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Concatenating dynamical decoupling with decoherence-free subspaces for quantum computation
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A scheme to implement a quantum computer subjected to decoherence and governed by an untunable
qubit-qubit interaction is presented. By concatenating dynamical decoupling through ban@Bnoulse
with decoherence-free subspad®@FS9 encoding, we protect the quantum computer from environment-
induced decoherence that results in quantum information dissipating into the environment. For the inherent
qubit-qubit interaction that is untunable in the quantum system, BB control plus DFSs encoding will eliminate
its undesired effect which spoils quantum information in qubits. We show how this quantum system can be
used to implement universal quantum computation.
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[. INTRODUCTION the interaction with the environment, which guarantees the
existence of state space regions inaccessible to noise. The

_ Quantum computatioiQC) has become a very active g strategy can be termed dynamical decoupling or quan-
field ever since the discovery that quantum computers can q

fim “bang-bang”(BB) control [14-18 after its classical
much more powerful than their classical counter . :
Quantum coFr)nputers act as sophisticated quantgfnn?r?]form analog by using strong, fast pulses on quantum systems. The

tion processors, in which calculations are made by the co Ef_iasic idea is that open-system properties, specifically deco-
' nherence, may be modified if a time-varying control field acts

trolled time evolution of a set of coupled two-level quantum he d . f1h ) les th
systems. Coherence in the evolution is essential for taking" the dynamics of the system over time scales that are com-

advantage of quantum parallelism, which plays an essentiéﬂarable_to the memory time of the environment. Dynamical
role in all quantum algorithms. However, real physical sys-decoupling has an advantage over QECCs and DFSs, be-
tems will inevitably interact with their surrounding environ- cause it uses external puls@8 pulsg rather than requiring
ment. No matter how weak the coupling that prevents arfeveral physical qubits to encode one logical qubit.

open system from being isolated, the evolution of the system Despite their promise to counteract decoherence in the
is eventually plagued by nonunitary features such as decgrocess of QC, QECCs and DFSs, in which ancillary physi-
herence and dissipatioj#]. Quantum decoherence, in par- cal qubits are required for protecting quantum information,
ticular, is a purely quantum-mechanical effect whereby théhave their disadvantage for the construction of a large scale
system loses its ability to exhibit coherent behavior by get-quantum computer, because the available physical resource
ting entangled with the ambient degrees of freedom. Decois very exiguous in the present quantum engineering. Dy-
herence stands as a serious obstacle common to all applicaamical decoupling does not require an ancillary physical
tions, including QC, which rely on the capability of qubit to protect quantum information, but entirely decou-
maintaining and exploiting quantum coherence. pling system from the environment requires more compli-

~ Recently, considerable effort has been devoted to desigreated pulse operations. Moreover, the inherent qubit-qubit
ing strategies able to counteract decoherence. Roughijteraction, which is vital to the implementation of two-qubit
speaking, three classes of procedures are available to OVefate, is assumed to be tunable in all the approaches given

come the decoherence problem. Two kinds of encodingyqoye hut this will augment further the complexity of quan-
methods of these strategies in the field of quantum mforma,fum computer in microstructure. Our effort is devoted to

gon ﬁre quanftum errc:)r-corregli:og COdf@ECCﬁ [d5] and  goving the problems mentioned above. In this work we
ec%_erencz- re% 1su %paﬁeb 3 aiso Céi_ € herror- present an architecture of quantum computer with fixed cou-
avoiding co €5 [6-13, both based on encoding the state ling between qubits. In our scheme, by concatenating dy-
into carefully selected subspaces of the Hilbert space of th amical decoupling and DFSs encoding we can simulta-

system, The main diffgrence bgtween the two encpding StraFieously overcome the effects from decoherence and qubit-
egies is that QECCs is an active strategy, in which the en:

> i . gubit interaction and realize the scalable fault-tolerant QC.
coding is performed in such a way that the various errors ar

.~ The structure of the paper is as follows. In Sec. Il, we
mapped onto orthogonal subspaces so that they can be d'%’view dynamical decoupling by BB operations, and we

nosed and reversed, and DFSs instead .provide a pas;igﬂow how to counteract decoherence via encoding into DFSs
strategy relying on the occurrence of specific symmetries iNnd decoupling by BB operations. In Sec. Il we deal with

the inherent qubit-qubit interaction between physical qubits

by BB operations. We show in Sec. IV how the universal QC
*Electronic address: zhyong98@mail.ustc.edu.cn can be accomplished. Section V is for discussion and con-
"Electronic address: zwzhou@ustc.edu.cn cluding remarks.
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Il. DECOHERENCE AND BANG-BANG OPERATION sary, and the above procedure of decoupling by “symmetri-
zation” arises as a special case. The main drawback of BB
pulse decoupling procedures is that the timing constraints are
particularly stringent. In fact, perfect decoupling from the
environment is obtained only in the infinitely fast control
limit [15,17,2], but it has been established that these decou-
pling schemes can be effective in a realistic situation with
control pulses with finite strength and time durat{d7,22.
H=Hs® lg+1s® Hg + Hgp, (1) Now let us first present our approach to counteract deco-
herence. For modifying the coupling induced by the Hamil-
whereHs, Hg, andHgg are the system, bath, and interaction tonjan in Eq.(2), we consider a single BB operatid,,
Hamiltonians, respectively. The interaction Hamiltonian be':exp(—iozw/Z):—icrz, and when no pulses are applied the
tween the system and bath can be written as unit operatorl denotes the operation on qubits. Using the
commutation relation for Pauli operators, we have

We consider a two-level quantum syst&woupled to an
arbitrary bathB, which together form a closed system de-
fined on the Hilbert spack =Hs® Hg, HsandHg denoting
S and B Hilbert spaces, respectively. The dynamics of the
quantum systen$ coupled to a batiB evolves unitarily un-
der the Hamiltonians

Hsg= 0y ® by+ oy ® by +0,® b,. (2)
T = =_
Here thea,’s (a=x,y,2) are the spins Pauli operators on UnoUn = 0040, =~ 0, (5)
physical qubit and thé,’'s are operators on the degrees of ;
freedom of environment. Due to the interaction Hamil- UpoyUn = 0,0y0,= = 0y, (6)
tonian, the quantum system will entangle with the envi-
ronment so that the quantum information encoded into Ul oUp = 0,0,0,= 0, (7)

guantum states irreversibly dissipates into the environ-
ment; this is the so-called decoherence. The objective ofhus after cycles of BB operations, we can obtain the effec-
dynamical decoupling with BB operations used in ourtive interaction Hamiltonian
scheme is to modify this unwanted evolution.
The process of dynamical decoupling by BB operations, Hss— [I (Hsp =0, ® b, (8)

which counteracts decoherence by applying sequences of

strong and fast pulses, serves for protecting the evolution ot\?f?"*; SE” mtrgducr(]esr p:asewdecof;ler?]ncz. In Orr?tern;[oin?‘mrjr?_
S against the effect of the interactidtisg. In the standard eract pnase decoherence, we can encode quantu orma-

view of the dynamical decoupling, a set of realizable BBtlon into DFSs. We use a well-known cofi#7,23 in which

operations can be chosen such that they form a dis¢fiete two physical qubits encode a logical qubit,
nite o_rdey subgroup of the full unitary group of operation on |0y, =10,1,) and|1), =|1,0,). (9)
the Hilbert space of the system. Denote the subg®amd
its elementsy,, k=0,1, ... |G|-1, where|g] is the order of Herei=1,2indexes physical qubits. For the system consist-
the group. The cycle time i§.=|G|At, where|G| is now also  ing of two physical qubits, the BB operation on the two
the number of pulse operations, antl is the time that the physical qubits, correspondingly, can be defined as collective
system evolves freely between operations undég rotation: U,=U, ®@ Uy=exp—ioim/2) ® exp(-iosm/ 2)
=exp(—iHt). The evolution of the system now is given by =-0{® 0%, and thenll(Hgp =(o+0%) ® b, Clearly, such
encoding on a pair of physical qubits ensures that the
- encoded states are decoherence-free for phase error only if

U(To) = H giUo(At)g, = eMlerTe, (3 the disturbances from the environment around the system

k=0 K . .
are identical. In other words, the two qubits must be ar-

Het; denotes the resulting effective Hamiltonian. Obviously,ranged so close to each other that they undergo collective
to satisfy the above equation, it is required that the pulses iphase decoherence. Here the DFSs encoding together with
the sequence are very fast and strong compared with thBB operations serve for combating decoherence.

lgl-1

evolution of HamiltoniarH, which is the origin of the name In Refs.[24,25, Byrd and Lidar have proposed a compre-
“bang-bang” operation. In this BB limit, the system will hensive encoding and decoupling solution to problems of
evolve under the effective Hamiltonian decoherence. Decoherence is first reduced by encoding a

logical qubit into two qubits, then completely eliminated by
an efficient set of decoupling pulse sequences, in which

H = Het = ﬁ kE_O nggk: HG(H)' (4) cycles of pairs of BB pulses generated from the same ex-

B change Hamiltonian are used to eliminate errors other than

The mapll; commutes with allg, so that the action of the dephasing. The quantum code in our scheme is analogous to
controller over times longer than the averaging peripd the one they have proposed for reducing phase decoherence.
only preserves the set of operators which are invariant undefhen we apply directly a kind of simple BB pulse on a
g, thereby enforcing & symmetrization of the evolution of physical qubit to selectively decouple the system from the
S [19]. Recently, a general result has been established bgnvironment, which reduces the complexity of pulse opera-
Facchiet al. [20], which states that dynamical decoupling tion. In our scheme untunable qubit-qubit interaction can be
can be accomplished by a sequence of arbitiémgt and controlled by BB operations as discussed in the following
strong pulses and symmetry or group structure is not necessection.

I6l-1
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I1l. INTERACTION AND BANG-BANG OPERATION

To realize QC, any universal quantum gatgsantum op- Y Y v v qubit 1
erationg must include single-qubit gates and two-qubit U T 1 —
gates. A traditional way for the implementation of single- T2 T, 3Ty/2 2yt

qubit and two-qubit gates requires a control on two qubits
level that is an ability to “switch on” and to “switch off”
interaction between qubits. But an “always on” coupling can

cause certain problems for quantum information preservation Uy ||yl Y| vy | ]y ||aubit?
and QC. For example, if the interaction between two physi- T T T -
cal qubits in the cod€9) is Heisenberg exchange interaction 0 Tz 2T, 3T, 4T,

[26], the computational basis will always be flipped under _ : . .
the exchange Hamiltonian, which spoils quantum informa- - dFeISHirnTil?oeniez;ls-llum;gf pu'g:'%ale?;ggisl awngiti an%ugﬁ('srec_
tion in qubits. In general, quantum computers exploit control SB P p X

techni 27 28 to t ,th int tion bet WO bhvsi tangles denote strong and fast pulse operatidghandR,, respec-
ecl: nl(gge$ ' Eﬂ_do hune de 'T‘ e(;acﬁlon ?v;:een ?'p yst- ively. T; andT, denote the cycle time of decoupling operations on
cal qu _ItS to avol the undesired e e_Ct of the coupling, an(i]ubits 1 and 2Y=o0y is the error operator on the physical qubit.
tunability of the interaction constant is at the heart of many

solid-state proposals, but this may prove extremely difficult . . . .
to achieve experimentally. Recently, some schemes of Q@ exp(—iom/2) only act on physical qubit 2. For physical

governed by always on interaction have been presente@Ubit 1, only the pulse operation; has an effect on the
[29-31. In our scheme, we discuss the case that the intera lecoherence. But there are two kinds of pulse operations in

tion is always on and untunable, and we exploit BB opera-Uz and R, effected on qubit 2 to selectively eliminate not

tions to selectively decouple two physical qubits. only qubit-qubit interaction but also qubit-environment inter-

Now we consider the general exchange interaction pedction. In other words, the number of pulse operations on

tween physical qubits. The exchange interaction HamiltoniauPits 1 and 2 is dissimilar. Because we apply the same pulse
in the system has the form operations(¢® on every physical qubit, the time intervals

At; on qubit 1 andAt, on qubit 2 are different too. This
H =301 ® 05+ Jyo] ® 0%+ 3,07 ® 03, (100  implies that we have applied a kind of nonsynchronous pulse

whered.'s, (a=x.y,7) are exchange interaction constants operation to overcome environment-induced decoherence
aS, (@=X.Y, 9 " and unwanted coupling between physical qubits.

We first consider the case of a single logical qubit. Under Let us now show how to devise nonsynchronous pulse
the self-exchange interaction, we find operations for decoupling different interactions. We can

H, |00, = (3¢ +3y)|1) = J,|0),, (11)  elaborately devise a set of programmed pulse operations in
Y which the time intervals of the BB operations on two qubits
H[1) = (3+ 3]0}~ 1), (12 are varied according to the program. In our scheme, unitary

pulse operations ar&, and R, as given above. Here we
Obviously, quantum information encoded will be spoiled byassume that the BB operatids, begins at timet,=0 and
the self-exchange interaction. We selectively decouple théevise the time interval between two pulse operations is con-
two physical qubits encoded into a logical qubit by introduc-stantAt. Then we devise the BB operatiéty begins at time
ing a selective decoupling BB operationR,=I, to+At/2 and the time interval iAt too. So the time intervals
® exp(-io5m/2)=-il 1 ® 05. We obtain between a pair of pulses on qubits 1 and 2 have the relation
. At;=2At,. In Fig. 1 we focus on the evolution of thein-
R,01 ® 05R, = 0 ® 030305 =~ 0} ® 03, (13)  gredient in HamiltoniarHsg under the cycles of BB pulses.
(The same conclusion adapts to thkdangredient inHgg)
Rlo¥ ® odR,= 0¥ ® 0%0%05=— 0 ® oY, (14  T,=2At; andT,=2At, denote the cycle time of decoupling
operations on qubits 1 and 2, respectively. After cycles of
Rlof ® 0%R,= 0% ® b0k = 0k ® ol (15) pulse operatio_ns, the total effect qf error opera(gfsn the
figure) on qubits 1 and 2, respectively, is zero in the cycle
So after cycles of BB operations, we obtain effective self-time NT; (i=1,2), hereN and N, (i=1,2,3 given in the
interactionlI(H,) =J,07 ® 0%, which is equivalent to Ising in-  following are positive integers. This implies that decoher-
teraction; the encoded stats) and|1,) in Eq. (9) are de- ence on qubits 1 and 2 is held back. In addition, by similar
generate under the effective self-interaction. Therefore, if weanalysis, we find that for the self-interaction between qubits
store information in these states, no evolution whatsoever i$ and 2, the total effect of the error operatdw’ ® o%
present. In other words, for the untunable exchange interac-Jyo}® o} is also eliminated in the cycle tim&=N;T;
tion quantum information is stabilized by means of BB con-=N,T,, so in they axis qubits 1 and 2 are decoupled. The
trol and quantum encoding. result shows that the programmed BB pulse operations can
Until now, we have introduced two BB operatiodgand  eliminate or selectively eliminate not only qubit-environment
R,. As already noted, the two BB operations are used ofinteraction but also qubit-qubit interaction. This gives us a
qubits 1 and 2 to counteract decoherence and undesired iRery heuristic solution to elimination of undesired coupling.
teraction. Actually, the pulse operationsR,=l;  The method of decoupling with programmed unsymmetrical
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SN ,/"‘\ ,/"\\ Now, we focus on the coupling between logical quhifs
/’ L l\ /’ i ﬂ\ /’ H\ and L, that is equivalent to the coupling between physical
'/1 i) ‘.| role ‘\‘ I Ls ‘6 qubit 2 and 3. The inherent interaction Hamiltonidg; be-
cec o —@re-—0~l0—=0 tween qubits 2 and 3 has the form as shown in&@). For
\I '/’ \ﬁ I / physical qubit 2, the pulse operationdg$, then the evolution
| ¥ \ y \ U of thex andy ingredients in Hamiltoniai, is changed. For

Nl Nl qubit 3, the pulse operation i85 which changes the evolu-
) ] o tion of they and z ingredients in HamiltoniarH,3. Then,
FIG. 2. Architecture of three logical qubits in the quantum COM- 5fter cycles of pulse operations in the tinfe=N, 2At,
puter. Each dot is a physical qubit and the dashed lines represent th_fN3 2Ats, we obtainll(c%® ¢)=0 andTl(0%® 0%)=0. So
interaction between qubits. Every logical qubit consists of two, - . L andzzingrgédients in Har271ilto?1ialh1 i
physical qubits. Arrows with different colors denote different pU|SeeIiminated As far as the evolution of theingredierzf"[ is
operations on the logical qubit. C . .
peratl gical quil concerned, since pulses have effect on qubit 2 at the interval
, ) , . of At,, but on qubit 3 at the interval akt;, hereAt;=2At,,
pulse qperanons may be of great benefit to implementatioghe evolution abouy axis on qubits 2 and 3 is unsymmetri-
of QC in many complicated circumstances. _ cal, thenll(¢¥® 0%) =0, i.e., the evolution of thg ingredient
In the above discussion, we present a dynamical decoly amitonian is eliminated. This can also be illuminated by

pling scheme based on group averaging formulation. It issjq 1 1o sum up, with cycles of pulse operations, the effect
noteworthy that for the two-qubit system the operation Set,¢'tamijtonianH.; between qubits 2 and 3 is eliminated. In

{I,U;,R} has no group structure, which accords with the e \orgs,L, is entirely decoupled froni, The same

result of Ref.[20]. , , conclusion can be drawn for logical qublts and L.

We still need to show how the interaction between two  \nve showed above that with BB pulse operations and
logical qubits mfluenceg the_ encoded states of logical _qu'tﬁquantum encoding into DFS, the three logical qubits over-
The exchange interaction in EL0) between two logical  come not only environment-induced decoherence but also
qubits will induce unwanted flow of quantum information \nanted inherent interaction which is always on and untun-
bgtween two logical quplts. This will mgvnably r.esult inthe gple between physical qubits. And we devise that the three
failure of the preservation of quantum information and QC.|qgical qubits are effected with three different BB operations
In our scheme, quantum computer is constructed in & ON&sq that every logical qubit is decoupled from others. Then,
dimensional array of physical qubits. Now, we introduce néWye can construct a scalable quantum computer with the three
logical qubitsL, andL; (see Fig. 2 For logical qubitly, |ogical qubits as a unit of computation, i.e., the quantum
two selective decoupling BB operations are choserlJas computer has the periodic structufABBCCAABBCE -,

and R,, hereU,=U,;® Ux4:e_XFi‘i0)§7T/2) ®eXp(_i0ﬁ7T/2)_ whereAA, BB, andCC denote encoded logical qubits analo-
=-03® 0, andR=130 U,y =-il;@ 07. Then, we can obtain gous toL,, L,, andLs, respectively.

the effective interaction HamiltoniaH(Hsg =(o%+0%) ® by
and the effective self-interactiofi(H,)=J,0%® o). Accord-
ingly, two encoded states &} encoded in DFS can be writ- IV. QUANTUM COMPUTATION

ten as . : :
Our discussion so far has concentrated on the preservation

|O>LB: %(|03> +]12)(|05) = 1)), (16) of quantum informatior_m_ To carry out quantum information,
we must have the ability to manipulate encoded quantum
information. Thus we still need to show that universal QC
D, = 2(103) = |12)(|04) + 14)), (17)  can actually be performed in our scheme. DiVincenzo shows
that for any unitary transformation on quantum states it is
where the subscrif® denotes the method of decoupling and sufficient to apply(a) all single-qubit rotationgSU(2)] to-
encoding for logical qubiL,. Similarly, two selective decou- gether with(b) the two-qubit controlledéoT (CNOT) gate on
pling subgroups of logical qublt; are chosen ag, andR,. any two logical qubitg32].

Here U,=Uys®Ug=exp-iotm/2) @ exp-iofm/2)=-0o} In our scheme, we assume that any single-qubit opera-
® o} and R=ls@Us=-ils® o, and then, the quantum tions on physical qubits are realizable at will by virtue of
code in DFS will have the form external pulses. We can define logical operati@enoted by
a bay which act on the encoded qubits. For example,
|O>LC=%(|05>+i|15))(|06>—i|16>), (18  X:|0)<[1). For logical qubitL;, X=(J07®03+dyoy

®0%)/(Je+Jy). Logical X operation can be easily achieved
by recoupling qubits 1 and 2 with the interaction Hamil-
1 : . tonian as shown in Eq10). We adjust the time intervals of
|1>Lc_§(|05>_'|15>)(|06>+'|16>)' (19) pulses on qubits 1 and 2 both tbt;, where At;=At,/2
=At;/4. In other words, only synchronous collective BB
Obviously, with selective decoupling and encoding intopulses are applied, which just eliminate the coupling from
DFSs,L, and L3 can overcome decoherence and unwante@nvironment but have no effect on qubit-qubit coupliig
internal interaction ak, does. Then, we have
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TABLE |. Comparison of properties between logical qubitsL,, andLj.

Ly L, Ls

Ua ~d o db ~o5® ~oY® o}

Ra _i|l®0'§ _“3@0'2( _i|5®0%

0y 10115) 5(03)+[15)(10) = |14)) 5(105)+i[15))(106) [ L6))

| 1,0,) 5(102)=112))(|04) +[14)) 5(105)=i|15))(|06) +i| 1))

X Iy @ 05+, @ a¥) [ (I +dy) (Jyo%® o+ 3,050 03) 1 (I, +J,) (05 ® o5+ 3,06 ® ) [ (I +J,)
ba (0%-05)12 (o5—0y)/2 (al=0f)/2

I eio(JXa§®g§+3ya{®gg+aza§®a§)|i>L = gifizg o(JX+Jy)§|i>L_ tion onL,. In other words, we change the BB pulses charac-

terized by v3® o) and Hl;® o), to the same with_;, and
(200 the quantum code in Eq&L6) and(17) to the same with that
|_in Eq. (9), ie, 0>LB—>|0>LA:|0314> and |1>|_B—’|1>LA
=|130,). It should be noted that, andLs are still entirely
ecoupled after the unitary transformation. Then the effec-
Ive interactions between qubits 1, 2, 3, and 4 all are in the
orm of Ising interaction. In this system we assume that the

By the free evolution under the inherent interaction Hami

tonian, we can easily accomplish Iogicgl operation. We
must note that the time intervals of pulses on qubits 2 and
are still unequal; this implies that after cycles of pulse op~

erations in the timer=N, 2At;=N; 2At;, qubit 2 remarks interaction only exists between any nearest-neighbor physi-

decouplgd from qubit 3; |OgI.Ca>K operation orl, therefqre cal qubits. ObviouslyZ, ®Z, =0%® %, two-encoded-qubit
has no impact on other logical qubits. We can also imple- T 2 .
— CNOT gate can be implemented by the evolution under the

ment logicalZ operationZ= (0"~ 073)/2 by direct pulse 0p-  eftective interactions%® o% and single-qubit Hadamard op-
erations on physical qubits, theX and Z generate all eration conjugately effected on a physical qubit. Similarly,
encoded-qubit S(2) transformations. we can implement @NnOT operation betweeh, and L.

By inspection of quantum codes of logical qublitg L., As above, we showed that it is possible to perform all
andLg, we find that the DFSs df, andL; can be obtained single- and two-encoded-qubit operations by means of pulse
by performing a unitary transformation on that bf. For  operations and evolution under inherent interaction. In our
example, the transformation of DFSs betwégrandL,isa  scheme, single- and two-encoded-qubit operations do not in-
Hadamard transformation. Obviously, single-encoded-qubifluence decoupling operations and preserve DFSs all the
operations, which preserve the DFSslgfand L,, respec- time, so quantum states encoded with quantum information
tively, have the same unitary transformation too. Then, bywill not undergo decoherence, then we implement universal,
performing a transformation on single-encoded-qubit gatéault-tolerant QC.
given above, all single-encoded-qubit operatifgb(2)] on
L, andL; can be easily achieve@ee Table)l.

Two-encoded-qubitNOT gate seems to be more compli-
cated, but in our scheme it is very easy to accomplish the |n this paper we have presented a scheme of scalable
two-qubit gate. For the convenience of discussion, let us aguantum computer governed by an untunable exchange
sume that we want to do@NoT operation from logical qubit Hamiltonian. We combine ideas from the theory of
Ly toL,in Fig. 2. To obtain a two-qubit gate, we consider the decoherence-free subspaces and BB control to solve the
imprimitive gateW=e”"’Z®"Z, which is equivalent to a con- problem of strong decoherence. Cycles of simple BB pulses

V. DISCUSSION AND CONCLUSION

trolled rotation about the axis [33], are used to selectively decouple the system from external
e Dldle? environment, then by encoding two physical qubits into a
0’7 = |o)0| ® | +|1)(1| ® &2, (21)  DFS, we obtain full protection against strong decoherence.

By concatenating BB control with the DFSs encoding, our
scheme decreases the number of physical qubits required to
1 {1 1 } counteract decoherence. It is highly important for the physi-
H=—+ cist to reduce the physical resource needed for implementa-

V2Ll -1 tion of scalable quantum computer, because quantum com-
on the second qubitW can be used to implement@ioT  Puting resources available are still a stringent requirement for
operation: practical quantum engineering. Comparing with other decou-

pling scheme, in our scheme only very simple BB pulses are
cnoT = |0)(0] ® | +|1)(1| ® (2", (22)  applied which is easy to accomplish.

] Furthermore, we have discussed the influence of an al-
To implement an encodezNOT betweerl; andL,, we must  ways on and untunable interaction between physical qubits
recouple the two logical qubits with an interaction in the g the logical qubits. The undesired effects of the internal
form 2, ®Z, . We perform a unitary Hadamard transforma- interaction can be eliminated via cycles of BB operations,

Conjugated by single-qubit Hadamard operation
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which simplifies the physical structure of quantum computemqubits in a DFS all the time, so we implement universal,
that is devised in a very complicated manner for implementfault-tolerant QC.

ing the tunability of the coupling strength in many QC pro-

posals. By different unsymmetrical decoupling operations,

every logical qubit is entirely decoupled from others. With
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