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A scheme to implement a quantum computer subjected to decoherence and governed by an untunable
qubit-qubit interaction is presented. By concatenating dynamical decoupling through bang-bang(BB) pulse
with decoherence-free subspaces(DFSs) encoding, we protect the quantum computer from environment-
induced decoherence that results in quantum information dissipating into the environment. For the inherent
qubit-qubit interaction that is untunable in the quantum system, BB control plus DFSs encoding will eliminate
its undesired effect which spoils quantum information in qubits. We show how this quantum system can be
used to implement universal quantum computation.
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I. INTRODUCTION

Quantum computation(QC) has become a very active
field ever since the discovery that quantum computers can be
much more powerful than their classical counterparts[1–3].
Quantum computers act as sophisticated quantum informa-
tion processors, in which calculations are made by the con-
trolled time evolution of a set of coupled two-level quantum
systems. Coherence in the evolution is essential for taking
advantage of quantum parallelism, which plays an essential
role in all quantum algorithms. However, real physical sys-
tems will inevitably interact with their surrounding environ-
ment. No matter how weak the coupling that prevents an
open system from being isolated, the evolution of the system
is eventually plagued by nonunitary features such as deco-
herence and dissipation[4]. Quantum decoherence, in par-
ticular, is a purely quantum-mechanical effect whereby the
system loses its ability to exhibit coherent behavior by get-
ting entangled with the ambient degrees of freedom. Deco-
herence stands as a serious obstacle common to all applica-
tions, including QC, which rely on the capability of
maintaining and exploiting quantum coherence.

Recently, considerable effort has been devoted to design-
ing strategies able to counteract decoherence. Roughly
speaking, three classes of procedures are available to over-
come the decoherence problem. Two kinds of encoding
methods of these strategies in the field of quantum informa-
tion are quantum error-correction codes(QECCs) [5] and
decoherence-free subspaces(DFSs, also called error-
avoiding codes) [6–13], both based on encoding the state
into carefully selected subspaces of the Hilbert space of the
system. The main difference between the two encoding strat-
egies is that QECCs is an active strategy, in which the en-
coding is performed in such a way that the various errors are
mapped onto orthogonal subspaces so that they can be diag-
nosed and reversed, and DFSs instead provide a passive
strategy relying on the occurrence of specific symmetries in

the interaction with the environment, which guarantees the
existence of state space regions inaccessible to noise. The
third strategy can be termed dynamical decoupling or quan-
tum “bang-bang”(BB) control [14–18] after its classical
analog by using strong, fast pulses on quantum systems. The
basic idea is that open-system properties, specifically deco-
herence, may be modified if a time-varying control field acts
on the dynamics of the system over time scales that are com-
parable to the memory time of the environment. Dynamical
decoupling has an advantage over QECCs and DFSs, be-
cause it uses external pulses(BB pulse) rather than requiring
several physical qubits to encode one logical qubit.

Despite their promise to counteract decoherence in the
process of QC, QECCs and DFSs, in which ancillary physi-
cal qubits are required for protecting quantum information,
have their disadvantage for the construction of a large scale
quantum computer, because the available physical resource
is very exiguous in the present quantum engineering. Dy-
namical decoupling does not require an ancillary physical
qubit to protect quantum information, but entirely decou-
pling system from the environment requires more compli-
cated pulse operations. Moreover, the inherent qubit-qubit
interaction, which is vital to the implementation of two-qubit
gate, is assumed to be tunable in all the approaches given
above, but this will augment further the complexity of quan-
tum computer in microstructure. Our effort is devoted to
solving the problems mentioned above. In this work we
present an architecture of quantum computer with fixed cou-
pling between qubits. In our scheme, by concatenating dy-
namical decoupling and DFSs encoding we can simulta-
neously overcome the effects from decoherence and qubit-
qubit interaction and realize the scalable fault-tolerant QC.

The structure of the paper is as follows. In Sec. II, we
review dynamical decoupling by BB operations, and we
show how to counteract decoherence via encoding into DFSs
and decoupling by BB operations. In Sec. III we deal with
the inherent qubit-qubit interaction between physical qubits
by BB operations. We show in Sec. IV how the universal QC
can be accomplished. Section V is for discussion and con-
cluding remarks.
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II. DECOHERENCE AND BANG-BANG OPERATION

We consider a two-level quantum systemS coupled to an
arbitrary bathB, which together form a closed system de-
fined on the Hilbert spaceH=HS^ HB, HS andHB denoting
S and B Hilbert spaces, respectively. The dynamics of the
quantum systemS coupled to a bathB evolves unitarily un-
der the Hamiltonians

H = HS ^ IB + IS ^ HB + HSB, s1d

whereHS, HB, andHSB are the system, bath, and interaction
Hamiltonians, respectively. The interaction Hamiltonian be-
tween the system and bath can be written as

HSB= sx ^ bx + sy ^ by + sz ^ bz. s2d

Here thesa’s sa=x,y,zd are the spin-12 Pauli operators on
physical qubit and theba’s are operators on the degrees of
freedom of environment. Due to the interaction Hamil-
tonian, the quantum system will entangle with the envi-
ronment so that the quantum information encoded into
quantum states irreversibly dissipates into the environ-
ment; this is the so-called decoherence. The objective of
dynamical decoupling with BB operations used in our
scheme is to modify this unwanted evolution.

The process of dynamical decoupling by BB operations,
which counteracts decoherence by applying sequences of
strong and fast pulses, serves for protecting the evolution of
S against the effect of the interactionHSB. In the standard
view of the dynamical decoupling, a set of realizable BB
operations can be chosen such that they form a discrete(fi-
nite order) subgroup of the full unitary group of operation on
the Hilbert space of the system. Denote the subgroupG and
its elementsgk, k=0,1, . . . ,uGu−1, whereuGu is the order of
the group. The cycle time isTc= uGuDt, whereuGu is now also
the number of pulse operations, andDt is the time that the
system evolves freely between operations underU0
=exps−iHtd. The evolution of the system now is given by

UsTcd = p
k=0

uGu−1

gk
†U0sDtdgk ; eiHef fTc. s3d

Hef f denotes the resulting effective Hamiltonian. Obviously,
to satisfy the above equation, it is required that the pulses in
the sequence are very fast and strong compared with the
evolution of HamiltonianH, which is the origin of the name
“bang-bang” operation. In this BB limit, the system will
evolve under the effective Hamiltonian

H → Hef f =
1

uGu o
k=0

uGu−1

gk
†Hgk ; pG

sHd. s4d

The mappG commutes with allgk so that the action of the
controller over times longer than the averaging periodTc
only preserves the set of operators which are invariant under
G, thereby enforcing aG symmetrization of the evolution of
S f19g. Recently, a general result has been established by
Facchi et al. [20], which states that dynamical decoupling
can be accomplished by a sequence of arbitrary(fast and
strong) pulses and symmetry or group structure is not neces-

sary, and the above procedure of decoupling by “symmetri-
zation” arises as a special case. The main drawback of BB
pulse decoupling procedures is that the timing constraints are
particularly stringent. In fact, perfect decoupling from the
environment is obtained only in the infinitely fast control
limit [15,17,21], but it has been established that these decou-
pling schemes can be effective in a realistic situation with
control pulses with finite strength and time duration[17,22].

Now let us first present our approach to counteract deco-
herence. For modifying the coupling induced by the Hamil-
tonian in Eq.(2), we consider a single BB operationUz1
=exps−iszp /2d=−isz, and when no pulses are applied the
unit operatorI denotes the operation on qubits. Using the
commutation relation for Pauli operators, we have

Uz1
† sxUz1 = szsxsz = − sx, s5d

Uz1
† syUz1 = szsysz = − sy, s6d

Uz1
† szUz1 = szszsz = sz. s7d

Thus after cycles of BB operations, we can obtain the effec-
tive interaction Hamiltonian

HSB→ p sHSBd = sz ^ bz, s8d

which still introduces phase decoherence. In order to coun-
teract phase decoherence, we can encode quantum informa-
tion into DFSs. We use a well-known codef6,7,23g in which
two physical qubits encode a logical qubit,

u0lL = u0112l and u1lL = u1102l. s9d

Here i =1,2 indexes physical qubits. For the system consist-
ing of two physical qubits, the BB operation on the two
physical qubits, correspondingly, can be defined as collective
rotation: Uz=Uz1 ^ Uz2=exps−is1

zp /2d ^ exps−is2
zp /2d

=−s1
z

^ s2
z, and thenPsHSBd=ss1

z+s2
zd ^ bz. Clearly, such

encoding on a pair of physical qubits ensures that the
encoded states are decoherence-free for phase error only if
the disturbances from the environment around the system
are identical. In other words, the two qubits must be ar-
ranged so close to each other that they undergo collective
phase decoherence. Here the DFSs encoding together with
BB operations serve for combating decoherence.

In Refs.[24,25], Byrd and Lidar have proposed a compre-
hensive encoding and decoupling solution to problems of
decoherence. Decoherence is first reduced by encoding a
logical qubit into two qubits, then completely eliminated by
an efficient set of decoupling pulse sequences, in which
cycles of pairs of BB pulses generated from the same ex-
change Hamiltonian are used to eliminate errors other than
dephasing. The quantum code in our scheme is analogous to
the one they have proposed for reducing phase decoherence.
Then we apply directly a kind of simple BB pulse on a
physical qubit to selectively decouple the system from the
environment, which reduces the complexity of pulse opera-
tion. In our scheme untunable qubit-qubit interaction can be
controlled by BB operations as discussed in the following
section.
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III. INTERACTION AND BANG-BANG OPERATION

To realize QC, any universal quantum gates(quantum op-
erations) must include single-qubit gates and two-qubit
gates. A traditional way for the implementation of single-
qubit and two-qubit gates requires a control on two qubits
level that is an ability to “switch on” and to “switch off”
interaction between qubits. But an “always on” coupling can
cause certain problems for quantum information preservation
and QC. For example, if the interaction between two physi-
cal qubits in the code(9) is Heisenberg exchange interaction
[26], the computational basis will always be flipped under
the exchange Hamiltonian, which spoils quantum informa-
tion in qubits. In general, quantum computers exploit control
techniques[27,28] to tune the interaction between two physi-
cal qubits to avoid the undesired effect of the coupling, and
tunability of the interaction constant is at the heart of many
solid-state proposals, but this may prove extremely difficult
to achieve experimentally. Recently, some schemes of QC
governed by always on interaction have been presented
[29–31]. In our scheme, we discuss the case that the interac-
tion is always on and untunable, and we exploit BB opera-
tions to selectively decouple two physical qubits.

Now we consider the general exchange interaction be-
tween physical qubits. The exchange interaction Hamiltonian
in the system has the form

HI = Jxs1
x

^ s2
x + Jys1

y
^ s2

y + Jzs1
z

^ s2
z, s10d

whereJa’s, sa=x,y,zd are exchange interaction constants.
We first consider the case of a single logical qubit. Under

the self-exchange interaction, we find

HIu0lL = sJx + Jydu1lL − Jzu0lL, s11d

HIu1lL = sJx + Jydu0lL − Jzu1lL. s12d

Obviously, quantum information encoded will be spoiled by
the self-exchange interaction. We selectively decouple the
two physical qubits encoded into a logical qubit by introduc-
ing a selective decoupling BB operationRz= I1
^ exps−is2

zp /2d=−iI 1 ^ s2
z. We obtain

Rz
†s1

x
^ s2

xRz = s1
x

^ s2
zs2

xs2
z = − s1

x
^ s2

x, s13d

Rz
†s1

y
^ s2

yRz = s1
y

^ s2
zs2

ys2
z = − s1

y
^ s2

y, s14d

Rz
†s1

z
^ s2

zRz = s1
z

^ s2
zs2

zs2
z = s1

z
^ s2

z. s15d

So after cycles of BB operations, we obtain effective self-
interactionpsHId=Jzs1

z
^ s2

z, which is equivalent to Ising in-
teraction; the encoded statesu0Ll and u1Ll in Eq. s9d are de-
generate under the effective self-interaction. Therefore, if we
store information in these states, no evolution whatsoever is
present. In other words, for the untunable exchange interac-
tion quantum information is stabilized by means of BB con-
trol and quantum encoding.

Until now, we have introduced two BB operationsUz and
Rz. As already noted, the two BB operations are used on
qubits 1 and 2 to counteract decoherence and undesired in-
teraction. Actually, the pulse operationsRz= I1

^ exps−is2
zp /2d only act on physical qubit 2. For physical

qubit 1, only the pulse operations1
z has an effect on the

decoherence. But there are two kinds of pulse operations in
Uz and Rz effected on qubit 2 to selectively eliminate not
only qubit-qubit interaction but also qubit-environment inter-
action. In other words, the number of pulse operations on
qubits 1 and 2 is dissimilar. Because we apply the same pulse
operationssszd on every physical qubit, the time intervals
Dt1 on qubit 1 andDt2 on qubit 2 are different too. This
implies that we have applied a kind of nonsynchronous pulse
operation to overcome environment-induced decoherence
and unwanted coupling between physical qubits.

Let us now show how to devise nonsynchronous pulse
operations for decoupling different interactions. We can
elaborately devise a set of programmed pulse operations in
which the time intervals of the BB operations on two qubits
are varied according to the program. In our scheme, unitary
pulse operations areUz and Rz as given above. Here we
assume that the BB operationUz begins at timet0=0 and
devise the time interval between two pulse operations is con-
stantDt. Then we devise the BB operationRz begins at time
t0+Dt /2 and the time interval isDt too. So the time intervals
between a pair of pulses on qubits 1 and 2 have the relation
Dt1=2Dt2. In Fig. 1 we focus on the evolution of they in-
gredient in HamiltonianHSB under the cycles of BB pulses.
(The same conclusion adapts to thex ingredient in HSB.)
T1=2Dt1 and T2=2Dt2 denote the cycle time of decoupling
operations on qubits 1 and 2, respectively. After cycles of
pulse operations, the total effect of error operators(Y in the
figure) on qubits 1 and 2, respectively, is zero in the cycle
time NTi si =1,2d, here N and Ni si =1,2,3d given in the
following are positive integers. This implies that decoher-
ence on qubits 1 and 2 is held back. In addition, by similar
analysis, we find that for the self-interaction between qubits
1 and 2, the total effect of the error operatorJxs1

x
^ s2

x

+Jys1
y

^ s2
y is also eliminated in the cycle timeT=N1T1

=N2T2, so in they axis qubits 1 and 2 are decoupled. The
result shows that the programmed BB pulse operations can
eliminate or selectively eliminate not only qubit-environment
interaction but also qubit-qubit interaction. This gives us a
very heuristic solution to elimination of undesired coupling.
The method of decoupling with programmed unsymmetrical

FIG. 1. The evolution of physical qubits 1 and 2 about they axis
under HamiltonianHSB and pulse operations. White and black rec-
tangles denote strong and fast pulse operationsUz andRz, respec-
tively. T1 andT2 denote the cycle time of decoupling operations on
qubits 1 and 2.Y=sy is the error operator on the physical qubit.
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pulse operations may be of great benefit to implementation
of QC in many complicated circumstances.

In the above discussion, we present a dynamical decou-
pling scheme based on group averaging formulation. It is
noteworthy that for the two-qubit system the operation set
hI ,Uz,Rzj has no group structure, which accords with the
result of Ref.[20].

We still need to show how the interaction between two
logical qubits influences the encoded states of logical qubits.
The exchange interaction in Eq.(10) between two logical
qubits will induce unwanted flow of quantum information
between two logical qubits. This will inevitably result in the
failure of the preservation of quantum information and QC.
In our scheme, quantum computer is constructed in a one-
dimensional array of physical qubits. Now, we introduce new
logical qubitsL2 and L3 (see Fig. 2). For logical qubitL2,
two selective decoupling BB operations are chosen asUx
and Rx, hereUx=Ux3 ^ Ux4=exps−is3

xp /2d ^ exps−is4
xp /2d

=−s3
x

^ s4
x andRx= I3 ^ Ux4=−iI 3 ^ s4

x. Then, we can obtain
the effective interaction HamiltonianpsHSBd=ss3

x+s4
xd ^ bx

and the effective self-interactionpsHId=Jxs3
x

^ s4
x. Accord-

ingly, two encoded states ofL2 encoded in DFS can be writ-
ten as

u0lLB
= 1

2su03l + u13ldsu04l − u14ld, s16d

u1lLB
= 1

2su03l − u13ldsu04l + u14ld, s17d

where the subscriptB denotes the method of decoupling and
encoding for logical qubitL2. Similarly, two selective decou-
pling subgroups of logical qubitL3 are chosen asUy andRy.
Here Uy=Uy5 ^ Uy6=exps−is5

yp /2d ^ exps−is6
yp /2d=−s5

y

^ s6
y and Ry= I5 ^ Uy6=−iI 5 ^ s6

y, and then, the quantum
code in DFS will have the form

u0lLC
=

1

2
su05l + i u15ldsu06l − i u16ld, s18d

u1lLC
=

1

2
su05l − i u15ldsu06l + i u16ld. s19d

Obviously, with selective decoupling and encoding into
DFSs,L2 and L3 can overcome decoherence and unwanted
internal interaction asL1 does.

Now, we focus on the coupling between logical qubitsL1
and L2 that is equivalent to the coupling between physical
qubit 2 and 3. The inherent interaction HamiltonianH23 be-
tween qubits 2 and 3 has the form as shown in Eq.(10). For
physical qubit 2, the pulse operation iss2

z, then the evolution
of thex andy ingredients in HamiltonianH23 is changed. For
qubit 3, the pulse operation iss3

x which changes the evolu-
tion of the y and z ingredients in HamiltonianH23. Then,
after cycles of pulse operations in the timeT=N2 2Dt2
=N3 2Dt3, we obtainpss2

x
^ s3

xd=0 and pss2
z

^ s3
zd=0. So

the evolution of thex andz ingredients in HamiltonianH23 is
eliminated. As far as the evolution of they ingredient is
concerned, since pulses have effect on qubit 2 at the interval
of Dt2, but on qubit 3 at the interval ofDt1, hereDt1=2Dt2,
the evolution abouty axis on qubits 2 and 3 is unsymmetri-
cal, thenpss2

y
^ s3

yd=0, i.e., the evolution of they ingredient
in Hamiltonian is eliminated. This can also be illuminated by
Fig. 1. To sum up, with cycles of pulse operations, the effect
of HamiltonianH23 between qubits 2 and 3 is eliminated. In
other words,L1 is entirely decoupled fromL2. The same
conclusion can be drawn for logical qubitsL2 andL3.

We showed above that with BB pulse operations and
quantum encoding into DFS, the three logical qubits over-
come not only environment-induced decoherence but also
unwanted inherent interaction which is always on and untun-
able between physical qubits. And we devise that the three
logical qubits are effected with three different BB operations
so that every logical qubit is decoupled from others. Then,
we can construct a scalable quantum computer with the three
logical qubits as a unit of computation, i.e., the quantum
computer has the periodic structureAABBCCAABBCC̄ ,
whereAA, BB, andCC denote encoded logical qubits analo-
gous toL1, L2, andL3, respectively.

IV. QUANTUM COMPUTATION

Our discussion so far has concentrated on the preservation
of quantum information. To carry out quantum information,
we must have the ability to manipulate encoded quantum
information. Thus we still need to show that universal QC
can actually be performed in our scheme. DiVincenzo shows
that for any unitary transformation on quantum states it is
sufficient to apply(a) all single-qubit rotations[SU(2)] to-
gether with(b) the two-qubit controlled-NOT (CNOT) gate on
any two logical qubits[32].

In our scheme, we assume that any single-qubit opera-
tions on physical qubits are realizable at will by virtue of
external pulses. We can define logical operations(denoted by
a bar) which act on the encoded qubits. For example,

X̄: u0Ll↔ u1Ll. For logical qubit L1, X̄=sJxs1
x

^ s2
x+Jys1

y

^ s2
yd / sJx+Jyd. Logical X̄ operation can be easily achieved

by recoupling qubits 1 and 2 with the interaction Hamil-
tonian as shown in Eq.(10). We adjust the time intervals of
pulses on qubits 1 and 2 both toDt3, where Dt3=Dt2/2
=Dt1/4. In other words, only synchronous collective BB
pulses are applied, which just eliminate the coupling from
environment but have no effect on qubit-qubit couplingHI.
Then, we have

FIG. 2. Architecture of three logical qubits in the quantum com-
puter. Each dot is a physical qubit and the dashed lines represent the
interaction between qubits. Every logical qubit consists of two
physical qubits. Arrows with different colors denote different pulse
operations on the logical qubit.
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eiuHIuilL = eiusJxs1
x

^s2
x+Jys1

y
^s2

y+Jzs1
z

^s2
zduilL = e−iuJZeiusJx+JydX̄uilL.

s20d

By the free evolution under the inherent interaction Hamil-

tonian, we can easily accomplish logicalX̄ operation. We
must note that the time intervals of pulses on qubits 2 and 3
are still unequal; this implies that after cycles of pulse op-
erations in the timeT=N2 2Dt3=N3 2Dt1, qubit 2 remarks

decoupled from qubit 3; logicalX̄ operation onL1 therefore
has no impact on other logical qubits. We can also imple-

ment logicalZ operationZ̄=ss1
z−s2

zd /2 by direct pulse op-

erations on physical qubits, thenX̄ and Z̄ generate all
encoded-qubit SUs2d transformations.

By inspection of quantum codes of logical qubitsL1, L2,
andL3, we find that the DFSs ofL2 andL3 can be obtained
by performing a unitary transformation on that ofL1. For
example, the transformation of DFSs betweenL1 andL2 is a
Hadamard transformation. Obviously, single-encoded-qubit
operations, which preserve the DFSs ofL1 and L2, respec-
tively, have the same unitary transformation too. Then, by
performing a transformation on single-encoded-qubit gate
given above, all single-encoded-qubit operations[SU(2)] on
L2 andL3 can be easily achieved(see Table I).

Two-encoded-qubitCNOT gate seems to be more compli-
cated, but in our scheme it is very easy to accomplish the
two-qubit gate. For the convenience of discussion, let us as-
sume that we want to do aCNOT operation from logical qubit
L1 to L2 in Fig. 2. To obtain a two-qubit gate, we consider the
imprimitive gateW=eiusz

^sz
, which is equivalent to a con-

trolled rotation about thez axis [33],

eiusz
^sz

; u0lk0u ^ I + u1lk1u ^ ei2uuusz
. s21d

Conjugated by single-qubit Hadamard operation

H =
1
Î2
F1 1

1 − 1
G

on the second qubit,W can be used to implement aCNOT

operation:

CNOT ; u0lk0u ^ I + u1lk1u ^ eisp/2dsx
. s22d

To implement an encodedCNOT betweenL1 andL2, we must
recouple the two logical qubits with an interaction in the

form Z̄L1
^ Z̄L2

. We perform a unitary Hadamard transforma-

tion onL2. In other words, we change the BB pulses charac-
terized by −s3

x
^ s4

x and −iI 3 ^ s4
x to the same withL1, and

the quantum code in Eqs.(16) and(17) to the same with that
in Eq. (9), i.e., u0lLB

→ u0lLA
= u0314l and u1lLB

→ u1lLA
= u1304l. It should be noted thatL2 and L3 are still entirely
decoupled after the unitary transformation. Then the effec-
tive interactions between qubits 1, 2, 3, and 4 all are in the
form of Ising interaction. In this system we assume that the
interaction only exists between any nearest-neighbor physi-

cal qubits. Obviously,Z̄L1
^ Z̄L2

=s2
z

^ s3
z, two-encoded-qubit

CNOT gate can be implemented by the evolution under the
effective interactions2

z
^ s3

z and single-qubit Hadamard op-
eration conjugately effected on a physical qubit. Similarly,
we can implement aCNOT operation betweenL2 andL3.

As above, we showed that it is possible to perform all
single- and two-encoded-qubit operations by means of pulse
operations and evolution under inherent interaction. In our
scheme, single- and two-encoded-qubit operations do not in-
fluence decoupling operations and preserve DFSs all the
time, so quantum states encoded with quantum information
will not undergo decoherence, then we implement universal,
fault-tolerant QC.

V. DISCUSSION AND CONCLUSION

In this paper we have presented a scheme of scalable
quantum computer governed by an untunable exchange
Hamiltonian. We combine ideas from the theory of
decoherence-free subspaces and BB control to solve the
problem of strong decoherence. Cycles of simple BB pulses
are used to selectively decouple the system from external
environment, then by encoding two physical qubits into a
DFS, we obtain full protection against strong decoherence.
By concatenating BB control with the DFSs encoding, our
scheme decreases the number of physical qubits required to
counteract decoherence. It is highly important for the physi-
cist to reduce the physical resource needed for implementa-
tion of scalable quantum computer, because quantum com-
puting resources available are still a stringent requirement for
practical quantum engineering. Comparing with other decou-
pling scheme, in our scheme only very simple BB pulses are
applied which is easy to accomplish.

Furthermore, we have discussed the influence of an al-
ways on and untunable interaction between physical qubits
on the logical qubits. The undesired effects of the internal
interaction can be eliminated via cycles of BB operations,

TABLE I. Comparison of properties between logical qubitsL1, L2, andL3.

L1 L2 L3

Ua −s1
z

^ s2
z −s3

x
^ s4

x −s5
y

^ s6
y

Ra −iI 1 ^ s2
z −iI 3 ^ s4

x −iI 5 ^ s6
y

u0lL u0112l 1
2su03l+ u13ldsu04l− u14ld 1

2su05l+ i u15ldsu06l− i u16ld
u1lL u1102l 1

2su03l− u13ldsu04l+ u14ld 1
2su05l− i u15ldsu06l+ i u16ld

X̄ sJxs1
x

^ s2
x+Jys1

y
^ s2

yd / sJx+Jyd sJys3
y

^ s4
y+Jzs3

z
^ s4

zd / sJy+Jzd sJxs5
x

^ s6
x+Jzs5

z
^ s6

zd / sJx+Jzd

Z̄ ss1
z−s2

zd /2 ss3
x−s4

xd /2 ss5
y−s6

yd /2
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which simplifies the physical structure of quantum computer
that is devised in a very complicated manner for implement-
ing the tunability of the coupling strength in many QC pro-
posals. By different unsymmetrical decoupling operations,
every logical qubit is entirely decoupled from others. With
direct pulse operations on physical qubits and effective inter-
action, we can achieve all single- and two-encoded-qubit
gates for implementing universal QC. Moreover, in our
scheme all single- and two-encoded-qubit operations pre-
serve logical

qubits in a DFS all the time, so we implement universal,
fault-tolerant QC.
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