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Optimal quantum circuit synthesis from controlled-unitary gates
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Using a geometric approach, we derive the minimum number of applications needed for an arbitrary
controlled-unitary gate to construct a universal quantum circuit. An analytic construction procedure is pre-
sented and shown to be either optimal or close to optimal. This result can be extended to improve the efficiency
of universal quantum circuit construction from any entangling gate. In addition, for both the controlted-
(cNnoT) and doubleeNoT gates, we develop simple analytic ways to construct universal quantum circuits with
three applications, which is the least possible for these gates.
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I. INTRODUCTION any controlledd gate is the geometric representation of non-

Construction of a universal quantum circuit, i.e., a circuit'ocal two-qubit gates developed {i7], which provides an
that can implement any arbitrary unitary operation, is of cenintuitive approach to this minimum upper bound. We also
tral importance in the physical applications of quantum com-Obtain a near optimal construction procedure that requires
putation and quantum information processiiig. Barenco €ither the minimum applications of the given controlléd-
et al.[2] proved the celebrated result that the controled- ~ gate, or one application more than the minimum, depending
(cNoT) gate supplemented with single-qubit rotations is uni-on the given gate. Moreover, for ttoT and doubleesnoT
versal, which has becomeda factostandard model of quan- (DCNOT) gate[8] (which is locally equivalent to theswap
tum computation. We have previously provided a generalitygate in[9]), we provide a simple analytic solution to simu-
beyond the standard modg8], namely, an analytic direct lating any two-qubit gate with at most three applications.
route to simulating any arbitrary two-qubit unitary operation
from whatever entangling gate arises naturally in the physi-
cal applications. The ability to simulate ambitrary two- IIl. PRELIMINARIES

qubit operation is particularly important for quantum simu-  \we first briefly review some relevant background knowl-
lations, where one wishes to use one readily controllableedge [3,7,10-12. Two quantum gates),U, e SU(4) are
quantum system to simulate the behavior of another quantuny,oq locally equivalentif they differ only by local opera-

system that may be hard to either realize or contrql._ tions: U=k Usk,, wherek,,k, e SU2) ® SU(2). Two gates
Current experimental efforts are focused on realizing SPex e locally equivalent if and only if they have identical Ma-

cific entangling gates. In order 1o be usgful, these Sp.ecm‘f’(hlin local invariants[10]. From the Cartan decomposition
gates hav_e to be able to generate any arbltrgry two-qubit gafg, su4), any two-qubit unitary operatiob e SU(4) can be
in an efficientmanner. This is an extremely important ques-, itten as

tion for experimental applications, where one seeks to reduce
unwanted decoherence effects that inevitably increase with U = kyAk, = klecl(i/z)o}((rﬁ cz(ilz)(T;aﬁe%(i/z)aioﬁkz, (1)
the total number of gates. If3], we provided an upper
bound for the applications of a given entangling gate, i.e.whereo’o’=0,® a,, o, are the Pauli matrices, ard,k;
regardless of which two-qubit gate is to be implemented, wes SU(2) ® SU(2) are local gates. Ih7] we found that the
can always construct a quantum circuit with applications oflocal equivalence classes of two-qubit gates are in one-to-
the given gate not exceeding that upper bound. However, thisne correspondence with the points in the tetrahedron
upper bound is not tight because it may be possible t@A;AA;z shown in Fig. 1, except on its base. For a general
achieve universality with fewer applications of the giventwo-qubit gateU in Eq. (1), this geometric representation
gate. For example, it was recently shown that just three apdefines a set of parameters satisfying m—c,=c,=c;
plications of thecNOT gate together with local gates are uni- =c3=0.
versal[4]. Consider an arbitrary single-qubit gatd=exp(n,ioy

The main contribution of this paper is a more general+njio,+njo,). The controlledd operationU; derived from
result for optimality, namely, the minimum number of appli- this gate can be written as
cations needed for an arbitrary controlled-unitary _ o,
(controlledy) gate to construct a universal quantum circuit. Us = (I @ eiPozyleriPeoy (| g U)), 2
We focus on the controllet- gates because any entangling 333 . . . .
two-qubit gate can be used at most twice to simulate é(vherey—\snx+ny+nz, andU, is a smgle-.qulilg gate given
controlledy gate[3], and these gates can then be used a8y Proposition 3 of3]. By definition, e""272z is locally
basic building blocks to construct universal quantum circuitsquivalent to a controllet) gate. Therefore, without loss
[5,6]. Our main tool to derive the minimum upper bound for of generality, we can usé&);=e"’?92°2 to denote any
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FIG. 2. Upper bound of applications needed for an arbitrary
FIG. 1. Tetrahedro®A,A,A; contains all the local equivalence onirolledu gateuf:ey(ilz)a-%o-g to construct a universal quantum
classes of nonlocal gates, whé€[0,0,0]) andA; ([7,0,0]) both
correspond to local gates,. ([#/2,0,0]) to the cNnoT gate,
Az ([#/2,7]2,712]) to the swaP gate, and the controlled- gate
U;=e"i/2929 to the point[y,0,0] on OL [7]. TetrahedrdDB,B,B;  ING either O<c;+Co+C3=<ny Or ¢;—C,~Cg=7—ny.
andA;C,C,C5 contain all the local equivalence classes of the non- S€e Appendix A for a proof. Theorem 1 tells us that all
local gates that can be generated myapplications ofU; with ~ the gates that can be generatednbgpplications ofU; with
local gates, where B;=[ny,0,0], B,=[ny/2,ny/2,0], Bs local gates can be represented by two tetrah€BaB,B,
=[ny/3,ny/3,ny/3], C;=[m-nv,0,0], C,=[m—ny/2 ny/2,0] and A;C,C,C; in Fig. 1. Note that these two tetrahedra are
andCs=[7-ny/3,ny/3,ny/3]. congruent, and the equations describing the faBg3,B;
and C,C,C5 are c;+C,+C3=ny and ¢;—C,—C3=m—ny, re-
) (=) (i2)oio? ; ) sp_ectively. These two faces are the; bo_undaries of all those
controlledy gate. Sincee™ <2 is locally equivalent  points that can be generated byapplications ofU.

circuit. Thick lines, minimum number; thin lines, number from our
constructive procedure.

. 12
to e"9% we can always take the parameter It is clear that as grows each of these two tetrahedra
e (0,7/2]. Specifically, when y==x/2,U; is locally = OB;B,B; and A;C;C,C5; expands with consecutive faces of
equivalent to thecNOT gate. each tetrahedron remaining parallel. To obtain the minimum

number of applications needed for a given controlledate
U; to implement any arbitrary two-qubit operation, we only
1. MINIMUM UPPER BOUND FOR ANY need to find the least integarsuch that the union of the two
CONTROLLED- U GATE tetrahedraOB,B,B; and A;C,C,C; can cover the whole tet-
. ) _rahedronOA;A,A; asn grows. Since this is convex, we can

We have previously provided an upper bound for a giveryriher restrict our attention to covering all its vertices.
entangling gate to implement a universal quantum cif)it  As seen from Fig. 1, this is equivalent to the condition
For a controlledd gate Uy=e"1"2729, this upper bound is that one of the two tetrahedra contains the point
67/ 4], where the ceiling functiofx] is defined as a func- A, ((#/2,7/2/7/2]) i.e., theswap gate. From Theorem 1,
tion that rounds to the nearest integer toward infinity. This we require only thahy=3/2, which leads tam=[37/27].
upper bound is not a tight one. We now use a geometriqThis provides the minimum upper bound for an arbitrary
approach to show that the minimum upper bound for aontrolledU gate to implement a universal quantum circuit,
controlledy gate is[3/27y]. and is summarized in the following theorem.

Any controlledy gate Uy corresponds to a point on the  Theorem 2 For an arbitrary controllet}t gate U
line segmenOL, as shown in Fig. 1. We now study the set of :ey(i/2)(r%(r§, the minimum application required to implement
all the nonlocal gates that can be implementedapplica- 5y arpitrary two-qubit gate together with local gates is
tions of U;. We first analyze the case= 3 and then the case [37/24].
n_=2. The following theorem_ shows that all gates _that canbe |, Fig. 2, the minimum upper bound for any controllgid-
simulated byn(=3) applications ofU; together with local U, =202 is sh funct d depicted
gates constitute two congruent tetrahedra in the tetrahedr preu;=e ¢ ¢ 1S Shown as a function of and depicte .

y thick lines. The thin lines represent the number of appli-

OAA,As, which is the geometric representation of all the ~7 . . \
. . cations needed by a near optimal construction procedure we
nonlocal two-qubit operations3]. : . )
_ Ai2)0ke? present below. Note that the single point &t /2 with

Theorem 1For a controlledd gateU;=e""97%, every  y5jye 3 indicates that three applications of theoT gate
gate generated by (=3) applications ofUy together with it [ocal gates suffice to implement any arbitrary two-qubit
local ,gates s llocially equivalent to a gate gate. ThecnoT gate is therefore the most efficient gate
gerlil2raglalil2loyryeCalii2)zo; with the parameters; satisfy-  among all the controlledlt gates.
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IV. NEAR OPTIMAL UNIVERSAL QUANTUM CIRCUIT c2

. L . . A
In real physical applications, it is desirable to have a con-z 2

structive procedure to implement a universal quantum cir-
cuit. At this time, there is no explicit way to construct a
universal quantum circuit that exactly achieves the minimum
upper bound for an arbitrary controllédl.gateU;. However,

we have found a construction procedure for a near optimal
universal quantum circuit from an arbitrary controllgdyate

Ufzey(”%%”g combined with local gates. Depending on the
value of vy, the upper bound of this construction is either Ay
equal to the minimum or just one more than the minimum -
applications ofU; as shown in Fig. 2. 2 M+ oA
An arbitrary two-qubit operatiot e SU(4) can be writ-
ten as in Eq(1), with the parameters; in the tetrahedron
OAALA;. Since we have easy access to all the local gates
[3,5], we need to implement only the nonlocal pArin Eq. ] ] ]
(1). We do this in the following two stepstl) Apply a special case of this theorem by settiyg=47 and y;=,.)

) 12 == i
e"29397 at most{w/ 2] times to simulate the third compo- Wheny, =y,=m/2, i.e., both gates anoT gates, the above
quantum circuit can implement any gate in the triangle

. 12 .
nent ef3(2./2) 7272 of A (see Proposition 2 of3]); (2) Apply  OAA,. In other words, two applications of thenoT gate
e"127297 at most 7/ y] times to simulate the first two com- can implement those two-qubit gates that are located on the

FIG. 3. Nonlocal gates that can be generated by two given
controlledy gatese“/1<-/2>"z"z and e '/2>"z"z

ponentses1i1207,ee2120y0] of A (Theorem 3. base of the tetrahedra@A,A,A; and only those gates. This
The first step follows directly from Proposition 2 [8]. ~ result was also implied by Vidal and Dawsp. .
The construction procedure therein takes at Mes2y] ap- Since the second step of the procedure is indeed equiva-

plications whenye (0,7/2), and only two applications lent to implementing any gate in the triangled,A,, we can
when y=/2, i.e., for thecNoT gate. We therefore need to NOW realize it by usmg Theorem 3. From a given controlled-
realize only the second step. The next theorem identifies all gate U;= e“/<"2)"z"z it is easy to obtain am-fold product
nonlocal gates that can be implemented by two contrdlled- gate eiidayos by n applications ofU;. We then takeyl

gatfs terchrGWIth local gates. ledd (i12)0k0? q =nyand %27 rzny. From Theorem 3, to ensure tté'ty('/z)azvz

" lz)fergrrzem. iven two controlled gatese “e ANl gnd @299 can simulate any gate in the triangBeA A,
7297272 with 7,7, € (0,7/2], all the local equivalence e require only that the shaded area in Fig. 3 covers the
classes of two-qubit gates that can be implemented by theg@int A,. This is equivalent tdm+n)y= 7, whencem+n
two gates together with local gates can be described as|z/,]. We can therefore choose any positive integesnd
ee1(012030% 2Dy \pjith 0<c,+C,<y,+7,. Furthermore, n, as long as they satisfy this equality. Moreover, the param-
we can implement such a gate by the following quantumeters 8; and B, of the local gates can be determined by

circuit: solving Eg.(3). Hence we can explicitly simulate any non-
) e | local gateefl“’zl)"f"iecﬂ”2>"§"§ by applying the controlled
o iole? ‘—] gr2olo? gateU;=e""27:9; at most[ =/ y] times.
] ———{m— — Combining these two steps together, for a given

. 12 .
controlledU gate U;=e"’2722 the constructive approach
where cosB; and cosB, are the two roots of the quadratic presented above needs at mpsty|+[/2y| applications

equation for the caseye (0,7/2), or four applications for the case
v=ml2, to implement any arbitrary two-qubit operation. In
sin y; sin y, X2+ [cog ¢, + cog ¢, — cog y; — cog v, Fig. 2, the upper bound of this construction procedure is

shown as thin lines. It is evident that our procedure is near
optimal—it implements a universal quantum circuit with ei-
+ C0S 7y €COS y, — COSCy COSC, = 0. (3) ther minimum possible applications bf; or one more than
the minimum.

In [3] we provided an upper bound of 6/4y] applica-

+ 2(COS y; COS Y, — COSC; COSC,)cos 1 — ¥,) VX

See Appendix B for a proof. This theorem can be illus-

trated by Fig. 3, in which the triangl®@AA; is the base of tions for an arbitrary controllet gate U;. Since [/ ]

the_ teltrzahedron QAlf‘ZZA3 and the controlled) gates +[wl2y]<6[w/4yl, it is clear that the construction pre-
712727 and e2"272%2 correspond to point§y;,0] and  sented here is more efficient by up to five gate applications.
[2,0] on OA,, respectively. The nonlocal gates that can beFurthermore, sincéJ; is a basic building block for imple-
generated by these two controlledgates are shown as the menting a universal quantum circuit, this construction also
shaded area in Fig. 3. Since the gatg,c,,0] is locally  implies improved efficiencya smaller number of gatgso
equivalent to the gater—c,,¢,,0], the shaded area consists achieve universality from any arbitrary entangling gate
of two symmetric triangleg:Note that Proposition 2 if3] is [2,3,5,4.
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V. UNIVERSAL QUANTUM CIRCUIT FROM THREE especially important to find an attractive construction with a
cNOT OR DcNOT GATES minimum number of applications. Recent work has provided
constructions with three applications oRoT [4]. We have
The explicit construction procedure presented above refound the following simple analytic route to construct a uni-
quires four applications of thenoT gate to implement any Versal quantum circuit from three applications of ttreoT
arbitrary two-qubit gate. From Theorem 2, we know that thegaté with local gates. o
minimum upper bound for theNoT gate is 3(see also Fig. Theorem 4 The following quantum circuit is locally
2). Since thecNoT gate with local gates is widely adopted as €duivalent  to  a  generic  nonlocal  gate A

: . o il o ip12 112
the standard model of universal quantum computation, it is=e13%x9xef23%yoye3392%z;

x 1.
— ec1iay ‘ -
1,2 2 x i 1.2
z 2z -2--2-0102

p— € i € 3 e
e22% ——-ié 3 (sincgog+cos C30—y)|— T

Proof. By direct algebraic computation, we can show that Makhlin’s local invarigtisof the above quantum circuit are
identical to those of the nonlocal gafe[See Eq(25) in [7]]. Therefore this quantum circuit implements a generic nonlocal
gateA.

Moreover, we have a similar result for tlmeNOT gate, which is defined as the quantum gate performing the operation

|m)® |n) —|n)y® |man) [8]. It is easy to prove that thecNOT gate is locally equivalent to the ga&*’z)(”z)"i"i*(”’2)(”2)"3"3,
which corresponds té, ([#/2,7/2,0]) in Fig. 1.
i 12

. . o . . cqi 12 i 12 |
Theorem 5The following quantum circuit is locally equivalent to a generic nonlocal @ate 17x7xe%23 %yye35 722

P __| Lo i | l ™ i - i |

;5.8 . 8(2 C1)20‘y ) e 26”6(2 c3)§a, ) s PR
o 3r i ™ N vy
oy —Ie(—z'—%)f”yei 5"2}'—* —

i3
e,

€

This theorem can also be proved by direct algebraic comdepends only on the single controlled-parametery, as
putation of Makhlin’s invariants, as for Theorem 4. Note thatshown in Fig. 2. It shows that among all the controlléd-
this is not a controlledJ gate. In fact, it is locally equivalent gates, thecNOT gate is the most efficient, a fact not evident
to theiswAP gate in the computational basis: from the previous upper bound result[B]. An explicit con-

struction of universal quantum circuits from a given
1000 controlledy gate was provided and shown to be close to
. 0 0i O optimal, i.e., it implements a universal quantum circuit with
iISWAP = _ , : o L L
0i 00 either minimum applications, or one more than the mini-
mum. In addition, we developed simple analytic ways for
0001 both thecNoT andDbcNOT (not a controlledd) gates to con-
which can be generated naturally by tK¥ interaction[9]. struct universal quantum circuits with exactly three applica-
Theorem 5 thus provides a route to universal quantum cirtions, which is the least possible for these gates.
cuits from XY coupled qubits that is at least as efficient as
any CNOT-based circuit. ACKNOWLEDGMENTS
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APPENDIX A: PROOF OF THEOREM 1

From Refs[7,11], we know that the Lie algebrg=su4) has a direct sum decompositigrp & ¢, where

i
- 1 1 1 2 2 2
£= spanz-{ax,ay,az,ax,ay,oz}.

i
p= Spahz-{a')l(a'f, 0')1(0'5,0')1(0'3, 031,0'2)(,0)1,0')2,, o@of,oéo’i,a’%oﬁ, olol). (A1)
I
Note that the Abelian subalgebra APPENDIX B: PROOF OF THEOREM 3
: i 12 1 A general two—qubit qlu?ntum circuit 2that consists of two
4= spanz-{oxof,ayay,ozaf} (A2 controlledy gatese”10/29:92 gnde?2/27:77 together with lo-

cal gates can be described as
is contained irp and is a Cartan subalgebra of the pairt).
Consider the following adjoint control system defined on

SU4)/SuU2)® SU2) [11]: Recall that the local gatdg andk, can be written in Euler’s
ZY Zdecomposition as

72(i12) oro> (ky ® ky)en(/2 oro2 _ (B1)

P=XP, Xe Adsyzesuz Ha (A3) k, = eivzbinygnivs,
where P(0)=e and Hy=(i/2)o%02. Here Hy is the Hamil-

. 12
tonian that can generate a controllddgate U;=e"1/2727

directly. Let a(tz be the trajectory generated B(t) in @  gypstituting Eq(B2) into Eq. (B1), and taking into account
Weyl chamber™ that is defined by the tetrahedr@®AA;  the fact thato? and o both commute withrlo?, we obtain

277

k2 — euzzi (rzeﬂzi ("ye'}’Zi 9z, (BZ)

in Fig. 1. It can be shown that the following quantum circuit that is locally equivalent to
Eg. (B1):
a(t) =T'(Ad(Hg)), (A4) A
eP13oy —
. L niclel magoiol
wherel':p—a* is the orthogonal projection onte" and k ¢ Prioy € L
e SU(2) ® SU(2). From Kostant’s convexity theorefi 3],
we can rewrite Eq(A4) as We want to find all the nonlocal gates that can be generated
by the above quantum circuit by tuning the paramej@rs
at)=>, ﬁj(t)Hg, (A5)  andp, of the local gates. Following the procedure[it0],
j we find that Makhlin’s local invariants for this quantum cir-
cuit are

whereZ;8;(t)=1 with g;(t)=0, andHfj is on the Weyl orbit

of Hy. Integrating Eq(A5) from 0 tonvy, wherevy is deter-
+ 12

mined by the given controllet- gateU;=e"/27272 we ob-

g1 = COSI4 COSI,—Sinry sinr, cos B, Cos By,

tain 9.=0,
N | (83)
a(ny) = 3 \jnyH), (A6) 03 = 2(COS By + COS By)?Sir? y; sir? y,+ 2 co$ y;
j +2 cog y,—1 -4 cosB,c0s B,sin y; sin v,
where\;=(1/ny)[§78;(t)dt and=;\;=1. Therefore, the point XcosyL = 72)-

a(ny) lies in the convex hull of the Weyl orbit afyHy. This  From_[7], we know that these Makhlin’s invariants can also

convex hull can be represented by the two tetrahedrge written as functions of the parametefsn the geometric
OBleBs andA1C1C2C3 n F|g 1 We therefore 0bta|n that representation:

. . . 12
every gate generated lyapplications ofe”/27272 together

with local gates is locally equivalent to a gate g1 =COSCy COSC, COSCg,
. 12 . 12 . 12
ghrii2)ogealil2)oyryefsii2)7207 with the parameters; satisfy-
ing either O<c;+Cy,+C3<n7y Or ¢C;—C,—C3=mw—NYy. g, =sinc; sin ¢, sin cs, (B4)
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g5 = 2(cog ¢, + co ¢, + cog ¢c3) — 3. COSC; COSC, = COSIy COSI,—SinTy sinr, cosB; cos B3,,

(B5)

+ = + 2 i
To find the corresponding poitfit;,c,,cs] of this quantum COS’ €y + COS ;= (C0S By + COS By)"SIN 7, SINF 7

circuit in the geometric representation, we only need to +¢0S y1 +COS y,~ 2 COSPB; COS 3
equate Eqs(B3) and(B4), and thereby obtain XSiN 7y, SiN ¥, COLy1 — 75).

After some algebraic derivations, we obtain the following
c3=0, equations for the tuning parametg®s and 3,:

\Vcog ¢, +cog ¢, — €O y; — COS 7y, + 2(COS y; COS Y, — COSC; COSC,)COS Yy — V>)
COS 3, + COS B, = : : :
sSin Y1 Sin Y2
(B6)
COSy; COS 7y, — COSC; COSC,

sin y; sin vy,

C0S31C0S 35 =

It is clear that cog3; and cosB, can be viewed as two roots (Sin 7, Sin 7y, + COSy; COS 7y, — COSC; COSC,)?
of the following quadratic equation:
g4 q = cog ¢; +cog ¢, — cog y; — COS ¥,

+ 2(C0Sy; COS ¥, — COSCy COSCy)COS Yy — ¥2).
f(x) = sin ;i y,x? + [coS ¢, + coF ¢, — COF y; — COS v, (B8)

+2(COS 1 COS ¥, ~ COSCy COSCy)COL y1 — 7)Y After some algebraic derivations, E@®8) can be simplified

to sir? ¢, sir’ c,=0, which always holds true. Therefore,

the conditionsf(1) =0 andf(-1) =0 are automatically sat-

=0. (B7)  isfied for any parameterg; and 3,. For the third condi-
tion, we have

+ C0S y; + COSy, — COSC; COSC,

_ 9 .
Since yy, ¥, € (0,7/2], we have siny; sin v,>0. To guar- A =[cosc cOsyy + 7)) = COSCI = SIMF(, + ySirf Ca.

antee the existence of two roots in the interjsal , 1], we (B9)

need the following three conditions to be satisfidl) To ensureA=0, we only need that €c;+C,<y;+7,.

=0, f(-1)=0 andA=0, whereA is the discriminant of Therefore, all the local equivalence classes that can be gen-
the quadratic equation. It is not hard to see that the firserated by these tw(r:ontrolledU gates and local gates can
two conditionsf(1)=0 andf(-1) =0 are equivalent to the pe described ast (27307 e°z<'/2)ffz<f§ where 0sc;+C, <7y,
following inequality: + 5.
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