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We develop a model for a noisy communication channel in which the noise affecting consecutive transmis-
sions is correlated. This model is motivated by fluctuating birefringence of fiber optic links. We analyze the
role of entanglement of the input states in optimizing the classical capacity of such a channel, with a constraint
that in every use of the channel at most one photon is being transmitted. Assuming a general form of the
ensemble for two consecutive transmissions, we derive tight bounds on the classical channel capacity depend-
ing on whether the input states used for communication are separable or entangled across different temporal
slots. This result demonstrates that by an appropriate choice, the channel capacity may be notably enhanced by
exploiting entanglement.
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I. INTRODUCTION be determined perfectly, as in general we cannot tell whether

Entanglement is a fragile feature of composite quantunfvo general quantum states are identical or orthogonal if we
systems that can easily diminish by uncontrollable interacd0 not know anything else about the8], but even the abil-
tions with the environment. At the same time however careity of providing a partial answer establishes correlations be-
fully crafted entangled states can protect quantum coherendween the channel input and output that can be used to en-
from the deleterious effects of those random interactions¢ode information into the polarization degree of freedom.
This idea underlies the principles of quantum error correctThe situation becomes even more interesting when we allow
ing codes that strengthen the optimism regarding the feasfor entangled quantum states. Then the singlet polarization
bility of implementing in practice complex quantum infor- state of the two photons, when sent as the input, remains
mation processing task4]. invariant under such perfectly correlated depolarization, and

In this paper we demonstrate how quantum entanglemerit can be discriminated unambiguously against the triplet
can help in the task of classical communication. To this endsubspace. Therefore we can encode one bit of information
we develop a simple model of a noisy communication chaninto the polarization state of two photons by sending either a
nel, where the noise affecting consecutive transmissions isinglet state or any of the triplet states. We shall see that
correlated. Within this model, we derive bounds on the clasthese simple observations will also emerge from our general
sical channel capacity assuming either separable or entanglégalysis of the channel capacity.
input states, and we show that using collective entangled The first example of entanglement-enhanced information
states of transmitted particles leads to an enhanced capachiansmission over a quantum channel with correlated noise
of the channel. has been recently analyzed by Macchiavello and Pd#ha

The motivation for our model comes from classical fiber Our model assumes a different form of correlations, and its
optic communications[2]. In practice, light transmitted high degree of symmetries has allowed us to perform opti-
through a fiber optic link undergoes a random change ofnization of the channel capacity over arbitrary input en-
polarization induced by the birefringence of the fiber. Thesembles. Although we restrict ourselves only to zero- and
fiber birefringence usually fluctuates depending on the envione-photon signals, we define the action of the channel in
ronmental conditions such as temperature and mechanictdrms of the transformations of the bosonic annihilation op-
strain. At first sight, this makes the polarization degree oferators, which sets up a framework for possible generaliza-
freedom unsuitable for encoding information, as the inputions, such as use of multiphoton signals. This application of
polarization state gets scrambled on average to a completegntanglement in classical communication is a distinct prob-
mixed state. However, the birefringence fluctuations have é&m from entanglement-assisted classical capacity of noisy
certain time constant which means that the transformation ofuantum channels studied by Benredtal.in Ref.[5], where
the polarization state, though random, remains nearly thé has been shown that prior entanglement shared between
same on short time scales. Let us consider now sending $ender and receiver can increase the classical capacity. We
pair of photons whose temporal separation lies well withinalso note that the nonzero time constant of phase and polar-
this time scale. Although the polarization state of each one ofzation fluctuations can be used in robust protocols for long-
the photons when looked at separately becomes randomizeliqul quantum key distributiof6,7].
certain properties of the joint state remain preserved. For Before passing on to a detailed discussion of the problem
example, this is the case for the relative polarization of than the subsequent sections, let us introduce some basic nota-
second photon with respect to the first one. We can thereforéon. The action of a channel is described by a completely
try to decode from the output whether the input polarizationgpositive map[8] that we will denote byA(:). The sender
were mutually parallel or orthogonal. This property cannotselects messages from an input ensefijleg;}, wherep; is
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the probability of sending the stafg through the channel. transmitp, she replaces it by one of the normalized truncated
The capacity of the channel is a function of the mutual in-states 9®/Tr(o®) with the corresponding probability
formation between the input ensemble and measurement oufr(p®). It is straightforward to verify that the average state
comes at the receiving station: it characterizes the strength @fytained from such a subensemble is identical Wit@).
correlations between these two that can be maintained by the The above observation has a useful consequence when
channel. The mutual information itself involves a SpeCiﬁCoptimizing the Holevo bound on channel capacity. If the in-
measurement scheme; however, it has a very useful Uppglt ensemble is of the form discussed above, then it can be
bound in the form of the Holevo quantity that depends onlygpit into subensembles of states that belong to separate sub-
on the output ensemble of statfs, A(0)} emerging from  gpaces(¥, with the probability distributions normalized to

the channef[9]: one within each subensemble amddenoting the probability
R R of sending a state from tHeh subensemble. It is then easy to
X=S<Z piA(Qi)) _2 PS(A(@)), (1) check that the Holevo quantity is given by the following
' ' expression:

whereSis the von Neumann entrof(0)=-Tr(0log,0). As ®

we will see, in our model the Holevo quantity will provide x=2 px™ = 2 pelog, pr, (4)

a tight bound on the mutual information that can be k k

achieved in practice using a simple measurement schemghere x is the Holevo quantity for théth subensemble.

The classical channel capacity is obtained by assumingherefore, the maximization of the Holevo quantity can be

arbitrarily long sequences of possibly entangled input sysperformed in two steps. The first one is the optimization of

tems and calculating the average capacity per single use efch of y®¥ separately, assuming an input ensemble re-

the channel. In our analysis, we will perform a restrictedstricted to the subspack . The second step consists of

optimization by considering only two consecutive uses ofoptimizing the probability distributiop, with the normaliza-

the channel. tion constraintz,p,=1, and it can be performed explicitly
using the method of Lagrange multipliers. Indeed, if we de-
note the Lagrange multiplier as then differentiation ovep,

Il. CHANNEL DECOMPOSITION yields

We will start our discussion by proving a rather general 9 1

lemma about channels that can be decomposed into a direct 0= a—(X— N pk) =x"-log, p-—=-\. (5
. L ! P K In 2

sum of maps acting on disjoint subspaces of the Hilbert
space of the input systems. In physical terms, such channeiis formula allows us to express the probabilitigsin
remove quantum coherence between the components of therms of the Lagrange multiplier as
input state which belong to different subspaces, by zeroing 0
the respective off-diagonal blocks of the density matrix char- p = 2x ~lin2 (6)
acterizing the input state. This lemma will greatly simplify
our further calculations.

Lemma 1 Suppose that we can decompose the Hilbert P!

and furthermore summation ovérand using the fact that
=1 gives the value of the Lagrange multiplier as

spaceH of the system into a direct sum of subspaces, 0 1
)\:Iogz(z 2X )——. (7)
H=@®HY, ) i In2
k

Finally, inserting Eqgs.6) and (7) into Eq. (4) yields the
such that for an arbitrary input stafe the state emerging Maximum value of the Holevo quantity equal to
from the channel\(g) can be represented as Y= Iogz(E 2X(k)>'

k

A(@) =D AM(@"Y), 3
k

(8

We will later find this expression useful in calculating the

channel capacity in our model. The physical reason for this is
that we will be able to decompose the set of states used for
communication into subensembles with a fixed number of

pl(ekt)ely positive map acting in the C(_)rresponding §ubspa_c hotons, and then optimize the Holevo quantity separately in
H™. Then the optimal channel capacity can be attained wit ach subspace

an ensemble in which each state belongs to one of the sub-
spacesH®.

Proof. Indeed, suppose that there is a statdat does not
satisfy the above condition, i.e., it is defined on more than |et us now introduce a mathematical model for the ran-
one subspacé{". We can replace it by a subensembledom transformation of polarization during transmission
{Tr(0™); 0™ /Tr(0W)}, obtained by truncating the stafeto  through the channel. A general linear transformation between
the subspace®® and normalizing the resulting density ma- two annihilation operators corresponding to a pair of or-
trices. In other words, whenever the sender is supposed thogonal modes is given by>22 unitary matriceg10] that

where 0W=9|,, is the input statep truncated to the sub-
spaceH™ and eachA¥ is a certain trace-preserving com-

Ill. DEPOLARIZATION MODEL
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that the mapA can be represented as a composition of two

maps:A:(fl®Adep)oAperﬁ The first one of themA ., acts
on both the temporal slots and it depolarizes them in ex-
actly the same way:

Vertical
polarization

Aperl@e) = f 400(0) © U@)x07(Q) ® UT(@).

Horizontal
polarization

(10

The second map e, acts only on the sloB, and it intro-
duces additional depolarization relative to the sfofic-
cording to the probability distributiop(Q’):

FIG. 1. Representation of two consecutive temporal slots la-
beled byA andB. The Hilbert space of each slot is spanned in our R , NCANA e
model by three states: the zero-photon st@jeand two mutually Aded Ce) :J dQ'p(Q)HUQ")egV(2').  (11)
orthogonal polarization states denoted|by) and|]).
We will assume later that the distributige{Q2’) has sulffi-

form the Lie group 2). In situations when only the relative cient symmetry to describe the action of the nia, in the
phase between the two polarization modes is relevant, theelevant Hilbert space with the help of two simple param-
overall phase of the transformation can be assumed to HRI€rs.

fixed, which reduces the group of transformations tq U We now introduce a further simplification by imposing a
However, in our case the overall phase shift can vary becondition that each temporal slot may contain at most one
tween the consecutive tempora| slots, and therefore we neé&]OtOﬂ. Therefore the relevant Hilbert space for each slot is
to keep it as an independent parameter. We note that ar§Panned by three states: the zero-photon $fateand hori-
U(2) matrix can be mapped onto a rotation in the threeZontally and vertically polarized one-photon states) and
dimensional physical space. Such a rotation describes tHd ). We can conveniently write the explicit form of the uni-
corresponding transformation of the Poincaré sphere used tary transformatiorlJ(Q) using the irreducible unitary rep-

represent the polarization state of light in classical optic§esentations of the group $2). We will denote byDi(Q) a
[11]. We will Iabgl lelements. O.f (2) as 2 and use a dot to (2j+1) X (2j+1) matrix that is a(2j+1)-dimensional repre-
denote the multiplication within the group. Th&2) group  ontation of an S(2) element obtained fror& by fixing the
has a natural invariant integration measure which we assumg o || phase factor to 1. These matrices are well known in
is normalized to onef_d(.lzll. This measure defines a uni- the quantum theory of angular momentum as describing
formly randomized distribution of polarization transforma- transformations of a spif-particle under the rotation group
tions that scrambles an arbitrary input polarization to a com-[lz] We will also denote byx(Q) the overall phase of the

pleéeuly n(lg(:cril(?vr\]/ihat o consecutive temporal slots labele lementQ2. Then the unitary transformation of the input state
PP - P R orresponding to the polarization rotatiéh is given by the
by A and B, each comprising two orthogonal polarizations, matrix

are occupied by a joint state of radiatigrpg, as shown sche-
matically in Fig. 1. We will assume that the polarization bo(ﬂ) 00
transformatior(2, affecting the slo® is completely random, ~
but that the transformatiof2g is correlated with the first one u(Q) = 0 [a(Q) 112 : (12)
through a conditional probability distributiqu(Qg|Q,). The D)
resulting transformation of the joint two-slot state is there- .
fore given by the following completely positive map: In this formula, the one-dimensional representafi®}) is
identically equal to one, ane“®DY2(Q) is a 2x 2 unitary
A(Onp) = f dQAf dQgp(Qg|Qp) matrix itself, however, we will keep this more general nota-
tion in order to be able to use results from the theory of
group representations. In particular, the following property
of the rotation matrix elements will allow us to evaluate
directly a number of expressiofi$2]:

xU(Qp) ® U(Qg)0asU (@) ® UT(Qp). (9)

HereU(Q) is a unitary matrix acting in the Hilbert space of
one of the slots that represents the polarization transforma- , Y 1

tion . We will now assume that the conditional probability f dQ[D) ()] D),, ()= 2.—+15jjr5mm O (13)
p(Qg|Q,) depends only on the relative transformation be- J

tween the slotsA and B and that it can consequently be The action of the map 0N a joint two-slot state can be
represented ap(Qg/Qa)=p(Qg-Q3Y. In such a case, we analyzed most easily if we decompose the complete Hil-
can substitute the integration variables in the second integrddert space into a direct sum of subspaces with a fixed
according toQg=Q'-Q,, and make use of the invariance of number of photonsH=H© ® HY & H?, where the upper
the integration measurelQQz=d€Q’. This procedure shows index labels the number of photons. The zero-photon sub-
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space is spanned by a single stfg0g). The one-photon  @;, from the subspacé{\?, then the action of the channel
space has a basis formed by four vectdrs0g), [[a0g),  Aper restricted to this subspace is given by
|Oa<g), and|0lg). Finally, in the two-photon subspace

H@ we will introduce a basis that consists of the singlet a 0 b 0
state [V_)=(]«alp)—|la—s)/V2 and the three triplet 110 a o b
states|—a—g), [W)=(|=ale)+|la—e)/V2, and []alp)- Aéle)rf(@in) Sl 0 1-a , (15
The reason for this choice is that then the action of the b

0 0 1-a

tensor productD¥2(Q)® DY2(Q) on a two-photon state
; 51/ ~1/

can be decomposed into the surVAQ)@ DYAQ)  yhere the paramete and b are defined in terms of the

=DY%Q) & DQ), where D(Q) acts on the singlet state input density matrix as

|[W_) and DXQ) is a three-dimensional matrix acting in

the triplet subspace. Using our decomposition of the com- a= (< 0| Qin| —a08) + (] 08| @il 1 A08).
plete Hilbert space, the action of the tensor product (16)
UuQ)®U(Q) on a general two-slot state in the basis b= (<> p0g|0in0ag) + (] A08|0in|0aT&)-

specified above is given by
For the form of the density matrix given in E@L5), the

:,“)1/2(9) 00 depolarizing channel ., affects only the off-diagonal ele-
~ ~ o () 00 mentsb andb’. We will assume that the symmetry of the
UQ)euU@Q)=D(Q)o¢ 0 i distributionp(€’) is such that the effect of 4, is a rescal-
0 0 DY) ing of these elements by a real parametérbounded be-
tween 0 and 1. This constraint can be written explicitly as
DY) 0 0 0
’ N ( Q) ’ 77, 0
o eZa@| O A (14) fdﬂ p(Q")e Pl Q ):(0 7],). (17)
0 DY)
0 It is now easy to check that the entropy of the one-photon

If we now insert this formula into Eq.10), it can be easily state emerging from the channel can be written as

seen that the invariant integration over the overall phase fac- ,

tor a(Q2) kills all the off-block diagonal elements of the den- SA(D,) = 1 +S<< a 7'b )) (19)

sity matrix that link different subspacég®. In other words, O 7’b" 1-a/)’

all the coherence between states with different photon num-

bers is completely removed by the phase fluctuations. Furwhere the 22 matrix appearing in the second term can be

thermore, the operatioly, acting only on the second interpreted as a state of a qubit. Therefore, the second term is

slot, does not mix subspaces with different photon numbounded by 0 and 1, and consequentlg H(A(0;,)<2. It

bers. Therefore the conditions of our lemma are satisfieds a straightforward observation that the Holevo quantity

and we can consider only states with a definite number ofs bounded from above by the difference between the

photons as elements of the input ensemble. Thus all wenaximum and the minimum possible entropies of states

need to calculate are three corresponding Holevo quantemerging from the channel. Therefore we obtain that

ties x'?, x'?, andx'? that can be combined into a Holevo yV'<1. This inequality can be saturated simply by taking

bound for the overall channel capacity according to Ega one-photon state confined either to the first or to the

(8). This calculation forms the contents of the following second temporal slot, with an arbitrary polarization. Thus,

section. the channel capacity is not enhanced in the one-photon
sector.

IV. CHANNEL CAPACITY
B. Two-photon subspace

The communication capacity'® of the zero-photon sub- _ , o
spaceH 9 itself is obviously zero, as we have only a single The most interesting regime is when both the temporal

state|0,0g) at our disposal. This state can of course be used©tS aré occupied by photons. As we will see below, in this
as an element of a larger ensemble thus contributing to th€S€ quantum correlations can enhance the capacity of the

overall capacity. This fact is reflected in the form of gg), ~ channel. If we take a(gormalized input stadg, from the
where x@=0 indeed does increase the total valueyof two-photon subspace('?, then the mapA, produces a
Werner statd13]:

A. One-photon subspace A&)rf(@m) =W, (19

A less trivial problem is to calculate the capacity of the
one-photon subspace. If we assume a normalized input statehere we have introduced the following notation:
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- 1 fore given by an ensemble of Werner sta{q§\7v,7c_}. Be-
We == c[W_X¥_|+(1 o)y (200 cause a statistical mixture of Werner states is also a Werner
state with the average parameter:
and we will callc the Werner parameter of the input state - «
0., defined as 2 0 Wie, = W, g e, (26)
i
c=5 = V-0l V-). (21 the Holevo quantity can be expressed with the help of a

This result, derived previously in RefL3], can be verified Sindle real-valued functiof(c):

independently using the property given in Ef3). @ _ - A

The second operation affecting the input state is the par- X = S(; quﬂCj) - ; qiS(WﬂCj)
tially depolarizing channel ® Ay, We will assume that the
action of the map\ 4, acting on the photon in the second = f(E q; 770j> -2 qif(nc), (27)
temporal slot is simply isotropic depolarization shrinking the j j
length of the Bloch vector by a factop satisfying 0<7  \here the explicit form of the functiof(c) is given by
<1. This imposes a constraint @€}’) in the form

f(c)=—3(1+c)logy(1 +c) - (1 - 30)logy(1 - ).

f dQ'p@)DYAQ) G [DVAQ)] = 55,,  (22) (28)

.~ . _ . The optimization of the Holevo quantity, which in principle
wherea,, v=x,y,z are the Pauli matrices. Isotropic depolar- hae4s 1o he performed over an arbitrarily large input en-

ization on the sloB preserves the Wemer form of the trans- o e of permitted quantum states, can be greatly simpli-
mitted state, and its only effect is the multiplication of the .4 using the following observation.

parameteic by the factory. Thus, the state emerging from Lemma 2 Let f(y) be a concave function defined on a

the channel is given by closed interval«, 8], and letq; be a probability distribution
R ~ for a sety; of real numbers taken from the ran -
@(p. )= Y Qges v;
A(@in) = Wie (23 < 3. Then the following inequality holds:

with the parametec defined by the input statg;, according By

to Eg.(21). We note that in general the shrinking param- f(z qjyj> -> q;f(y) < sup (f(y) -—f(a)

eter » is not directly related to the parametef intro- j i asy<p B-a

duced in the preceding section. This can be seen by com- y-a

paring Eq.(17), which is linear in the elements of the ——f(ﬂ)). (29

matrix DY2(Q"), with Eq. (22) where the integrand con- p-a
tains products of pairs of those elements and is indepen- Proof. The concavity of the functiofi(c) implies that for

dent of the phase(Q'). everyj we have

At this point the possibility of enhanced communication
capacity by exploiting entanglement manifests itself. The dif- f(y) = uf(a) + ZJ__“f(B)_ (30)
ference between the separable and entangled alphabets can B-a B-a

be seen by comparing the allowed ranges of the pararoeter

. : ° ) If Iltiply the ab tion bygs perf th
The positivity of the input density matrig;, requires that we now muriply the avove equation bydy; bertorm the

summation ovej, and add a ternfi(Z;q;y;) to both sides of
—1=<c=<1/3, (24) the equation, we will obtain an inequality whose left-hand
side is identical to that of Eq29), and the right-hand side is
and this is the only condition if we consider the most gen-exactly the argument of the supremum fpr>;q;y;. Obvi-
eral, possibly entangled input states. However, if the inpubusly, this value ofy lies betweenr and 3, and consequently
states are restricted teeparableones, then as shown by the supremum may only exceed the value obtained from this
Horodecki and Horodecki14], the allowed range for the calculation. This confirms that Eq429) is indeed satisfied.

parametec is reduced to The above lemma reduces the whole problem of optimiz-
ing the Holevo bound to maximizing a one-parameter real-
-1/3sc=<1/3. (25 valued function that is the argument of the supremum on the

This limitation will underlie the reduced channel capacity in;:Jgnh(;{tirc])ir:‘((jys)lgfieng i‘ll(éi)(zlg)s eaﬁ?%i?eer:rﬁ?:ggg (:rr]n; roefstSI?-

the case of separable states. . ing expression ovey shows that the supremum in the right
As the two-photon states emerging from the channel arg ~nd side of Eq(29) is attained for

fully characterized by the Werner parameters of the respec-

tive input states, optimization of the Holevo quantity can be 1 — Pwui3

carried out over the ensemble; c;} of the probabilitiesy; Yopt™ 3 4 pul3’ (31)

of sending thegjth state with the Werner parameter equal to

—C;. The output states emerging from the channel are therewhere u=[f(8)-f(a)]/ (8- a).

042324-5



BALL, DRAGAN, AND BANASZEK PHYSICAL REVIEW A 69, 042324(2004

1| T Recions H G G= (2 0% 2 qu(%)) (39
0.0 - Polygon sides . J J
Vertical line G ----- .
2 G that can be interpreted as a center of gravity for the system of
g -0.21 4 points G; that have been assigned respective magsesb-
g viously, if the probability distribution is arbitrary, then this
B 0.4 average can lie anywhere within the convex polygon
E spanned by the point§;. Since the functionf is strictly
concave over the range considered, the whole polygon lies
-0.64 within the area bounded by the graph of the functiop) on
one side, and a straight line connecting the po{atsf(«))
-0.84+— , : . r . . and(B,f(B)) on the other side. This straight line is given by
-0.8 -06 -04 -0.2,Y 00 02 04 a functiong defined as
_ . o _B-vy Y-«
FIG. 2. The graphical representation the maximization proce- a(y) = B- af(a) + B- af(ﬁ)- (36)
dure for the two-photon subspace. The set of paBjtsorresponds
to the output ensemble. The differentiey)—g(y) over y needs to The left-hand side of Eq29) is now given by the length
be maximized over the intervak, 8]. of a vertical line connecting with the pointH’=(y, f(v))

_ on the graph of the functiof(y), wherey==,q;;. Clearly,
As we _he_lve seen, the permltt(_ad range O.f the paramefers the lineGH’ will be always equal in length or shorter than
characterizing the states belonging to the input ensemble d?ﬁe lineH’H” where the point”=(7.g(7)) lies on the graph

pends on whether we allow the most general, possibly en- . g : -
tangled states, or rather restrict the input to separable statgg the functiong(y). Furthermore, in order to find the maxi

only. If we assume that this range spans fram, to Crax mum po;sible Iength of the linkl"H", it is clgar_ from thi§
y ge sp Ot mave geometric construction that we need to maximize the differ-

encef(y)—-g(y) over y belonging to the intervdla, 8]. This
procedure is given explicitly in the right-hand side of Eg.

_ . 29), and the parameter introduced in the preceding section
then we can easily apply Lemma 2 to the expression of th simply the gradient of the functiog(y).

HoIevo_quarjtity)((Z) in term_s of the function‘_(c) trlat has It is clearly seen from this geometric construction that
been given in the se_cond line of _E@?). Taking a= 77Cmin enlarging the intervala, 8] can only increase the value of
and = 7Cmay and using the explicit value of the turning the upper bound given in E@29). This implies two rather

Cmin S Cj < Cmax: (32)

point derived in Eq(31) yields the following bound: straightforward observations. First, the use of entangled
@ 3 states should give a larger capacity compared to separable
x? = 10gy(3 + 23) = f(9Cmin) + w(9Crrin = 1/3) = 4, states. Second, a lower value of the parametaneaning

(33)  weaker correlations between consecutive polarization rota-
tions results in a decreased channel capacity.
whereu is given in terms of the input ensemble characteris- The graphical construction presented above gives also a
tics as simple recipe for constructing an output ensemble that satu-
rates the bound on the Holevo quantity. It is sufficient to take
F(7Cmad = F(7Cmi) a two—glement ensemble with the extreme points of the al-
= . (34) lowed interval as the parameters of the Werner states emerg-
7Crmax ™ Crnin) ing from the channela=7Cy;, and B=7Cmay The optimal
) . ) ) probabilities of using the two states need to be selected in
We will analyze in detail numerical values of the channels,ch a way that the weighted sum of the points correspond-
capacity in the following section. Before doing so, we will jng to these states gives the poiny, maximizing the differ-
close this sect|o_n by descrl_b_lng a sw_nple_ intuitive picture ofencef(y)_g(y)_ Explicitly, these probabilities are, respec-
!_emma 2 that gives an additional insight into the form of thetively, given by (8- yop)/ (B @) and (yop— )/ (B—). The
input ensemble. actual graph of the functiof(y) with the permitted ranges of
the Werner parameter for perfectly correlated noise and en-
C. Graphical interpretation tangled and separable inputs is shown in Fig. 3.

The result of Lemma 2 can be visualized using the fol-
lowing geometrical reasoning depicted in Fig. 2. Consider a
graph of the functiorf(vy) versus its argumeng. The num- The Holevo quantityy is only an upper bound on the
bers y; and the corresponding values of the functibare  channel capacity and therefore is not necessarily attainable.
given by a set of point$;=(y;,f(y)) in the plane of the Users of a communication channel need two relevant pieces
graph. The probability distribution; for the argumentsy, of information. The first one is the optimal form of the input
defines an average ensemble that should be used by the sender. The second one

V. ATTAINABILITY AND IMPLEMENTATION
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— Function f (a‘)
Entangled
----- Separable

0.04

(1 — 37Cmin)/4

-0.54

(1 — 3ncmax)/4
3(1 + 7')0min)/4

-1.04

-1.5 >
Cmax 3(1 - T]Cmax)/4

Function value

-2.04

25—
1.2 -1.0 -0.8 -0.6 -0.4 0.2 0.0 0.2 0.4 (b)

y [w-) 1

10s]
FIG. 3. Depiction of optimal values of output ensembles to

maximize the Holevo quantity in both the general entangled case D
and the restricted separable case for perfectly correlated (gise | $al5) 1 Or
=1). It is sufficient to take only two-element ensembles with the
extreme points of the allowed interval. For general entangled states
the interval is[-1,1/3] whereas for the separable case the interval
is reduced td-1/3,1/3.

| $asr5) ()

is a measurement scheme that should be employed at the :@
output of the channel in order to optimize the capacity. 1/2

Let us start by summarizing the results of the preceding
section and specifying the input ensemble implied by these 1/2
considerations. We have seen that in the zero- and one-
photon subspaces the channel capacity cannot be enhanced > Or
by exploiting the polarization degree of freedom. Therefore [3als) 1
as the elements of the input ensemble we can take, for ex- R
ample, state$0,0g), |1a0g), and|05]g), where for concrete- FLG. 4. Depiction of the outcomes of operator measuremests
ness we have fixed the polarization of single-photon states tend O1. The general case is shown (&). For perfectly correlated
vertical. The polarization degree of freedom starts to play aoise, when the full range of allowed entangled states is employed,
nontrivial role when both the temporal slots are occupied byperfect distinguishability between the two inputs is possible as
photons. In this subspace, we need to select two input staté§own in(b). In the restricted separable states only regime, the
characterized by the Werner parameters that are as distant @§gram reduces to that shown (o) and the emerging states are
it is allowed by the constraints on the input ensemble. If wetnable to be distinguished unambiguously.
restrict ourselves to separable states, then according to Eq.
(25) we need to take one separable state with=—1/3 and  occupied by a photon in the one-photon subspace, which can
another one witlt,,,,,=1/3. It iseasy to verify using Eq21)  be realized by direct temporally resolved detection, or dis-
that the pair of separable states satisfying this condition caariminating between the states used to encode information in
be taken a$] p<g) and|[ag). We thus see that in agreement the two-photon subspace. It is easy to see that this discrimi-
with the simple picture developed in the Introduction to thisnation takes a simple form in the case of perfectly correlated
paper, the relevant quantity is the relative polarization of thenoise and entangled input states: we need to determine
photons occupying consecutive slots. If we allow for en-whether the received states belong to the singlet or the triplet
tangled input, then the lower limit for the Werner parameterssubspace, which corresponds to a two-element projective
of the input states shifts down t,;,=—1. This value can be measurement:
of course attained by taking the singlet stéfe) itself as

one element of the input ensemble and any state wyjth @S: W\
=1/3, forexample, agaif]g) as the second one. ’

In order to complete the description of the communication " oa (37)
protocol, we need to specify the measurement applied to the Or=1-[V_X¥|.

states emerging from the channel. This task can be decom-

posed into two steps. The first one is the determination of théf turns out that the same measurement saturates the Holevo
total number of photons contained in the two slots and it canbound also in the general case of any value of the parameter
in principle, be accomplished by a collective quantum non-z with either entangled or separable input states. In Ki@. 4
demolition measuremeifl5] on all the modes involved that we depict conditional probabilities of obtaining the singlet or
would determine the total photon number without destroyingthe triplet outcomes for a two-element input ensemble char-
coherence between the modes. Depending on the outcomagterized by Werner parameters;, andcpa. A lengthy but

the second step needs to be either finding the temporal slstraightforward calculation shows that if we take as the input
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fluctuations in a fiber optic link. Within this model, we have
demonstrated that introducing quantum correlations between
consecutive uses of the channel increases its capacity. This
demonstrates how specifically quantum phenomena such as
entanglement can be helpful in the task of transferring clas-
sical information. Making use of entanglement requires more
complex preparation procedures that provide joint input
states extending over a number of temporal slots. A related
question is the role of collective quantum measurements on
the output of the channel rather than detecting radiation in
each of the slots individually and combining classical out-
comes of separate measurements.
The action of the channel has been defined in terms of
FIG. 5. Graph showing plot of vs . The channel capacity for transformations of the bosonic field operators. This opens up
the general case where entangled states are used is significantly route towards interesting generalizations of the present
greater than for the restricted case where only separable states ak@rk, for example, including arbitrary multiphoton states.
employed. The dashed line is the channel capacity when the polagnother direction would be extending the model to an arbi-
ization degree of freedom is not used at all. trary number of temporal slots rather than just allowing for
correlations between pairs of consecutive slots as in our ex-
probabilities the values discussed in the preceding sectio@mple. It is easy to give a simple protocol showing that in
the mutual information is given exactly by the right-hand this case the channel capacity can be enhanced even further.
side of Eq.(33). Thus the described procedure indeed maxi-We suppose that the sender generates a train of zero- and
mizes the channel capacity in the two-photon subspace. one-photon states with the same probabilities equal to one
It is instructive to compare the above diagram for optimalhalf. The first time she is to transmit a photon, she sends half
entangled and separable input ensembles in the case of p@fa maximally entangled pair. In the second instance when
fect correlationsy=1. For the optimal entangled ensemble, one photon should be transmitted, she sends the remaining
shown in Fig. 4b) we can distinguish perfectly between the member of the pair transforming it in such a way that the
two inputs as they belong to orthogonal subspaces even aft@int two-photon polarization state belongs either to the sin-
the transmission. For the separable ensemble, the emergigdet or the triplet subspace. The receiver implements a
states can no longer be perfectly discriminated as seen in Figolarization-independent quantum nondemolition measure-
4(c). ment on each temporal slot. When a photon is detected, it
The complete channel capacity obtained by combiningheeds to be stored until the arrival of the second member of
Eqg. (8) with the results of Sec. IV is shown as a function of a pair, when the discrimination between the singlet and the
nin Fig. 5. It is seen that using an entangled input ensembl&iplet subspaces can be performed with the help of a joint
gives a clear advantage over the separable states over theeasurement. If the birefringence fluctuations can be ne-
complete range of the correlation parameger glected over the temporal separation between the photons in
We note that the measurement discriminating between tha pair, this procedure allows one to encode one extra bit of
singlet and the triplet subspaces can be implemented usirigformation into each pair of transmitted photons. This gives
the Braunstein-Mann scheme based on linear opfi6 as  the average channel capacity equal to 2.5 per a pair of tem-
we do not have to distinguish between all four Bell statesporal slots, enhancing further the optimal value shown in
After overlapping temporally the received photons and interFig. 5.
fering them on a 50:50 nonpolarizing beam splitter, their
detection in the same output port corresponds to a projection
onto the triplet subspace, whereas measuring them in the ACKNOWLEDGMENTS
Separate Output portS of the beam Splitter identifies the sin- J.B. acknow|edges the UK Engineering and Physica| Sci-
glet state. ences Research Council for financial support, and A.D. ac-
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with correlated noise motivated by random birefringencesearch, Project No. PBZ KBN 043/P03/2001.
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