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We present a scheme to perform an all optical simulation of quantum algorithms and maps. The main
components are lenses to efficiently implement the Fourier transform and programmable liquid-crystal displays
to introduce space dependent phase changes on a classical optical beam. We show how to simulate Deutsch-
Jozsa and Grover’s quantum algorithms using essentially the same optical array programmed in two different
ways.
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The classical wave optics analogy of quantum informa-
tion processing[1] is based on the fact that the quantum state
of a system evolves according to a wave equation and satis-
fies the superposition principle. In recent years, this analogy
has been studied in detail due to the current interest in quan-
tum information and computation. It has been established
that using classical optical waves it is possible to simulate
the behavior of quantum computers[2–6]. This kind of simu-
lation is inefficient since it requires a number of classical
resources that scales exponentially with the number of quan-
tum bits (qubits) being simulated. A possible strategy to do
this for a system ofn qubits is to consider the profile of the
classical electric-field amplitude in a laser beamEsxd as the
analog of the probability amplitude of a quantum state. As
position is used to label the states one generally speaks in
this case of position cbits[2,3]. The maximum number of
orthogonal quantum states we could accommodate is fixed
by the width of the beam, which must grow exponentially
with the number of qubits. This imposes stringent limitations
on the size of the largest quantum computer that could in
principle be simulated in this way[3,6,7]. However, optical
simulations of quantum algorithms not only constitute a
beautiful and simple way to illustrate the power of quantum
computers but also provide a way to shed light on some of
their basic properties. Optical implementations of quantum
algorithms performed in recent years include the pioneering
work of Kwiat et al. [4,5] and the all optical simulation of
several iterations of Grover’s search algorithm[1,8] per-
formed by Bhattacharyaet al. [6]. In our work we present a
scheme based on the use of optoelectronic devices(liquid-
crystal TVs, LCTVs) which could enable us to simulate a
large variety of quantum algorithms and quantum maps in a
programmable way. The idea is very simple: We use position
cbits to represent the quantum amplitude of a state using the
(complex) electric-field amplitude of a laser beamEsxd. It
should be noted that in the simulated quantum computer the
2n classical wave amplitudes at given pixels represent the 2n

probability amplitudes in a given basis. This shows clearly
the exponential scale up of resources, since onlyn qubits
(rather than 2n pixels) would be needed in a true quantum
computer. As basic tools to simulate an algorithm we use
sequences of lenses and LCTV displays. Lenses will be used

as an efficient way to implement the Fourier transform of the
incoming electric-field amplitude(since the electric ampli-
tude in the focal plane of a spherical lens is the Fourier
transform of the incident amplitude). A set of LCTVs, polar-
izers, and retarder plates are used to implement an operation
whose only effect is to change the phase of the electric field
in a position dependent way. By using sequences of phase
modulators and lenses we could, in principle, optically simu-
late any unitary operator. We will use the standard notation
for quantum information. So, the state of a quantum bit will
be noted using the Dirac notation between brackets “ul”. For
example, the most general stateufl for n=1 will be repre-
sented by a normalized superpositionufl=au0l+bu1l of the
states of the computational basisu0l andu1l. The states of the
computational basis will be noted generically asuxl. In order
to see how the optical simulation acts, one can reason as
follows: A phase modulator acts as an operator which is di-
agonal in the uxl basis and can be written asUV
=expf−iVsxdg. Such kind of modulator in the frequency
plane(i.e., the Fourier transform ofuxl) acts as an operator
which is diagonal in the momentum basis and can be written
asUK=expf−iTspdg. By applying sequences of appropriately
chosen operators likeUV and UK one can approximate any
unitary operator[1]. The algorithm one is simulating can be
changed online by programming the way in which the LCTV
screens act(i.e., the local phase shifts they introduce).

In practice, there are limitations on the number of itera-
tions due to the decay of the beam intensity after each optical
component which is due to absorption and diffractive effects.
However, current technology would enable one to perform a
few iterations of several interesting quantum maps using this
idea.

Here, we illustrate this basic scheme implementing an all
optical simulation of two quantum algorithms that can be
very simply presented in term of a sequence of operations
like the above:(i) Deutsch-Jozsa algorithm and(ii ) Grover’s
search algorithm. Let us describe these two algorithms very
briefly. In both cases the algorithms use an “oracle” which
evaluates a certain function. The goal of both algorithms is to
find a property of the function by only calling the oracle. In
case(i) (Deutsch-Jozsa) the function takes values over the
first N integers and it is either equal to 0 or to 1. Moreover,
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there is a promise: The function is either constant(it takes
the same value for all integers) or balanced(it is equal to 0
for half the points in the domain and to 1 for the other half of
the domain points). Our task is to discriminate between these
two global properties of the function. Classically we would
need to evaluatefsxd, at worst,N/2+1 times. The quantum
algorithm[1] requires only one query to the quantum oracle
[the quantum oracle is an operatorUoracle which transforms
the stateuxl into s−1d fsxduxl]. The algorithm works as follows:
The initial state is an equally weighted superposition ofN
quantum statesoxuxl (we skip an overall normalization for
notation convenience). Then we call the oracle that, as men-
tioned above, applies a phase shift to each state depending on
the value of the function. The state is transformed into
oxs−1d fsxduxl. Finally, we perform the Fourier transform of
this state(a Hadamard transform was used in the original
proposal but this can be changed into a Fourier transform
without any change in the algorithm). It turns out that the
probability to detect the stateux=0l is simply equal to
foxs−1d fsxd /Ng2. This probability is therefore equal to zero if
the function is balanced and to unity if the function is con-
stant. Thus, by detecting the final state we find out what class
does the function in the oracle belongs to.

The second quantum algorithm we simulate is Grover’s
search algorithm[1,8] which is useful to find a marked item
in a database withN registers. The marked item is associated
with a functionfsxd, which is zero for all registers except for
the marked one, where it is equal to 1. The goal of the algo-
rithm is to find for what integer is the function equal to 1.
Classically, on the average we would need to evaluate this
function N/2 times to find the marked item. Grover’s algo-
rithm finds this item with a number of queries to the quantum
oracle that scales asÎN. As before, the initial state is an
equally weighted superposition of allN quantum states. Each
iteration of the algorithm consists of applying two operators
Uoracle andUIAA, where IAA denotes the inverse around av-
erage operation. Grover’s oracleUoracle acts in the same way
as the Deutsch-Jozsa oracle: it maps the stateuxl into
s−1d fsxduxl. The operatorUIAA is diagonal in momentum basis
and can be written asF−1U0F whereF is a Fourier transform
and U0 is the operator that changes the sign of the stateux
=0l. One can show that the effect of this operator is to invert
all amplitudes about the average one. The algorithm can be
extended to a database withm marked items. In such case,
after approximatelypÎN/m/4 iterations, all the amplitude is
concentrated in the marked items. For the particular case of
N=4 (or N/m=4) the algorithm finds the marked item after a
single iteration[8].

The experimental setup used to optically simulate both
quantum algorithms is very similar. For the Deutsch-Jozsa
algorithm it is basically sketched in Fig. 1. A beam of the
457 nm line from an argon laser is expanded and filtered so
that we can choose a homogeneous portion of the wave front
to represent a quantum state, initially prepared in an equally
weighted superposition of all inputs. To build the Deutsch-
Jozsa oracle, we used the first lens to collimate the beam and
a spatial light modulator(SLM), consisting of a Sony LCTV.
This device, in combination with two polarizers and two
wave plates, can act as a pure phase modulator[10]. The

LCTV (model LCX012BL) was extracted from a commer-
cial video projector and is a VGA resolution panel(640
3480 pixels) with square pixels of 34mm size separated by
a distance of 41.3mm. After the SLM, we introduce a spheri-
cal lens(135 mm of focal length) that Fourier transforms the
amplitude. Finally we detect the intensity distribution using a
charge-coupled device(CCD) camera placed behind an ob-
jective of a microscope to get a magnified image. The CCD
camera is driven by an 8 bits frame grabber. Some experi-
mental considerations can be done. In order to simulate the
quantum algorithms we must identify the two logical levels
“zero” and “one.” To this end, we measure the light captured
by the CCD camera. For each experiment we select a dy-
namical range where the response of the CCD is linear.
Working with the highest dynamical range that verifies this
condition, we measure the light arriving to the CCD through
the complete optical system. This operation lets us normalize
the light in each CCD pixel independently of the losses due
to reflections and absorptions in the optical components and
the deformations introduced by aberrations of the optical
system. Also we can correct the small separation of the beam
profile from an homogeneous one. In other terms, the CCD
camera registers a value of 0 for the “zero” logical level and
a value in the range[0, 255] for the logical level “one.” After
the normalization the obtained values are 0 and 1 within the
error provided by the frame grabber.

We tested the simulation of Deutsch-Jozsa algorithm for
various input functions by programming the LCTV to simu-
late different oracles. The phase distribution introduced by
the oracle is always expsipsfsxdd. Thus, to represent this
profile on the SLM we program the phase of all the pixels
corresponding to points wherefsxd=1 ffsxd=0g to be equal
to p (0). A squared entrance pupil illuminated homoge-
neously with a precision better than 5% and with an arbitrary
side size of 88 pixels, determines the size of the optically
simulated Hilbert space. With this type of LCTV we could
simulate the Deutsch-Jozsa algorithm in a Hilbert space of
dimensions up toN=6403480. In the upper part of Fig. 2
we show a sample of the oracle operator corresponding ei-
ther to constant(a) or to balanced functions(b), (c), and(d).
White and black areas, respectively, correspond to a phase
change of 0 orp. Below we show the intensity of light
registered by the CCD camera. In Fig. 3, we show separately
a more entropic function where each pixel takes a random
value (0 or 1), with the constraint that the function is bal-
anced.

The algorithm is such that there is no light around the
origin if and only if the input function is balanced. On the

FIG. 1. Configuration for Deutsch–Jozsa’s algorithm. The
457 nm line of an Argon Laser is filtered, expanded, and collimated
in order to illuminate homogeneously the oracle simulated by the
spatial light modulator(SLM). In the focal plane of the second lens,
a CCD captures the intensity distribution around the axis.
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contrary, all the light is concentrated in the origin if the func-
tion is constant. This effect is clearly seen in Figs. 2 and 3.
From the optical point of view the algorithm has a very clear
interpretation(which makes it look almost trivial). The am-
plitude near the origin in the focal plane of the second lens
sL2d is proportional to the averaged amplitude after the SLM.
This is the case because the lens implements a Fourier trans-
form and the zero mode of the Fourier transform is just the
average of the transformed function. Thus, to determine if
the function is constant or balanced Deutsch-Jozsa algorithm
simply computes the average value of this function(which is
equal to 0 for balanced functions and to 1 for constant ones).
The architecture used to simulate a single iteration of Grov-
er’s algorithm consists of a convergent optical processor, ba-
sically sketched in Fig. 4.

This configuration allows us to obtain the Fourier trans-
form of the input in the conjugate plane of the source with an
arbitrary magnification(which depends on the input position)
and the image of the input in its conjugate plane. We can see
that the first part of the system is a modified version of that
used for the Deutsch-Jozsa’s algorithm. The advantage of
this setup becomes clear when one needs to manipulate the
spatial frequencies of the input in the Fourier domain. Again,
the homogeneous portion of the wave front defines an initial
state with equal amplitude for every item. The first SLM is
used to represent the Grover’s oracle. The distribution
emerging from this oracle is collected by the lens
L1 (135 mm focal length). In the focal plane of this lens the
Fourier transform of the oracle is obtained. A second LCTV

identical to that used in the first SLM is placed in that plane
to represent the IAA operation. Again, a set of polarizers and
wave plates are included in order to reach the desired phase
modulation. The procedure to program the LCTV’s to act as
Grover’s oracle, as IAA, or as Deutsch-Jozsa oracle is essen-
tially the same. This shows the versatility of LCTV’s as basic
components of optical simulations of quantum algorithms.
Since the phase modulation introduced in both SLM’s is
digitally controlled, the phase matching condition[11] is eas-
ily satisfied. Finally, the emerging signal is collected by a
second lensL2 (250 mm focal length) and the final image is
registered by the CCD1. The recorded image is spatially in-
verted in order to obtainF−1. The sequence of operations
performed by the optical setup is thereforeF−1U0FUoracle
which indeed represents one iteration of Grover’s algorithm.
For the correct performance of this optical simulation, it is
crucial to have good spatial matching between the oracle and
the IAA. To achieve this we used an alignment test based on
spatial filtering techniques specially developed for optical
processors using two LCTVs[12].

With the described setup we perform only one iteration of
Grover’s algorithm. In this case the probability to find the
marked item at the output is equal to one when the ratio
between the size of the basesNd and the number of marked
statessmd is N/m=4. We verified this by using different base
sizes: For a four-state database we chose items to be repre-
sented by one-dimensional 1D–strips(88322 pixels). Using
the same entrance pupil(88388 pixels) we can accommo-
date a 2D-array of 16–state database with a side size is 22
322 pixels. In both cases we used a square of 434 pixels
with a phase shift ofp to perform the IAA operation in the
Fourier plane. In order to obtain maximum contrast, the op-
timal size of the phase shifting dot was determined consid-
ering the diffraction effects, i.e., we chose that the amount of
energy affected by this phase shifting area be equal to the
amount of energy left unaffected. The results obtained for the
different bases are shown in Fig. 5. In Fig. 5(a) we show the
way in which a square entrance pupil is used to represent the
four items in the database. The four possible outputs, after an
iteration of Grover’s algorithm for each oracle, are shown in
Fig. 5(b). The intensity profiles for these outputs are shown
in Fig. 5(c). So, the marked item is indeed found after one
iteration (and the output energy does not depend on the
marked item). Finally, in Fig. 6(a) a scheme of the 2D 16–

FIG. 2. Top: Different oracle configurations in Deutsch–Jozsa
algorithm corresponding to various setups of the programmable
LCTV. They are associated with constant(a) or balanced functions
(b), (c), and(d). Bottom: The intensity in the CCD camera is non-
zero at the zero frequency only if the function is constant, as pre-
dicted by the algorithm. The center of the dotted crosses indicates
this frequency.

FIG. 3. (a) Oracle configuration in Deutsch-Jozsa algorithm cor-
responding to a random balanced function.(b) Intensity in the CCD
camera, (c) intensity profile corresponding to the dashed line
marked in(b).

FIG. 4. Convergent optical processor for the simulation of Grov-
er’s algorithm. The first SLM modulates the phase of the initial
homogenous wave front to mark the items being searched for. Next,
the IAA operation is carried out by the second SLM. The CCD1
captures the output signal. In dotted line we show how the addition
of a flipper mirror allows us to simulate the Deustch-Jozsa algo-
rithm by using the same configuration.
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item database is presented. The output intensity obtained
when marking multiple items is shown in Fig. 6(b). It can be
seen that the output energy when four items are marked is
equal to the output energy in the runs shown in Fig. 5.

It is clear that the optical array shown in Fig. 4 can be
easily adapted to simulate Deutsch-Jozsa algorithm. In order
to register the Fourier transform of the input database the
light which would be focused onto the second SLM is redi-
rected by a mirror to a camera. To this end we can use a
flipper mirror and switch the position of the camera from
CCD1 to CCD2. Then the Deutsch-Jozsa oracle is pro-
grammed onto the first SLM. Therefore, the same optical
array can be programmed to simulate two algorithms(more
generally, it could be programmed to simulate a large variety
of quantum unitary maps, see below). To iterate these algo-
rithms one needs to build a sequence of such units. The
strategy followed by Bhattacharyaet al. [6] based on a laser
pulse bouncing in a lossy cavity is not feasible here due to
the unidirectional nature of the LCTVs we used. However,
iterations are possible by using a ringlike configuration(col-
lecting light from a beam splitter) or by other similar con-
figurations that are under study. Although for the Grover al-
gorithm presented here the inversion of the Fourier transform
has been digitally obtained, if an iterative process is carried
out the inversion must be optically done. This could be
implemented by using an additional lens at the final step of
the optical circuit. Nevertheless, it should be pointed out that

intensity losses due to the pixelated structure of the LCTVs
are an important limitation to the number of possible itera-
tions available with current LCTVs. Our estimate for this is
of the order of four round trips for the present optical ele-
ments. It is well known that optical simulations of quantum
algorithms are exponentially inefficient. In optical architec-
tures the scalability is limited not only by the size and reso-
lution of the display used to represent the quantum states, but
by the validity of the paraxial approximation(required for
the lenses to accurately implement the Fourier transform). In
our case we could represent up to nine qubits in a 1D array
(512 pixels) using almost all the LCTV width. Even in this
case the paraxial approximation remains valid in our setup
with an error lower than 0.01%.

Both algorithms simulated here belong to the class of
kicked unitary maps, which can be constructed as a sequence
of operators diagonal in positionsUVd or in momentum basis
sUKd. As mentioned above, our setup allows, in principle, the
optical simulation of all such unitary operators. Some of
them are of great interest in the context of the study of quan-
tum chaos. The use of this scheme to optically implement
simulations of quantum analogs of classically chaotic dy-
namics is an interesting avenue that will be pursued in the
future (see Ref.[13] for connected ideas on the optical
implementation of baker’s map).
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ANPCyT (Grant No. PICT 09000), Ubacyt, Fundacion An-
torchas, and Conicet(Grant No. PIP420/98).
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