
Entanglement versus chaos in disordered spin chains

L. F. Santos*
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

G. Rigolin† and C. O. Escobar‡

Departamento de Raios Cósmicos e Cronologia, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas,
Caixa Postal 6165, cep 13084-971, Campinas, São Paulo, Brazil

(Received 29 October 2003; published 9 April 2004)

We use a Heisenberg spin-1/2 chain to investigate how chaos and localization may affect the entanglement
of pairs of qubits. To measure how much entangled a pair is, we compute its concurrence, which is then
analyzed in the delocalized(localized) and in the chaotic(nonchaotic) regimes. Our results indicate that chaos
reduces entanglement and that entanglement decreases in the region of strong localization. In the transition
region from a chaotic to a nonchaotic regime localization increases entanglement. We also show that entangle-
ment is larger for strongly interacting qubits(nearest neighbors) than for weakly interacting qubits(next and
next-next neighbors).
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I. INTRODUCTION

Today it is well known that quantum entanglement, here-
after simply entanglement, is not just an issue of quantum
mechanics that has yielded several discussions on the con-
ceptual foundations of this theory[1–3]. It is also a practical
resource to develop new technologies. Entanglement enables
us to implement some quantum algorithms which outperform
their classical counterparts[4,5]. It can also increase the
amount of classical information transmitted in a quantum
channel via the superdense coding protocol[6] and it allows
the transmission of an unknown quantum state between two
spatially separated parties(quantum teleportation) [7,8].

Since we can perform many useful tasks with entangled
states, it is desirable to quantify the amount of entanglement
these states have. There are at least three measures of en-
tanglement which have reasonable physical interpretations
[9–11]. One of them, the entanglement of formationEF, has
a relatively simple analytical expression for bipartite mixed
states[12]. TheEF is a monotonically increasing function of
a quantity called concurrence, which we adopt here as our
measure of entanglement[13]. See Sec. II for details.

In this paper, we study how the entanglement of pairs of
qubits is related to chaos and localization. To do so, we con-
sider a one-dimensional Heisenberg spin-1/2 chain. The in-
terest in such systems has recently increased considerably,
for they model several proposed quantum computers[14].
Each spin in the chain corresponds to a qubit and the inter-
action between them is used to describe two-qubit gates. A
single-particle excitation corresponds to a spin pointing up.
In these systems, we call defect the site whose energy split-
ting differs from all the others. It is obtained by applying a
different magnetic field in thez direction to the chosen site.

A disordered system is characterized by the presence of one
or more defects.

There have been recent attempts to relate localization with
entanglement[15] and also chaos with entanglement[16,17].
Here we study at the same time the influence of localization
and chaos on the entanglement. Some authors have shown
that in a system of coupled quantum kicked tops[18,19]
chaos increases entanglement. Here we show just the oppo-
site, that chaosdecreasesentanglement. Even though our
system is very different from the one they considered, it is
clear that a more careful analysis of the relation between
chaos and entanglement is still needed. We claim that the
entanglement of two qubits is not simply related to delocal-
ization. It also is influenced by the chaoticity of the system.
By chaos we mean how close the energy-level spacing dis-
tribution of the system is to a Wigner-Dyson distribution. See
next paragraph and Sec. III for details.

The spin chain considered in this paper is a perfect system
to study the relations between entanglement and localization
and between entanglement and chaos, because it has differ-
ent regions of interest. Concurrences of pairs of qubits ob-
tained in different regimes can then be compared. The tran-
sition from integrability to nonintegrability in these systems
depends on the defects[20]. It is known that the energy level
spacing distribution of an integrable system is Poissonian,
PPssd=exps−sd, while the level statistics of a chaotic system
is given by the Wigner-Dyson distributionPWDssd
=sps/2dexps−ps2/4d [21]. In the absence of defects, that is,
when we have an ideal chain, the system is integrable and it
can be solved with the Bethe ansatz[22]. Its level distribu-
tion is therefore Poissonian. As random onsite magnetic
fields are turned on and their mean-square amplitude starts
increasing, the system undergoes a transition and becomes
chaotic. In this scenario we obtain a Wigner-Dyson distribu-
tion for the level spacings. By further increasing the mean-
square amplitude, localization eventually takes place and the
distribution becomes Poissonian again.

When the states of the system become localized, the ex-
citations in the chain are restricted to finite regions of space.
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Defects even more different in energy finally leads to strong
localization, by which we mean that each eigenvector of the
system becomes very close to a noninteracting multiexcita-
tion stateufil= ua1, ... ,aLl, where ak=0,1 indicates a spin
down or up, respectively, andL is the total number of sites.
Each excitation is then restricted to practically just one site
of the chain. In quantum computation, these are the states we
want to operate with and they are called quantum registers
[23]. On the other hand, the eigenfunctions of the system in
the absence of defects and especially the eigenfunctions in
the chaotic regime are very much spread over the chain and
they correspond to linear superpositions of several quantum
registers. The system in this case is said to be delocalized.

The Hamiltonian that describes our system is the follow-
ing:

H = o
n=1

L
hn

2
sn

z + o
n=1

L−1
JZ

4
sn

zsn+1
z + o

n=1

L−1
JXY

4
ssn

xsn+1
x + sn

ysn+1
y d.

s1d

We consider only nearest-neighbor interaction,"=1, andsx,
sy, andsz are Pauli matrices. Each siten is subjected to a
magnetic field in thez direction, giving the energy splitting
hn. There areL sites and we deal with an open chain, which
is, in our opinion, a more realistic model for quantum com-
puters. The system is isotropicsanisotropicd when the cou-
pling constantJZ for the diagonal Ising interactionsn

zsn+1
z is

equalsdifferentd to the coupling constantJXY for theXY-type
interactionsn

xsn+1
x +sn

ysn+1
y . This last term is responsible for

delocalizing the system, because it propagates the excitations
through the chain. It is usually referred to as the hopping
term.

To analyze how localization affects the entanglement of a
pair of qubits, we compare the number of principal compo-
nents for the whole system with the concurrence for a chosen
pair. The definitions for these two quantities are presented in
the following section. There we restrict ourselves to two qu-
bits and show a brief analytical discussion. As expected, en-
tanglement tends to disappear in a strongly localized system.
On the other hand, it becomes maximal if the level spacing
of the two qubits is the same and it is also very large when
the interaction between them is much larger than the differ-
ence between the two level spacings.

In Sec. III, we show our numerical results for a chain with
several qubits and several excitations. First, we discuss the
case where two qubits have the same level spacings, which
are in turn very different from the other qubits. If the Ising
interaction does not exist and only the hopping term is
present, we have a situation very similar to the case of only
one excitation discussed in Sec. II and maximal entangle-
ment can be obtained. However, if the Ising term is present,
the entanglement for nearest-neighbor qubits becomes larger
than for the other pairs, indicating that many-body effects
can strongly affect entanglement between distant neighbors.

In Sec. III, we also consider qubits with random level
spacings, which allows us to study the behavior of entangle-
ment with chaos and the behavior of entanglement with lo-
calization when several interacting excitations are present. In
the integrable but delocalized region of an ideal chain, en-

tanglement is large. It then decreases when the system be-
comes chaotic and even more delocalized. However, in the
transition region between chaos and strong localization,
where the system is actually localizing, entanglement in-
creases again. It is only when the system gets close to strong
localization that entanglement decreases. The relation be-
tween localization and entanglement is not so simple as one
might have expected. But it is clear from our analysis that
chaos diminishes entanglement. We should add, however,
that for Hamiltonian(1) nearest-neighbor interacting qubits
are able to keep their concurrence reasonably large even in a
chaotic region.

Concluding remarks are presented in Sec. IV.

II. ANALYTICAL DISCUSSION: TWO QUBITS

In order to study quantitatively the entanglement between
two pairs of qubits we should calculate their entanglement of
formationEF. Given the density matrixr12 that describes our
pair of qubits,EF is the average entanglement of the pure
states of the decomposition ofr12, minimized over all pos-
sible decompositions:

EFsr12d = mino
i

piEscid, s2d

whereoipi =1, 0,pi ø1, andr12=oipiucilkciu. HereEscd is
the von Neumann entropy of either of the two qubitsf24g.
Wootterset al. [12] have shown that, for a pair of qubits,EF
is a monotonically increasing function of the concurrence,
which one can prove to be an entanglement monotone. Since
the concurrence is mathematically simpler to deal with than
EF, we concentrate our efforts on calculating the concurrence
to study the amount of entanglement between two qubits.
The concurrence between them is[12]

C12 = maxhl1 − l2 − l3 − l4,0j, s3d

wherel1, l2, l3, andl4 are the square roots of the eigen-
values, in decreasing order, of the matrixR=r12r̃12. Herer̃12
is the time-reversed matrix given by

r̃12 = ssy ^ sydr12
p ssy ^ syd. s4d

The symbolrp means complex conjugation of the matrixr in
the basishu11l , u10l , u01l , u00lj.

The above procedure to calculate the concurrence of two
qubits is used in the following section, where we deal with
several qubits. There, we trace over the qubits we are not
interested in and study the reduced density matrix of the two
chosen ones. For a pure bipartite system, which is the case
for the eigenvectors of a two-spin chain, the concurrence is
simply given by

C12 = 2uad− bcu, s5d

whereucl12=au11l+bu10l+cu01l+du00l is the bipartite pure
state. We see that when the concurrence is zero the two
qubits are not entangled and when it is 1 they are maxi-
mally entangledsEinstein-Podolsky-Rosen-Bell statesd.

For an isotropic spin chain with two sites Hamiltonian(1)
can be written as

SANTOS, RIGOLIN, AND ESCOBAR PHYSICAL REVIEW A69, 042304(2004)

042304-2



H =
1

2
sh1s1

z + h2s2
zd +

J

4
ss1

zs2
z + s1

ys2
y + s1

xs2
xd. s6d

One can easily verify thatfH ,s1
z+s2

zg=0, i.e., the total an-
gular momentum in thez direction is conserved. This implies
that states with different number of excitations do not
couple. This is evident by looking at the matrix form ofH:

H =1
S

2
+

J

4
0 0 0

0
D

2
−

J

4

J

2
0

0
J

2
−

D

2
−

J

4
0

0 0 0 −
S

2
+

J

4

2 , s7d

where S=h1+h2 and D=h1−h2. The above Hamiltonian is
block diagonal, which means thatu11l and u00l are nonen-
tangled eigenvectors ofH. As we are interested in en-
tanglement, we restrict our analysis to the other two
eigenvectors. These two eigenvectors are obtained via the
diagonalization of the above 232 block matrix. After a
straightforward calculation we obtain the two remaining
eigenvectors and eigenvalues:

uE±l =
1

Î2sJ2 + D2d 7 2DÎJ2 + D2

3 fJu10l − sD 7 ÎJ2 + D2du01lg, s8d

E± = −
J

4
±

ÎJ2 + D2

2
. s9d

Using Eq. (5) we get the following expression for the
concurrence of the eigenvectorsuE±l:

C± =
1

Î1 + D2/J2
. s10d

Equations10d clearly shows thatC± is a decreasing function
of D and an increasing function of the coupling constantJ.
WhenD=0, that is when the two qubits have the same level
spacing, we obtain maximal entangled states whether we are
in the weak- or strong-coupling regime. For any other value
of D we cannot achieve maximal entangled states, showing
that the appearance of a defectsh1Þh2d in this two-site chain
reduces the amount of entanglement. But, even ifDÞ0,
whenJ@D we get large concurrences. This means that in the
regime of strong coupling we can still have large entangle-
ment.

To investigate the relationship between entanglement and
localization we compute the number of principal compo-
nents,Npc. This is a quantity often used to determine how
much spread each eigenstate of the system is. The eigenvec-
tors of the Hamiltonian(1) are written as linear superposi-

tions of the quantum registersufil, i.e. uc jl=oi=1,Nai
jufil,

whereN is the total number of eigenstates. TheNpc for the
eigenvectorj is defined as[25]

Npc
j = 1Yo

i=1

N

uai
ju4. s11d

A delocalized system has largeNpc, while a strongly local-
ized system hasNpc very close to 1.

Applying Eq. (11) to the eigenvectorsuE±l we get the
following expression forNpc:

Npc
± =

1

1 − C±
2/2

. s12d

Equation s12d shows thatNpc for these eigenvectors is an
increasing function of the concurrence, which implies that,
for this particular two-qubit system, the more it is delocal-
ized the more it is entangled. When we haveC±=1 smaxi-
mum entanglementd, Npc

± =2. WhenC±=0 sno entanglementd
we getNpc

± =1 sstrong localizationd. However, this associa-
tion between delocalization and entanglement is not always
valid and this will become clear in the following section,
where we deal with several qubits. For the moment, it is
worthy noting that for a general superposition of the four
quantum registers we may have largeNpc but no entangle-
ment at all. Even though the stateucl=Î1/4su11l+ u10l
+ u01l+ u00ld is not an eigenstate of our Hamiltonian, it can
still be used as a good example of this situation, for it has
Npc=4 but Cc=0.

III. NUMERICAL RESULTS: SEVERAL EXCITATIONS

In this section we study how chaos and localization may
affect the entanglement of a pair of qubits when several qu-
bits and several excitations are considered. Depending on the
defects, our disordered system may become chaotic. To de-
termine if a system is chaotic or not it is usual to compute its
energy-level spacing distribution. Note that in the model de-
scribed by Hamiltonian(1), thez component of the total spin
on=1

L Sn
z is conserved, so states with different number of exci-

tations are not coupled. We therefore analyze sectors with the
same number of excitations. Since we are interested in com-
paring chaos and entanglement, we focus on the sector with
the largest number of states, that is, the sector withL /2 ex-
citations, because this is the region where chaos should set in
first [23].

In a very large system, the boundary conditions have no
effects, but numerical calculations are limited to a finite
number of sites. A chain with free boundaries(open chain)
and defects only on the edges is known to be integrable[26].
For our numerical calculations we choose an open chain with
defects of values −J/2 on the edges. Such values should
diminish border effects. The Hamiltonian now becomes

H̃ = H −
JZ

2

s1 + s1
zd

2
−

JZ

2

s1 + sL
zd

2
. s13d

We work with L=12 sites and six excitations, which gives
us 12! /s6!6! d=924 states.
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Before analyzing how chaos can affect entanglement and
motivated by the preceding section, we first check if two
qubits with the same level spacing, but now in a chain with
several excitations, can also lead to maximal entanglement.
Suppose that two selected qubits have level spacingh+d,
while all the others have level spacingh. If we turn off the
Ising interaction[i.e., if JZ=0 in Eqs.(1) and (13)], and if
d@JXY, the two selected qubits indeed lead to maximal en-
tanglement(except if one qubit is on the edge of the chain, in
which case border effects are noticed). This can be seen from
the top left of Fig. 1, where circles indicate that the chosen
pairs are the nearest-neighbor qubitssn,n+1d, squares give
next-nearest neighborssn,n+2d, and triangles give next-
next-nearest neighborssn,n+3d. In the figure we setJXY=1
andd=100. The concurrence is obtained by tracing over the
qubits we are not interested in. We show the maximum con-
currenceCmax obtained among the 924 eigenstates for each
selected pair. WhenJZ=0, even though we have many exci-
tations, the situation resembles the case of one single excita-
tion, where only the hopping term is present. Similar to this
case, a discussion on how to tune chosen qubits in order to
find maximally entangled states was done in Ref.[27].

However, when the Ising interaction is on, the results can
change considerably. Many-body effects now play an impor-
tant role. For the case of an isotropic chainsJZ=JXY=Jd
shown on the top right of Fig. 1, only nearest neighbors
maintain large concurrence, though not maximal. A particu-
lar case of anisotropysJZ.JXYd, on the other hand, tends to
increase the concurrence even for next-nearest neighbors, as
can be noticed by comparing the graphs in the middle of Fig.
1. On the leftJZ=10JXY and on the rightJZ=100JXY. But the
anisotropy has unexpected effects on the next-next-nearest
neighbors. In the special case ofJZ=d=100JXY shown in the
middle right of Fig. 1, their concurrences are also increased,

but this is not the case for large anisotropy whereJZÞd. In
this situation, the concurrence of some pairs can become
very close to 1, while others may decrease a lot, as can be
seen in the graphs at the bottom of Fig. 1, where arbitrary
large values ofJZ were chosenJZ=d=159JXY on the left and
JZ=d=327JXY on the right). Since the main goal of this pa-
per, however, is to analyze the relation between chaos and
entanglement, we will let for a future publication a more
careful study of the many-body effects due to the relative
strength of the IsingsJZd and hoppingsJXYd terms in Hamil-
tonian (1).

We now proceed to study the relation between localiza-
tion and entanglement and also between chaos and entangle-
ment in our many-body system. We consider an isotropic
chain sJZ=JXY=Jd and setJ=1. The level spacings of the
qubits are obtained with random magnetic fields along thez
direction. They are given byhn=h+dn, wheredn’s are uncor-
related random numbers with a Gaussian distribution:kdnl
=0 andkdndml=d2dn,m.

According to the integrability and localization of the sys-
tem, we can identify different regions. This is shown in Fig.
2. We calculate the average of the number of principal com-
ponentsNpc for the 924 eigenstates as a function ofd. This is
done using a sequence of 12 Gaussian random numbers,
which give the random level spacings for the qubits. This
procedure is then repeated for 20 different sequences. At the
top of Fig. 2 we showkNpcl, wherek l corresponds to the
average over these 20 different sequences. We decided to
work with 20 sequences, because this is enough to give an
idea of the general behavior of the system. We compared the
results for the concurrences of some pairs for more se-
quences and the behavior was still very similar, therefore
justifying the use of only 20 sequences. At the bottom of Fig.
2 we show a quantity used to measure how much chaotic the
system is. This parameter is defined ash=e0

s0fPssd
−PWDssdgds/e0

s0fPPssd−PWDssdgds, where s0=0.4729. . . is
the intersection point ofPPssd and PWD [23,28] and Pssd is

FIG. 1. (Color online) We show the maximum concurrence for
several pairs of qubits with the same level spacing. Circles indicate
that the selected pairs correspond to the nearest-neighbor qubits
sn,n+1d, squares give the next-nearest neighborssn,n+2d, and tri-
angles correspond to the next-next-nearest neighborssn,n+3d. We
set d=100 andJXY=1. Top left, JZ=0; top right,JZ=JXY; middle
left, JZ=10JXY; middle right,JZ=100JXY; bottom left,JZ=159JXY;
and bottom right,JZ=327JXY.

FIG. 2. Top: dependence ofkNpcl on d/J. TheNpc corresponds
to an average over the 924 eigenstates for eachd/J andkNpcl comes
from the next average over 20 different sequences of random num-
bers. Bottom: dependence ofkhl on d/J. Here again,k l indicates
an average over 20 different sequences of 12 Gaussian random
numbers. We setJ=1.
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the energy-level spacing distribution for the system under
study. A regular system hash=1 and a chaotic system has
h=0. Here again,k l indicates the average over 20 sequences
of random numbers.

When d=0 the system is integrable, but delocalized. We
have Poisson distributionsh,1d, but largekNpcl. As d in-
creases the system becomes chaotic and even more delocal-
ized. For 0,d,0.2, we move toward a Wigner-Dyson dis-
tribution (h tends to 0) and kNpcl becomes even larger.
However, as we further increased the level spacing distribu-
tion approaches again a Poissonian distribution andkNpcl
decreases. This transition region corresponds to 0.2,d,2.
As d becomes much larger than the interaction strengthJ, the
system becomes strongly localized, the distribution is again
clearly Poissonian andkNpcl gets very close to 1.

We comparekN̄pcl andkhl with the concurrence for pairs
of nearest neighbors(Fig. 3), pairs of next-nearest neighbors
(top of Fig. 4), and pairs of next-next-nearest neighbors(bot-
tom of Fig. 4). For each pair we compute the maximum
concurrenceCmax among the 924 eigenstates. This is aver-
aged over 20 different sequences of random numbers. We

also compute the average concurrenceC̄ for each chosen
pair, which is again averaged over 20 different sequences of
random numbers. The average concurrences for all pairs
have a very similar behavior. Because of this and also be-
cause the values for the average concurrences become very
small for distant pairs, we just show here the average con-
currences for nearest-neighbor qubits(bottom of Fig. 3).

By using Figs. 2–4 we can analyze what happens to en-
tanglement in the distinct regimes of the system.

First, let us look at the bottom of Fig. 3. By comparing the

average concurrenceskC̄l for d=0 and 0,d,0.2, the region
where chaos and delocalization increase, we see that the con-
currences slightly decrease. This suggests that in such sys-
tems, with nearest-neighbor interactions, chaos may contrib-
ute to a decrease of the average entanglement of the qubits.
In the transition zone, 0.2,d,2, which is the region where

the system becomes less chaotic and more localized, we see
a rapid increase of the concurrences. This is very interesting,
because despite of being in the process of localization the
average concurrences of the qubits increase. Finally for
d.2, the region where the system is strongly localized and
clearly regular(nonchaotic), the average concurrences de-
crease, as it should. The effect of localization on the average
entanglement, therefore, depends on how far we are from the
chaotic region. As explained above, localization increases
entanglement when the system is moving from nonintegra-
bility (chaos) to integrability, but it decreases entanglement
when the system is already strongly localized.

The top of Fig. 3 shows that in the region of chaossd
,0.2d the maximum concurrences for nearest-neighbor qu-
bits are larger thankCmaxl for next and much larger for next-
next nearest neighbors(Fig. 4). This is explained noticing
that for directly coupled pairs(nearest neighbors), and there-
fore pairs with strong interaction, the effects of chaos are not
so drastic and they keep reasonably large maximum concur-
rences. But again we verify that chaos diminishes the en-
tanglement of any pair of qubits. We also see that in the
region where localization is becoming strong(d.2) we still
have reasonable values forkCmaxl for the nearest-neighbor
qubits. This contrasts with the behavior ofkCmaxl for the next
and next-next nearest neighbor qubits, where we see a faster
falling kCmaxl.

From the observations of the previous paragraph we con-
clude that the interaction between two qubits counterbal-
ances the destruction of their entanglement caused by chaos
and also by strong localization. This interpretation is rein-
forced if we note that the Hamiltonian considered here has
only nearest-neighbor interaction terms and, as it was nu-
merically shown, nearest neighbors maintain larger entangle-
ment if compared to next and next-next neighbors, which are
shown to be more susceptible to the effects of chaos and
localization.

FIG. 3. (Color online) The top gives the dependence ofkCmaxl
on d/J and the bottom giveskC̄l for nearest-neighbor qubitsN. In
both, the solid and black line represents the pair of qubits 1-2, the
dotted and red line gives the pair 3-4, the dashed and blue gives the
pair 6-7, and the dot-dashed and green represents the qubits 10-11.

FIG. 4. (Color online) Top: maximum concurrence for next-
nearest neighbor qubitssNNd. The solid and black line gives the
pair 1-3, the dotted and red is for the qubits 2-4, the dashed and blue
represents 3-5, and the dot-dashed and green gives the pair 4-6.
Bottom: maximum concurrence for next-next-nearest neighbor qu-
bits sNNNd. The solid and black line gives the pair 2-5, the dotted
and red is for the qubits 4-7, the dashed and blue represents 5-8, and
the dot-dashed and green gives the pair 7-10.
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IV. CONCLUSION

We studied how entanglement is related to chaos and lo-
calization in one-dimensional Heisenberg spin chains. For
this purpose we used an isotropic chain with external random
magnetic fields(chain with defects) to obtain a chaotic re-
gime.

We showed that chaos is responsible for a decrease in the
entanglement(concurrence) of the nearest-, next-, and next-
next-nearest-neighbor qubits. However, nearest-neighbor qu-
bits are less sensitive to chaos than the next- and next-next-
nearest neighbors and keep relative large entanglement in the
chaotic region.

The relation between entanglement and localization is
rather subtle. We found that in a strongly localized system
entanglement decreases. Nonetheless, in the transition region
from nonintegrability(chaos) to integrability we observed
that an increase in localization causes an increase in en-
tanglement.

Finally, it was also shown that when two qubits have the
same external magnetic field and this field is very large com-
pared with the fields applied to the other sites, they lead to
maximally entangled states if the Ising interaction is not
present. However, this behavior is affected by the relative
strength of the IsingsJZd and hoppingsJXYd terms in the
Hamiltonian. Large anisotropy leads to large entanglement
for nearest- and next-nearest-neighbor qubits, but the behav-
ior of the next-next-nearest neighbors does not follow this or
any simple trend.
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