)

generalized Fock operator from either approach are the saméensity matrix of the reference stat&@he diagrammatic ex-

in the sense that the Brueckner orbitals obtained from th@ansions for the variational-energy functionals can also be

variational approach can differ only from the orbitals ob- generated55].) In addition, the correlation-energy function-

tained from thenonvariationalapproach by a unitary trans- als can be partitioned into individual terms that are—to a

formation) varying degree—universal, yielding another approach to de-
One advantage that this density-matrix approach has ovglye approximate functionals from model systefp4].

traditional density-functional formalisms—or other one-

particle denSity-matriX formalisms—is that there is no Il. PERTURBATION AND COUPLED CLUSTER THEORY

v-representable probleifi,2,4 nor the need to introduce

functionals defined by a constrained seaj4¢8,47,48. Fur- A. The exact and correlation energies

thermore, the necessary conditions for a one-particle density \we seek a solution of the time-independent Schrédinger

matrix y to come from a single determinant are known, Soequation

they can be expressed as constraints when minimizing '

variational-energy functionals that depend »f49,5Q. H|W) = £|P), (1)
In contrast to Kohn-Sham DFT, the correlation-energy

functionals introduced below depend on the external potenwhere|W) is an eigenstate of the Hamiltonian operator,

tial, and are, therefore, in this sense, nonuniversal function- 1

gls. Nevertheless, approximate functionals can still be de- H :E[i|h|i]a1Taj +_2 [ij|k|]a1-Taﬂ:a{aj, 2)

rived from model systems. For example, as discussed below, ij 2ijk

the electron-gas correlation energy can be used in an d the int | itt . hemist N ]
electron-gas approximatigrwhere, unlike the local-density and the integrals are written using chemist's notafi6ey:

approximation(LDA) [7], the gas is not required to be uni- o . 1.\, o
form; furthermore, the Colle-Salvetti functiongll9]— lillj]=i 5V +[ifv]j], 3)
derived from the helium atom—is also a reasonable approxi-
mation within the proposed method, even though it is a
universal functional. ST = f * -1
ij|kl]= (X)) i (Xr X X,)dr.dr,, (4
Section Il presents a short review of perturbation and [kl wZsz Vi 0¥ ()N Yi(x)drdra, - (4)

coupled cluster theory that emphasizes the dependence, of , ) .

the operators from these methods, on the determinantal ref!here the spatial and spin coordinatesind », are denoted

erence state. Four trial wave functions are introduced in Se&ellectively byx. _

IV that generate the exact, or target state of interest, when the 1he wave function of interegt), or target state, can be

Brillouin-Brueckner condition—reviewed in Sec. Ill—is sat- 9€nerated by a wave operatdg,:

isfied, or, equivalently, when the reference states for the trial Qg|®) = |0, (5)

wave functions are constructed from Brueckner orbitals.

Also in Sec. IV, nonvariational correlation-energy function- where|®) is any determinantal state that overlaps with the

als are introduced that depend on the reference state, at@rget state(®|¥)#0.

these functionals generate the exact correlation energy when The reference staté) is completely defined by its occu-

the reference state is the one constructed from Bruecknguied orbitals; we denote these orbitals{lgyy — P}; the set of

orbitals. Using the trial wave functions, a nonvariationalunoccupied orbitals—the virtual orbital set—is denoted by

Brueckner-orbital formalism is presented in Sec. V, yielding{,— ®}. The virtual sef,— ®} also determines the occu-

generalized, or exact, Fock operators, permitting the determpied set, since the two sets are orthogonal, and the union of

nation of the Brueckner reference state that can be used the two sets is a complete set. Hentg,— @} also deter-

obtain the exact correlation energy from the correlationmines|®). Unless stated otherwise, two sets of either occu-

energy functionals. pied or unoccupied orbitals that differ by a unitary transfor-
Because of the one-to-one correspondence between thgation are considered equivalent.

set of determinant states and their one-particle density matri- \We use the following orbital convention: Arbitrary orbit-

ces, the correlation-energy functionals—or any functionalsls are denoted biyand j; occupied orbitals are denoted by

that depend on the reference state—can be written as fungy, x, andy; virtual orbitals are denoted hy s, andt:

tionals of the one-particle density matrix, as indicated in Sec.

VI. A variational formalism is presented in Sec. VIII, permit- Y o Py € {ho — O, (6a)
ting correlation potentials to be determined from the func-
tional derivative of correlation-energy functionals. Approxi- U, st € {p, — D}, (6b)
mations for the correlation-energy functions are introduced
in Secs. VIl and VIIl. B U, U € {th — P} U {4, — D). (60)

Elsewhere[51], using time-independent many-body per- . ) , )
turbation theory[52-54, diagrammatic expansions are given EXplicitly, our spin orbitalsi;(x) have the following form:
for the nonvariational energy functionals that are expressed ) = - 7
in terms of orbitals and orbital energies. When severe restric- )= XioNo(@),  o=aorp, ™
tions are placed on the orbital energies, the individual diawhere the spin and spatial portions are givendiw) and
grams are shown texplicitly depend on the one-particle y;,(r), respectively, and the spatial functiogs(r) are per-
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mitted to be unrestricted—two spin orbitals do not, in gen- Xo|®) = |qu¢>_ (20
eral, share the same spatial function.

By multiplying the Schrédinger equatigi) from the left  As indicted by Eq.(9), the sum of Eqs(17) and (18) gives
by (®|, and requiring intermediate normalization to be satis-the exact energy

fiec £= (HO)q. 21
(P} =(P[Qo|P) =1, ®) Let us also write down the expression for the exchange-
we get correlation(XC) energy
E=(P[H|W) = Ey[ D] + £ D], 9 EdP]=Ef P] - ELP], (22)
where the first-order energy is where the exchange enerfy[ ®] is the last term on the right

side of Eq.(12):
ELV]=(@HD)= 3 [w‘(éw)

1
we {0} E[0]=5 2 [WKolw]. (23)
We{z//0—>fl)}
+v+300 ~ Ko) w] : (10)
and the Coulomtdy(r) and exchangé(x) operators have B. The linked cluster theorem
their usual forms The wave operataf)g, can be expressed in an exponential
o - form [54,57-64,
[iMalil= 2 Dodijl, (11) L L
xe{io—®} Q¢:esl):1+sp+§ +§%+..., (243
[i[Kelil= {2 o [xiljxJ; (12 \where the cluster operat@, can be written as a sum of
Xtom one-, two-, and higher-body terms,
furthermore, the correlation energy [ ®], given b .
gyd P], g y Scl):§+$+§+"‘: (24b)
Ecd 1= <(I)|H|\PQ<P>’ (13 and these amplitudes are defined by the following relations:
is obtained from the correlation function:
SEPIEIEW (253
[Wo,) = QulW), (14) E
where the orthogonal-space projector satisfies 1
S; = 5 E Sr()\;vs@:a;raxaw: (25b)
1=Qq¢ + Py, (15) " Twsx
and the reference-space projector is given by 1
— D o1t
=— 25
Py = |[D)(®]. (16) ST ,Extysfwsxtﬁfasat i (259

The first-order energy can also be written as

E{[P]=(PH|D)=(H)y, 1
i[®]=(PH|D) = (H)a A7 which use the orbital convention given by E¢). The clus-

where the cl subscript indicates the closed portion—the fullyter operatorS;, and its amplitudes® are invariant to a uni-
contracted terms that, diagrammatically speaking, have ngary transformation of the occupied or virtual orbit§B9].
external free line$53,54,57,5& Appendix A presents parti- Since Sy—4given by Eq.(24b—is open, only connected
tioning of second-quantized operators imdosedand open  (cn) portions contribute to the correlation and exact energies,
portions in a slightly different manner than is done by othere [®] andé&, given by Eqs(18) and(21). Therefore, we can

authors. write
Similar to the first-order energy, for the correlation energy
we have Eed P]= (Hxa)el,cns (26)
Eed P]=(Hxa)al, (18) £= (HQ0) ot o 27)
where the correlation operatqs, defined by where the additional cn subscripts indicate that only the con-

Qo=1+xq, (19) ngcted portions contribute—contractions in whichSgJlam-
plitudes are connected together Hy
generates the correlation functideq)) when operating on Equation(27) indicates that the closed part GfQq)cn
the reference state: gives the energy of interesf; the vanishing of the open part
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is the mathematical statement of the linked-cluster theorem Using the above choice, our zeroth-order Hamiltonian be-
[54,57,58,61-64 comes

(HOQ4)gp cn= 0. (28) Hi= X evalat > ewala,  (36)
w,xe{go— P} r.se{yy—o}

where the appende® superscript indicates thdﬂ? now

C. Rayleigh-Schrddinger perturbation theory and the Bloch - (
depends on the reference stéd®, and this state is at our

equation

disposal.
~ For aperturbative treatment, we partition the Hamiltonian Kdiagonal form for our one-body operatdf is obtained
into a zeroth-order HamiltoniaH, and a perturbatioiv: by requiring its orbital sets{, — ®} and{y, — ®}—to sat-
H=Hg+V. (29) isfy the following conditions:

Substituting this expression into the operator form of the (Wl TS50 = Bl (373
Bloch equatior]65],

HO4Pg = Qg PoHO4 Py, (30) (Wl = dser’ (37b)
gives[62,66,67 where, henceforth, we denote these particular sets of orbitals

by {¢y—®,f>} and {y,— ®,f*}, indicating that they are
(Eo = Ho) 2o Py = Qp(VQg = Qg PpVQe)Py,  (31) uniquely determined byd) and their one-particle operators

where intermediate normalization, given by HS§), is re- ff,b andfff.

quired. Using these orbitalsdg can be written as
In order to solve the above equation, the wave operator ® ot ot
Qg is partitioned into an order-by-order expansion: Ho= 2 &yt > _ &aa, (39
we{ip—®,fT} refy—®.f M
Q=00 +0P+0P+ - (32) co Co

and our partitioning is
Substituting this expression into E(B1) and equating the

individual orders give$54,66| H=Hg + Vo (39
n-1 When the zeroth-order Hamiltonian is in the diagonal,
(Eo— HoQP'Py = Qp| VO = > QI ™P,vO ™Y | Py,  One-body form, as in Eq38), it can be shown that the wave
m=1 operator(),, satisfies dinked diagram theoreni54,62:
33 (Eo = HE) 2Py = QalVar ) Po, (40)

\(/vher)e the second term on the right side does not appear fQfnere the individual orders, defined by H§2), satisfy
n=1).
Now let the zeroth-order Hamiltonian be a one-body op- (Eo— H)QY Py = Qp(Va 2§ ™) Py, (41)

erator: and the additional subscripts indicate that only the linked

H.= afa, 34 portions contribute—all disconnected terms are open.
0 %" ke (39 In order to solve Eqi40), the wave operatdily, is written

) ) _ _ ) as a sum of one-, two-, and higher-body excitations,
and this operator is defined by its matrix elements; we

choose them by requiring the following relation to be satis- Qp=1+07+03+Q3+ -+, (42)
fied: where the individual amplitudes are given by expressions
€ =€ = fﬂ) (359 that are similar to Eqe25), for example,
where O => xbala,. (43
rw
P _
€wr =0, (35b) As in the cluster operatd®;,, the wave operatof)g, and its
. amplitudesﬂﬁ’ are invariant to a unitary transformation of its
e = (Yl F 2, (350 occupied,{y,— P}, or its virtual orbitals{y, — P}.
o b I1l. BRILLOUIN-BRUECKNER CONDITION
€re = (|14, (350)

~ . Consider the Slater determinantal state, &) that sat-
and the one-body operators“,p and ff’, are determined by isfies the Brillouin-Brueckner conditiof26,24,38,68,6P

the reference statgb), but the dependence df® and f o _
upon|®) is at our disposal. The orbital subspaces are,uagain, (@H[¥) =0, (44)
defined by Eqgs(6). for any single excitation fron®):
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|0}, =a]a,|0), (45)

PHYSICAL REVIEW A 69, 042514(2004)

orbitals that satisfy Eq(54) are invariant to a unitary trans-
formation, so Eq(54) defines the determinantal sta@),

where both the occupied and virtual orbitals determine thgyhere|©) determinesP{, and S..

Brueckner determinantal-stal®):

Y € {th — O}, (463

I € {h,— O (46b)

Using Eqgs(1) and(44), it is easily demonstrated that the

wave function|¥) contains no single excitations frof®):
1
E(CVIHI‘W =(0,[¥)=0. (47)

Furthermore, since the single excited sta@s) are linearly

independent, the wave function satisfies the following con-

dition:
PY W) =0, (48)

where the projector for the singly excited states is

> X

we{y—0} re{y,—0}

P = @10, (49)

and this subspace is completely determined|®y, P(l")1 is

also invariant to a unitary transformation of occupied, or

virtual, orbitals[30].
Using Eqs.(48) and(49), Eq. (44) can be generalized:

PLH(1-PT)[¥)=0. (50
The occupied set of orbitalg),— O} that satisfy Eq.(50)

IV. TRIAL WAVE FUNCTIONS AND ENERGY
FUNCTIONALS

A. General requirements

Consider four trial wave functions, denoted Wg)%
where =1, Il, lll, and IV. Each of these four states de-
pends on the reference stat), satisfies intermediate nor-
malization,

(@wy) =1, (55)
has no components within the singly excited subspace,
W)= (1-PYHIV), (56)
and yields the exact state of interest whén is the Brueck-
ner determinantal state:

(W) = [W). (57)

Substituting Eq(57) into Eqg.(50), and using Eq(56) for
(|®)=|0)), gives the Brillouin-Brueckner condition for the

trial wave functions:
POH[WE) = 0. (58)

From the trial wave function$\lfﬁp”)>, we can construct
nonvariational energy functionals

E[®]=(P[H[PY) = Ej[d] + EZ[ @], (59)

are called Brueckner orbitals. However, since these orbitalg/here the correlatiofico) energy functionals are given by

are invariant to a unitary transformation, E§O0) actually
defines the Brueckner-determinantal s{@g, where|®) de-
terminesP?).

A coupled cluster variant of equati@d0) is obtained by
first noting the following identities:

aY=o,

S'= (51b)
where the first identity is obtained by substituting E§)
into Eq. (48) and using Eqgs(42) and (43) for (®=0); the
second identity uses Eq&43a), (24b), and(25). Therefore,
from Eq.(51b), we have

(51a

01

Q@ = e_S?Q@. (52)

Multiplying this equation from the right bi®) and using Eq.
(5) gives

W) = &S| ). (53)

Substituting this equation into E¢44), and using Eq(49),
we get

POHe S |W) = 0. (54)

This equation is the Brillouin-Brueckner condition for
coupled cluster theory30]. As in Eq. (50), the Brueckner

EQ[®] = (D[H[TG); (60)
the trial correlation functions are given by
PG = QulWe, (61)

andE,[®] is given by Eq(10). Operating on Eq57) by Qg
and using Eqgs(14) and(61), we have

W) =Wq,). (62
Let us also define XC energy functionals
E[®] = EQI®] - E[], (63)

where the exchange ener§y{ ®] is given by Eq.(23).

Equations(9), (57), and (59), indicate that the energy
functionalsg,[®] yield the exact energy when the refer-
ence statéd) is the Brueckner determinantal sta€)

£=E,0], (64)

and from Eqgs(13), (22), (60), (61), and(63), the following
identities are obtained for the correlation and exchange-
correlation energies;.J®] andE,{O]:

£ O]1=EZ[0], (65)

EdO1=EX[O]. (66)
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As in the correlation energy, given by E@l8), the
correlation-energy functionals, given by E(O0), can be
written as

EZ[®]= (Hxd)a, (67)

where the trial correlation operatopg) generate the trial
correlation functions:

X3 ®) =[¥g)). (68)

Substituting Eqs(18) and (67) into Eq. (65) for (|®)=|@)),
we get

X6 = Xo» (69)

and this expression indicates that we can use any of the trial

Xo, and yiy —to obtain the

correlation operators,, Xe.
Brueckner oneye.

We now define the explicit forms of these trial wave func-
tions and give expressions for their correlation-energy func-

tionals.

B. The first trial wave function
The first trial wave function is given by
(W)= (1-PHIP). (70)

It follows from Egs.(42) and (43) thatQ‘lI> exclusively gen-
erates the singly excited portion of the orthogonal space:

PLOT|D) = OF|D), (719
PLOT®) =0, n+#1; (71b)

therefore, this trial wave function can be written as
W) = (Qg = O)| D). (72)

Using this expression and E@19), after substituting Eq.
(61) into Eq. (60), yields the first correlation-energy func-
tional

ES[®]=[H(xo = D)o, (79)

where we have used the following identity:
Po(xe = Q7)) =0. (74)

C. The second trial wave function

The second trial wave function is given by
@
(W) =eSt|w). (75
Using Eqgs.(5) and (243, this equation becomes

[Py = eS| ), (76)

where we have used the identity, given by
&SIy = eSS, (77)

and this relation follows from Eq$24a8 and(24b), sinceS;
andS!? commute.

PHYSICAL REVIEW A69, 042514(2004)

Using Eq.(76) after substituting Eq(61) into Eq. (60)
gives the second correlation-energy functional

D
EWl®] = [H(eS ) - 1)], (79)
where we have used the following identity:
(D|HP eS| d) - (B|H|D) = 0. (79)

D. The third trial wave function

The third trial wave functiod\lfﬂS”) can be generated by
its wave operator:

Qo|®) = |y, (80)
which can be expressed in an exponential form,
R . R 1. 1.
Q¢:eﬁb:1+sb+§ +§§b+---, (813

whereél, can be written as a sum afbody excitations, with
the exclusion of a one-body operator:

Sp=S+SP+ -, (81b)

The individual amplitudes are defined by the following equa-
tions:

~ 1 R
S; =5 E Sr()\;vs@:a;raxavvy

= (829
2! rwsx
~ 1 R
§ = E E Srq)vvsxtya;r aia;r aya,ay, (82b)
* rwsxty

where the orbital convention, Eg&), remains valid.
Using Egs(80) and(813), after substituting Eq.61) into
Eq. (60), gives the third correlation-energy functional

Ete [®]=[H(e™ - D]q, (83
where we have used the following:
(D|HP4e|d) - (D|H|d) = 0. (84)

We definefl(b as a solution to the following variant of Eq.
(29):

(1- Pllbl (Hﬁtb)op,cn: 0, (85)

which defines the trial functionaﬁﬂf%'”) using Eq.(80).

Additional relations for the third trial wave function are
presented in Appendix B, including demonstrating that
(W) is a valid trial wave function: Eq57) and the other
relations from Sec. IV A are satisfied.

E. The fourth trial wave function

The fourth trial wave function is a solution of the
Schddinger equation within the subspace that neglects the
singly excited states:

042514-6



REFERENCE-STATE ONE-PARTICLE DENSITY-MATRIX. PHYSICAL REVIEW A 69, 042514(2004)

(1-PEYHYE") = En[@]1P5"). (86) FP =Fg+0l7. (95)

From the variational theorem, it follows that the above en-Multiplying Eq. (95) from the left and right by(¢;,| and|,),
ergy functional provides an upper bound to the exact energyand using the one-body partitioning method of E(&2),
gives

o y | |G ) = Ol Fodeoltn + 0t w3 el s (96)
Appendix C gives some additional relations and proves that o -
the trial wave function and energy satisfy E¢s7) and(64),  the Brillouin-Brueckner conditiori89) becomes

for »=1V. -
(Fo)ex=0, (97)

Eyv[®]= €. (87)

V. EXACT FOCK OPERATORS where

Consider generalized, or exact, Fock operat%ﬁi? that 3:@ = IE@+U?O, (98)

are defined, in part, by the following matrix elements: and the» superscript is suppressed, since from E@S),

(68), and(69), we have

Wl FP ) = (@I HIWY,  p=1LILILIV,  (89)
07 = (0 ey = (V) ex. 99
where thew and r orbitals are occupied and unoccupied (Weoex = (Veo” Jox= (Veolex (99
within |®), respectively, as noted by Ed§). By multiplying The remaining matrix elements of,"—[ ¢y |ve7| ] and
Eq. (58) from the left by(®,|, using Eq.(49), and comparing  (i[v>7 ] are at our disposal. By defining these matrix el-
the resulting relation to the above equation, we have ements in a manner that is independentypbut dependent
. on |®), uf?o(x) and Fg are completely and unambiguously
(Wl 7wy =0, (89)  determined; our exact Fock operator can be diagonalized:
where the orbitals are defined by E¢6). When satisfied by j:®¢f)(x) =e2yP(x), (100)
all orbitals, this expression is equivalent to the Brillouin- ) e ] ) .
Brueckner condition, given by EG58). where orbital energies;” can be defined to give exact ion-
Inserting the identity operator—defined by Edj5)—into ization potentials and electron affinities—exact Koopman'’s
Eq. (88), and using Eq(55), we have theoremd 21,70.

i Since the operators presented in E(@5a, f* and f®
ARSIV :<<I>\r,V|H|CI>>+<CDLV\H|\If8’q))), (90)  (that defineHg), and the exact Fock (_)pe_ratoféf) are not
mutually exclusive, one tempting choice is
where the trial-correlation functiorjslfgq))) are given by Eq.

Hny) _ 5 _zd

(61); the first term on the right side of Eq90) is the off- fg] =fo =1y (10D
diagonal block of the Fock operatét: For the remainder of this section, we obtain some addi-

. tional relations involving the exact Fock operatdfg) and

(| Fol g = (DyH|®), (91  relate the correlation potentialw®’(x) to the trial

. L correlation-operatorgg.
and this operator is given by Returning to Eq(89), we have
|5¢:—%V2+U+J¢—K(D, (92) koF§ %0 =0, (102

where Yy is the one-particle, density-matrix operator for the
where the Coulomb and exchange operators are given byeterminantal statgb) [71-74,
Egs.(11) and(12). R
Let the second term on the right side of §g0) define Yo= 2 lhX(ud; (103
the off-diagonal block of correlation potential§”(x): xe o2}
kg is the projector into the virtual-orbital subspace:

ko= 2 [l (104
Similarly, exchange-correlation potentialg.’(x) are de- re{yy—®;
fined, in part, by

(Yrlogs ) = (DYHITE)). (93)

and the identity operatcfrcan be expressed as
(Wrloxl ) = (iloge o) = (il Kol (94) P25 + o, (105

Using Egs.(90), (91), and(93), and with no loss of general-  Multiplying Eq. (102 from the left and right by(;| and|i,)
ity, our exact Fock operatoﬁg’) can be written as gives Eq.(89).
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A IIISince aJI lsf our generalized Fock operatoré%), ]A-'(G')'), j:®|¢w>: > 21w, (117
]—'(® ) and ]-'(6 )—satisfy EqQ.(102), any one can be used to xe{yy—0}

define an exact Fock operatfiy: where the orbital«,) is also from the sefy,— 0}.

J SN PN Returning to Eq(90), and using Eqs(91) and (68), we
koFo Yo = kKo Fg Yo = ke T Yo, (106 have

and the Brillouin-Brueckner condition, E¢L02), becomes ~) A ;
(U FE o) = (| Foplp) + (P HXG|P)

k6Fo¥e=0. 10 .
oFe%o (107 = () Eadoglth) + L HXD o,
Using Eq.(105), this equation can be written as (118
(I - %) Fo Yo = 0. (108  where we use the more restrictive definition of an ojep)
o operator, presented in Appendix A.
Since yg is idempotent, Setting(®=0), and using Eqs(69) and (89), gives an-
A A A other variant of the Brillouin-Brueckner condition
YoYe = Yo, (109
Eq. (108 can be expressed as [Fo *+ (Hxe)1lop=0, (119
(j”_-@%) _ %)j_-@) Y6 =0. (110 where this expression acts within the one-body sector of the

Hilbert space, even though the subscript, op, indicates the
open portion, defined by thi-body sector.

By requiring Fo to be, at least in part, Hermitian, X ) _
yreq 97e P Comparing Eq(118) with Eg. (96), and using Eq(A8),

yields the following identity: (WeDex= [(Hx)11op- (120
(5:03’0 _ 3,03_-0);(0 -0 (112 By using this relation, diagrammatic expansions (f@?oﬂ ex

can be obtained that are a subset of the open, one-body
Using Eq.(105 and adding together Eq6110) and (112  diagrams ofH xg [55].
indicates thatyg and]A-“ commute:
. VI. FUNCTIONALS OF THE ONE-PARTICLE DENSITY
[Fe, ¥l =0. (113 MATRIX y

Equation(113 is a generalization of the one obtained for It is well known that there is a one-to-one correspondence

Hartree-Fock theory2,49,50. between the set of determinant stafeb)} and their one-
Note that for any reference state, §dy), we can find a  particle density matrice$2,50 {y}, where these density-

corresponding stateb), in which the following relation is matrices are given bj49,71-74

satisfied:

. YXX)= 2 0. (121)
ko) Yo =0. (114 welig-)

Solving this expression in an iterative and self-consistentBecause of this correspondence, determinantal states are

field manner leads to the Brillouin-Brueckner condition, Eq.uniquely determined by their one-particle density matrix:
(107), being satisfied, since wheld)=|d"), we have|d)  [P(¥)); functionals, or functions, that depend {b) can be

=|@). written as ones depending on For example, the total en-
Consider now the following application of the identity €rgy &, Eq.(9), and our energy functionals,[®], Eq. (59),
operator: can be written in the following manner:
Folw =1Faltnd = 2 eplio+ 2 emlun), £=Ei[y]+Ed Y, (122
xe{g—®} re{y,—®}
(119 E,[7]=Edlv]+EQL], (123
where and, in addition, our trial wave functioﬁﬂfﬁlﬂ)yp can be de-

D15 (o noted b |\If(”)>.
G = F . 116 y
o) = (hlTalu) (118 For simplicity, we require the external potentidl) to be

Settingd® =0, and using Eq(89), gives exact Hartree-Fock a spin-free operator, so the first-order energy—EQs.
equations (10)«12)—can be written as
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Eilyl= f[——sz(Xx } - dx+fv(r)y(x,x)dx

+E{y] - Edvl, (124

where the Coulomb and exchange energies are

1
Eflvl= Ef f r12¥(X1,X1) ¥(Xa, X2)dX10xp,  (125)

1
Edv]=3 f f F12¥(X1,X) YXa, X )dxydXp,  (126)

and an integration oveq; implies a summation over the spin
variable w; and an integration over the spatial portign

Similarly, the one-body operatoff(”), Eqg. (95), can be
written as

Froll

Fr= (127)
where, instead of Eq92), the Fock operator is given by
=

(129

Y !

— 1 2
=- EV +tv+J,-K
and the Coulomld,, and exchang&,, operators satisfy

J,b(x) = f r12¥(X2,X2) (X1)dx, (129

Ky¢(X1):f VI%Y(XLXz)(ﬁ(Xz)dXz- (130

The identity operator, given by E¢L05), can be written as

I =9+k,, (131

where the density-matrix operatgris defined by its kernel
X, x") [74],
&¢(X)=f X, X") (X" )dx’, (132

and k,(x,x") is the kernel of the virtual-space projector,

ky(X) :f Ky (X,X")p(x")dx", (133

where

PIACIIACSY

rE{l//u*"y}

K (X,X") = (139

and kq is given by Eq.(104). Similarly, the one-particle
density matrix for the Brueckner state, sa&y,x’), and its
density-matrix operator, say, are given by the following
expressions:

> OB, (135)

WE{‘%‘)@}

m(X,X') =

PHYSICAL REVIEW A 69, 042514(2004)

7é(X) =f X,x")p(x")dx’, (136)
where we have
©) =[®(7). (137
Since the one-particle density matixalso satisfies
=Yg, (138

where?yg, is given by Eq(103), the Brillouin-Brueckner con-
dition, given by Eq(107), and its complex conjugate, given
by Eg.(111), become

(1393

TF.k,=0; (139b

furthermore, the commutation condition, Ed.13), can be
written as

[F,.7=0, (140
and the exact Hartree-Fock equatidi?) is
Fliw= 2 e, (141)
Xe{o— 7}

where the occupied orbitads,) is also from{y,— 7}.
In addition, the other Brillouin-Brueckner condition, Eq.
(97), can be written as

(Fex=0 (142)
where Eq.(98) becomes
‘%T: 'Er+ Vo (143

Elsewhere[51] we illustrate how the correlation energy
and correlation-energy functional§.J y] and Ef:z)['y], can
be obtained from many-body perturbation theory, in which
all terms(or diagramy explicitly depend ony. [An explicit
expression for the first-order ener@y[ y] is given by Eq.

(124).]

VII. APPROXIMATIONS

Density-functional theory uses a universal exchange-
correlation functional, independent of the external potential,
permitting approximations to be derived from model sys-
tems, where, in the vicinity of the model systems, the general
form of the exchange-correlation functional is known. In
contrasts, our correlation-energy functionals depend on the
external potentiab(r): Eéz)[y,v]. Therefore, in this sense,

these functionals are nonuniversal. Nevertheless, as demon-

strated below, model systems can still be used to obtain ap-
proximations forE(CZ)[y,v].

In the approximations we consider, we often assume that
the £.J y,v] and E(CZ)[’y,v] functionals can be expressed in a
simplified form, for example, as integrals involving the co-
ordinates of only two electrons:
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1 dependence on the external potential. However, this func-
gco[%v]=§ffgco(xlyxz)dxldxz- (1443 tional can still possess an implicit dependence wp,
since, for example, its four empirical parameters are de-
termined by using data from the helium atom. As an al-
E(Cg>[%v]:lf f G (xy,x,)dx,0x,,  (144p  ternative to Eq.(151), an approach that fits the method
2 more appropriately would use the approximation given by
Eq. (149. Unfortunately, at this time—as far as we
know—no functional exists that has an external potential
dependence.
Now consider the approximation given by E448), but

V%V(Xl’XZ)' ( let the known system be an electron gas:
Now let ECZ)[y,v] be known for some model system, say

the helium atom, in the vicinity of some one-particle density El[y.v] = 6cc{7'g!vg](fg=y,vg=u)! vg=const, (152

matrix, say the Brueckner one. In that case, the following ) ) ) )

prescription yields an approximate correlation-energy funcyvhererg is the Brugckner, one-particle, dgnsny matrix fo_r an

tional: electron gas andg is the external potential, a constant, i.e.,

vg(r) does not depend on If periodic boundary conditions

ELy0] = E [ e Vhel i, =y, m0), (145  are used, the Brueckner orbitals—which are also Hartree-
) . ] ~ Fock orbitals—are known to be plane waJ&s52,75-77,

where 7, is the Brueckner, one-particle, density matrix sq 7 is known. Furthermore, it is well known that the cor-

this system. Using Eq(65), we have its constant potential, so there is no place to make the

substitution(vg=v) in the above equation. Hence, we ob-

where the integrandsj.,(x;,X,) and G(CZ)(Xl,Xz), explicitly
depends upon/(xy,X,), ¥(X2,X1), v(ry), andov(r,), and can

include gradients or higher-order derivatives, e.g.,

EXy,0] = Ecd THe UHel (. = yor = 146 ; ) M
o1 70] = Eod thethelineoe (148 tain an approximation—an electron-gas approximation—
or for the general case that yields a universal functional
1
E(Cg)[)/,v] = 5C(J:TxvU)(:l(ﬂ'X:y,vX:u), (147) Ef:o )[y] = 55:%613[79](79:7)! (153)

wherev, is the external potential associated with a Brueck-whereS(c%aS denotes the correlation energy of an electron
ner one-particle density matrix,. gas, i.e., the term on the right side of E452):

In the limit of y— 7, necessarily, many terms from (gasr .1 — B
E:d 7,vy] must vanish[51]. Since, apparently, many, or all, oo L¥]=Ecd v = consy, (154

ofmthese vanishing diagrams are also excluded in theng this definition is valid for any one-particle density
E(Co)[y,vx] expansion, most probably, the above approxima-matrix 7.

tion, Eq.(147), is most appropriate fop=1II: Equation(153) shares many similarities with the LDA of
EMy0] = £l 700,] (148 density-functional theory2,1,7, where this approach con-
co LY col B Uxl(n=yo,=v). structs approximate energy functionals from expressions de-

Furthermore, since the Brueckner density matrix for the he!ived from auniform electron gas, and this system has both

lium atom, 7., is approximately equal to the Hartree-Fock an infinite volume and an infinite number of particles. In this
one say?-,H ef’or Eq. (146), we can write limiting case, the density of the Brueckner reference state
’ e . )

|©), saypyg is identical to the density of the target stai®),
EMly,v] = Ecd THe VHel Gy =y om0 - (149  both being a constant; the correlation energy of a uniform
, o ) _ electron gas, saﬁ(c%as(pug), is a function of this density, not
Assuming that the terms arising from the helium potentlala functional[52,75-77. In the LDA, a functional is con-
Une are small, neglecting to make the substitutigp=v, structed using the functioﬁ(gas(p ¢ divided by the number
should yield only a small error: cco AU .
of electrons—the correlation energy per particle. An analo-
EMy] = EdFrevn G- (150 ~ gous a[()ggrsoach may be necessary whgn constr.uctlng the func-
tional £., [ 7], although the one-particle density matrix for
This assumption seems reasonable since the dominant pain electron gas is not a constgi®,52,7§. Furthermore,
tion of the correlation energy., comes from electron- \yhen evaluating the diagrams f(ﬁé%as(pug), as in the
electron interactions and the external potentid treated random-phase approximatigRPA) [52,75—77, the summa-
well in first order, sincev is a one-body operator. tions over the occupied, plane-wave states are replaced by
A well-known approximation fogco[;HeavHe;l IS given by jntegrals. For an exact treatment #f*[7,], this approach
the Colle and Salvetti functiongl8,19, say&¢]7iel; SOWe  cannot be used, and, mathematically speaking, this is the
have difference betweed %[ 7,] and £9%(p,).
EM[ 4] = £l s 151 We also mention that the correlation potentiglscan be
0 171~ Eed TelGye (159 treated in a similar manner as the correlation-energy func-
where we have suppressed any mentiorvgf since the tionaIsE(CZ)[y,v], since they also depend on the external po-
Colle-Salvetti functional is universal; it has no explicit tentialv2{v]. However, we now pursue a different approach,
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permitting correlation potentials to be obtained as functional & =EP[71=EX[A], (163
derivatives of variation correlation-energy functionals, as in )
Kohn-Sham DFT. and the latter relations use Eq§4)—(66).

Equations(160) and(161) indicate that the minimization
of E,[y] occurs atz.We now pursue, in a formal way, the
minimization of E,[ y], using an approach that is similar to

We now introduce variational energy functiondig[y].  the procedure used by Parr and Y4@gin their treatment of
By functional differentiation of these functionals with re- Hartree-Fock theory, whet,[ y] is subject to the constraint
spect to the one-particle density matrx generalized Fock that the one-particle density-matrix comes from a single-
operators are defined. These operators—denoted Heterminantal statg(|d)). This condition is imposed by re-

Zg”)—satisfy the same Brillouin-Brueckner and commutationduifing the one-particle density matrix to have a trace
relations, Eqs(1399 and (140), as the corresponding non- equal to the number of electroig, and that it is also idem-

variational onesffi”). (A brief comparison with theexact potent[49,50:
self-consistent-field theory by Lowdin is presented elsewhere
[51]. Lindgren and Salomonsof21] also present a varia- ff Y(X3,X4) 8(X4 = X3)dX30X4 = N, (1643
tional Brueckner-orbital formalism, based on an orbital ap-
proach and many-body perturbation thepry.

Using our trial wave functions from Sec. IV, we can con- f (X3, X5) Y(Xs, X4) AX5 = Y(X3,Xs). (1640
struct variational energy functionals

VIIl. VARIATIONAL FORMALISM

(\If(”)|H|\If(”)> B The nqrmaliza‘ltion constraint, given by E(q_.64a, is cqnsis—
EIE N El[y]+E(cg>[7], (155) tent with y being constructed fronN,, orbitals, as in Eq.
(W7 (121); Eq. (164b insures that the density-matrix operator

. . _ . y—when acting within the one-particle Hilbert space—is a
where the Igst re@(t:]())n defines the variational corr'eIatmn—mo]ector into the occupied subspace, as indicated by Eq.
energy functionalsE J[v] as E,[y]-Ey[v], and the first- (103 \where y serves as the kemel of the one-particle
order energyE,[vy] is given by Eq.(124). [An alternative  gensity-matrix operato¥, as indicated by Eq132).
to Eq. (155 that exploits normal ordering is given else-  ysing the above constraints, the variational problem is

E,[y]=

where[51].] . o _ expressed as
Let us also define variational XC energy functionals
_ _ oL[y],=0, (169
EZ[y1=EQY]-Ed], (s
where the exchange ener§y[ y] is given by Eq.(126). B
The exact energy, given by E), is also given by LIY1=E,[v] -lg[ff Y(X3,Xq) 8(X4 = X3)dX30X4 = N,
_(WHY)
£ (P|¥) =B+ Eedol, (157 _ffdxsd&a(xmxa){f ¥(X3,Xs5) (X5, X4)dX5
where the last relation defines the correlation enefgfy].
From the variational theorem, the fourth trial wave func- ~ YXa.X4) |, (166)

tions are equal:
and wherew and B are the Lagrangian multipliers. Equation

En[y]=Ev[y], (158 (165 is satisfied when the functional derivative 6f van-
ishes:
and we have
EX[¥]1=ER[v] (159 e , (167)
co LY. co LVI- SY(X,X1) | ,

From the variational theorem, for all four cases, we aIsqNhere the definition of the functional derivative is
have

— oL
Elv]=¢, (160 oL[y]= f f M(x—[zyjl)ﬁy(xz’xl)dxldxz' (169

where Eqs(57), (157), (155), (156), and(22) give the fol- Substituting Eq(166) into Eq. (167) yields
lowing equalities that appear for the Brueckner one-particle

density matrixr:
Y £7(xq,%0) = f dxal T(Xq, Xg) (X3, %) + a(Xq,X3) T(X3,%,)]

+ a(Xq,Xp) = BA(X, = X5) =0, (169
Ed 71 =ED[7]=EX[], (162  where

E=E,[7=E,[], (162
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oE,[v]
57(X21Xl) T
Let the two-body functionsa(x;,x,) and g(T”)(xl,xz),
serve as kernels of operatofsand ﬁ)? explicitly, we have

£7(xq,xo) = (170

&d’(xl):f a(Xq,X) h(Xp)dX, (171

{7 p(xy) = j 27 (x1,%) p(xo) . (172

Using this notation, the operator form of E4.69) is given
by

{7 —Fa-ar+a-B=0, (173

where7 is defined by Eq(136).

The identity operatorf, defined by Eq.(131), and ex-
pressed as

| =7+k,, (174
can be used to obtain the following relation:
a-Ta-ar=l(a-Ta- a7l = k,ak,— a7, (175

which we substitute into Eq173); this procedure gives

47— Far+ kak,- B=0, (176)

and yields the following requirements:
%L7=0, (1774
7,k,=0, (177b

where we have dropped the superscript since, fofy=17),
all operators are equal within these blocks:

)LM=k 8= k1 8 (178a

Wi, =7k, =T R, (1780
Equation (17739 is yet another representation of the
Brillouin-Brueckner condition; comparing Eq$139 and
(177) give

kL= R T (1793

TR, =TF R (179h

PHYSICAL REVIEW A69, 042514(2004)

>

xe{o—1}

&) = &), (181)
where the appended; superscripts appear since the
occupied-block matrix element§, perhaps, depend on.

However, we can redefine the variational operatﬁﬁ. to
remove this dependence, since E4s.7) still holds. In any
event, we assume th@@”) is independent ofy and choose
orbitals that diagonaliz&;,, giving a generalized Hartree-
Fock equation that is an alternative to E#00):

LX) = E(x). (182
Substituting Eq(155) into Eq. (170 for 7= gives
{7(x1,%2) = F (X1, Xp) + 11(X1,X,), (183
where
_ SE4[v]
Fy(X].!XZ) - 5'}’(X2,X1), (184)
_ EDY
vgg(xl,xz) = m, (185)

andF (x1,x,) is the kernel of the Fock operatéry:

1
F(X1,X2) = 8(X, = Xl)[_ EVE + U(rz)}

+ (X — Xl)f rE%v(Xsyxa)d& - rI%V(leXZ);
(186)

v2l(xq,%,) are the kernels of the variational correlation
potentialsyy.
The operator form of Eq183) is

Substituting this equation into Eq178) indicates that we
have

TN — T L — T T
KVIIT= KV T= K V5T, (188a
~ ~ UDN AAn ~
TVLIK, = TV Kp = TVoK (188b

Substituting Eqs(187) and (143) into Eq. (179 and using
the two above definitions yields
(1893

NarA A rn
K:VeoT = KUcoTh

AAT A ~ ~

TVeoKr ™ = TUcoKr

(189h

In order to acquire the kernels of the generalized Fock

and it is easily verified that the commutation relation, Eq. operatorsg (xl,xz) given by Eq.(183), it is necessary to

(140), also holds for the variational one-body operatp,rs

[£.7]=0. (180)

An alternative to the exact Hartree-Fock equatib4l) is

obtain the functional derivatives d;[y] and E(”)[y] as
indicated by Eqs(184) and(185). The functional derivative
for E;[y] can be evaluated using Eq424)—126), yielding
Eqg. (186). The functional derivative of the diagrammatic
terms of E(CZ)[y] can also be obtained; the details are pre-
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sented elsewhel®5]. (Here we only mention that by impos- F—h 2k 2k 2R

ing the same occupied and virtual orbital degeneracies as in "= e+ Nget og* Pun, (A23)
the diagrammatic expansions presented elsewfidieeach  where the excitatiofex), deexcitation(de), occupied(oc),
diagram in the expansion is given by a product of one-and unoccupiedun) parts are given by the following expres-
particle density matrices, and can, therefore, be differentiatesions:

in the same manner as in the treatmeniEgfy]. After the

functional derivative is taken, the nondegeneracy of the or- hex= 2 hwalay, (A2D)
bitals can be restored, since the entire expansion is invariant wr
to the choice of orbital energies, but this removes the explicit )
dependence oy for each term. hge= > hwala,, (A2¢)
By considering Eqs(161) and (162, it is easily deter- wr
mined that all approximations presented in Sec. VIl are valid
when Eé’g) is replaced b}E(CZ). In particular, the electron-gas ﬁoc: S hpala,, (A2d)
approximation, Eq(153), and the Colle-Salvetti functional, Wx
Eq. (15,
= n = T
E(CI(I)I)[),] ~ gg%aS[Tg](Tg:y), (190) hyn= % hrsaras, (A2e)

— and the orbitals are defined with respect to a reference state
Eto 7] = EdTuel o (19 |®), as indicated by Eqg6).

. L Any second-quantized operator, séycan be partitioned
Assuming both approximations are reasonable ones, we afy, gpen and closed portions with respect to a single-
use a linear combination of the two: reference or multireference spaf®4,79,89. In our case,

— where the reference space is only spanned by a single-

Eeo 7] = B Thelr =y + (1 _aC)gég"as[Tg](Tg:’/)’ determinantal state, the closed portionQyfsay O, is sim-
(192 ply a constant—as in Eq6l7) and(18)—and is given by the
fully contracted part of), where the operator is written in

wherea. is an empirical parameter. This approximation is an, rmal-ordered form with respect to the reference st@je
alternative to the B3LYP function8,17] which uses analo- [53,54,57,58 Explicitly, we have

gous correlation-energy functionals: They use the LYP

correlation-energy functiona(18], derived from Colle- Oy =0y = (®|0|®), (A3)
Salvetti one€g, and a uniform-electron-gas functional, de-
rived from the RPA[78]; they seta,=0.81. where the 0 subscript indicates the zero-body term.
The open portion 0D, sayO,,, is usually defined as the
ACKNOWLEDGMENTS remaining portion; it is given by the one-, two- and higher-

body terms, where, again, the operator is written in normal-

The author thanks Peter Pulay, Kimihiko Hirao, and Karlordered form. However, for our purposes, we use a more
Freed for useful discussions. The work based on Bruecknggstrictive definition forO,, and define it by the necessary,
orbital theory was initiated Wh”e at the University .Of Chi- or minimal, portion ofO that is needed to satisfy the follow-
cago, Department of Chemistry. The density-matrix theorying condition:
work was initiated while at the University of Lund, Depart- '
m_gnt of Theoretical Chemlstry, Sweden; the .autho'r thanks Oppl®) = Q0| ). (A4)
Bjorn Roos for useful discussions and suggesting this area of

research. This work was supported by the National Sciencgve define the remaining portio@,e by the following:
Foundation under Grant No. CHEXOL101, the Japanese

Society for the Promotion of Scien¢dSPS, Swedish Natu- 0=0,+ 60p+ Orer (A5)
ral Science Research Coun¢MFR), and an Internal Re- o » .
search Grant at Eastern New Mexico University. so the following identities are satisfied;
(Og + Ogp)|®) = O| D), (AB)
APPENDIX A: PARTITIONING OF SECOND-QUANTIZED
OPERATORS R
We find it convenient to partition one-body operators, say Orel®) =0. (A7)
h, The remaining portior{),e has at least one hole or particle
R annihilation operatorO,, has at least one pair of hole-
h‘E hij, (A1) particle creation operators and no hole or particle annihi-
ij . . -
lation operators. In terms of diagran8,. has at least one
into the following four components: external line below the vertex),, has no lines below the
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vertex and at least one pair of external lines abov®©j;
has no external free lines.

Note that for a one-body operator, the open and excite
portions are identical:

(A8)

APPENDIX B: ADDITIONAL RELATIONS FOR THE
THIRD TRIAL WAVE FUNCTION

The operator produdtrlflq> can be written as a sum of
zero-, one-, two-, and higher-body excitations:

HOp = Ey[®]+ (HOQp)1 + (HOo)2 + (HQg)g+ -+
(B1)
where we use the identity given by
En[®]= (HQq)q = (HOQg)o, (B2)

and this relation follow from Eqs(59) and (80). (See also
Appendix A)
Substituting Eq(B1) into Eq. (85) yields

(Hﬁcb)op,cn_ [(Hﬁcl))l]op,cn: 0. (B?’)

Using expansionB1l) again and noting that each term is
linearly independent, we have

[(HQg)nlopen=0, N=2. (B4)
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©")=10). (B9)

gpubstituting this result into E@B7) indicates that Eq57) is

satisfies. All other relations from Sec. IV A are easily veri-
fied. For example, Eqs(64)—(66) follow from Eq. (59
through Eq.(63).

Substituting Eq(B9) into Eqgs.(B5a) and(B5b) yields the
following identities:

PY(HQ6)op.en= 0, (B103

[(HQQ)l]op,cnz 0.

These equivalent relations are alternative representations of
the Brillouin-Brueckner condition, since if they satisfied,

then Eq.(58) is also satisfied. Note thﬁq, does not possess

a single-excitation operator,. i.éf is absent in Eq(81h).
Using the definition of an open operator, E¢85) and
(B10g can be represented by the following:

(B10Ob)

Qu(HQ¢)enPe =0, (B11)
PO (HO)enPe = 0, (B12)

where
Qo =Qq -~ PH1. (B13)

Elsewhere[51] a general and transparent perturbative

This relation can be used to obtain the coupled cluster equitéatment of coupled cluster theory is presented that is also

tions for theS? amplitudes.

We now demonstrate that|") is a valid trial wave
function: Eq.(57) and the other relations from Sec. IV A are
satisfied.

Consider a determinantal state, 4@y), that we require
to satisfy the following condition:

PY (HQg)op,en=0- (B5a)

Using Eq.(B1), we can easily verify that the following con-
ditions causes EqB5a) to be satisfied:

[(HQ6/)1lop,cn=0- (B5h)

Adding Egs.(B3) and(B5a), for (|®)=|@')), and comparing
the result with Eq(28), indicates that

QI = Q@/ , (B6)
and therefore we have
WOy =|w). (B7)

Multiplying Eq. (B7) by P?lr and using Eqgs(80), (813,
and(81b) gives

PO [W)=0. (B8)

Comparing this equation with E¢48) indicate that®') is
the Brueckner state:

useful to obtain a perturbative expansion for the third
correlation-energy functioneﬁ(c'c')').

APPENDIX C: ADDITIONAL RELATIONS FOR THE
FOURTH TRIAL WAVE FUNCTION
The proof that Egs(57) and (64) are satisfied uses the
Schrddinger equatio(d), which can be written

POHIW) + (1 - PE)H|W) = EPY W) + £(1 - P [W),
(C1)

where he have added, and also subtrad&dterms. Equa-
tions (44), (48), and (49) indicate that the first terms on
the right and left sides vanish, so we have
(1-PP)H[W) = E(L -PH)W). (€2

Equations(57) and (64), for =1V, are obtained by com-
paring Egs.(86) and (C2), and using Eq(56). All other
relations from Sec. IV A are easily verified.

As in the exact wave function of intereg¥), the trial
Wavefunction|‘1’gv)) can be generated by a wave operator
Qgp:

Qgl®) = [Wg"),
Wheref)q) is similar toQ)q—defined by Eqs(42) and(43)—

except that there is no excitation operator iRQ:

(C3
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Qp=1+02+0%+ - (C4)
where
~ 1 -
Q(ZD = 5 E X:?/vsﬁ;ra-sraxawa (C59
" WsX
~ 1 b
Qg = 5 2 X(rlwsxtﬁ:a;ra;rayaxawa (C5b)
* rwsxty

Using Eqgs.(C3) and(C4), after substituting Eq61) into
Eq. (60), gives the fourth correlation-energy functional
EL[@]= [H(Qg - D, (C6)

where we added

PHYSICAL REVIEW A 69, 042514(2004)

(D|HP(Qg — 1)|®) = 0. (C7)

By using the definition ot~g¢, given by Eq(B13), and by
requiring Hy to satisfy
PHHS(1-P$) =0, (C8)

it is easily proven thaﬁq, is a solution to the following
variants of Eqs(32) and (33):

Qp=1+0P+0@+ - (C9)
n-1
(Eo~ H)QF'Py = Qo | Va2 ™ - X Qg™
m=1
X P¢V¢ﬁfbm_1):| Po. (C10)
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