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Using a geometric approach, we derive the minimum number of applications needed for an arbitrary
controlled-unitary gate to construct a universal quantum circuit. An analytic construction procedure is pre-
sented and shown to be either optimal or close to optimal. This result can be extended to improve the efficiency
of universal quantum circuit construction from any entangling gate. In addition, for both the controlled-NOT

(CNOT) and double-CNOT gates, we develop simple analytic ways to construct universal quantum circuits with
three applications, which is the least possible for these gates.
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I. INTRODUCTION

Construction of a universal quantum circuit, i.e., a circuit
that can implement any arbitrary unitary operation, is of cen-
tral importance in the physical applications of quantum com-
putation and quantum information processing[1]. Barenco
et al. [2] proved the celebrated result that the controlled-NOT
(CNOT) gate supplemented with single-qubit rotations is uni-
versal, which has become ade factostandard model of quan-
tum computation. We have previously provided a generality
beyond the standard model[3], namely, an analytic direct
route to simulating any arbitrary two-qubit unitary operation
from whatever entangling gate arises naturally in the physi-
cal applications. The ability to simulate anarbitrary two-
qubit operation is particularly important for quantum simu-
lations, where one wishes to use one readily controllable
quantum system to simulate the behavior of another quantum
system that may be hard to either realize or control.

Current experimental efforts are focused on realizing spe-
cific entangling gates. In order to be useful, these specific
gates have to be able to generate any arbitrary two-qubit gate
in an efficientmanner. This is an extremely important ques-
tion for experimental applications, where one seeks to reduce
unwanted decoherence effects that inevitably increase with
the total number of gates. In[3], we provided an upper
bound for the applications of a given entangling gate, i.e.,
regardless of which two-qubit gate is to be implemented, we
can always construct a quantum circuit with applications of
the given gate not exceeding that upper bound. However, this
upper bound is not tight because it may be possible to
achieve universality with fewer applications of the given
gate. For example, it was recently shown that just three ap-
plications of theCNOT gate together with local gates are uni-
versal[4].

The main contribution of this paper is a more general
result for optimality, namely, the minimum number of appli-
cations needed for an arbitrary controlled-unitary
(controlled-U) gate to construct a universal quantum circuit.
We focus on the controlled-U gates because any entangling
two-qubit gate can be used at most twice to simulate a
controlled-U gate [3], and these gates can then be used as
basic building blocks to construct universal quantum circuits
[5,6]. Our main tool to derive the minimum upper bound for

any controlled-U gate is the geometric representation of non-
local two-qubit gates developed in[7], which provides an
intuitive approach to this minimum upper bound. We also
obtain a near optimal construction procedure that requires
either the minimum applications of the given controlled-U
gate, or one application more than the minimum, depending
on the given gate. Moreover, for theCNOT and double-CNOT

(DCNOT) gate [8] (which is locally equivalent to theiSWAP

gate in[9]), we provide a simple analytic solution to simu-
lating any two-qubit gate with at most three applications.

II. PRELIMINARIES

We first briefly review some relevant background knowl-
edge [3,7,10–12]. Two quantum gatesU ,U1PSUs4d are
called locally equivalentif they differ only by local opera-
tions: U=k1U1k2, wherek1,k2PSUs2d ^ SUs2d. Two gates
are locally equivalent if and only if they have identical Ma-
khlin local invariants[10]. From the Cartan decomposition
on sus4d, any two-qubit unitary operationUPSUs4d can be
written as

U = k1Ak2 = k1e
c1si/2dsx

1sx
2
ec2si/2dsy

1sy
2
ec3si/2dsz

1sz
2
k2, s1d

wheresa
1sa

2 =sa ^ sa, sa are the Pauli matrices, andk1,k2
PSUs2d ^ SUs2d are local gates. Inf7g we found that the
local equivalence classes of two-qubit gates are in one-to-
one correspondence with the points in the tetrahedron
OA1A2A3 shown in Fig. 1, except on its base. For a general
two-qubit gateU in Eq. s1d, this geometric representation
defines a set of parameterscj satisfying p−c2ùc1ùc2
ùc3ù0.

Consider an arbitrary single-qubit gateU=expsnxisx

+nyisy+nziszd. The controlled-U operationUf derived from
this gate can be written as

Uf = sI ^ e−gsi/2dszU1
†degsi/2dsz

1sz
2
sI ^ U1d, s2d

whereg=Înx
2+ny

2+nz
2, andU1 is a single-qubit gate given

by Proposition 3 off3g. By definition, egsi/2dsz
1
sz

2
is locally

equivalent to a controlled-U gate. Therefore, without loss

of generality, we can useUf =egsi/2dsz
1
sz

2
to denote any
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controlled-U gate. Sinceesp−gdsi/2dsz
1
sz

2
is locally equivalent

to egsi/2dsz
1
sz

2
, we can always take the parameterg

P s0,p /2g. Specifically, when g=p /2 ,Uf is locally
equivalent to theCNOT gate.

III. MINIMUM UPPER BOUND FOR ANY
CONTROLLED- U GATE

We have previously provided an upper bound for a given
entangling gate to implement a universal quantum circuit[3].
For a controlled-U gate Uf =egsi/2dsz

1
sz

2
, this upper bound is

6dp /4ge, where the ceiling functiondxe is defined as a func-
tion that roundsx to the nearest integer toward infinity. This
upper bound is not a tight one. We now use a geometric
approach to show that the minimum upper bound for a
controlled-U gate isd3p /2ge.

Any controlled-U gateUf corresponds to a point on the
line segmentOL, as shown in Fig. 1. We now study the set of
all the nonlocal gates that can be implemented byn applica-
tions ofUf. We first analyze the casenù3 and then the case
n=2. The following theorem shows that all gates that can be
simulated bynsù3d applications ofUf together with local
gates constitute two congruent tetrahedra in the tetrahedron
OA1A2A3, which is the geometric representation of all the
nonlocal two-qubit operations[3].

Theorem 1. For a controlled-U gateUf =egsi/2dsz
1
sz

2
, every

gate generated byn sù3d applications ofUf together with
local gates is locally equivalent to a gate

ec1si/2dsx
1
sx

2
ec2si/2dsy

1
sy

2
ec3si/2dsz

1
sz

2
, with the parameterscj satisfy-

ing either 0øc1+c2+c3øng or c1−c2−c3ùp−ng.
See Appendix A for a proof. Theorem 1 tells us that all

the gates that can be generated byn applications ofUf with
local gates can be represented by two tetrahedraOB1B2B3
and A1C1C2C3 in Fig. 1. Note that these two tetrahedra are
congruent, and the equations describing the facesB1B2B3
and C1C2C3 are c1+c2+c3=ng and c1−c2−c3=p−ng, re-
spectively. These two faces are the boundaries of all those
points that can be generated byn applications ofUf.

It is clear that asn grows each of these two tetrahedra
OB1B2B3 and A1C1C2C3 expands with consecutive faces of
each tetrahedron remaining parallel. To obtain the minimum
number of applications needed for a given controlled-U gate
Uf to implement any arbitrary two-qubit operation, we only
need to find the least integern such that the union of the two
tetrahedraOB1B2B3 andA1C1C2C3 can cover the whole tet-
rahedronOA1A2A3 asn grows. Since this is convex, we can
further restrict our attention to covering all its vertices.
As seen from Fig. 1, this is equivalent to the condition
that one of the two tetrahedra contains the point
A3 sfp /2 ,p /2 /p /2gd i.e., theSWAP gate. From Theorem 1,
we require only thatngù3p /2, which leads ton= d3p /2ge.
This provides the minimum upper bound for an arbitrary
controlled-U gate to implement a universal quantum circuit,
and is summarized in the following theorem.

Theorem 2. For an arbitrary controlled-U gate Uf

=egsi/2dsz
1
sz

2
, the minimum application required to implement

any arbitrary two-qubit gate together with local gates is
d3p /2ge.

In Fig. 2, the minimum upper bound for any controlled-U

gateUf =egsi/2dsz
1
sz

2
is shown as a function ofg and depicted

by thick lines. The thin lines represent the number of appli-
cations needed by a near optimal construction procedure we
present below. Note that the single point atg=p /2 with
value 3 indicates that three applications of theCNOT gate
with local gates suffice to implement any arbitrary two-qubit
gate. TheCNOT gate is therefore the most efficient gate
among all the controlled-U gates.

FIG. 1. TetrahedronOA1A2A3 contains all the local equivalence
classes of nonlocal gates, whereO sf0,0,0gd andA1 sfp ,0 ,0gd both
correspond to local gates,L sfp /2 ,0 ,0gd to the CNOT gate,
A3 sfp /2 ,p /2 ,p /2gd to the SWAP gate, and the controlled-U gate

Uf =egsi/2dsz
1
sz

2
to the pointfg ,0 ,0g on OL [7]. TetrahedraOB1B2B3

andA1C1C2C3 contain all the local equivalence classes of the non-
local gates that can be generated byn applications ofUf with
local gates, where B1=fng ,0 ,0g, B2=fng /2 ,ng /2 ,0g, B3

=fng /3 ,ng /3 ,ng /3g, C1=fp−ng ,0 ,0g, C2=fp−ng /2 ,ng /2 ,0g,
andC3=fp−ng /3 ,ng /3 ,ng /3g.

FIG. 2. Upper bound of applications needed for an arbitrary

controlled-U gate Uf =egsi/2dsz
1
sz

2
to construct a universal quantum

circuit. Thick lines, minimum number; thin lines, number from our
constructive procedure.
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IV. NEAR OPTIMAL UNIVERSAL QUANTUM CIRCUIT

In real physical applications, it is desirable to have a con-
structive procedure to implement a universal quantum cir-
cuit. At this time, there is no explicit way to construct a
universal quantum circuit that exactly achieves the minimum
upper bound for an arbitrary controlled-U gateUf. However,
we have found a construction procedure for a near optimal
universal quantum circuit from an arbitrary controlled-U gate

Uf =egsi/2dsz
1
sz

2
combined with local gates. Depending on the

value of g, the upper bound of this construction is either
equal to the minimum or just one more than the minimum
applications ofUf as shown in Fig. 2.

An arbitrary two-qubit operationUPSUs4d can be writ-
ten as in Eq.(1), with the parameterscj in the tetrahedron
OA1A2A3. Since we have easy access to all the local gates
[3,5], we need to implement only the nonlocal partA in Eq.
(1). We do this in the following two steps:(1) Apply

egsi/2dsz
1
sz

2
at mostdp /2ge times to simulate the third compo-

nent ec3si/2dsz
1
sz

2
of A (see Proposition 2 of[3]); (2) Apply

egsi/2dsz
1
sz

2
at mostdp /ge times to simulate the first two com-

ponentsec1si/2dsx
1
sx

2
ec2si/2dsy

1
sy

2
of A (Theorem 3).

The first step follows directly from Proposition 2 in[3].
The construction procedure therein takes at mostdp /2ge ap-
plications whengP s0,p /2d, and only two applications
when g=p /2, i.e., for theCNOT gate. We therefore need to
realize only the second step. The next theorem identifies all
nonlocal gates that can be implemented by two controlled-U
gates together with local gates.

Theorem 3. Given two controlled-U gateseg1si/2dsz
1
sz

2
and

eg2si/2dsz
1
sz

2
with g1,g2P s0,p /2g, all the local equivalence

classes of two-qubit gates that can be implemented by these
two gates together with local gates can be described as

ec1si/2dsx
1
sx

2
·ec2si/2dsy

1
sy

2
with 0øc1+c2øg1+g2. Furthermore,

we can implement such a gate by the following quantum
circuit:

where cosb1 and cosb2 are the two roots of the quadratic
equation

sin g1 sin g2 x2 + fcos2 c1 + cos2 c2 − cos2 g1 − cos2 g2

+ 2scosg1 cosg2 − cosc1 cosc2dcossg1 − g2dg1/2x

+ cosg1 cosg2 − cosc1 cosc2 = 0. s3d

See Appendix B for a proof. This theorem can be illus-
trated by Fig. 3, in which the triangleOA1A2 is the base of
the tetrahedron OA1A2A3 and the controlled-U gates

eg1si/2dsz
1
sz

2
and eg2si/2dsz

1
sz

2
correspond to pointsfg1,0g and

fg2,0g on OA1, respectively. The nonlocal gates that can be
generated by these two controlled-U gates are shown as the
shaded area in Fig. 3. Since the gatefc1,c2,0g is locally
equivalent to the gatefp−c1,c2,0g, the shaded area consists
of two symmetric triangles.(Note that Proposition 2 in[3] is

a special case of this theorem by settingb1=4p andg1=g2.)
Wheng1=g2=p /2, i.e., both gates areCNOT gates, the above
quantum circuit can implement any gate in the triangle
OA1A2. In other words, two applications of theCNOT gate
can implement those two-qubit gates that are located on the
base of the tetrahedronOA1A2A3 and only those gates. This
result was also implied by Vidal and Dawson[4].

Since the second step of the procedure is indeed equiva-
lent to implementing any gate in the triangleOA1A2, we can
now realize it by using Theorem 3. From a given controlled-

U gateUf =egsi/2dsz
1
sz

2
, it is easy to obtain ann-fold product

gate engsi/2dsz
1
sz

2
by n applications ofUf. We then takeg1

=ng andg2=mg. From Theorem 3, to ensure thatengsi/2dsz
1
sz

2

and emgsi/2dsz
1
sz

2
can simulate any gate in the triangleOA1A2

we require only that the shaded area in Fig. 3 covers the
point A2. This is equivalent tosm+ndgùp, whencem+n
= dp /ge. We can therefore choose any positive integersm and
n, as long as they satisfy this equality. Moreover, the param-
eters b1 and b2 of the local gates can be determined by
solving Eq.(3). Hence we can explicitly simulate any non-

local gateec1si/2dsx
1
sx

2
ec2si/2dsy

1
sy

2
by applying the controlled-U

gateUf =egsi/2dsz
1
sz

2
at mostdp /ge times.

Combining these two steps together, for a given

controlled-U gate Uf =egsi/2dsz
1
sz

2
, the constructive approach

presented above needs at mostdp /g e + dp /2ge applications
for the casegP s0,p /2d, or four applications for the case
g=p /2, to implement any arbitrary two-qubit operation. In
Fig. 2, the upper bound of this construction procedure is
shown as thin lines. It is evident that our procedure is near
optimal—it implements a universal quantum circuit with ei-
ther minimum possible applications ofUf or one more than
the minimum.

In [3] we provided an upper bound of 6dp /4ge applica-
tions for an arbitrary controlled-U gate Uf. Since dp /g e
+ dp /2g e ø6dp /4ge, it is clear that the construction pre-
sented here is more efficient by up to five gate applications.
Furthermore, sinceUf is a basic building block for imple-
menting a universal quantum circuit, this construction also
implies improved efficiency(a smaller number of gates) to
achieve universality from any arbitrary entangling gate
[2,3,5,6].

FIG. 3. Nonlocal gates that can be generated by two given

controlled-U gateseg1si/2dsz
1
sz

2
andeg2si/2dsz

1
sz

2
.
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V. UNIVERSAL QUANTUM CIRCUIT FROM THREE
CNOT OR DCNOT GATES

The explicit construction procedure presented above re-
quires four applications of theCNOT gate to implement any
arbitrary two-qubit gate. From Theorem 2, we know that the
minimum upper bound for theCNOT gate is 3(see also Fig.
2). Since theCNOT gate with local gates is widely adopted as
the standard model of universal quantum computation, it is

especially important to find an attractive construction with a
minimum number of applications. Recent work has provided
constructions with three applications ofCNOT [4]. We have
found the following simple analytic route to construct a uni-
versal quantum circuit from three applications of theCNOT
gate with local gates.

Theorem 4. The following quantum circuit is locally
equivalent to a generic nonlocal gate A

=e
c1 i

2
sx

1
sx

2
ec2

i
2

sy
1
sy

2
ec3

i
2

sz
1
sz

2
:

Proof. By direct algebraic computation, we can show that Makhlin’s local invariants[10] of the above quantum circuit are
identical to those of the nonlocal gateA [See Eq.(25) in [7]]. Therefore this quantum circuit implements a generic nonlocal
gateA.

Moreover, we have a similar result for theDCNOT gate, which is defined as the quantum gate performing the operation

uml ^ unl→ unl ^ um% nl [8]. It is easy to prove that theDCNOT gate is locally equivalent to the gateesp/2dsi/2dsx
1
sx

2+sp/2dsi/2dsy
1
sy

2
,

which corresponds toA2 sfp /2 ,p /2 ,0gd in Fig. 1.

Theorem 5. The following quantum circuit is locally equivalent to a generic nonlocal gateA=e
c1 i

2
sx

1
sx

2
ec2

i
2

sy
1
sy

2
ec3

i
2

sz
1
sz

2
:

This theorem can also be proved by direct algebraic com-
putation of Makhlin’s invariants, as for Theorem 4. Note that
this is not a controlled-U gate. In fact, it is locally equivalent
to the iSWAP gate in the computational basis:

iSWAP =1
1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1
2 ,

which can be generated naturally by theXY interactionf9g.
Theorem 5 thus provides a route to universal quantum cir-
cuits from XY coupled qubits that is at least as efficient as
any CNOT-based circuit.

VI. CONCLUSION

In summary, we have found the minimum upper bound to
construct a universal quantum circuit from any controlled-U
gate together with local gates. This minimum upper bound

depends only on the single controlled-U parameterg, as
shown in Fig. 2. It shows that among all the controlled-U
gates, theCNOT gate is the most efficient, a fact not evident
from the previous upper bound result in[3]. An explicit con-
struction of universal quantum circuits from a given
controlled-U gate was provided and shown to be close to
optimal, i.e., it implements a universal quantum circuit with
either minimum applications, or one more than the mini-
mum. In addition, we developed simple analytic ways for
both theCNOT andDCNOT (not a controlled-U) gates to con-
struct universal quantum circuits with exactly three applica-
tions, which is the least possible for these gates.
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APPENDIX A: PROOF OF THEOREM 1

From Refs.[7,11], we know that the Lie algebrag=sus4d has a direct sum decompositiong=p % k, where

k = span
i

2
hsx

1,sy
1,sz

1,sx
2,sy

2,sz
2j,

p = span
i

2
hsx

1sx
2,sx

1sy
2,sx

1sz
2,sy

1sx
2,sy

1sy
2,sy

1sz
2,sz

1sx
2,sz

1sy
2,sz

1sz
2j. sA1d

Note that the Abelian subalgebra

a = span
i

2
hsx

1sx
2,sy

1sy
2,sz

1sz
2j sA2d

is contained inp and is a Cartan subalgebra of the pairsg ,kd.
Consider the following adjoint control system defined on
SUs4d /SUs2d ^ SUs2d f11g:

Ṗ = XP, X P AdSUs2d^SUs2d Hd, sA3d

where Ps0d=e and Hd=si /2dsz
1sz

2. Here Hd is the Hamil-

tonian that can generate a controlled-U gate Uf =egsi/2dsz
1
sz

2

directly. Let astd be the trajectory generated byPstd in a
Weyl chambera+ that is defined by the tetrahedronOA1A2A3
in Fig. 1. It can be shown that

ȧstd = G„AdksHdd…, sA4d

whereG :p→a+ is the orthogonal projection ontoa+ and k
PSUs2d ^ SUs2d. From Kostant’s convexity theoremf13g,
we can rewrite Eq.sA4d as

ȧstd = o
j

b jstdHd
j , sA5d

whereo jb jstd=1 with b jstdù0, andHd
j is on the Weyl orbit

of Hd. Integrating Eq.sA5d from 0 to ng, whereg is deter-

mined by the given controlled-U gateUf =egsi/2dsz
1
sz

2
, we ob-

tain

asngd = o
j

l jngHd
j , sA6d

wherel j =s1/ngde0
ngb jstddt ando jl j =1. Therefore, the point

asngd lies in the convex hull of the Weyl orbit ofngHd. This
convex hull can be represented by the two tetrahedra
OB1B2B3 andA1C1C2C3 in Fig. 1. We therefore obtain that

every gate generated byn applications ofegsi/2dsz
1
sz

2
together

with local gates is locally equivalent to a gate

ec1si/2dsx
1
sx

2
ec2si/2dsy

1
sy

2
ec3si/2dsz

1
sz

2
, with the parameterscj satisfy-

ing either 0øc1+c2+c3øng or c1−c2−c3ùp−ng.

APPENDIX B: PROOF OF THEOREM 3

A general two-qubit quantum circuit that consists of two

controlled-U gateseg1si/2dsz
1
sz

2
andeg2si/2dsz

1
sz

2
together with lo-

cal gates can be described as

eg2si/2dsz
1sz

2
sk1 ^ k2deg1si/2dsz

1sz
2
. sB1d

Recall that the local gatesk1 andk2 can be written in Euler’s
ZYZdecomposition as

k1 = ea1iszeb1isyeg1isz,

k2 = ea2iszeb2isyeg2isz. sB2d

Substituting Eq.(B2) into Eq. (B1), and taking into account
the fact thatsz

1 andsz
2 both commute withsz

1sz
2, we obtain

the following quantum circuit that is locally equivalent to
Eq. (B1):

We want to find all the nonlocal gates that can be generated
by the above quantum circuit by tuning the parametersb1
and b2 of the local gates. Following the procedure inf10g,
we find that Makhlin’s local invariants for this quantum cir-
cuit are

g1 = cosr1 cosr2 − sin r1 sin r2 cosb1 cosb2,

g2 = 0,
sB3d

g3 = 2scosb1 + cosb2d2sin2 g1 sin2 g2 + 2 cos2 g1

+ 2 cos2 g2 − 1 − 4 cosb1cosb2sin g1 sin g2

3cossg1 − g2d.

From. [7], we know that these Makhlin’s invariants can also
be written as functions of the parameterscj in the geometric
representation:

g1 = cosc1 cosc2 cosc3,

g2 = sin c1 sin c2 sin c3, sB4d
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g3 = 2scos2 c1 + cos2 c2 + cos2 c3d − 3.

To find the corresponding pointfc1,c2,c3g of this quantum
circuit in the geometric representation, we only need to
equate Eqs.(B3) and (B4), and thereby obtain

c3 = 0,

cosc1 cosc2 = cosr1 cosr2 − sin r1 sin r2 cosb1 cosb2,

sB5d
cos2 c1 + cos2 c2 = scosb1 + cosb2d2sin2 g1 sin2 g2

+ cos2 g1 + cos2 g2 − 2 cosb1 cosb2

3sin g1 sin g2 cossg1 − g2d.

After some algebraic derivations, we obtain the following
equations for the tuning parametersb1 andb2:

cosb1 + cosb2 =
Îcos2 c1 + cos2 c2 − cos2 g1 − cos2 g2 + 2scosg1 cosg2 − cosc1 cosc2dcossg1 − g2d

sin g1 sin g2
,

sB6d

cosb1cosb2 =
cosg1 cosg2 − cosc1 cosc2

sin g1 sin g2
.

It is clear that cosb1 and cosb2 can be viewed as two roots
of the following quadratic equation:

fsxd = sin g1sin g2x
2 + fcos2 c1 + cos2 c2 − cos2 g1 − cos2 g2

+ 2scosg1 cosg2 − cosc1 cosc2dcossg1 − g2dg1/2x

+ cosg1 + cosg2 − cosc1 cosc2

= 0. sB7d

Sinceg1,g2P s0,p /2g, we have sing1 sin g2.0. To guar-
antee the existence of two roots in the intervalf−1,1g, we
need the following three conditions to be satisfied:fs1d
ù0, fs−1dù0 and Dù0, whereD is the discriminant of
the quadratic equation. It is not hard to see that the first
two conditionsfs1dù0 and fs−1dù0 are equivalent to the
following inequality:

ssin g1 sin g2 + cosg1 cosg2 − cosc1 cosc2d2

ù cos2 c1 + cos2 c2 − cos2 g1 − cos2 g2

+ 2scosg1 cosg2 − cosc1 cosc2dcossg1 − g2d.

sB8d

After some algebraic derivations, Eq.sB8d can be simplified
to sin2 c1 sin2 c2ù0, which always holds true. Therefore,
the conditionsfs1dù0 andfs−1dù0 are automatically sat-
isfied for any parametersb1 and b2. For the third condi-
tion, we have

D = fcosc1 cossg1 + g2d − cosc2g2 − sin2sg1 + g2dsin2 c1.

sB9d

To ensureDù0, we only need that 0øc1+c2øg1+g2.
Therefore, all the local equivalence classes that can be gen-
erated by these twoscontrolled-U gates and local gates can
be described asec1si/2dsz

1
sz

2
·ec2si/2dsz

1
sz

2
, where 0øc1+c2øg1

+g2.
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