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We investigate analytically a star network of spins, in which all spins interact exclusively and continuously
with a central spin through HeisenbergXX couplings of equal strength. We find that the central spin correlates
and entangles the other spins at zero temperature to a degree that depends on the total number of spins. We find
that the entanglement mediating capability of the central spin depends on the evenness or oddness of this
number. In the limit of an infinite collection of spins, the difference between entanglement and correlations in
terms of divisibility among multiple parties is clearly demonstrated. We also show that with a significant
probability one can maximally entangle any two noncentral spins by measuring all the other spins(a process
related to the recently introduced notion of localizable entanglement). This probability depends on the evenness
and oddness of the total number of spins and remains substantial even for an infinite collection of spins. We
show how symmetric multiparty states for optimal sharing and splitting of entanglement can be obtained as
ground states of this system using a magnetic field. These states can then be mapped on to flying qubits for
transmission to distant parties. We discuss a number of advantages of this mode of generation and distribution
of entanglement over other standard methods.
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For a long-time spin correlations in one-dimensional(1D)
chains and higher dimensional lattices of interacting spins
have been a subject of extensive interest[1,2]. Recently, the
same systems have been studied from the point of view of
truly quantum correlationsor entanglement[3–14]. How-
ever, lattices of various dimensions are not theonly physical
systems whose fabrication is possible with current technol-
ogy. It thus becomes interesting to extend the above line of
research on entanglement in spin systems to other than spin
chains. In particular, various technologies have evolved
which can make any member of an array of qubits(systems
isomorphic to spin 1/2) interact with any other member
[15–17]. These arrays have been developed with the ultimate
aim of quantum computation in mind. However, much before
a full-fledged quantum computer is developed, which re-
quires both large arrays and controllable interactions, we will
have small arrays with untunable(fixed) interactions. This is
true because it is typically difficult to tune interactions in
certain implementations of quantum computation[18] and
generally difficult to have a large array of qubits in any
implementation. With small arrays with untunable(fixed) in-
teractions, it becomes possible to visualize structures of in-
teracting spins which do not fall into the category of lattices
in various dimensions. One very simple structure that one
can imagine, is aspin star, as opposed to the extensively
studiedspin chains. In such a spin star, there is a preferred
spin, which we call thecentral spinwhich interacts withall
the other spins. All the noncentral spins(which we will call
the outer spins), on the other hand, do not directly interact
among themselves. The structure is depicted in Fig. 1 in
which 0 depicts the central spin. The spins 1–5 interact only
with the central spin and not with each other. The architec-
ture is analogous to the star distribution networks used in
communications. To our knowledge, not just entanglement
and correlations, but also the statistical mechanics of such a
structure remains unexplored(we have recently become

aware of work in the same geometry of qubits being carried
out independently by another group, though they use a dif-
ferent measure to quantify the entanglement between qubits
[19]). We show that the ground state of this configuration is
an interesting multiparticle entangled state, symmetric in the
outer spins. If interactions between qubits can be made truly
longrange[20], then this structure could be used for en-
tanglement distribution between several distant parties,
where spins shared by distant parties interact directly. Even
before such long-distance interactions become feasible, we
can use the star configuration as asourceof interesting mul-
tiparticle entangled states. The multiparticle entangled states
of spins in the star configuration can be mapped onto flying
qubits such as photons for distribution to distant parties. We
point out some advantages of this mode of generation and

FIG. 1. This figure depicts the star configuration of spins. The
spin labeled 0 is the central spin, which interacts with spins 1–5
around it.
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distribution of entanglement over standard methods.
Our work can also be regarded as a part of the continued

increase of interest in the study of entanglement between
quantum systems placed in the vertices of various graphs
showing some type of symmetry[21]. In our case the sym-
metry is the exchange symmetry of the outer spins. We will
also show that not only is the ground state of our system an
interesting multiparticle entangled state, but it also allows the
creation of maximally entangled states between any two
outer spins with a significant probability. This uses the re-
cently introduced notion of localizable entanglement[22], in
which all the other spins are measured to entangle any two
spins of interest. Interestingly, the probability of creating a
maximally entangled state between two outer spins also de-
pends on the evenness and oddness of the total number of
spins and remains significant even for an infinite collection
of spins.

The star configuration with couplings of equal strength
has many symmetry properties due to its invariance under
the exchange of any two outer spins and we solve it exactly
in the case of an HeisenbergXX interaction. TheXX model
was intensively investigated for spin chains by Lieb, Schultz,
and Mattis[2] and has been realized in recent years as an
effective Hamiltonian in some systems[16,17]. We find that
the central spinmediatescorrelations and entanglement be-
tween the outer spins at zero temperature to a degree that
depends on the total number of spins in the spin star. As
expected, the entanglement goes down on average with the
increase of the total number of spins. However, it shows
oscillations with the evenness or oddness of this number.
This means that the entanglement mediating capability of the
central spin can sometimes increase with the addition of an
extra outer spin. This contrasts the naive expectation that in a
star network, addition of an extra outer spin in the network is
only expected to make it harder for the central spin to medi-
ate entanglement. In the limit of a large number of the outer
spins, the model also illustrates a crucial difference between
entanglement and correlations, when the mediated entangle-
ment is vanishing but substantial spin ordering(correlation
functionù1/2) is present in theX andY directions. We also
show that we can apply a magnetic field to our system to
obtain multiparty states for optimal symmetric splitting[23]
and optimal symmetric sharing[24] of entanglement as the
ground state and as a simple derivative of the ground state,
respectively.

The Hamiltonian which describes our system is given by

H = JSs0x o
outer

six + s0y o
outer

siyD , s1d

where the summation over “outer” refers to the outer spins,
six and siy denote thesx and sy Pauli operators for theith
outer spin ands0x ands0y denote thesx andsy Pauli opera-
tors for the central spin. It can be shown thatJx
=s1/2doouter six, Jy=s1/2doouter siy, and Jz=s1/2doring siz

obey the standard angular-momentum commutation rela-
tions swe have taken"=1d. This implies that the outer
spinscollectively behaveas a single spin with spin operator

J= îJx+ ĵJy+ k̂Jz. It can be shown thatJ2=Jx
2+Jy

2+Jz
2 com-

mutes withH. It will also help to define the total angular-

momentum operatorF =s1/2ds0+J, where s0= îs0x+ ĵs0y

+ k̂s0z and it can be shown that thez component,Fz obeys
fH ,Fzg=0, fJ2,Fzg=0. Therefore simultaneous eigenstates
of H, J2, andFz can be constructed.

It is convenient to recast the Hamiltonian in Eq.(1) using
the raising and lowering operatorss±=ssx± isyd and J±

=s1/2doouter s± as

H = Jss0+J− + s0−J+d. s2d

The above Hamiltonian thus represents a resonant interaction
between a spin 1/2 and a higher spinswith operatorJd sys-
tem. Such a system is readily analyzedsnote the similarity of
the above Hamiltonian with the Jaynes-Cummings Hamil-
tonian f25gd and has eigenstates of the form

1
Î2

su0lu j ,ml ± u1lu j ,m− 1ld, s3d

where the first ket in each term denotes the central spinsu0l
and u1l stand for theu−1/2l and u1/2l spin states of the
central spind, and the second ket is an eigenstate ofJ2, j is
the quantum number associated with eigenstates ofJ2 feigen-
value ofJ2 is js j +1dg, andm is the quantum number forJz.
This state is an eigenstate ofFz with eigenvaluem−1/2.
Equations3d is valid for m= j to m=−j +1. There are also
two additional states where only one of the terms exist:
u1lu j , jl, becauseu0lu j , j +1l does not exist, and similarly
u0lu j ,−jl.

As the angular momentumJ comes from the ensemble of
outer spins, there is degeneracy inj due to the different pos-
sible orientations of these spins. Let the number of outer
spins beN. In general, there areNCr −

NCr−1 ways of obtain-
ing j =sN−2rd 1

2, with allowed values ofr ranging from r
=0 to r =N/2 if N is even, orr =sN−1d /2 if N is odd.

To conclude this brief introduction to the eigenstates of
this system, the energy eigenvalues for the star-spin system
are given by

E = ± JÎs j + mds j − m+ 1d. s4d

Our attention now turns to the properties of this model
which are useful for sharing entanglement between different
spins. To begin with we study the ground state. AssumingJ
positive,E is minimized whenj has its maximum possible
value andm has its minimum absolute value. For the caseN
odd, the lowest energy is whenm= 1

2, i.e., the eigenstate:

uCGlOdd= s1/Î2dsu0luN/2,1/2l − u1luN/2,− 1/2ld,

and if N is even, then in fact the ground state is degenerate
because there are two states with the lowest possible energy,
whenm=0 or m=1:

uCGlEven1=
1
Î2

su0luN/2,0l − u1luN/2,− 1ld,

A. HUTTON AND S. BOSE PHYSICAL REVIEW A69, 042312(2004)

042312-2



uCGlEven2=
1
Î2

su0luN/2,1l − u1luN/2,0ld.

The reason for the above difference betweenN even andN
odd is that the two cases lead to an integral and half integral
value of j , respectively. Whenj is half integral,m= ±1/2 is
allowed and gives an unique ground state. Forj integral, the
0,−1 and 1,0 form two distinctj ,m pairs to combine with
the central spin-1/2 particle to give two degenerate ground
states.

To compute entanglement and correlations, it is useful to
have expressions in terms of the states of the individual outer
spins for these ground states. Letu0l and u1l stand for the
u−1/2l andu1/2l spin states of any outer spin. ForN odd, the
stateuN/2 ,1 /2l is an equal superposition of all states with
sN+1d /2 ones andsN−1d /2 zeros with no relative phase
between them. The stateuN/2 ,−1/2l is the same type of
state withsN−1d /2 ones andsN+1d /2 zeros. For example,
for N=3, these are the familiarW states[26] given by

u3/2,1/2l =
1
Î3

fu011l + u101l + u110lg,

u3/2,− 1/2l =
1
Î3

fu100l + u010l + u001lg.

There are similar expressions for the ground state forN even.
The uN/2 ,0l state is an equal superposition of all states with
an equal number of zeros and ones, with no relative phase
between the superposed states.uN/2 , ±1l is the same type of
state withN/2±1 ones.

Given the ground state, we are able to calculate the en-
tanglement between any two outer spins in this state(i.e., at
zero temperature). The symmetry of the problem implies
that the entanglement will be the same betweenany two
outer spins. SinceH and Fz commute, the only nonzero
elements of the reduced density matrixr for any two spins
are k00uru00l=v ,k01uru01l=w,k10uru10l=x,k11uru11l
=y,k01uru10l=z=k10uru01l* [3]. For such density matrices,

a measure of entanglement called the concurrence[27] is
given by C=2 maxfuzu−Îvy,0g [3]. For N odd, the concur-
rence comes out as

C = 2 maxh1/2N,0j = 1/N.

For the case ofN even, where there are two ground states, a
similar procedure is followed, except that the reduced den-
sity matrix is now described as an equal mixture of the two
states. This gives the concurrence as

C = 2 maxh1/2N − 1/s2N2 − 2Nd,0j = 1/N − 1/sN2 − Nd.

Thus the entanglement goes to zero asN→`, which is ex-
pected, as the entanglement ismediatedby the central spin.
The total entangling capabilitysand thereby mediating capa-
bility d of the central spin is divided among a larger number
of outer spins asN becomes larger. However, on going from
an evenN to an oddN+1 number of outer spins, the con-
currence rises from 1/N−1/sN2−Nd to 1/sN+1d. Therefore
as a consequence of the degeneracy in the ground state for
evenN, resulting in a mixed density matrix, the concurrence
oscillates asN increases with amplitude 2/fNsN−1dsN+1dg.
On application of a magnetic field in the +Z direction, the
statesu0luN/2 ,0l− u1luN/2 ,−1ld becomes thenondegenerate
ground state for evenN and the oscillations in entanglement
disappear. Even though the above oscillations in entangle-
ment with N disappear, we will show below that the indi-
vidual snondegenerated eigenstates obtained by application
of a magnetic field show curious oscillations withN in a
different typeof entanglement.

The ground state can be used to maximally entangle any
two outer spins using the following simple protocol. The spin
in the z direction of all spins except the two to be entangled
is measured. This procedure stems from the idea of ‘localiz-
able entanglement’ presented by Verstraeteet al. in Ref. [22].
Knowing the outcomes of the measurements, it can be deter-
mined whether the two spins are maximally entangled. ForN
odd the probability of successfully obtaining a maximally
entangled state is calculated by first considering the ground
state in thehu0l , u1lj basis.

1
Î2
Su0l

1

ÎNCsN+1d/2
F o

i

NCsN+1d/2

PermiUN − 1

2
u0l ’ s and

N + 1

2
u1l ’ sLG

+ u1l
1

ÎNCsN+1d/2
F o

i

NCsN+1d/2

PermiUN + 1

2
u0l ’ s and

N − 1

2
u1l ’ sLGD ,

where “Permi” is used to cycle through all possible kets
with the given number ofu0l and u1l states for the outer

spins. Consider selecting out the two spins which arenot
being measured,
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1
Î2
Su0l

1

ÎNCsN+1d/2
Fsu01l + u10ld

3S o
i

N−2CsN−1d/2

PermiUN − 3

2
u0l ’ s and

N − 1

2
u1l ’ sLD

+ u00lsother termsd + u11lsother termsdG
+ u1l

1

ÎNCsN+1d/2
ssimilar termsdD .

A maximal entangled state is given for an outcome corre-
sponding to each other permutation in the bracket next to
su01l+ u10ld in the equation above. There areN−2CsN−1d/2
such permutations. This is the case whether the central
spin is measured to be zero or one. Therefore the prob-
ability of success is

pmes= 2 3 2N−2CsN−1d/2S 1
Î2ÎNCsN+1d/2

D2

=
1

2
+

1

2N
. s5d

A similar calculation gives the probability of success for
evenN (for evenN it has been assumed that the degeneracy
has been lifted by aB field)

pmes=
1

2
+

1

2N
−

1

2NsN − 1d
s6d

of a successful outcome is plotted in Fig. 2. Thus, using
LOCC operationsslocal operations and classical communi-
cationsd only, any two outer spins can be maximally en-
tangled with probability greater than 1/2.

Some aspects of the above entangling scheme are note-
worthy. First is the fact that maximally entangled states be-
tween any pair of outer spins can be produced, which can
then be used for perfect quantum communications between

the parties holding these spins. The fact that this can be done
by a series of single spin measurements in only one basis
(namely by measuring spin in thez direction) imparts signifi-
cant advantages to this mechanism of entanglement distribu-
tion over other methods. These will be discussed later in
detail. The second fact to note that there are oscillations with
even and oddN in the probability of successful creation of a
maximally entangled state between two outer spins. As we
have already lifted the degeneracy which happens for even
N, the oscillations are now related to the nature of entangle-
ment in the individual pure ground states for even and oddN
(it cannot be a result of mixing). The third important fact is
that the probability of successfully maximally entangling is
finite (namely equal to 1/2) even for an infinite collection of
outer spins. This again has advantages for the distribution of
entanglement.

The correlation functions for the ground state in a star
network are also interesting. Theks1zs2zl correlations follow
the same pattern as the entanglement, but

ks1xs2xl =
1

2
+

1

2N
for odd N,

ks1xs2xl =
1

2
+

1

2N
−

1

2NsN − 1d
for evenN.

We note in particular the nonvanishing nature of the corre-
lations in thelarge N limit. The solitary central spin imposes
spin order in theX direction sso thatks1xs2xl=1/2d, even
when there are an infinite number of outer spins to order.
The same result holds forks1ys2yl. This straightforward con-
sequence of the interaction with the central spin means that
this system provides an effective way of imposing ordersi-
multaneouslyin theX andY directions for an infinite collec-
tion of spins. This result also highlights a crucial difference
between entanglement and correlations: while a finite dimen-
sional quantum system cannot be individually entangled to
each member of an infinite collection of systems, it can in-
deed be correlated individually to each of them. The nonva-
nishing aspect of the correlations are also very interesting for
a specific reason. In Ref.f22g, it has been shown that the
highest correlation between two spins is a lower bound on
the localizable entanglement obtained from the state. Thus
the nonvanishing ofks1xs2xl in theN→` limit immediately
implies that it should be possible to producesor localized an
entanglement of magnitude at leastks1xs2xl by measuring
the spins apart from 1 and 2. This is precisely the procedure
that we have described in the two preceding paragraphs.

We now show that the application of a magnetic field
allows us to change the ground state to

ual =
1
Î2

su0luN/2,−N/2 + 1l − u1luN/2,−N/2ld

=
1
Î2

su0lhu000¯ 1lj − u1lu000¯ 0ld, s7d

where hu000¯1lj is a normalized state that is an equal
superposition of all states with only oneu1l with no rela-
tive phase between the superposed components. This state
has the special significance that the concurrence between

FIG. 2. This figure plots the probability of obtaining an maxi-
mally entangled state between two outer spins by projective mea-
surements on all the other spins asN increases.
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the central spin and each of the outer spins is 1/ÎN, which
is the maximumconsistent with symmetric splitting of the
total entanglement of one qubit with a collection ofN qubits
among theN qubits f23g. To our knowledge, this is the first
identification of the canonical stateual as the ground state of
an interacting spin system. Once the ground stateual is gen-
erated, if the central spin is measured and found to be in the
state u0l, the rest of the spins are projected onto the state
hu000¯1lj. The central spin can now be removed to make
the state dynamically steadysexcept for decoherence and
spontaneous decay effectsd. This state has the property
that the concurrence between any two spins is 2/N, which
is the maximumpossible entanglement in a collection ofN
spins in which all pairs of spins are equally entangledf24g.
While in Ref. f5g, it was only conjectured that a state of the
type hu000¯1lj could be made the ground state of the
isotropic closed Heisenberg chain using a magnetic field,
here we will rigorously prove the preparation ofual and
therebyhu000¯1lj.

To show that it is possible to makeual the ground
state, we consider the energy eigenvaluesE
= ±JÎs j +mds j −m+1d+ sm− 1

2
dB in a uniform magnetic field

B in the +Z direction (in which the eigenstates remain un-
changed). WhenB becomes so high that the second term inE
dominates, the relative ordering of the energy levels will be
determined purely bym, with the ground state being the state
with m=−N/2, i.e.,ubl= u0lu000¯0l. It is straightforward to
show thatubl has an energy lower thanual for B.JÎN.
Beforeubl becomes the ground state, there is a range ofB in
which ual is the ground state. To prove this, we will have to
show that the energy ofual will be less than that of all other
states in a certain range. The value ofB for which ual has the
same energy as a general state described byj andm is given
by B=JfÎN−Îs j +mds j −m+1dg / f−sN/2−1d−mg. B attains
its largest value, whenj is a maximum andm has it’s most
negative value. This happens whenj =N/2 andm=−sN/2d
+2 for which B=JÎNfÎ2s1−1/Nd−1g,JÎN. Therefore,
for a magnetic field with a range ofJÎNfÎ2s1−1/Nd
−1g,B,JÎN, the stateual is the ground state.

We now describe how the spin star can be used to gener-
ate and distribute entanglement in a more effective way than
the methods usually considered. We have already described
how it can be used to generate the statesual and ubl for
symmetric splitting and sharing of entanglement. Now we
describe the benefits of generating the usual ground state
uCGlOdd/Even1/Even2. The spin star should be regarded as a
solid-state template for the generation of these states. TheXX
interaction between electrons in quantum dots such as in the
scheme proposed in Ref.[16] could be used to fabricate the
spin–star. The location of the qubits(or spins) on the tem-
plate are assumed to beunchangeable(i.e., the spin star is
hard wired on a solid-state matrix) and the interactions be-
tween them are assumed to be “collectively”(but not indi-
vidually) switchable. The desired ground state(among
uCGlOdd/Even1/Even2) is generated by switching on the spin–star
interactions, cooling the system to its ground state and ap-
plying the appropriate magnetic fields. Having generated the
required state, the interactions of the spin star are temporarily
switched off, and the state of the outer spins is unitarily

transferred to photons. It is assumed that the mapping of the
state from the outer spins to the photons can take place at a
much shorter time scale than the destruction of the states due
to environmental decoherence. Each of these photons now
fly off to a distinct distant user. In this way, the state
uCGlOdd/Even1/Even2is now shared between the central spin and
N distant photons, each of which belongs to a distinct user.
At this stage, the distribution part of the protocol is assumed
to be complete. When any two users want to perform perfect
quantum communications using a maximally entangled state,
all the other users measure their photons in the ±z basis, and
the central spin is also measured in the ±z basis. As proved
previously in this manuscript[Eqs.(5) and(6)], with a prob-
ability pmesù1/2, the photons of the two users who want to
communicate will be projected on to a maximally entangled
state. The above scheme is the one we advocate for the gen-
eration and distribution of entanglement. Though it may
seem quite complicated at the first instance, there are many
advantages of this method of generating and distributing en-
tanglement over other, more standard methods. The advan-
tages stem when we make three reasonable assumptions:(a)
Any entanglement unused for a significant time will deterio-
rate due to decoherence and become useless. We assume,
without loss of generality, that the entanglement ceases to
remain useful after unit time.(b) In unit time only one pair
among theNC2 pairs of users genuinely require a maximally
entangled state to communicate. It is not imperative that this
will indeed be the case in an arbitrary communication sce-
nario, but the spin-star ground states give a genuine advan-
tage in this special case. We should note, however, that in
typical telephone networks, far less users use it at a time,
than are connected by lines(there could be off-peak hours,
for example). (c) We do not knowa priori which two users
would want to communicate. One has to maintain a “flexibil-
ity” in the method of distribution of the entangled state, so
that any pair of users in the network can use entanglement
for quantum communications if they intend to. Under the
above assumptions, our method of generating and distribut-
ing entanglement is clearly better than the naive way of dis-
tributing entanglement, where each user in a network shares
a maximally entangled state with every other user. In that
way, OsN2d entangled states would have to be generated and
distributed. If only a single pair of parties genuinely require
to communicate using entanglement in unit time, then the
generation and distribution of such a resource is wasteful
(wasteful because the entanglement of the unused ones dete-
riorate anyway after unit time). This leaves us to compare the
method advocated here with other, less naive methods.

When the use of entanglement per unit time by users is
infrequent, then the most appropriate alternative way to the
one advocated here would be to use entanglement swapping
for constructing quantum telephone exchanges[28]. This
scheme is shown in Fig. 3(a) for four users. Each user shares
a maximally entangled state(shown as solid lines connecting
particles) with the central exchange(shown as the box with
solid lines). When any two users intend to communicate, an
appropriate Bell state measurement is performed between
two specific qubits at the exchange. This measurement is
shown by the box with dotted line. This projects the qubits
possessed by the intended users to a maximally entangled
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state with unit probability as depicted on the right-hand side
of Fig. 3(a). Let us now compare this scheme with our
scheme, which is depicted in Fig. 3(b). The state
uCGlEven1/Even2for N=4 is shown in the left-hand part of Eq.
(3) as a four edge graph of bold lines connecting particles.
The particle at the center is a spin, while those with the
distant users are photons. When any two users intend to com-
municate, the qubits(photons) held by all the other users and
the central spin will have to be measured in the ±z basis.
These single-particle measurements are shown by dashed
boxes in the left-hand part of Fig. 3(b). These measurements
can connect the intended users with a maximally entangled
state as depicted in the right-hand part of Fig. 3(b) (with a
significant probability of success). The advantages of our
scheme are:(a) Only single-particle measurements are in-
volved, as opposed to Bell state measurements of the alter-
native method, where two particle measurements are in-
volved. (b) Only measurements in a specific(namely ±z)
basis are involved, and as a consequence, there is no need for
local rotations of the states of the qubits. Such rotations are
compulsory for the Bell state measurement of the alternative
scheme.(c) The stateuCGlEven1/Even2is generated by collec-
tive switching of all the interactions in the spin star at the
center. The Bell state measurement of the alternative scheme
requires switching the interaction between specific pairs of
spins at the center without switching the interaction between
any of the other pair of spins. This can be very difficult in
practice because all the qubits at the central exchange would
be quite close to each other. For a group of spins close to
each other, it is always easier to apply a global external field
to switch on all interactions at once. In particular, we assume
an easy to realize situation where the position of the spins are
frozen in a solid-state matrix and the interactions between
them are hard wired. It is very easy to realize a spin-star
geometry under such a situation and then switch all interac-

tions in the Hamiltonian given by Eq.(1) on at once by
applying a global field to the matrix. In the same type of
physical system, it is very difficult to switch on any specific
pair of interactions without switching on any of the others
(this would require, for example, an external field which ad-
dresses that specific pair while avoiding the others). Thus the
alternative scheme, which requires a Bell state measurement
between an arbitrary pair of spins at the central exchange is
considerably harder than the method advocated by us in this
paper. We should, however, note that the probability of suc-
cess in our case is 1/2øpmes,1. But this is a significant
probability of success, and if one attempts to create the maxi-
mally entangled state between the intended users seven times
(with a newly prepareduCGlOdd/Even1/Even2state), one’s prob-
ability of failure is already lower than 0.01.

At this point, we would also like to point out the general
advantages of generating a certain entangled state as the
ground state of a specific Hamiltonian as opposed todynami-
cally generating it using a sequence of qubits to interact in
turn with each other. The main difficulty of the latter method
is the carefully timed switching on and off of interactions
(which may boil down to very carefully timed pulses on the
system). When generating certain states as ground states of a
system, one need not precisely time the switching on and off
of interactions. One simply turns on the interactions at some
time and cools the system to its ground state. Of course, if
part of the state is to be carried off to a distance, then the
mapping of states from spins to photons might require timed
pulses. This will, however, be a common problem for any
method which generates entangled states at a site and then
distributes parts of it to a distance. Our method also, of
course, allows the possibility of generating entanglement di-
rectly between distant parties, if interactions between the
systems possessed by them can be made truly long range.
Alternatively, if we require entanglement to be shared be-
tween parties which are physically close(particles possessed
by them are well with in the range of interacting directly
with each other), such as when neighboring quantum com-
puters are to be networked, then the ground state of the spin
star can be easily generated between them. Subsequent mea-
surements can then connect any two of the computers with a
maximally entangled state.

In this letter we have introduced and studied entanglement
and correlations in a spin-star, an architecture of interacting
spins whichcannotbe classified as a lattice in any dimen-
sion. It is physically realizable in various arrays of qubits
designed for quantum computation. Testing for the entangle-
ment and correlations predicted here would serve as a bench-
mark test for the functioning of arrays of qubits. Our spin
star is a curious example of a spin system where multiparty
states for optimal symmetric sharing and splitting of en-
tanglement occur naturally as ground states. If spin–spin in-
teractions can be extended to long distances, the spin star
could be used for the distribution of entanglement. Explora-
tion of the full statistical mechanics of a spin star would be
interesting future work.

A. H. thanks the U.K. EPSRC(Engineering and Physical
Sciences Research Council) for financial support.

FIG. 3. This figure compares entanglement distribution between
pairs of distant users using the scheme of the current paper with a
more standard alternate scheme. Part(a) of the figure depicts en-
tanglement distribution using quantum telephone exchanges based
on entanglement swapping. Part(b) depicts entanglement distribu-
tion using the ground states of the spin star(the scheme proposed in
the current paper).
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