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The stability of the ground state of the H2
+ and H2 systems, where nuclei and electrons interact through a

Yukawa potentiale−lr / r, has been studied for different values of the screening parameterl using quantum
Monte Carlo techniques. Nonadiabatic calculations using explicitly correlated trial wave functions were carried
out, obtaining exact results within the statistical errors. H2

+ and H2 appear to be stable species for values ofl

as large as 1.35 and 1.38 bohr−1. So in the range 1.35ølø1.38 bohr−1 H2 is stable, while all the possible
fragments are unbound, that is, it shows Borromean binding.
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INTRODUCTION

A three-body system is calledBorromeanif it is bound,
while all the two-body subsystems are unbound[1,2]. Phe-
nomena related to the Borromean binding are the Efimov
effect [3,4], for a vanishing two-body potential infinite
weakly bound three-body states appear, and the Thomas col-
lapse [5], for very small two-body binding the three-body
energy becomes infinite upon reducing the potential range.
Examples are known in nuclear physics[6] but not in atomic
and molecular physics. Recently Richard has proposed the
following generalization[1] to N-body systems: “A bound
state is Borromean if there is no path to build it via a series
of stable states by adding the constituents one by one.” This
means that in anN-body system all possible subsystems are
unbound. An example of this behavior can be found in3He
clusters. The3He2 molecule is unbound, however since the
3He liquid is stable, there must exist a critical number of3He
atoms bound to form the cluster3HeN. The exact value ofN
is still unknown. In an early investigation, Pandharipandeet
al. [7] using variational Monte Carlo(VMC) indicated that
systems with more than 403He are bound, while 20 atoms
are unable to ensure the binding. Recently this bound has
been greatly improved by Guardiola and Navarro[8] who
established at 35 a stricter upper bound to the minimum
number of3He atoms needed to form a stable cluster. This
cluster shows generalized Borromean behavior, since all 2-,
3-, andsN-1d-body subsystems are unbound.

Natural candidates to study the generalized Borromean
binding are four-body systems. In particular, the stability of
four-particle systemsM+M+m−m− interacting through a tun-
able screened Coulomb potential can be studied. Changing

the interaction strength between particles allows investigat-
ing the range of stability of any combination ofM+ andm−

particles with respect to the relevant dissociation threshold.
Screened potentials are widespread in many different ar-

eas of physics and chemistry, being used in simple models to
approximate many-body interactions. Among this set of po-
tentials, one of the most important, both historically and
practically, is the statically screened Coulomb potential, or
Yukawa potentialZe−lr / r, whereZ=q1q2, q1 and q2 being
the charges of the interacting particles andr their distance.
The screening parameterl can vary from zero, for the un-
screened case, to large values, allowing one to have different
shieldings of the charge of the particles. This potential is
quite often used to describe the shielding effects between
charges due to thermal ionization in plasmas[9]. It has been
applied also in condensed matter physics, mainly, to describe
electronic properties in metals[10] and to model colloidal
suspensions[11].

Besides the practical applications of the Yukawa potential
to describe physical and chemical phenomena, there are
many theoretical works primarily focused on the mathemati-
cal properties of this potential. In particular there have been
attempts to find an accurate solution for the ground and ex-
cited states of simple systems, and therefore to determine the
behavior of the energy upon variation of the screening pa-
rameterE=Esld, in order to understand for which value ofl
the Yukawa potential is no longer able to support a bound
state. At first, studies on the mathematical properties of the
Yukawa potential were carried out on one-electron systems.
Different approaches were used to build accurate approxima-
tions to the wave function and to evaluate the critical screen-
ing parameter: numerical integration[12], Padé approxi-
mants[13], and linear combination of simple functions[14]
were among the most successful techniques. Then, the inter-
est on this screened potential has been spreading over two-
electron atomic systems, with a particular interest for the
helium atom and the negative hydrogen ion[15–17]. The
main goal of these works was to study the effect of the elec-
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tronic correlation on the stability of these systems upon
variation of the screening parameter, in order to understand
how and when the detachment of the electrons occurs. In the
first attempts[17] to carry out these model calculations on
H−, the electron-electron repulsion term in the Hamiltonian
was not screened, and the stability changed slightly upon
variation of the screening parameter. Successively it was
shown that for two-electron systems the introduction of
screening in the electron-electron interaction increases the
stability in comparison with the unscreened case. In particu-
lar for the negative hydrogen ion calculations[17,18]
showed that the favored process is the simultaneous detach-
ment of both the electrons,

H− → H+ + 2e−, s1d

instead of the loss of only one electron, with production of
neutral hydrogen:

H− → H + e−. s2d

The fact that the two electrons are ionized simultaneously as
opposed to consecutively was shown to be true also for He
and He+ that lose their electrons for the same value of the
screening constantf18g.

Ugaldeet al. [19] extended the study of systems interact-
ing through a Yukawa potential to molecules. The interest
was focused on the electronic and geometrical structures of
the molecule H2 for different values of the screening param-
eter. They used a full configuration interaction(CI) approach
within the Born-Oppenheimer approximation in order to ob-
tain the potential-energy surface.

Goy et al. [20] were the first to use the Yukawa potential
to study weakly bound three-body systems with no bound
subsystems. They assumed a potential −gV, V being the
Yukawa potential withl=1 bohr−1, and investigated the
critical couplingsg3 andg2 to bind three- and two-body sys-
tems and so the domain which produces Borromean binding.

The solutions for the above systems were fairly accurate,
but the importance of the correlation energy increases as the
screening parameter increases[19]. So to deal with this kind
of problems we have to resort to methods that can deal with
many-body correlation. Diffusion Monte Carlo[21] (DMC)
techniques give exact results, within the statistical error, for
systems whose wave function is positive everywhere. In this
paper we report the results of nonadiabatic(NA) quantum
Monte Carlo(QMC) calculations on the ground state of H2

+

and H2 molecules, upon variation of the screening parameter
l. In particular we are interested in calculating the range of
stability upon variation ofl from the unscreened casel
=0 bohr−1 to largel values, evaluating the critical parameter
lc for which the systems are unbound. The choice of a NA
approach is dictated by the need to get correct information
for high values ofl. For very weakly bound systems it is not
possible to follow the standard scheme, that is, to adopt the
Born-Oppenheimer approximation and to correct for the
zero-point energy evaluated within the harmonic approxima-
tion, owing to the anharmonicity of the fixed-nuclei poten-
tial.

HAMILTONIAN AND TRIAL WAVE-FUNCTION FORM

The Hamiltonian operator in atomic units describing a
system ofM nuclei andN electrons interacting through a
Yukawa potential is

Ĥ = − o
i=1

N+M
¹i

2

2mi
+ o

i, j

N+M
qiqj

r ij
e−lri j , s3d

wheremi are the masses of the particles.
The mass of the nuclei is set to 1836.1527 a.u. for NA

calculations. The ground-state energy and eigenfunction of
this Hamiltonian are parametrically dependent on the screen-
ing parameter. Increasingl decreases the interaction energy
between the particles, raising the total energy of the system.
To discuss the range of stability of these systems, we define
the critical screening parameterlc [22] as the value for

which the energy of the systemEsld=kĤsldl vanishes.
To obtain a variational estimate of the total energy, we

approximate the trial wave function by the linear expansion
[23,24],

CT = ÂÔsymmo
k=1

pkFkQeQn, s4d

whereÂ is the antisymmetrization operator,Ôsymmis an op-
erator used to fix the space symmetry, andQe andQn are

the electronic and nuclear-spin eigenfunctions. TheÔsymm
operators for H2

+ and H2 are, respectively,

Ôsymm,H2
+ = 1 + P̂AB, s5d

Ôsymm,H2
= s1 + P̂ABds1 + P̂12d, s6d

where P̂AB is the nuclear exchange operator andP̂12 in the
electron exchange operator.

The space part of the wave function is

Fk = p
i, j

eUijksri j d, s7d

where the product runs over all the interparticle distances
and the termUijksr ijd is the exponential of a Padé approxi-
mant,

Uijksr ijd = expFaijkr ij + bijkr ij
2

1 + cijkr ij
G . s8d

In the above equationa, b, andc are three variational param-
eters. The use of the complete Padé approximant instead of
the more common Jastrow factor is motivated by the need to
give maximum flexibility to the trial wave-function form.

The employed trial wave function depends only on the
interparticle distances, so it is translationally invariant, and
there is no need to subtract the kinetic energy of the center of
mass from the total energy. The chosen trial wave-function
form makes it impossible to compute analytically the matrix
elements of the Hamiltonian, so we resort to the VMC
method to accomplish this task. Since this and the other
Monte Carlo methods employed in this work are well de-
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scribed in the literature, we refer the reader to the various
books and reviews available for the technical details
[21,25,26]. All wave functions were optimized by minimiz-
ing the variance of the local energy, as described in the lit-
erature[25].

RESULTS

To optimize the parameters of the trial wave functions for
each value ofl, we carried out VMC calculations using a
one-term function as trial wave function and 10 000 random
walkers. The same number of walkers and a time step of
0.01 hartree−1 for all the particles were used in NA-DMC
simulations. In these simulations, to obtain comparable dif-
fusion and sampling of the configuration space for particles
of different masses, the time step should scale asÎm. The
adopted time step of 0.01 hartree−1 is a compromise, but it is
rather large for electrons. A safe value for the energy could
be calculated by extrapolation to zero time step, but NA-
DMC simulations are computationally demanding, and a
complete extrapolation to zero time step should be too ex-
pensive to be carried out for all the values ofl. So the
accuracy of our NA results was assessed comparing the val-
ues forl=0 bohr−1, computed with the 0.01 hartree−1 time
step, with nearly exact literature results. For H2

+ our energy
−0.597 136s3d hartree is in agreement within the statistical
error with the value −0.597 139 hartree computed by Bishop
and Cheung[27]. For H2 NA results were obtained by
Traynor et al. [28] using Green’s-function Monte Carlo
f−1.164 024s9d hartreeg, and by Kinghorn and Adamowicz
[29] s−1.164 025 023 2 hartreed using explicitly correlated
Gaussians. Again our total energy −1.164 032s9d hartree is in
statistical agreement with those practically exact values. In
conclusion these comparisons support our choice for the time
step for both the systems we studied. In any case we checked
that the time step bias was negligible by running few more
simulations with shorter time steps.

The results obtained by means of the NA-DMC simula-
tions for various values ofl are shown in Table I for H2

+ and
in Table II for H2, together with the nonadiabatic ground-

state energyEH for the hydrogen atom. The energies of the
hydrogen atom with infinite nuclear massE`, as a function
of the screening parameterl, were previously determined by
Gomes et al. [22]. For lc,̀ they predicted a value
1.190 612 27s4d bohr−1: from this value the finite-mass criti-
cal screening parameterlc,M=1.1899 bohr−1 is evaluated ac-
cording to the Appendix. The energies of the hydrogen atom
with finite nuclear mass were computed by analytical calcu-
lations with a linear expansion of 19 exponential functions,
i.e.,

Csrd = o
i

19

cie
−kir , s9d

optimizing both linear and nonlinear parameters.

Stability of H 2
+

We extended previously published calculations[30] to
larger values ofl to better compare the relative stability of
H2 against this system. We used only one term in the trial
wave functions for the NA simulations, since DMC can give
the exact energy as the space parts of the electronic and
nuclear functions are positive everywhere.

From Table I it emerges that for H2
+

EH2
+sld , EHsld,

s10d
lc

H2
+

. lc
H,

since forl=1.2 bohr−1 H2
+ is bound, while H is not. In the

range where the hydrogenlike atoms are stable, forl,lc
H, H

plus H+ give the relevant threshold, and this means that H2
+

is stable against the dissociation

H2
+ → H + H+. s11d

Instead, forlc
Hølølc

H2
+
, the system is stable against the

dissociation

H2
+ → 2H+ + e−, s12d

because in this range ofl values the hydrogenlike atom is
not bound. A few interesting conclusions can be drawn from

TABLE I. Nonadiabatic ground-state energies of H2
+.

l sbohr−1d EDMC shartreed EH shartreed

0.0 −0.597136s3d −0.499727

0.1 −0.503330s10d −0.406789

0.7 −0.135561s13d −0.071678

1.1899 −0.013489s13d
1.20 −0.012287s15d
1.25 −0.007201s10d
1.29 −0.003989s14d
1.33 −0.001597s12d
1.34 −0.001190s11d
1.35 −0.000750s10d
1.36 −0.000400s10d
1.365 −0.000280s16d

TABLE II. Nonadiabatic ground-state energies of H2.

l sbohr−1d EDMC shartreed 2EH shartreed

0.0 −1.164032s9d −0.999454

0.1 −0.976570s10d −0.813578

0.7 −0.254304s9d −0.143356

1.1899 −0.025926s20d
1.25 −0.014465s15d
1.29 −0.008541s22d
1.33 −0.004060s38d
1.35 −0.002343s36d
1.36 −0.001544s30d
1.365 −0.001317s30d
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our results: since H2
+ is stable even when H is not, H2

+ is a
Borromean systemf20g, a three-body system with two of the
two-body potentials attractive and one repulsive. Moreover,
if one compares the value of −0.000 000 103 hartree for the
energy of the hydrogenlike system withl=1.19 bohr−1 as
computed by Vrscay f13g, with the energy value
−0.012 278s15d of H2

+ with l=1.2 bohr−1 shown in Table
I, it strikes that the total energy lowers by a factor of 105

when a proton is added to the hydrogenlike atom.
Although it is hard to properly assess the different contri-

butions to this effect that come from each part of the Hamil-
tonian operator, it appears strictly dependent on the simulta-
neous action of the two attractive contributions due to the
nuclei on the electron, since it is present also in calculations
performed within the Born-Oppenheimer approximation. It
remains to understand how much of this effect is due to the
symmetry of the Hamiltonian itself, i.e., same mass for the
positive particles and same screening constantl in the po-
tential, and how much the ground-state energy might change
upon variation of these physical parameters.

We computed the mean value of the bond distanceR0 by
the mixed estimator: a correct evaluation of this property
should require a forward walking algorithm[21], so our val-
ues are only a first estimate ofR0. Upon increasingl, the
bond is weakened andR0 increases; the largest value just
before dissociation is 3.60s1dbohr.

Stability of H 2

Our total energies, shown in Table II, are consistently
higher than the values obtained by means of full CI calcula-
tions after correction for the zero-point vibrational energy
[19]. This fact stresses the importance of NA calculations for
a correct prediction of the stability of this system. For easy
comparison with the results for H2

+ data are plotted in Fig. 1.
The values of the critical parameterslc for H2 and H2

+,
together with the literature data for H and H− corrected for
finite mass, are collected in Table III. The physical picture of
H2 given by the NA results is the same as for H2

+. For all the
values of the screening parameterl we explored, the follow-
ing relations hold:

EH2
sld , EH2

+sld,

EH2
sld , 2EHsld, s13d

lc
H2 . lc

H2
+

. lc
H.

For values of the screening parameterlùlc
H, as shown in

Fig. 1, H2 is stable against the dissociations

H2 → 2H,
s14d

H2 → H2
+ + e−,

while for lc
H2

+
ølølc

H2 H2 is stable against the only pos-
sible dissociation H2→H2

++e−. The other possible dissocia-
tion path H2→H−+H+ is excluded as H− has the samelc as
H. So in this range ofl there is no path to build H2 via a
series of stable states by adding the constituents one by one,
namely, H2 shows Borromean binding in the generalized
sense.

Our mean bond distances are in good agreement with the
values found in literature[19] for all the l values. Our re-
sults, in agreement with the full CI calculations[19], show
thatRe increases upon increasing the parameterl, even if the
lengthening of the bond is less than in H2

+.

CONCLUSIONS

In this work we have explored the stability range of the
two molecular systems H2

+ and H2, whose particles interact
through the Yukawa potential, varying the screening param-
eter l. These two molecular systems are bound in a larger
range ofl in comparison to the atomic systems H and H−. In
particular H2 is stable for larger values ofl than H2

+. H and
H− show the same critical value of the screening constantlc,
so H− loses both electrons simultaneously and does not show
Borromean binding. Forlc.1.375 bohr−1 H2 is the only
stable system and so is in a Borromean state. Since the
screening parameter is a function of both the electron density
and the electron temperature, a particular value ofl corre-
sponds to a range of plasma conditions. Although the
Yukawa model potential may not always be appropriate to
model a real plasma, in particular for values of the screening
parameter near the critical one, these results show that it has
very interesting mathematical properties, being able to sup-
port generalized Borromean binding.

ACKNOWLEDGMENT

CPU time for this work was partially granted by the Isti-
tuto CNR per le Scienze e Tecnologie Molecolari(ISTM).

FIG. 1. NA-DMC energies as a function ofl for H2
+ and

H2.

TABLE III. Screening parameterlc critical values.

System lc sbohr−1d

H 1.1899

H− 1.1899

H2
+ 1.373(4)

H2 1.385(7)
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APPENDIX: ESTIMATE OF THE CRITICAL SCREENING
PARAMETER FOR THE HYDROGEN ATOM WITH

FINITE NUCLEAR MASS M
The finite-mass Hamiltonian operator for the hydrogen

atom is

Ĥsld = −
1

2m
¹2 −

e−lr

r
, sA1d

where m=M / sM +1d is the reduced mass. Ifl=lc,M, then

kĤslc,Mdl=0. Let us scaler as r →ar; then

Ĥslc,Md = −
a2

2m
¹2 − a

e−lc,Mr/a

r
. sA2d

Multiplying by m /a2 and then settingm=a, we can write

Ĥslc,Md = −
1

2
¹2 −

e−lc,Mr/m

r
= Ĥslc,`d, sA3d

where Ĥslc,`d is the infinite-mass Hamiltonian operator with
critical screening parameterlc,`=lc,M /m.

Using the best estimate oflc,`=1.190 612 27s4d bohr−1

[22], we obtainlc,M =1.189 96 bohr−1.
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