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We develop a model for a noisy communication channel in which the noise affecting consecutive transmis-
sions is correlated. This model is motivated by fluctuating birefringence of fiber optic links. We analyze the
role of entanglement of the input states in optimizing the classical capacity of such a channel, with a constraint
that in every use of the channel at most one photon is being transmitted. Assuming a general form of the
ensemble for two consecutive transmissions, we derive tight bounds on the classical channel capacity depend-
ing on whether the input states used for communication are separable or entangled across different temporal
slots. This result demonstrates that by an appropriate choice, the channel capacity may be notably enhanced by
exploiting entanglement.
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I. INTRODUCTION

Entanglement is a fragile feature of composite quantum
systems that can easily diminish by uncontrollable interac-
tions with the environment. At the same time however care-
fully crafted entangled states can protect quantum coherence
from the deleterious effects of those random interactions.
This idea underlies the principles of quantum error correct-
ing codes that strengthen the optimism regarding the feasi-
bility of implementing in practice complex quantum infor-
mation processing tasks[1].

In this paper we demonstrate how quantum entanglement
can help in the task of classical communication. To this end,
we develop a simple model of a noisy communication chan-
nel, where the noise affecting consecutive transmissions is
correlated. Within this model, we derive bounds on the clas-
sical channel capacity assuming either separable or entangled
input states, and we show that using collective entangled
states of transmitted particles leads to an enhanced capacity
of the channel.

The motivation for our model comes from classical fiber
optic communications[2]. In practice, light transmitted
through a fiber optic link undergoes a random change of
polarization induced by the birefringence of the fiber. The
fiber birefringence usually fluctuates depending on the envi-
ronmental conditions such as temperature and mechanical
strain. At first sight, this makes the polarization degree of
freedom unsuitable for encoding information, as the input
polarization state gets scrambled on average to a completely
mixed state. However, the birefringence fluctuations have a
certain time constant which means that the transformation of
the polarization state, though random, remains nearly the
same on short time scales. Let us consider now sending a
pair of photons whose temporal separation lies well within
this time scale. Although the polarization state of each one of
the photons when looked at separately becomes randomized,
certain properties of the joint state remain preserved. For
example, this is the case for the relative polarization of the
second photon with respect to the first one. We can therefore
try to decode from the output whether the input polarizations
were mutually parallel or orthogonal. This property cannot

be determined perfectly, as in general we cannot tell whether
two general quantum states are identical or orthogonal if we
do not know anything else about them[3], but even the abil-
ity of providing a partial answer establishes correlations be-
tween the channel input and output that can be used to en-
code information into the polarization degree of freedom.
The situation becomes even more interesting when we allow
for entangled quantum states. Then the singlet polarization
state of the two photons, when sent as the input, remains
invariant under such perfectly correlated depolarization, and
it can be discriminated unambiguously against the triplet
subspace. Therefore we can encode one bit of information
into the polarization state of two photons by sending either a
singlet state or any of the triplet states. We shall see that
these simple observations will also emerge from our general
analysis of the channel capacity.

The first example of entanglement-enhanced information
transmission over a quantum channel with correlated noise
has been recently analyzed by Macchiavello and Palma[4].
Our model assumes a different form of correlations, and its
high degree of symmetries has allowed us to perform opti-
mization of the channel capacity over arbitrary input en-
sembles. Although we restrict ourselves only to zero- and
one-photon signals, we define the action of the channel in
terms of the transformations of the bosonic annihilation op-
erators, which sets up a framework for possible generaliza-
tions, such as use of multiphoton signals. This application of
entanglement in classical communication is a distinct prob-
lem from entanglement-assisted classical capacity of noisy
quantum channels studied by Bennettet al. in Ref. [5], where
it has been shown that prior entanglement shared between
sender and receiver can increase the classical capacity. We
also note that the nonzero time constant of phase and polar-
ization fluctuations can be used in robust protocols for long-
haul quantum key distribution[6,7].

Before passing on to a detailed discussion of the problem
in the subsequent sections, let us introduce some basic nota-
tion. The action of a channel is described by a completely
positive map[8] that we will denote byLs·d. The sender
selects messages from an input ensemblehpi ,%̂ij, wherepi is
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the probability of sending the state%̂i through the channel.
The capacity of the channel is a function of the mutual in-
formation between the input ensemble and measurement out-
comes at the receiving station: it characterizes the strength of
correlations between these two that can be maintained by the
channel. The mutual information itself involves a specific
measurement scheme; however, it has a very useful upper
bound in the form of the Holevo quantity that depends only
on the output ensemble of stateshpi ,Ls%̂idj emerging from
the channel[9]:

x = SSo
i

piLs%̂idD − o
i

piS„Ls%̂id…, s1d

whereS is the von Neumann entropySs%̂d=−Trs%̂log2%̂d. As
we will see, in our model the Holevo quantity will provide
a tight bound on the mutual information that can be
achieved in practice using a simple measurement scheme.
The classical channel capacity is obtained by assuming
arbitrarily long sequences of possibly entangled input sys-
tems and calculating the average capacity per single use of
the channel. In our analysis, we will perform a restricted
optimization by considering only two consecutive uses of
the channel.

II. CHANNEL DECOMPOSITION

We will start our discussion by proving a rather general
lemma about channels that can be decomposed into a direct
sum of maps acting on disjoint subspaces of the Hilbert
space of the input systems. In physical terms, such channels
remove quantum coherence between the components of the
input state which belong to different subspaces, by zeroing
the respective off-diagonal blocks of the density matrix char-
acterizing the input state. This lemma will greatly simplify
our further calculations.

Lemma 1. Suppose that we can decompose the Hilbert
spaceH of the system into a direct sum of subspaces,

H = %
k

Hskd, s2d

such that for an arbitrary input state%̂ the state emerging
from the channelLs%̂d can be represented as

Ls%̂d = %
k

Lskds%̂skdd, s3d

where %̂skd=%̂uHskd is the input state%̂ truncated to the sub-
spaceHskd and eachLskd is a certain trace-preserving com-
pletely positive map acting in the corresponding subspace
Hskd. Then the optimal channel capacity can be attained with
an ensemble in which each state belongs to one of the sub-
spacesHskd.

Proof. Indeed, suppose that there is a state%̂ that does not
satisfy the above condition, i.e., it is defined on more than
one subspaceHskd. We can replace it by a subensemble
hTrs%̂skdd ; %̂skd /Trs%̂skddj, obtained by truncating the state%̂ to
the subspacesHskd and normalizing the resulting density ma-
trices. In other words, whenever the sender is supposed to

transmit%̂, she replaces it by one of the normalized truncated
states %̂skd /Trs%̂skdd with the corresponding probability
Trs%̂skdd. It is straightforward to verify that the average state
obtained from such a subensemble is identical withLs%̂d.

The above observation has a useful consequence when
optimizing the Holevo bound on channel capacity. If the in-
put ensemble is of the form discussed above, then it can be
split into subensembles of states that belong to separate sub-
spacesHskd, with the probability distributions normalized to
one within each subensemble andpk denoting the probability
of sending a state from thekth subensemble. It is then easy to
check that the Holevo quantity is given by the following
expression:

x = o
k

pkx
skd − o

k

pk log2 pk, s4d

wherexskd is the Holevo quantity for thekth subensemble.
Therefore, the maximization of the Holevo quantity can be
performed in two steps. The first one is the optimization of
each of xskd separately, assuming an input ensemble re-
stricted to the subspaceHskd. The second step consists of
optimizing the probability distributionpk with the normaliza-
tion constraintokpk=1, and it can be performed explicitly
using the method of Lagrange multipliers. Indeed, if we de-
note the Lagrange multiplier asl, then differentiation overpl
yields

0 =
]

] pl
Sx − lo

k

pkD = xsld − log2 pl −
1

ln 2
− l. s5d

This formula allows us to express the probabilitiespl in
terms of the Lagrange multiplierl as

pl = 2xsld−1/ln 2−l, s6d

and furthermore summation overl and using the fact that
olpl =1 gives the value of the Lagrange multiplier as

l = log2So
l

2xsldD −
1

ln 2
. s7d

Finally, inserting Eqs.s6d and s7d into Eq. s4d yields the
maximum value of the Holevo quantity equal to

x = log2So
k

2xskdD . s8d

We will later find this expression useful in calculating the
channel capacity in our model. The physical reason for this is
that we will be able to decompose the set of states used for
communication into subensembles with a fixed number of
photons, and then optimize the Holevo quantity separately in
each subspace.

III. DEPOLARIZATION MODEL

Let us now introduce a mathematical model for the ran-
dom transformation of polarization during transmission
through the channel. A general linear transformation between
two annihilation operators corresponding to a pair of or-
thogonal modes is given by 232 unitary matrices[10] that
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form the Lie group U(2). In situations when only the relative
phase between the two polarization modes is relevant, the
overall phase of the transformation can be assumed to be
fixed, which reduces the group of transformations to SU(2).
However, in our case the overall phase shift can vary be-
tween the consecutive temporal slots, and therefore we need
to keep it as an independent parameter. We note that any
U(2) matrix can be mapped onto a rotation in the three-
dimensional physical space. Such a rotation describes the
corresponding transformation of the Poincaré sphere used to
represent the polarization state of light in classical optics
[11]. We will label elements of U(2) as V and use a dot to
denote the multiplication within the group. The U(2) group
has a natural invariant integration measure which we assume
is normalized to one,edV=1. This measure defines a uni-
formly randomized distribution of polarization transforma-
tions that scrambles an arbitrary input polarization to a com-
pletely mixed one.

Suppose now that two consecutive temporal slots labeled
by A and B, each comprising two orthogonal polarizations,
are occupied by a joint state of radiation%̂AB, as shown sche-
matically in Fig. 1. We will assume that the polarization
transformationVA affecting the slotA is completely random,
but that the transformationVB is correlated with the first one
through a conditional probability distributionpsVBuVAd. The
resulting transformation of the joint two-slot state is there-
fore given by the following completely positive map:

Ls%̂ABd =E dVAE dVBpsVBuVAd

3ÛsVAd ^ ÛsVBd%̂ABÛ†sVAd ^ Û†sVBd. s9d

HereÛsVd is a unitary matrix acting in the Hilbert space of
one of the slots that represents the polarization transforma-
tion V. We will now assume that the conditional probability
psVBuVAd depends only on the relative transformation be-
tween the slotsA and B and that it can consequently be
represented aspsVBuVAd=psVB·VA

−1d. In such a case, we
can substitute the integration variables in the second integral
according toVB=V8 ·VA, and make use of the invariance of
the integration measure,dVB=dV8. This procedure shows

that the mapL can be represented as a composition of two

maps:L=s1̂ ^ Ldepd +Lperf. The first one of them,Lperf, acts
on both the temporal slots and it depolarizes them in ex-
actly the same way:

Lperfs%̂ABd =E dVÛsVd ^ ÛsVd%̂ABÛ†sVd ^ Û†sVd.

s10d

The second map,Ldep, acts only on the slotB, and it intro-
duces additional depolarization relative to the slotA ac-
cording to the probability distributionpsV8d:

Ldeps%̂Bd =E dV8psV8dÛsV8d%̂BÛ†sV8d. s11d

We will assume later that the distributionpsV8d has suffi-
cient symmetry to describe the action of the mapLdep in the
relevant Hilbert space with the help of two simple param-
eters.

We now introduce a further simplification by imposing a
condition that each temporal slot may contain at most one
photon. Therefore the relevant Hilbert space for each slot is
spanned by three states: the zero-photon stateu0l, and hori-
zontally and vertically polarized one-photon statesu↔ l and
ul l. We can conveniently write the explicit form of the uni-

tary transformationÛsVd using the irreducible unitary rep-

resentations of the group SU(2). We will denote byD̂ jsVd a
s2j +1d3 s2j +1d matrix that is as2j +1d-dimensional repre-
sentation of an SU(2) element obtained fromV by fixing the
overall phase factor to 1. These matrices are well known in
the quantum theory of angular momentum as describing
transformations of a spin-j particle under the rotation group
[12]. We will also denote byasVd the overall phase of the
elementV. Then the unitary transformation of the input state
corresponding to the polarization rotationV is given by the
matrix

ÛsVd = 1D̂0sVd 0 0

0

0
eiasVdD̂1/2sVd 2 . s12d

In this formula, the one-dimensional representationD̂0sVd is

identically equal to one, andeiasVdD̂1/2sVd is a 232 unitary
matrix itself; however, we will keep this more general nota-
tion in order to be able to use results from the theory of
group representations. In particular, the following property
of the rotation matrix elements will allow us to evaluate
directly a number of expressionsf12g:

E dVfDmn
j sVdg*Dm8n8

j8 sVd =
1

2j + 1
d j j 8dmm8dnn8. s13d

The action of the mapLperf on a joint two-slot state can be
analyzed most easily if we decompose the complete Hil-
bert space into a direct sum of subspaces with a fixed
number of photons:H=Hs0d % Hs1d % Hs2d, where the upper
index labels the number of photons. The zero-photon sub-

FIG. 1. Representation of two consecutive temporal slots la-
beled byA andB. The Hilbert space of each slot is spanned in our
model by three states: the zero-photon stateu0l and two mutually
orthogonal polarization states denoted byu↔ l and ul l.
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space is spanned by a single stateu0A0Bl. The one-photon
space has a basis formed by four vectors:u↔A0Bl, ulA0Bl,
u0A↔Bl, and u0AlBl. Finally, in the two-photon subspace
Hs2d we will introduce a basis that consists of the singlet
state uC−l=su↔AlBl− ulA↔Bld /Î2 and the three triplet
states u↔A↔Bl, uC+l=su↔AlBl+ ulA↔Bld /Î2, and ulAlBl.
The reason for this choice is that then the action of the

tensor productD̂1/2sVd ^ D̂1/2sVd on a two-photon state

can be decomposed into the sum:D̂1/2sVd ^ D̂1/2sVd
=D̂0sVd % D̂1sVd, where D̂0sVd acts on the singlet state

uC−l and D̂1sVd is a three-dimensional matrix acting in
the triplet subspace. Using our decomposition of the com-
plete Hilbert space, the action of the tensor product

ÛsVd ^ ÛsVd on a general two-slot state in the basis
specified above is given by

ÛsVd ^ ÛsVd = D̂0sVd % eiasVd1D̂1/2sVd
0 0

0 0

0 0

0 0
D̂1/2sVd 2

% e2iasVd1D̂0sVd 0 0 0

0

0

0
D̂1sVd 2 . s14d

If we now insert this formula into Eq.s10d, it can be easily
seen that the invariant integration over the overall phase fac-
tor asVd kills all the off-block diagonal elements of the den-
sity matrix that link different subspacesHskd. In other words,
all the coherence between states with different photon num-
bers is completely removed by the phase fluctuations. Fur-
thermore, the operationLdep, acting only on the second
slot, does not mix subspaces with different photon num-
bers. Therefore the conditions of our lemma are satisfied
and we can consider only states with a definite number of
photons as elements of the input ensemble. Thus all we
need to calculate are three corresponding Holevo quanti-
ties xs0d, xs1d, andxs2d that can be combined into a Holevo
bound for the overall channel capacity according to Eq.
s8d. This calculation forms the contents of the following
section.

IV. CHANNEL CAPACITY

The communication capacityxs0d of the zero-photon sub-
spaceHs0d itself is obviously zero, as we have only a single
stateu0A0Bl at our disposal. This state can of course be used
as an element of a larger ensemble thus contributing to the
overall capacity. This fact is reflected in the form of Eq.(8),
wherexs0d=0 indeed does increase the total value ofx.

A. One-photon subspace

A less trivial problem is to calculate the capacity of the
one-photon subspace. If we assume a normalized input state

%̂in from the subspaceHs1d, then the action of the channel
Lperf restricted to this subspace is given by

Lperf
s1d s%̂ind =

1

21
a 0 b 0

0 a 0 b

b* 0 1 − a 0

0 b* 0 1 − a
2 , s15d

where the parametersa and b are defined in terms of the
input density matrix as

a = k↔A0Bu%̂inu↔A0Bl + klA0Bu%̂inulA0Bl,

s16d
b = k↔A0Bu%̂inu0A↔Bl + klA0Bu%̂inu0AlBl.

For the form of the density matrix given in Eq.(15), the
depolarizing channelLdep affects only the off-diagonal ele-
mentsb and b* . We will assume that the symmetry of the
distributionpsV8d is such that the effect ofLdep is a rescal-
ing of these elements by a real parameterh8 bounded be-
tween 0 and 1. This constraint can be written explicitly as

E dV8psV8deiasV8dD̂1/2sV8d = Sh8 0

0 h8
D . s17d

It is now easy to check that the entropy of the one-photon
state emerging from the channel can be written as

S„Ls%̂ind… = 1 +SXS a h8b

h8b* 1 − a
DC , s18d

where the 232 matrix appearing in the second term can be
interpreted as a state of a qubit. Therefore, the second term is
bounded by 0 and 1, and consequently 1øS(Ls%̂ind)ø2. It
is a straightforward observation that the Holevo quantity
is bounded from above by the difference between the
maximum and the minimum possible entropies of states
emerging from the channel. Therefore we obtain that
xs1dø1. This inequality can be saturated simply by taking
a one-photon state confined either to the first or to the
second temporal slot, with an arbitrary polarization. Thus,
the channel capacity is not enhanced in the one-photon
sector.

B. Two-photon subspace

The most interesting regime is when both the temporal
slots are occupied by photons. As we will see below, in this
case quantum correlations can enhance the capacity of the
channel. If we take a normalized input state%̂in from the
two-photon subspaceHs2d, then the mapLperf produces a
Werner state[13]:

Lperf
s2d s%̂ind = Ŵc, s19d

where we have introduced the following notation:
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Ŵc = − cuC−lkC−u + s1 + cd
1̂

4
s20d

and we will call c the Werner parameter of the input state
%̂in, defined as

c = 1
3 − 4

3kC−u%̂inuC−l. s21d

This result, derived previously in Ref.f13g, can be verified
independently using the property given in Eq.s13d.

The second operation affecting the input state is the par-

tially depolarizing channel1̂ ^ Ldep. We will assume that the
action of the mapLdep acting on the photon in the second
temporal slot is simply isotropic depolarization shrinking the
length of the Bloch vector by a factorh satisfying 0øh
ø1. This imposes a constraint onpsV8d in the form

E dV8psV8dD̂1/2sV8dŝnfD̂1/2sV8dg† = hŝn, s22d

whereŝn ,n=x,y,z are the Pauli matrices. Isotropic depolar-
ization on the slotB preserves the Werner form of the trans-
mitted state, and its only effect is the multiplication of the
parameterc by the factorh. Thus, the state emerging from
the channel is given by

Ls2ds%̂ind = Ŵhc s23d

with the parameterc defined by the input state%̂in according
to Eq. s21d. We note that in general the shrinking param-
eter h is not directly related to the parameterh8 intro-
duced in the preceding section. This can be seen by com-
paring Eq. s17d, which is linear in the elements of the

matrix D̂1/2sV8d, with Eq. s22d where the integrand con-
tains products of pairs of those elements and is indepen-
dent of the phaseasV8d.

At this point the possibility of enhanced communication
capacity by exploiting entanglement manifests itself. The dif-
ference between the separable and entangled alphabets can
be seen by comparing the allowed ranges of the parameterc.
The positivity of the input density matrix%̂in requires that

− 1 ø c ø 1/3, s24d

and this is the only condition if we consider the most gen-
eral, possibly entangled input states. However, if the input
states are restricted toseparableones, then as shown by
Horodecki and Horodeckif14g, the allowed range for the
parameterc is reduced to

− 1/3ø c ø 1/3. s25d

This limitation will underlie the reduced channel capacity in
the case of separable states.

As the two-photon states emerging from the channel are
fully characterized by the Werner parameters of the respec-
tive input states, optimization of the Holevo quantity can be
carried out over the ensemblehqj ;cjj of the probabilitiesqj

of sending thej th state with the Werner parameter equal to
−cj. The output states emerging from the channel are there-

fore given by an ensemble of Werner stateshqj ;Ŵhcj
j. Be-

cause a statistical mixture of Werner states is also a Werner
state with the average parameter:

o
j

qjŴhcj
= Ŵo jqjhcj

, s26d

the Holevo quantity can be expressed with the help of a
single real-valued functionfscd:

xs2d = SSo
j

qjŴhcjD − o
j

qjSsŴhcj
d

= fSo
j

qjhcjD − o
j

qj fshcjd, s27d

where the explicit form of the functionfscd is given by

fscd = − 3
4s1 + cdlog2s1 + cd − 1

4s1 − 3cdlog2s1 − 3cd.

s28d

The optimization of the Holevo quantity, which in principle
needs to be performed over an arbitrarily large input en-
semble of permitted quantum states, can be greatly simpli-
fied using the following observation.

Lemma 2. Let fsgd be a concave function defined on a
closed intervalfa ,bg, and letqj be a probability distribution
for a setg j of real numbers taken from the rangeaøg j
øb. Then the following inequality holds:

fSo
j

qjg jD − o
j

qj fsg jd ø sup
aøgøb

S fsgd −
b − g

b − a
fsad

−
g − a

b − a
fsbdD . s29d

Proof. The concavity of the functionfscd implies that for
every j we have

fsg jd ù
b − g j

b − a
fsad +

g j − a

b − a
fsbd. s30d

If we now multiply the above equation by −qj, perform the
summation overj , and add a termfso jqjg jd to both sides of
the equation, we will obtain an inequality whose left-hand
side is identical to that of Eq.s29d, and the right-hand side is
exactly the argument of the supremum forg=o jqjg j. Obvi-
ously, this value ofg lies betweena andb, and consequently
the supremum may only exceed the value obtained from this
calculation. This confirms that Eq.s29d is indeed satisfied.

The above lemma reduces the whole problem of optimiz-
ing the Holevo bound to maximizing a one-parameter real-
valued function that is the argument of the supremum on the
right-hand side of Eq.(29). Inserting the explicit form of the
function fsgd given in Eq.(28) and differentiating the result-
ing expression overg shows that the supremum in the right
hand side of Eq.(29) is attained for

gopt =
1 − 24m/3

3 + 24m/3 , s31d

wherem=ffsbd− fsadg / sb−ad.
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As we have seen, the permitted range of the parameterscj
characterizing the states belonging to the input ensemble de-
pends on whether we allow the most general, possibly en-
tangled states, or rather restrict the input to separable states
only. If we assume that this range spans fromcmin to cmax,

cmin ø cj ø cmax, s32d

then we can easily apply Lemma 2 to the expression of the
Holevo quantityxs2d in terms of the functionfscd that has
been given in the second line of Eq.s27d. Taking a=hcmin
and b=hcmax and using the explicit value of the turning
point derived in Eq.s31d yields the following bound:

xs2d ø log2s3 + 24m/3d − fshcmind + mshcmin − 1/3d − 4,

s33d

wherem is given in terms of the input ensemble characteris-
tics as

m =
fshcmaxd − fshcmind

hscmax− cmind
. s34d

We will analyze in detail numerical values of the channel
capacity in the following section. Before doing so, we will
close this section by describing a simple intuitive picture of
Lemma 2 that gives an additional insight into the form of the
input ensemble.

C. Graphical interpretation

The result of Lemma 2 can be visualized using the fol-
lowing geometrical reasoning depicted in Fig. 2. Consider a
graph of the functionfsgd versus its argumentg. The num-
bers g j and the corresponding values of the functionf are
given by a set of pointsGj =(g j , fsg jd) in the plane of the
graph. The probability distributionqj for the argumentsg j
defines an average

Ḡ = So
j

qjg j,o
j

qj fsg jdD s35d

that can be interpreted as a center of gravity for the system of
pointsGj that have been assigned respective massesqj. Ob-
viously, if the probability distribution is arbitrary, then this
average can lie anywhere within the convex polygon
spanned by the pointsGj. Since the functionf is strictly
concave over the range considered, the whole polygon lies
within the area bounded by the graph of the functionfsgd on
one side, and a straight line connecting the points(a , fsad)
and(b , fsbd) on the other side. This straight line is given by
a functiong defined as

gsgd =
b − g

b − a
fsad +

g − a

b − a
fsbd. s36d

The left-hand side of Eq.(29) is now given by the length

of a vertical line connectingḠ with the pointH8=(ḡ , fsḡd)
on the graph of the functionfsgd, whereḡ=o jqjg j. Clearly,

the line ḠH8 will be always equal in length or shorter than
the lineH8H9 where the pointH9=(ḡ ,gsḡd) lies on the graph
of the functiongsgd. Furthermore, in order to find the maxi-
mum possible length of the lineH8H9, it is clear from this
geometric construction that we need to maximize the differ-
encefsgd−gsgd overg belonging to the intervalfa ,bg. This
procedure is given explicitly in the right-hand side of Eq.
(29), and the parameterm introduced in the preceding section
is simply the gradient of the functiongsgd.

It is clearly seen from this geometric construction that
enlarging the intervalfa ,bg can only increase the value of
the upper bound given in Eq.(29). This implies two rather
straightforward observations. First, the use of entangled
states should give a larger capacity compared to separable
states. Second, a lower value of the parameterh meaning
weaker correlations between consecutive polarization rota-
tions results in a decreased channel capacity.

The graphical construction presented above gives also a
simple recipe for constructing an output ensemble that satu-
rates the bound on the Holevo quantity. It is sufficient to take
a two-element ensemble with the extreme points of the al-
lowed interval as the parameters of the Werner states emerg-
ing from the channel:a=hcmin and b=hcmax. The optimal
probabilities of using the two states need to be selected in
such a way that the weighted sum of the points correspond-
ing to these states gives the pointgopt maximizing the differ-
ence fsgd−gsgd. Explicitly, these probabilities are, respec-
tively, given by sb−goptd / sb−ad and sgopt−ad / sb−ad. The
actual graph of the functionfsgd with the permitted ranges of
the Werner parameter for perfectly correlated noise and en-
tangled and separable inputs is shown in Fig. 3.

V. ATTAINABILITY AND IMPLEMENTATION

The Holevo quantityx is only an upper bound on the
channel capacity and therefore is not necessarily attainable.
Users of a communication channel need two relevant pieces
of information. The first one is the optimal form of the input
ensemble that should be used by the sender. The second one

FIG. 2. The graphical representation the maximization proce-
dure for the two-photon subspace. The set of pointsGj corresponds
to the output ensemble. The differencefsgd−gsgd over g needs to
be maximized over the intervalfa ,bg.
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is a measurement scheme that should be employed at the
output of the channel in order to optimize the capacity.

Let us start by summarizing the results of the preceding
section and specifying the input ensemble implied by these
considerations. We have seen that in the zero- and one-
photon subspaces the channel capacity cannot be enhanced
by exploiting the polarization degree of freedom. Therefore
as the elements of the input ensemble we can take, for ex-
ample, statesu0A0Bl, ulA0Bl, and u0AlBl, where for concrete-
ness we have fixed the polarization of single-photon states to
vertical. The polarization degree of freedom starts to play a
nontrivial role when both the temporal slots are occupied by
photons. In this subspace, we need to select two input states
characterized by the Werner parameters that are as distant as
it is allowed by the constraints on the input ensemble. If we
restrict ourselves to separable states, then according to Eq.
(25) we need to take one separable state withcmin=−1/3 and
another one withcmax=1/3. It iseasy to verify using Eq.(21)
that the pair of separable states satisfying this condition can
be taken asulA↔Bl andulAlBl. We thus see that in agreement
with the simple picture developed in the Introduction to this
paper, the relevant quantity is the relative polarization of the
photons occupying consecutive slots. If we allow for en-
tangled input, then the lower limit for the Werner parameters
of the input states shifts down tocmin=−1. This value can be
of course attained by taking the singlet stateuC−l itself as
one element of the input ensemble and any state withcmax
=1/3, for example, againulAlBl as the second one.

In order to complete the description of the communication
protocol, we need to specify the measurement applied to the
states emerging from the channel. This task can be decom-
posed into two steps. The first one is the determination of the
total number of photons contained in the two slots and it can,
in principle, be accomplished by a collective quantum non-
demolition measurement[15] on all the modes involved that
would determine the total photon number without destroying
coherence between the modes. Depending on the outcome,
the second step needs to be either finding the temporal slot

occupied by a photon in the one-photon subspace, which can
be realized by direct temporally resolved detection, or dis-
criminating between the states used to encode information in
the two-photon subspace. It is easy to see that this discrimi-
nation takes a simple form in the case of perfectly correlated
noise and entangled input states: we need to determine
whether the received states belong to the singlet or the triplet
subspace, which corresponds to a two-element projective
measurement:

ÔS= uC−lkC−u,
s37d

ÔT = 1̂ − uC−lkC−u.

It turns out that the same measurement saturates the Holevo
bound also in the general case of any value of the parameter
h with either entangled or separable input states. In Fig. 4(a)
we depict conditional probabilities of obtaining the singlet or
the triplet outcomes for a two-element input ensemble char-
acterized by Werner parameterscmin andcmax. A lengthy but
straightforward calculation shows that if we take as the input

FIG. 3. Depiction of optimal values of output ensembles to
maximize the Holevo quantity in both the general entangled case
and the restricted separable case for perfectly correlated noisesh
=1d. It is sufficient to take only two-element ensembles with the
extreme points of the allowed interval. For general entangled states
the interval isf−1,1/3g whereas for the separable case the interval
is reduced tof−1/3,1/3g.

FIG. 4. Depiction of the outcomes of operator measurementsÔS

and ÔT. The general case is shown in(a). For perfectly correlated
noise, when the full range of allowed entangled states is employed,
perfect distinguishability between the two inputs is possible as
shown in (b). In the restricted separable states only regime, the
diagram reduces to that shown in(c) and the emerging states are
unable to be distinguished unambiguously.
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probabilities the values discussed in the preceding section,
the mutual information is given exactly by the right-hand
side of Eq.(33). Thus the described procedure indeed maxi-
mizes the channel capacity in the two-photon subspace.

It is instructive to compare the above diagram for optimal
entangled and separable input ensembles in the case of per-
fect correlationsh=1. For the optimal entangled ensemble,
shown in Fig. 4(b) we can distinguish perfectly between the
two inputs as they belong to orthogonal subspaces even after
the transmission. For the separable ensemble, the emerging
states can no longer be perfectly discriminated as seen in Fig.
4(c).

The complete channel capacity obtained by combining
Eq. (8) with the results of Sec. IV is shown as a function of
h in Fig. 5. It is seen that using an entangled input ensemble
gives a clear advantage over the separable states over the
complete range of the correlation parameterh.

We note that the measurement discriminating between the
singlet and the triplet subspaces can be implemented using
the Braunstein-Mann scheme based on linear optics[16], as
we do not have to distinguish between all four Bell states.
After overlapping temporally the received photons and inter-
fering them on a 50:50 nonpolarizing beam splitter, their
detection in the same output port corresponds to a projection
onto the triplet subspace, whereas measuring them in the
separate output ports of the beam splitter identifies the sin-
glet state.

VI. CONCLUSIONS

We have introduced a model of a communication channel
with correlated noise motivated by random birefringence

fluctuations in a fiber optic link. Within this model, we have
demonstrated that introducing quantum correlations between
consecutive uses of the channel increases its capacity. This
demonstrates how specifically quantum phenomena such as
entanglement can be helpful in the task of transferring clas-
sical information. Making use of entanglement requires more
complex preparation procedures that provide joint input
states extending over a number of temporal slots. A related
question is the role of collective quantum measurements on
the output of the channel rather than detecting radiation in
each of the slots individually and combining classical out-
comes of separate measurements.

The action of the channel has been defined in terms of
transformations of the bosonic field operators. This opens up
a route towards interesting generalizations of the present
work, for example, including arbitrary multiphoton states.
Another direction would be extending the model to an arbi-
trary number of temporal slots rather than just allowing for
correlations between pairs of consecutive slots as in our ex-
ample. It is easy to give a simple protocol showing that in
this case the channel capacity can be enhanced even further.
We suppose that the sender generates a train of zero- and
one-photon states with the same probabilities equal to one
half. The first time she is to transmit a photon, she sends half
of a maximally entangled pair. In the second instance when
one photon should be transmitted, she sends the remaining
member of the pair transforming it in such a way that the
joint two-photon polarization state belongs either to the sin-
glet or the triplet subspace. The receiver implements a
polarization-independent quantum nondemolition measure-
ment on each temporal slot. When a photon is detected, it
needs to be stored until the arrival of the second member of
a pair, when the discrimination between the singlet and the
triplet subspaces can be performed with the help of a joint
measurement. If the birefringence fluctuations can be ne-
glected over the temporal separation between the photons in
a pair, this procedure allows one to encode one extra bit of
information into each pair of transmitted photons. This gives
the average channel capacity equal to 2.5 per a pair of tem-
poral slots, enhancing further the optimal value shown in
Fig. 5.
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