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Entanglement versus chaos in disordered spin chains
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We use a Heisenberg spin-1/2 chain to investigate how chaos and localization may affect the entanglement
of pairs of qubits. To measure how much entangled a pair is, we compute its concurrence, which is then
analyzed in the delocalizetbcalized and in the chaoti¢nonchaotig regimes. Our results indicate that chaos
reduces entanglement and that entanglement decreases in the region of strong localization. In the transition
region from a chaotic to a nonchaotic regime localization increases entanglement. We also show that entangle-
ment is larger for strongly interacting qubitsearest neighboyghan for weakly interacting qubit@ext and
next-next neighbops
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[. INTRODUCTION A disordered system is characterized by the presence of one
or more defects.

Today it is well known that quantum entanglement, here-  There have been recent attempts to relate localization with
after simply entanglement, is not just an issue of quantungntanglementl5] and also chaos with entangleméh6,17.
mechanics that has yielded several discussions on the cohtere we study at the same time the influence of localization
ceptual foundations of this theof§—3]. It is also a practical and chaos on the entanglement. Some authors have shown
resource to develop new technologies. Entanglement enablésat in a system of coupled quantum kicked tdp$,19
us to implement some quantum algorithms which outperfornchaos increases entanglement. Here we show just the oppo-
their classical counterpartgt,5]. It can also increase the site, that chaoslecreasesentanglement. Even though our
amount of classical information transmitted in a quantumsystem is very different from the one they considered, it is
channel via the superdense coding protdépland it allows  clear that a more careful'ana!ysis of the relation between
the transmission of an unknown quantum state between tweha0s and entanglement is still needed. We claim that the
spatially separated partigguantum teleportation7,8]. entanglement of two qubits is not simply related to delocal-

Since we can perform many useful tasks with entangledzat'on- It also is influenced by the chaoticity of the system.
states, it is desirable to quantify the amount of entanglemerjty chaos we mean how close the energy-level spacing dis-
these states have. There are at least three measures of Gipution of the system is to a Wigner-Dyson distribution. See

tanglement which have reasonable physical interpretationgext paragraph_and Sec. |l fqr dgtails. .
[9-11]. One of them, the entanglement of formatiBg has The spin chain considered in this paper is a perfect system

. : ) : ot - to study the relations between entanglement and localization
a relatively simple analytical expression for bipartite mixed

tates12] TheE. | tonically i ina funci f and between entanglement and chaos, because it has differ-
stateg12). TheEr is a monotonically increasing function of o reqions of interest. Concurrences of pairs of qubits ob-

a quantity called concurrence, which we adopt here as oYyhineq'in different regimes can then be compared. The tran-
measure of entanglemefit3]. See Sec. Il for details. ~  giiion from integrability to nonintegrability in these systems
In this paper, we study how the entanglement of pairs 0fepends on the defedt0]. It is known that the energy level
qubits is related to chaos and localization. To do so, we congpacing distribution of an integrable system is Poissonian,
sider a one-dimensional Heisenberg spin-1/2 chain. The inp(s)=exp-s), while the level statistics of a chaotic system
terest in such systems has recently increased considerabjy, given by the Wigner-Dyson distributionPyp(s)
for they.m.odel several proposed quantum ‘?Ompulmg =(ms/2)exp(—7s?/4) [21]. In the absence of defects, that is,
Each spin in the chain corresponds to a qubit and the intet; hen we have an ideal chain, the system is integrable and it
action between them is used to describe two-qubit gates. an be solved with the Bethé ans&22). Its level distribu-

single-particle excitation corresponds to a spin pointing UPtion is therefore Poissonian. As random onsite magnetic

I_n the_se systems, we call defect t_he 5|te_ whose energy SIOII]EFeIds are turned on and their mean-square amplitude starts
ting differs from all the others. It is obtained by applying a

diff t tic field in the direction to the ch i increasing, the system undergoes a transition and becomes
Iiterent magnetc held in he direction o the Chosen SIe.  opaqtic. In this scenario we obtain a Wigner-Dyson distribu-

tion for the level spacings. By further increasing the mean-
square amplitude, localization eventually takes place and the

*Electronic address: santos@pa.msu.edu distribution becomes Poissonian again.
"Electronic address: rigolin@ifi.unicamp.br When the states of the system become localized, the ex-
*Electronic address: escobar@ifi.unicamp.br citations in the chain are restricted to finite regions of space.
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Defects even more different in energy finally leads to stronganglement is large. It then decreases when the system be-
localization, by which we mean that each eigenvector of th&eomes chaotic and even more delocalized. However, in the
system becomes very close to a noninteracting multiexcitatransition region between chaos and strong localization,
tion state|¢))=|ay, ..., ), where o, =0,1 indicates a spin where the system is actually localizing, entanglement in-
down or up, respectively, and is the total number of sites. creases again. It is only when the system gets close to strong
Each excitation is then restricted to practically just one sitdocalization that entanglement decreases. The relation be-
of the chain. In quantum computation, these are the states we/een localization and entanglement is not so simple as one
want to operate with and they are called quantum registersiight have expected. But it is clear from our analysis that
[23]. On the other hand, the eigenfunctions of the system irthaos diminishes entanglement. We should add, however,
the absence of defects and especially the eigenfunctions that for Hamiltonian(1) nearest-neighbor interacting qubits
the chaotic regime are very much spread over the chain anare able to keep their concurrence reasonably large even in a
they correspond to linear superpositions of several quanturchaotic region.
registers. The system in this case is said to be delocalized. Concluding remarks are presented in Sec. IV.

The Hamiltonian that describes our system is the follow-

ing:
9 Il. ANALYTICAL DISCUSSION: TWO QUBITS
L L-1 L-1
h ‘]Z ‘JXY 1 1
H=> Do+ > oot + > Y (Ko + Vo)) In o_rder to stL_de guantitatively the entar_lglement between
=1 2 =1 4 =1 4 two pairs of qubits we should calculate their entanglement of

formationEg. Given the density matriy,, that describes our
(1) . ; .

pair of qubits,Eg is the average entanglement of the pure
We consider only nearest-neighbor interactibm,1, ando™, states of the decomposition pf,, minimized over all pos-
oY, and ¢* are Pauli matrices. Each siteis subjected to a sible decompositions:
magnetic field in thez direction, giving the energy splitting
h,. There are_ sites and we deal with an open chain, which Er(p12) = minX, piE(s), 2
is, in our opinion, a more realistic model for quantum com- i
puters. The system is isotrop{anisotropi¢ when the cou- whereX;p,=1, 0<p;<1, andp,=2ipi|i)ti|. HereE(y) is
pling constant for the diagonal Ising interactionfo,; IS the von Neumann entropy of either of the two quijizd].
equal(differeny to the coupling constarly for the XY-type  wqotterset al. [12] have shown that, for a pair of qubits;
interactionoior,, +oyoy.,. This last term is responsible for js 3 monotonically increasing function of the concurrence,
delocalizing the system, because it propagates the excitatiofgich one can prove to be an entanglement monotone. Since
through the chain. It is usually referred to as the hoppinghe concurrence is mathematically simpler to deal with than
term. Er, we concentrate our efforts on calculating the concurrence

To analyze how localization affects the entanglement of gq study the amount of entanglement between two qubits.

pair of qubits, we compare the number of principal compo-The concurrence between them[i€]

nents for the whole system with the concurrence for a chosen

pair. The definitions for these two quantities are presented in Ciz=maxA; = Na = N3= N4, 0}, 3)
the following section. There_we restrict purselves to two qu'where)\l, \s Ns, and\, are the square roots of the eigen-
bits and show a brief analytical discussion. As expected, e

Nalues, in decreasing order, of the mafix p;p;,. Herep
tanglement tends to disappear in a strongly localized syster ’ 9 ' P12P12 P12

On the other hand, it becomes maximal if the level spacind the time-reversed matrix given by
of the two qubits is the same _and it is also very large V\_/hen P1o= (Uy ® g'y)piz(g'y ® o'y)_ (4)
the interaction between them is much larger than the differ- . ] ] B
ence between the two level spacings. The symbolp means complex conjugation of the matpixn

In Sec. Ill, we show our numerical results for a chain with the basis{[11),[10),(01),/00)}.
several qubits and several excitations. First, we discuss the The above procedure to calculate the concurrence of two
case where two qubits have the same level spacings, whicdHbits is used in the following section, where we deal with
are in turn very different from the other qubits. If the Ising S€veral qubits. There, we trace over the qubits we are not
interaction does not exist and only the hopping term isinterested in and study the reduced density matrix of the two
present, we have a situation very similar to the case of onlghosen ones. For a pure bipartite system, which is the case
one excitation discussed in Sec. Il and maximal entanglefor the eigenvectors of a two-spin chain, the concurrence is
ment can be obtained. However, if the Ising term is presenimply given by
the entanglement for nearest-neighbor qubits becomes larger Cy,=2ad-bd| (5)

. . . . 12— ,

than for the other pairs, indicating that many-body effects
can strongly affect entanglement between distant neighborsvhere|),,=a|11)+b|10)+c|01)+d|00) is the bipartite pure

In Sec. Ill, we also consider qubits with random level state. We see that when the concurrence is zero the two
spacings, which allows us to study the behavior of entanglequbits are not entangled and when it is 1 they are maxi-
ment with chaos and the behavior of entanglement with lomally entangled Einstein-Podolsky-Rosen-Bell stajes
calization when several interacting excitations are present. In For an isotropic spin chain with two sites Hamiltonigdn
the integrable but delocalized region of an ideal chain, enean be written as
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1 J tions of the quantum registengp), i.e. [¢)=Zi=1nal| ),
H= E(hloll +hyo?) + 1(011012 *oyoytoi0y).  (6)  whereN is the total number of eigenstatejs. TNg, for the
eigenvectoij is defined ag25]
One can easily verify thdtH, o7 +0%]=0, i.e., the total an- N
gular momentum in the direction is conserved. This implies N = 1/ > |allt.
that states with different number of excitations do not i=1
couple. This is evident by looking at the matrix form laf

(11

A delocalized system has lar@é,, while a strongly local-

s 3 ized system hasl,. very close to 1.
—+ = 0 0 0 Applying Eq. (11) to the eigenvector$E,) we get the
2 4 following expression foiN,:
A J J
0o —--- - 0 . 1
2 4 2 Npe= 3,5 (12
H= , (7) 1- C+/2
J A ] -
0 2 T2 4 0 Equation(12) shows thatN, for these eigenvectors is an
increasing function of the concurrence, which implies that,
0 0 0 _ 2 + J for this particular two-qubit system, the more it is delocal-
2 4 ized the more it is entangled. When we havge=1 (maxi-

. mum entanglementN;.=2. WhenC,=0 (no entanglemeit
whereX=h, +h, and A=h,;-h,. The above Hamiltonian is we getN; =1 (strong localization However, this associa-
block diagonal, which means thgitl) and|00) are nonen- tion between delocalization and entanglement is not always
tangled eigenvectors ofi. As we are interested in en- valid and this will become clear in the following section,
tanglement, we restrict our analysis to the other twowhere we deal with several qubits. For the moment, it is
eigenvectors. These two eigenvectors are obtained via thgorthy noting that for a general superposition of the four
diagonalization of the above>22 block matrix. After a guantum registers we may have |arugc but no entang|e_
straightforward calculation we obtain the two remainingment at all. Even though the state))=11/4(/11)+|10)

eigenvectors and eigenvalues: +|02)+]00)) is not an eigenstate of our Hamiltonian, it can
still be used as a good example of this situation, for it has
E.) = = Npe=4 but C,=0.
Y232+ A2 T 20V + A2
X [J|10) - (A = VIZ+ A2)|oD)], (8) IIl. NUMERICAL RESULTS: SEVERAL EXCITATIONS
In this section we study how chaos and localization may
J \;m affect the entanglement of a pair of qubits when several qu-
E,=- 4_1 + —2 . (9) bits and several excitations are considered. Depending on the

defects, our disordered system may become chaotic. To de-
Using Eq.(5) we get the following expression for the termine if a system is chaotic or not it is usual to compute its

concurrence of the eigenvectqEs,): energy-level spacing distribution. Note that in the model de-
scribed by Hamiltoniaril), thez component of the total spin
1 S-S is conserved, so states with different number of exci-

(10) tations are not coupled. We therefore analyze sectors with the
same number of excitations. Since we are interested in com-
paring chaos and entanglement, we focus on the sector with

C+==.
ToN1+A%P

Equation(10) 'clearly .ShOWS thaCi IS a decreagmg function the largest number of states, that is, the sector with ex-
of A and an increasing function of the coupling constant

WhenA=0, that is when the two qubits have the same Ieveﬁgt'&g?' because this is the region where chaos should set in

spacing, we obtain maximal entangled states whether we are In a very large system, the boundary conditions have no
ININEWEaksar stror_wg—coupllr_lg regime. For any other Va“.Jeeffects, but numerical calculations are limited to a finite
of A we cannot achieve maximal entangled states, Showmﬁumber of sites. A chain with free boundari@pen chain
that the appearance of a defélet # h,) in this two-site c;ham and defects onIy. on the edges is known to be integrefi
reduces the amount of entanglement. E’Ut' ever # 0.’ For our numerical calculations we choose an open chain with
whgnJ»Awe get Iarge.concurrencesf. This means th""t'nth‘?‘.iefects of values 3/2 on the edges. Such values should
regime of strong coupling we can still have large entangle'diminish border effects. The Hamiltonian now becomes

ment.
To investigate the relationship between entanglement and ~ J,(1+09) J,(1+0f)
localization we compute the number of principal compo- H=H-S —— %% - (13

nents,N,.. This is a quantity often used to determine how
much spread each eigenstate of the system is. The eigenvedte work withL=12 sites and six excitations, which gives
tors of the Hamiltonian(1) are written as linear superposi- us 12!/(6!6!)=924 states.
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FIG. 2. Top: dependence ¢,y ond/J. TheN_pC corresponds
FIG. 1. (Color onling We show the maximum concurrence for to an average over the 924 eigenstates for eddrand(N,;) comes
several pairs of qubits with the same level spacing. Circles indicatgom the next average over 20 different sequences of random num-
that the selected pairs correspond to the nearest-neighbor qubigrs. Bottom: dependence 6f) on d/J. Here again{ ) indicates

(n,n+1), squares give the next-nearest neighltarsi+2), and tri-  an average over 20 different sequences of 12 Gaussian random
angles correspond to the next-next-nearest neighlmgrs+ 3). We numbers. We sel=1.

setd=100 andJyy=1. Top left, J,=0; top right,J,=Jxy; middle

left, J,=100yy; middle right,J,=100yy; bottom left, J,=159yy; but this is not the case for large anisotropy whéye: d. In

and bottom right,J,=327yy. this situation, the concurrence of some pairs can become
very close to 1, while others may decrease a lot, as can be

Before analyzing how chaos can affect entanglement ang€en in the graphs at the bottom of Fig. 1, where arbitrary
motivated by the preceding section, we first check if twolarge values oz were choserdz=d=159yy on the left and
qubits with the same level spacing, but now in a chain withJz=d=32%xy on the righj. Since the main goal of this pa-
several excitations, can also lead to maximal entanglemen®', however, is to analyze the relation between chaos and
Suppose that two selected qubits have level spahing, entanglement, we will let for a future publication a more
while all the others have level spaciihg If we turn off the careful study of Fhe many-body _effects due to the re_latlve
Ising interaction[i.e., if J,=0 in Eqs.(1) and (13)], and if  Strength of the IsingJ;) and hoppingJxy) terms in Hamil-
d>Jyy, the two selected qubits indeed lead to maximal enfonian(l).
tanglementexcept if one qubit is on the edge of the chain, in  We now proceed to study the relation between localiza-
which case border effects are notigethis can be seen from tion and entanglement and also between chaos and entangle-
the top left of Fig. 1, where circles indicate that the choserMent in our many-body system. We consider an isotropic
pairs are the nearest-neighbor quigitsn+1), squares give chain (Jz=Jxy=J) and setJ=1. The level spacings of the
next-nearest neighboré,n+2), and triangles give next- dubits are obtained with random magnetic fields alongzthe
next-nearest neighbots,n+3). In the figure we sefl,=1  direction. They are given bly,=h+d,, wheredy's are uncor-
andd=100. The concurrence is obtained by tracing over thé€lated random numbers with a Gaussian distributiah
qubits we are not interested in. We show the maximum con=0 and(d,dy =d*3,
currenceCp,, Obtained among the 924 eigenstates for each According to the integrability and localization of the sys-
selected pair. Whei,=0, even though we have many exci- tem, we can identify different regions. This is shown in Fig.
tations, the situation resembles the case of one single excitd- We calculate the average of the number of principal com-
tion, where only the hopping term is present. Similar to thisponentsN, for the 924 eigenstates as a functiordofThis is
case, a discussion on how to tune chosen qubits in order @one using a sequence of 12 Gaussian random numbers,
find maximally entangled states was done in R27). which give the random level spacings for the qubits. This

However, when the Ising interaction is on, the results carprocedure is then repeated for 20 different sequences. At the
change considerably. Many-body effects now play an importop of Fig. 2 we show(N,, where( ) corresponds to the
tant role. For the case of an isotropic chdily=Jyy=J)  average over these 20 different sequences. We decided to
shown on the top right of Fig. 1, only nearest neighborswork with 20 sequences, because this is enough to give an
maintain large concurrence, though not maximal. A particuidea of the general behavior of the system. We compared the
lar case of anisotrop{d;> Jyy), on the other hand, tends to results for the concurrences of some pairs for more se-
increase the concurrence even for next-nearest neighbors, @¢ences and the behavior was still very similar, therefore
can be noticed by comparing the graphs in the middle of Figjustifying the use of only 20 sequences. At the bottom of Fig.
1. On the left),=1QJyy and on the rightl,=10Q)yy. But the 2 we show a quantity used to measure how much chaotic the
anisotropy has unexpected effects on the next-next-nearesystem is. This parameter is defined ag=[F[P(s)
neighbors. In the special casebf=d=100)yy, shown in the  —Pyp(s)]ds/ [P[Pp(S) —Pwp(s)]ds where 5,=0.4729... is
middle right of Fig. 1, their concurrences are also increasedhe intersection point oPp(s) and Py,p [23,28 and P(s) is
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FIG. 4. (Color online Top: maximum concurrence for next-
) ! ) nearest neighbor qubitd\N). The solid and black line gives the
on d/J and the bottom giveeC) for nearest-neighbor qubifs. In i 1 3 the dotted and red is for the qubits 2-4, the dashed and blue
both, the solid and black line represents the pair of qubits 1-2, th?epresents 3-5, and the dot-dashed and green gives the pair 4-6.
dotted and red line gives the pair 3-4, the dashed and blue gives g, 1om: maximum concurrence for next-next-nearest neighbor qu-

pair 6-7, and the dot-dashed and green represents the qubits 10-}}s (\NN). The solid and black line gives the pair 2-5, the dotted

Fmd red is for the qubits 4-7, the dashed and blue represents 5-8, and
the dot-dashed and green gives the pair 7-10.

FIG. 3. (Color onling The top gives the dependence (@fay

the energy-level spacing distribution for the system unde
study. A regular system hag=1 and a chaotic system has

7=0. Here agairy ) indicates the average over 20 sequenceshe system becomes less chaotic and more localized, we see
of random numbers. a rapid increase of the concurrences. This is very interesting,
Whend=0 the system is integrable, but delocalized. Webecause despite of being in the process of localization the
have Poisson distributiofyy~ 1), but large(N,o). As d in-  average concurrences of the qubits increase. Finally for
creases the system becomes chaotic and even more delocdl= 2, the region where the system is strongly localized and
ized. For 0<d<0.2, we move toward a Wigner-Dyson dis- clearly regular(nonchaotig, the average concurrences de-
tribution (7 tends to 0 and (N,o becomes even larger. Créase, as it should. The effect of localization on the average
However, as we further increasehe level spacing distribu- €Ntanglement, therefore, depends on how far we are from the
tion approaches again a Poissonian distribution &xgl) chaotic region. As explained abpve, chal|zat|on increases
. o . entanglement when the system is moving from nonintegra-
decreases. This transition region corresponds te<@.Z 2. bili : . .
: . ility (chao$ to integrability, but it decreases entanglement
As d becomes much larger than the interaction stredgthe . .
system becomes strongly localized, the distribution is agaiﬁN hen the system is already strongly localized.
i i ’ The top of Fig. 3 shows that in the region of chdads
clearly Poissonian an(N,.) gets very close to 1. ~0.2 th . :
— ) ] . e maximum concurrences for nearest-neighbor qu-
We compargN, and(z) with the concurrence for pairs pits are larger thakCa, for next and much larger for next-
of nearest neighborgig. 3), pairs of next-nearest neighbors eyt nearest neighbor&ig. 4). This is explained noticing
(top of Fig. 4, and pairs of next-next-nearest neighb@st- 4t for directly coupled pairenearest neighboysand there-
tom of Fig. 4. For each pair we compute the maximum fore pairs with strong interaction, the effects of chaos are not
concurrenceCra, among the 924 eigenstates. This is aver-gg grastic and they keep reasonably large maximum concur-
aged over 20 different sequences of random numbers. Wences. But again we verify that chaos diminishes the en-
also compute the average concurreri@dor each chosen tanglement of any pair of qubits. We also see that in the
pair, which is again averaged over 20 different sequences a&gion where localization is becoming stro@> 2) we still
random numbers. The average concurrences for all paiisave reasonable values f¢€,,, for the nearest-neighbor
have a very similar behavior. Because of this and also bequbits. This contrasts with the behavior(@f,,. for the next
cause the values for the average concurrences become Vef}{d next-next nearest neighbor qubits, where we see a faster
small for distant pairs, we just show here the average CoMfalling (Cra-
currences for nearest-neighbor qultitettom of Fig. 3. From the observations of the previous paragraph we con-
By using Figs. 2—4 we can analyze what happens 10 engjyde that the interaction between two qubits counterbal-
tanglement in the distinct regimes of the system. ances the destruction of their entanglement caused by chaos
First, let us look at the bottom of Fig. 3. By comparing the 5ng 150 by strong localization. This interpretation is rein-
average concurrencé8) for d=0 and 0<d< 0.2, the region  forced if we note that the Hamiltonian considered here has
where chaos and delocalization increase, we see that the coonly nearest-neighbor interaction terms and, as it was nu-
currences slightly decrease. This suggests that in such sysierically shown, nearest neighbors maintain larger entangle-
tems, with nearest-neighbor interactions, chaos may contritment if compared to next and next-next neighbors, which are
ute to a decrease of the average entanglement of the qubihown to be more susceptible to the effects of chaos and
In the transition zone, 02 d< 2, which is the region where localization.
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IV. CONCLUSION Finally, it was also shown that when two qubits have the
same external magnetic field and this field is very large com-
We studied how entanglement is related to chaos and Iopared with the fields applied to the other sites, they lead to
calization in one-dimensional Heisenberg spin chains. Fomaximally entangled states if the Ising interaction is not
this purpose we used an isotropic chain with external randorifesent. However, this behavior is affected by the relative
magnetic fieldschain with defectsto obtain a chaotic re- strength of the IsingJz) and hopping(Jxy) terms in the
gime. Hamiltonian. Large anisotropy leads to large entanglement
We showed that chaos is responsible for a decrease in tHgr néarest- and next-nearest-neighbor qubits, but the behav-
entanglementconcurrencgof the nearest-, next-, and next- 10f of .the next-next-nearest neighbors does not follow this or
next-nearest-neighbor qubits. However, nearest-neighbor g@"y simple trend.
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