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Relativistic nuclear recoil effects are studied for antiprotonic and muonic atoms. The generalization of the
Breit-Pauli Hamiltonian including vacuum polarization is presented. Previous treatments are corrected, and the
result for the 2S1/2-2P1/2 splitting in muonic hydrogen is updated.
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I. INTRODUCTION

The purpose of this work is the study of nuclear recoil
effects for low-lying states of antiprotonic and muonic at-
oms. Since the ratio of the proton or muon mass to the
nuclear mass is relatively large, particularly for light sys-
tems, these recoil effects significantly modify energy levels,
fine and hyperfine structure. Several precise measurements of
x-ray transitions were performed in lightp̄ atoms, such as
p̄-H, p̄-D [1,2], p̄-He [3], but also inp̄-O [4] and p̄-Pb [5].
The comparison of theoretical predictions with the experi-
mentally measured transition energies gives us information
on the strong interaction shifts in antiprotonic atoms and thus
on the low-energyp̄-nucleon interaction expressed in terms
of the scattering length[6]. On the other hand, experiments
with muonic atoms give information on the electromagnetic
properties of the nucleus. Particularly interesting is the on-
going measurement of the 2P-2Ssplitting in mH-muonic hy-
drogen[7], from which we hope to obtain an accurate value
of the proton charge radius. At present, the uncertainty in the
proton charge radius limits the accuracy of QED tests with
the hydrogen atom[8]. In this work we generalize the Breit
interaction to include vacuum polarization in the relativistic
and nonrelativistic framework. It has been studied exten-
sively among others in Refs.[9–13]. We claim that some
previous treatments of nuclear recoil effects were not com-
plete, and the difference will be visible when high-precision
measurements of transition frequencies in antiprotonic atoms
become available. Finally, we present an improved value for
the combined recoil and vacuum polarization corrections in
mH.

II. RECOIL EFFECTS IN ANTIPROTONIC ATOMS

Nuclear recoil effects have been investigated in detail for
normal atoms, mostly in the context of hyperfine splitting
and isotope shifts. The most advanced and precise results
have been obtained for hydrogenic systems, for a recent re-
view see Ref.[14]. This is because very high accuracy mea-
surements of the 1S-2S transition in hydrogen and deuterium
[15] have been performed in the last few years. The theoret-
ical treatment is based on the QED. Its application to bound

states is a nontrivial task and has been under development
since the early beginning of QED. While in the nonrelativis-
tic limit recoil effects are included in the reduced mass treat-
ment, the relativistic approach at the level of the Dirac equa-
tion is much more complicated[16]. First of all, there is no
unique Hamiltonian to describe the relativistic electron in the
field of a moving nucleus. The Dirac Hamiltonian with the
reduced massm gives energy levels which are valid only in
ordersZ ad2, i.e., in the nonrelativistic limit. A more accurate
treatment is the Dirac-Breit Hamiltonian with the nonrelativ-
istic kinetic energy of the nucleus with a massM [16],

H = aW · pW + bm−
Za

r
+

pW2

2M
−

Za

2M

ai

r
Sdi j +

r ir j

r2 Dpj . s1d

This Hamiltonian can be easily generalized to the many elec-
tron casef17g and gives energy levels which are accurate up
to order sZad4. Higher order inZa corrections are not ac-
counted for by the Breit interaction. They can be derived
only on the basis of QED theory. The general formula for an
arbitrary mass ratiom/M and nuclear chargeZ is not known.
For systems with largeZ, only the first-order correction in
the mass ratio is important. The correct expression which is
nonperturbative inZa was derived in Ref.f18g. Although
quite complicated, it was used in the numerical and analyti-
cal calculation of recoil effects in hydrogenlike atoms. For
electronic atoms, corrections of ordersm/Md2 tend to be
negligible, and can be treated in the nonrelativistic approxi-
mation. However, for light muonic and antiprotonic atoms
they are no longer negligible and a different approach should
be developed. The positronium atom serves as a good ex-
ample. Here, all recoil effects have been obtained up to order
ma6 f19g and a similar calculation can be performed for
excited states of thep-p̄ system when precise experimental
results become availablef20g.

We return now to the Dirac-Breit Hamiltonian with the
aim of describing recoil effects in heavy antiprotonic atoms.
The nuclear spin-dependent interactions have been consid-
ered among others by Borie in Ref.[12], by Pilkuhn and
Schlaile in Ref.[13], and by us in Ref.[21]. Here, we do not
study hyperfine structure, so nuclear spin-dependent terms
are neglected and we assume that the nucleus is spinless. The
first modification of Eq.(1) to describe antiprotonic atoms is
the inclusion of the anomalous magnetic moment, which is
large for antiprotons, namelyk=1.792 847 34. The interac-
tion with the electromagnetic field is changed to
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gmAmsqd → Sgm +
ik

2m
smnqnDAmsqd, s2d

which results in a correction to the Hamiltonian of the form

dH =
ek

2m
sigW ·EW − bSW ·BW d s3d

and leads to the following Dirac-Breit Hamiltonian with the
anomalous magnetic moment

H = aW · pW + bm−
Za

r
−

ik

2m

Za

r3 gW · rW +
pW2

2M

−
Za

2M

ai

r
Sdi j +

r ir j

r2 Dpj +
k

2mM
bLW · sW

Za

r3 . s4d

Since we assumed here a point nucleus, this Hamiltonian is
not well defined. It is known that even the first line of Eq.s4d
leads to unphysical solutions for any value ofZa. We have
studied this Hamiltonian numerically and draw the conclu-
sion that the inclusion of finite nuclear size is necessary for
any angular momentuml. Since the nuclear size is larger
than thep̄ Compton wavelength, its inclusion is necessary
anyway. While the finite-size modification of the Coulomb
interaction is obvious, it is less obvious how to modify the
Breit interaction. The same problem appears with vacuum
polarization, and the solution is the following. We assume
that p̄ is a pointlike particle and for a moment, the nucleus is
also a pointlike particle. The vacuum polarization modifies
the photon propagator on the scale of the electron Compton
wavelength. Dispersion relations allow one to write the
modified propagator as an integral over a photon mass,

gmn

k2 → a

p
E

2

`

dr
2

3r
Î1 −

4

r2S1 +
2

r2D gmn

k2 − me
2r2 . s5d

Thus, we can derive the effective interaction, which accounts
for the exchange of a massive photon in the Coulomb gauge
in the no retardation limitsk0=0d,

G00skWd = −
1

kW2 + r̃2
,

s6d

GijskWd =
1

kW2 + r̃2Sdi j −
ki kj

kW2 + r̃2D ,

which has the Fourier transform

G00srWd = −E d3k

s2pd3

1

k2 + r̃2 = −
e−r̃r

4pr
, s7d

GijsrWd =E d3k

s2pd3

1

k2 + r2Sdi j −
kikj

kW2 + r̃2DeikW·rW

=
e−r̃r

8pr
Fdi j +

r ir j

r2 s1 + r̃rdG , s8d

where we introduce the notationr̃=mer. We analyze now in
detail the vacuum polarization modification of the Dirac-

Breit Hamiltonian with the anomalous magnetic moment in
Eq. s4d. The Coulomb potential, the third term in Eq.s4d,
becomes
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The fourth term in Eq.s4d corresponds to the coupling of the
anomalous magnetic moment to the electric field, and thus is
proportional to the derivative ofV,

−
ik

2m

Za

r3 gW · rW → −
ik

2m

V8

r
gW · rW. s10d

The last two terms of Eq.s4d come from the magnetic inter-
action betweenp̄ and the nucleus. In momentum representa-
tion and with a fixed value ofr̃ it is sqW =pW8−pWd

−
Ze2

q2 + r̃2Sdi j −
qiqj

q2 + r̃2DSai −
ik

2m
«ilkqlbSkD spj + pj8d

2M
.

s11d

The term with the anomalous magnetic moment,

Ze2

q2 + r̃2

ik

2m
«ilkqlb Sk pi

M
, s12d

in the position representation is proportional to the derivative
of V,

k

2mM
b SW ·LW

V8

r
. s13d

The part of Eq.s11d which does not depend onk in position
space takes the form, with the help of Eq.s8d,

−
Za

4M
ai e

−r̃r

r
Sdi j +

r ir j

r2 s1 + r̃rdDpj + H.c. s14d

The integration with respect tor is performed using Eq.s9d
and leads to

1

4M
aiSdi jV −

r ir j

r
V8Dpj + H.c. s15d

The sum of terms in Eqs.s9d, s10d, s13d, and s15d together
with the potential-independent terms of Eq.s4d gives the
following Breit Hamiltonian for the interaction ofp̄ with the
spinless nucleus:

H = aW · pW + bm+ V −
ik

2m

V8

r
gW · rW +

pW2

2M
+

k

2mM

V8

r
bLW · sW

+
ai

4M
FSd i jV −

r ir j

r
V8Dpj + pjSd i jV −

r ir j

r
V8DG . s16d

It is interesting to note that vacuum polarization effects on
the Breit interaction can be expressed in terms of the static
potentialV. If the nucleus is a finite-size particle, but still
spinless, it effectively leads to the modification of the photon
propagator. Therefore, one can write a similar spectral rep-
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resentation of a photon propagator in Coulomb gauge as in
Eq. s6d, which leads to the conclusion that Eq.s16d still holds
if the potentialV includes the finite nuclear size. However,
one has to keep in mind that the strong interaction shift,
neglected here, is much more significant than the finite
charge radius. Moreover, ifp̄ is close to the nucleus, annihi-
lation of p̄ is a dominating effect. Therefore Eq.s16d is valid
for sufficiently large angular momenta. Equations16d differs
from the previously publishedf10,11g results by several de-
tails. The differences mostly come from the fact that the
massless Coulomb gauge in the no retardation limit was used
in these former works. When the vacuum polarization and
the finite size are neglected, Eq.s16d has been further trans-
formed by Grotch and Yennie in Ref.f16g to incorporate as
much as possible recoil effects into the reduced mass of the
system and some additional term. The effects beyond re-
duced mass have been treated perturbatively. This approach
becomes quite complicated when vacuum polarization is in-
cluded, see, for example, Ref.f10g, and for this reason we
think that the direct numerical solution of Hamiltonian in Eq.
s16d is simpler and more convenient.

Our principal interest is, however, recoil effects in light
systems where both particles, the antiproton and the nucleus,
are treated on an equal footing. Recoil effects neglecting
vacuum polarization were considered by Chraplyvy in Ref.
[22] and Barker and Glover in Ref.[23], where the Fouldy-
Wouthuysen transformation was applied to the relativistic
two-body Breit interaction. A simple derivation, which we
follow here, relies on the nonrelativistic expansion of the
one-photon scattering amplitude[24]. Using Coulomb gauge
for massive photons of Eq.(6) one obtains the following
Breit-Pauli Hamiltonian with the vacuum polarization and
the finite nuclear size,

H =
p2

2
S 1

m
+

1

M
D + V + dH, s17d

dH = −
p4

8
S 1

m3 +
1

M3D +
1 + 2k

8m2 ¹2V

+ S1 + 2k

4m2 +
1 + k

2mM
DV8

r
LW · sW +

1

2mM
¹2

3FV −
1

4
srVd8G +

1

2mM
FV8

r
L2 +

p2

2
sV − rV8d

+ sV − rV8d
p2

2
G . s18d

Note that the apparent asymmetry inp̄ and the nucleus
comes from the assumption that the nucleus is spinless. For
this reason, there are no nuclear spin operators nor nuclear
Darwin terms in Eq.s18d. This Hamiltonian differs slightly
from that obtained by Borie in Ref.f11g by the presence of
V8 instead of −V/ r in last two terms. For the point nucleus
and without vacuum polarization it coincides with the Breit-
Pauli Hamiltonian. Higher-order QED effects involve Lamb-
shift-like corrections which have been studied in detail for
electronic atoms. However, the case ofp̄ atoms has not been
investigated. We assume here that the angular momentum is

different from 0, as it is in the experimental conditions, and
additionally neglect vacuum polarization. The self-energy of
the p̄, self-energy of the nucleus, the single and double ex-
change of transverse photons give the Bethe logarithm and
an additional recoil termf25g,

dE = −
sZad5

pn3

4

3
ln k0sn,ldS1

Z

m3

m2 + 2
m3

mM
+ Z

m3

M2D
−

sZad5

p

m3

mM

7

6
K 1

r3L . s19d

There are no further corrections at ordermsZad5; however
the analogous calculations including vacuum polarization
have not yet been performed.

III. RECOIL EFFECTS IN MUONIC ATOMS

The treatment of muonic atoms differs from antiprotonic
atoms due to the different mass and anomalous magnetic
moment. The muon Compton wavelengthl” =1.867 fm is
comparable to the nuclear size. This means that use of the
anomalous magnetic moment on the level of the Dirac equa-
tion is limited, and in a proper approach one should consider
a complete muon self-energy, as in the case of electronic
atoms. Therefore, for muonic atoms we put in Eq.(16) k
=0 and obtain a Dirac-Breit Hamiltonian including vacuum
polarization and finite-size effects,

H = aW · pW + bm+ V +
pW2

2M
+

ai

4M
FSd i jV −

r ir j

r
V8Dpj

+ pjSd i jV −
r ir j

r
V8DG . s20d

For small nuclear masses, a more appropriate treatment relies
on the Breit-Pauli Hamiltonian, as in the case of antiprotonic
atoms. Here, we also setk=0 and following Ref.f21g the
anomalous magnetic moment is included as a part of the
Lamb shift. Moreover, the inclusion of the finite nuclear size
in the Breit interaction in Eq.s16d does not account properly
for this effect. This is because the nuclear size is of order of
the muon Compton wavelength, and the nonretardation ap-
proximation sk0=0d used to derive Eq.s16d is no longer
valid. In the more accurate approach one considers finite-size
effects separately and the leading correction beyond the non-
relativistic r2 term is given by the forward-scattering ampli-
tude; for details see Ref.f21g. With these approximations the
Breit-Pauli Hamiltonian for muonic atoms with a spinless
nucleus becomes

H =
p2

2
S 1

m
+

1

M
D + V + dH, s21d

NUCLEAR RECOIL EFFECTS IN ANTIPROTONIC AND… PHYSICAL REVIEW A 69, 042501(2004)

042501-3



dH = −
p4

8
S 1

m3 +
1

M3D +
1

8m2¹2V + S 1

4m2 +
1

2mM
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r
LW · sW

+
1

2mM
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1

4
srVd8G

+
1

2mM
FV8

r
L2 +

p2

2
sV − rV8d + sV − rV8d

p2

2
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whereV, as given in Eq.s9d includes Coulomb and vacuum
polarization potentials for the point nucleus. The calculation
of ¹2V in the above is a little troublesome. The potentialV
behaves at small radiusr as

Vsrd < −
Za

r
+

2a

3p

Za

r
Flnsmerd + g +

5

6
G + Osr0d, s23d

therefore the calculation of¹2 should be performed in the
sense of a Schwartz distribution with a trial functionf,

E d3rf srd¹2Vsrd ; E d3rVsrd¹2fsrd. s24d

We turn now to muonic hydrogen and obtain the relativ-
istic vacuum polarization correction to 2P1/2-2S1/2 splitting
in muonic hydrogenmH. This has been obtained by one of us
(K.P.) in Ref. [21], however incorrectly due to a computa-
tional mistake. This correction is given by the matrix element
of the HamiltoniandH in Eq. (22) with and without the
vacuum polarization:

kfudHuflno vp= 0.0575 meV,

s25d
dE = kfudHuflvp − kfudHuflno vp= 0.0169 meV,

where we used here the analytical approach of Ref.[21], and
physical constants are taken from Ref.[26]. The former, in-
correct result fordE was 0.0594 meV which makes a signifi-
cant difference. We correct here also a few other works
[14,27] which employed this result. The new improved result
for the theoretical prediction of the 2P1/2-2S1/2 splitting in
mH, based on the work[27], is

Es2P1/2-2S1/2d = 206.042s3d − r25.2256 +r30.0363

= 202.182s108dmeV, s26d

with r =0.862s12dfm.

IV. SUMMARY

We have investigated recoil effects in antiprotonic and
muonic atoms. The formulas obtained can be used for high-
precision determination of energy levels. Due to the new
antiproton source and decelerator planned at GSI(Darms-
tadt, Germany) [28], precise measurements with antiprotonic
atoms seem to be feasible. What we can learn from compari-
son of theoretical predictions with experiments, apart about
from testing QED in a yet unexplored region, are for ex-
ample, low energyp̄-p, p̄-n interactions and properties of
nuclei, such as distribution of neutrons[29], which are not
easily accessible with other techniques.

ACKNOWLEDGMENT

This work was supported in part by EU grant under Con-
tract No. HPRI-CT-2001-50034.

[1] D. Gotta, Nucl. Phys. A660, 283 (1999).
[2] M. Augsburgeret al., Phys. Lett. B 461, 417 (1999); Nucl.

Phys. A 658, 149 (1999).
[3] M. Schneideret al., Z. Phys. A 338, 217 (1991).
[4] Th. Köhleret al., Phys. Lett. B176, 327 (1986).
[5] A. Kreissl et al., Z. Phys. C37, 557 (1988).
[6] S. Wycech, Nucl. Phys. A692, 29c (2001).
[7] F. Kottmannet al., Hyperfine Interact.138, 55 (2001).
[8] K. Pachucki and U. Jentschura, Phys. Rev. Lett.91, 113005

(2003).
[9] J. L. Friar and J. W. Negele, Phys. Lett.46B, 5 (1973).

[10] E. Borie and G. Rinker, Rev. Mod. Phys.54, 67 (1982).
[11] E. Borie, Phys. Rev. A28, 555 (1983).
[12] E. Borie, Z. Phys. A278, 127 (1976).
[13] H. Pilkuhn and H. G. Schlaile, Phys. Rev. A27, 657 (1983).
[14] M. I. Eides, H. Grotch, and V. A. Shelyuto, Phys. Rep.342, 63

(2001).
[15] Th. Udemet al., Phys. Rev. Lett.79, 2646(1997).
[16] H. Grotch and D. R. Yennie, Rev. Mod. Phys.41, 350(1969).

[17] I. I. Tupitsyn et al., Phys. Rev. A68, 022511(2003).
[18] V. M. Shabaev, Teor. Mat. Fiz.63, 394 (1985); K. Pachucki

and H. Grotch, Phys. Rev. A51, 1854(1995); V. M. Shabaev,
ibid. 57, 59 (1998).

[19] K. Pachucki and S. Karshenboim, Phys. Rev. Lett.80, 2101
(1998); A. Czarnecki, K. Melnikov and A. Yelkhovsky,ibid.
82, 311 (1999).

[20] R. S. Hayano(unpublished).
[21] K. Pachucki, Phys. Rev. A53, 2092(1996).
[22] Z. V. Chraplyvy, Phys. Rev.91, 388(1953); 92, 1310(1953).
[23] W. A. Barker and F. N. Glover, Phys. Rev.99, 317 (1955).
[24] V. B. Berestetsky, E. M. Lifshitz, and L. P. Pitaevsky,Quan-

tum Electrodynamics(Pergamon Press, Oxford, 1982).
[25] E. E. Salpeter, Phys. Rev.87, 328 (1952).
[26] P. J. Mohr and B. N. Taylor, Rev. Mod. Phys.72, 351 (2000).
[27] K. Pachucki, Phys. Rev. A60, 3593(1999).
[28] See http://www-linux.gsi.de/˜flair
[29] A. Trzczcińskaet al., Phys. Rev. Lett.87, 082501(2001).

A. VEITIA AND K. PACHUCKI PHYSICAL REVIEW A 69, 042501(2004)

042501-4


