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Borromean binding in H, with Yukawa potential: A nonadiabatic quantum Monte Carlo study
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The stability of the ground state of the,Hand H, systems, where nuclei and electrons interact through a
Yukawa potentiale™ /r, has been studied for different values of the screening parameising quantum
Monte Carlo techniques. Nonadiabatic calculations using explicitly correlated trial wave functions were carried
out, obtaining exact results within the statistical errors! Bind H, appear to be stable species for values of
as large as 1.35 and 1.38 bohrSo in the range 1.35\<1.38 bohr! H, is stable, while all the possible
fragments are unbound, that is, it shows Borromean binding.

DOI: 10.1103/PhysRevA.69.042504 PACS nuni®er33.15.Ry, 31.10:z

INTRODUCTION the interaction strength between particles allows investigat-
ing the range of stability of any combination bf* andm™
particles with respect to the relevant dissociation threshold.
Screened potentials are widespread in many different ar-
s of physics and chemistry, being used in simple models to
pproximate many-body interactions. Among this set of po-
2ntials, one of the most important, both historically and
ractically, is the statically screened Coulomb potential, or

A three-body system is calleBorromeanif it is bound,
while all the two-body subsystems are unboula¢?]. Phe-
nomena related to the Borromean binding are the EfimO\éa
effect [3,4], for a vanishing two-body potential infinite
weakly bound three-body states appear, and the Thomas cq
lapse[5], for very small two-body binding the three-body
energy becomes infin_ite upon reducing the po'FentiaI rang&y L awa potentialZe ™ /r, where Z=q,d,, 0, and g, being
Examples are known in nuclear phys[é§ but notin atomic - o oharges of the interacting particles antheir distance.
and ”.‘O'ecu'af phys[cs. Recently Richard has Broposed th‘?he screening parametarcan vary from zero, for the un-
follow_lngB generallzgtfloltlil] to N-bodyh syséer_rds._ A bound_ screened case, to large values, allowing one to have different
state is Borromean If there Is no path to build it via a Serle?shieldings of the charge of the particles. This potential is

of stable states by adding the constituents one by one.” Thlauite often used to describe the shielding effects between
means that in aiN-body system all possible subsystems are

. . . charges due to thermal ionization in plasni@k It has been
ulnb?und.Tﬁr;?axamplle of Ith'.s bef;)awo(rj Cﬁn be foun_d‘H’reth applied also in condensed matter physics, mainly, to describe
glusters. Therie, molecule 1S unbound, NOWEVer SiNCE e gjecironic properties in metald0] and to model colloidal

He liquid is stable, there must exist a critical numbeflaé

suspension§ll].
atoms bound to form the clustériey. The exact value o Besides the practical applications of the Yukawa potential

is still unknown. In an early investigation, Pandharipaetie 5 gescribe physical and chemical phenomena, there are
al. [7] using variational Monte CarlgVMC) indicated that many theoretical works primarily focused on the mathemati-
systems with more than 48e are bound, while 20 atoms ca| properties of this potential. In particular there have been
are unable to ensure the binding. Recently this bound hagttempts to find an accurate solution for the ground and ex-
been greatly improved by Guardiola and Navaf8) who  cited states of simple systems, and therefore to determine the
established at 35 a stricter upper bound to the minimunpehavior of the energy upon variation of the screening pa-
number of*He atoms needed to form a stable cluster. ThiSrameterE:E()\), in order to understand for which value »f
cluster shows generalized Borromean behavior, since all 2ype yukawa potential is no longer able to support a bound
3-, and(N-1)-body subsystems are unbound. state. At first, studies on the mathematical properties of the
Natural candidates to study the generalized BorromeaNykawa potential were carried out on one-electron systems.

binding are four-body systems. In particular, the stability of pifferent approaches were used to build accurate approxima-
four-particle system#/*M*m™m’ interacting through a tun- tjons to the wave function and to evaluate the critical screen-
able screened Coulomb potential can be studied. Changingg parameter: numerical integratioil2], Padé approxi-

mants[13], and linear combination of simple functiof$4]

were among the most successful techniques. Then, the inter-

*Electronic address: bert@istm.cnr.it est on this screened potential has been spreading over two-
"Electronic address: Massimo.Mella@chem.ox.ac.uk electron atomic systems, with a particular interest for the
*Electronic address: Dario.Bressanini@uninsubria. it helium atom and the negative hydrogen ifffb—17. The
SElectronic address: Gabriele.Morosi@uninsubria.it main goal of these works was to study the effect of the elec-

1050-2947/2004/69)/0425045)/$22.50 69 042504-1 ©2004 The American Physical Society



BERTINI et al. PHYSICAL REVIEW A 69, 042504(2004)

tronic correlation on the stability of these systems upon HAMILTONIAN AND TRIAL WAVE-FUNCTION FORM

variation of the screening parameter, in order to understand - . . . -
The Hamiltonian operator in atomic units describing a

how and when the detachment of the electrons occurs. In the . . ;

' . system ofM nuclei andN electrons interacting through a

first attempts[17] to carry out these model calculations on Yukawa potential is

H~, the electron-electron repulsion term in the Hamiltonian P

was not screened, and the stability changed slightly upon R NM g2 NHM ad

variation of the screening parameter. Successively it was H=- > ——+ > —““leij, (3)

shown that for two-electron systems the introduction of [

screening in the electron-electron interaction increases t%herem are the masses of the particles.

stability in comparison with the unscreened case. In particu- The mass of the nuclei is set to 1836.1527 a.u. for NA

Iahr for d iuet tnheg;mve gydrogen 'Io?heczsi'lgﬂnmﬁg(r)wg?’slgetac alculations. The ground-state energy and eigenfunction of
showed Inat the favored process Is imu u is Hamiltonian are parametrically dependent on the screen-

ment of both the electrons, ing parameter. Increasing decreases the interaction energy
between the particles, raising the total energy of the system.
To discuss the range of stability of these systems, we define
the critical screening parametar, [22] as the value for
which the energy of the systeB(\)=(H(\)) vanishes.

To obtain a variational estimate of the total energy, we

H™— H* +2¢, (1)

instead of the loss of only one electron, with production of
neutral hydrogen:

H - H+e 2) approximate the trial wave function by the linear expansion
' [23,24,
The fact that the two electrons are ionized simultaneously as _~a .
opposed to consecutively was shown to be true also for He WT_AOSV”‘% PPOOn, (4)

and Hé€ that lose their electrons for the same value of the

screening constat g]. whereA is the antisymmetrization operat(fbsymmis an op-
Ugaldeet al. [19] extended t.he study of systems in.teract-erator used to fix the space symmetry, addand ®, are
ing through a Yukawa potenpal to moleculgs. The mteres%]e electronic and nuclear-spin eigenfunctions. ﬁ}@mm
was focused on the'electronlc and geometrical _structures perators for H* and H, are, respectively,
the molecule H for different values of the screening param-
eter. They used a full configuration interacti@i) approach
within the Born-Oppenheimer approximation in order to ob-
tain the potential-energy surface. . R R
Goy et al. [20] were the first to use the Yukawa potential Osymm, = (L +Pap)(1+Pyy), (6)
to study weakly bound three-body systems with no bound R R
subsystems. They assumed a potentigV,-V being the where P,z is the nuclear exchange operator dg in the
Yukawa potential withh=1 bohf!, and investigated the electron exchange operator.
critical couplingsgs andg, to bind three- and two-body sys- The space part of the wave function is
tems and so the domain which produces Borromean binding.
The solutions for the above systems were fairly accurate, P = 1T Vi), (7)
but the importance of the correlation energy increases as the i<

screening parameter increagés]. So to deal with this kind  \\here the product runs over all the interparticle distances

of problems we hav_e to resort to methods that can deal Wm&nd the termUy,(r;) is the exponential of a Padé approxi-
many-body correlation. Diffusion Monte Car[@1] (DMC) mant

techniques give exact results, within the statistical error, for
systems whose wave function is positive everywhere. In this ajij + bijkriz'
Uiji(rij) = ex

OsymmH2+ =1+ F’AB* (5)

paper we report the results of nonadiabdlitA) quantum ﬁL . (8
Monte Carlo(QMC) calculations on the ground state ofH k]

and H, molecules, upon variation of the screening parametem the above equatioa, b, andc are three variational param-

\. In particular we are interested in calculating the range okters. The use of the complete Padé approximant instead of
stability upon variation ofa from the unscreened case the more common Jastrow factor is motivated by the need to
=0 bohr? to large\ values, evaluating the critical parameter give maximum flexibility to the trial wave-function form.

\¢ for which the systems are unbound. The choice of a NA The employed trial wave function depends only on the
approach is dictated by the need to get correct informatiointerparticle distances, so it is translationally invariant, and
for high values of\. For very weakly bound systems it is not there is no need to subtract the kinetic energy of the center of
possible to follow the standard scheme, that is, to adopt thenass from the total energy. The chosen trial wave-function
Born-Oppenheimer approximation and to correct for theform makes it impossible to compute analytically the matrix
zero-point energy evaluated within the harmonic approximaelements of the Hamiltonian, so we resort to the VMC
tion, owing to the anharmonicity of the fixed-nuclei poten- method to accomplish this task. Since this and the other
tial. Monte Carlo methods employed in this work are well de-
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TABLE I. Nonadiabatic ground-state energies of 'H
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TABLE Il. Nonadiabatic ground-state energies of.H

\ (bohr?) Epmc (hartree Ey (hartree N (bohr?) Epmc (hartree 2E, (hartree
0.0 -0.59713R) -0.499727 0.0 -1.16403D) -0.999454
0.1 -0.50333(10) -0.406789 0.1 -0.97657Q10) -0.813578
0.7 -0.13556(13) -0.071678 0.7 -0.25430) -0.143356
1.1899 -0.01348a3 1.1899 -0.02592&0)

1.20 -0.01228(5) 1.25 -0.014466L5)

1.25 -0.00720@10) 1.29 -0.00854@2)

1.29 -0.00398A.4) 1.33 -0.00406(88)

1.33 -0.001597.2) 1.35 -0.00234(36)

1.34 -0.0011901) 1.36 —-0.0015440)

1.35 —-0.00075@L0) 1.365 -0.00131(B0)

1.36 —-0.00040@L0)

1.365 -0.00028@.6)

state energyey for the hydrogen atom. The energies of the
hydrogen atom with infinite nuclear mags, as a function

scribed in the literature, we refer the reader to the variou§f the screening parameter were previously determined by
books and reviews available for the technical detailsGomes et al. [22]-_1 For Ac.. they predicted a value
[21,25,26. All wave functions were optimized by minimiz- 1.190 612 274) bohr: from this value the finite-mass criti-

ing the variance of the local energy, as described in the litc@l screening parametig y=1.1899 boht' is evaluated ac-
erature[25]. cording to the Appendix. The energies of the hydrogen atom

with finite nuclear mass were computed by analytical calcu-
lations with a linear expansion of 19 exponential functions,
ie.,

RESULTS

To optimize the parameters of the trial wave functions for
each value of\, we carried out VMC calculations using a
one-term function as trial wave function and 10 000 random
walkers. The same number of walkers and a time step of . . . . .
0.01 hartre@ for all the particles were used in NA-DMC ©Ptimizing both linear and nonlinear parameters.
simulations. In these simulations, to obtain comparable dif-
fusion and sampling of the configuration space for particles
of different masses, the time step should scale/ms The . i )
adopted time step of 0.01 hartféés a compromise, but it is We extended previously published calculatiof®)] to
rather large for electrons. A safe value for the energy could@rger values o to better compare the relative stability of
be calculated by extrapolation to zero time step, but NA-H2 against this system. We used only one term in the trial
DMC simulations are computationally demanding, and avave functions for the NA simulations, since DMC can give
complete extrapolation to zero time step should be too exthe exact energy as the space parts of the electronic and
pensive to be carried out for all the values xf So the nuclear functions are positive everywhere.
accuracy of our NA results was assessed comparing the val- From Table | it emerges that for F1
ues forn=0 bohr?, computed with the 0.01 hartréetime

: . En«(N) <Enp(N),
step, with nearly exact literature results. Fos"tbur energy 2
-0.597 1363) hartree is in agreement within the statistical . (10
error with the value —0.597 139 hartree computed by Bishop A2 >
and Cheung[27]. For H, NA results were obtained by
Traynor et al. [28] using Green’s-function Monte Carlo
[-1.164 0249) hartred, and by Kinghorn and Adamowicz
[29] (-1.164 025 023 2 hartreeusing explicitly correlated
Gaussians. Again our total energy —1.164 (2artree is in
statistical agreement with those practically exact values. In
conclusion these comparisons support our choice for the time " oot ) )
step for both the systems we studied. In any case we checkd@stead, forh; <A=<N\;?, the system is stable against the
that the time step bias was negligible by running few moredissociation
simulations with shorter time steps.

The results obtained by means of the NA-DMC simula-
tions for various values of are shown in Table | for 5 and  because in this range of values the hydrogenlike atom is
in Table Il for H,, together with the nonadiabatic ground- not bound. A few interesting conclusions can be drawn from

19
()= ce, (9)

Stability of H ,*

since forn=1.2 bohr* H,* is bound, while H is not. In the
range where the hydrogenlike atoms are stabIeAfom?, H
plus H* give the relevant threshold, and this means thgt H
is stable against the dissociation

Hy — H+H*. (11)

H," — 2H" + €, (12
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0 TABLE Ill. Screening parametex, critical values.
_-0.004 System \¢ (bohr?)
()
a ]
E 0,008 - H 1.1899
£ ] H- 1.1899
“ 00121 Hy* 1.3734)
_ H, 1.3857)
-0.016 41—
1.15 1.25 1.35
A (bohr™) En,(\) < 2E4(0), (13)
FIG. 1. NA-DMC energies as a function of for H,* and
Ho- Az > \H2 >\

For values of the screening parametes )\E, as shown in

our results: since bt is stable even when H is not,,His a Fig. 1, H, is stable against the dissociations

Borromean systenf20], a three-body system with two of the

two-body potentials attractive and one repulsive. Moreover, H, — 2H,
if one compares the value of —0.000 000 103 hartree for the (14)
energy of the hydrogenlike system with=1.19 bohr! as Hy— Hy" +e

computed by Vrscay[13], with the energy value .
-0.012 27815) of H," with A=1.2 bohF* shown in Table while for \72 <A=<\"2 H, is stable against the only pos-
|, it strikes that the total energy lowers by a factor of 10 sible dissociation b— H,"+e". The other possible dissocia-
when a proton is added to the hydrogenlike atom. tion path H—H™+H" is excluded as Hhas the sama_ as
Although it is hard to properly assess the different contri-H. So in this range of there is no path to build Hvia a
butions to this effect that come from each part of the Hamil-series of stable states by adding the constituents one by one,
tonian operator, it appears strictly dependent on the simultamamely, H shows Borromean binding in the generalized
neous action of the two attractive contributions due to thesense.
nuclei on the electron, since it is present also in calculations Our mean bond distances are in good agreement with the
performed within the Born-Oppenheimer approximation. Itvalues found in literatur¢19] for all the A values. Our re-
remains to understand how much of this effect is due to tha&ults, in agreement with the full CI calculatiof9], show
symmetry of the Hamiltonian itself, i.e., same mass for thethatR, increases upon increasing the paramgteaven if the
positive particles and same screening constaitt the po-  lengthening of the bond is less than in*H
tential, and how much the ground-state energy might change
upon variation of these physical parameters.
We computed the mean value of the bond distaRgéy
the mixed estimator: a correct evaluation of this property |n this work we have explored the stability range of the
should require a forward walking algorithf1], so our val-  two molecular systems #4 and H,, whose particles interact
ues are only a first estimate &. Upon increasing\, the  through the Yukawa potential, varying the screening param-
bond is weakened anR, increases; the largest value just eter \. These two molecular systems are bound in a larger
before dissociation is 3.60)bohr. range of in comparison to the atomic systems H and Hh
particular H, is stable for larger values of than H,*. H and
H~ show the same critical value of the screening constgnt
so H™ loses both electrons simultaneously and does not show

Our total energies, shown in Table I, are consistentlyBorromean binding. Foh;>1.375 bohr* H, is the only
higher than the values obtained by means of full Cl calculaStable system and so is in a Borromean state. Since the
tions after correction for the zero-point vibrational energySCcreening parameter is a function of b_oth the electron density
[19]. This fact stresses the importance of NA calculations forand the electron temperature, a particular value @orre-

a correct prediction of the stability of this system. For easySPonds to a range of plasma conditions. Although the
comparison with the results forfidata are plotted in Fig. 1. Yukawa model potential may not always be appropriate to
The values of the critical parameteks for H, and H,*, model a real plasma, in particular for values of the screening
together with the literature data for H and Idorrected for ~Parameter near the cnncal_one, these_result; show that it has
finite mass, are collected in Table IIl. The physical picture ofVery interesting mathematical properties, being able to sup-
H, given by the NA results is the same as foy'HFor all the ~ Port generalized Borromean binding.

values of the screening paramekewe explored, the follow-

ing relations hold: ACKNOWLEDGMENT
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APPENDIX: ESTIMATE OF THE CRITICAL SCREENING . a2 g Nemr/a
PARAMETER FOR THE HYDROGEN ATOM WITH H\em) == 2—V2 —a——. (A2)
FINITE NUCLEAR MASS M K
The finite-mass Hamiltonian operator for the hydrogen Multiplying by w/a? and then setting.=a, we can write
atom is

A Ml

- 1 ~
L e HO\om) == 5V~ =H0\ez),  (A3)
A0y =-—v2- S, (A1) )
2 r where H)\...) is the infinite-mass Hamiltonian operator with
, critical screening paramet@r, .=Nc w/ u.
where x=M/(M+1) is the reduced mass. K=Acm, then  ysing the best estimate 0f,.=1.190 612 274) bohr?
(H(\¢m))=0. Let us scale asr—ar; then [22], we obtain\y=1.189 96 bohr.
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