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We describe an electrodynamic mechanism for coherent, quantum-mechanical coupling between spatially
separated quantum dots on a microchip. The technique is based on capacitive interactions between the electron
charge and a superconducting transmission line resonator, and is closely related to atomic cavity quantum
electrodynamics. We investigate several potential applications of this technique which have varying degrees of
complexity. In particular, we demonstrate that this mechanism allows design and investigation of an on-chip
double-dot microscopic maser. Moreover, the interaction may be extended to couple spatially separated
electron-spin states while only virtually populating fast-decaying superpositions of charge states. This repre-
sents an effective, controllable long-range interaction, which may facilitate implementation of quantum infor-
mation processing with electron-spin qubits and potentially allow coupling to other quantum systems such as
atomic or superconducting qubits.
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I. INTRODUCTION

Recent progress in quantum control of atoms, ions, and
photons has spurred interest in developing architectures for
quantum information processing[1]. An intriguing question
is whether similar techniques can be extended to control
quantum properties of “artificial atoms” in a condensed-
matter environment. These tiny solid-state devices, e.g., flux
lines threading a superconducting loop, charges in cooper
pair boxes, and single-electron spins, exhibit quantum-
mechanical properties which can be manipulated by external
currents and voltages[2,3]. To realize their potential as
highly tunable qubits, they must interact at a rate faster than
the decoherence caused by the complex and noisy environ-
ment they inhabit. Strong coupling between qubits is there-
fore essential to achieve a high degree of control over quan-
tum dynamics. For most systems a mechanism achieving the
required coupling strength has only been proposed for
nearby qubits[4], thus limiting the spatial extent of control-
lable interactions.

We describe a technique for coupling mesoscopic systems
that can be millimeters apart. In our proposal, a strong inter-
action is obtained by linking charge qubits to quantized volt-
age oscillations in a transmission line resonator. We show
that the capacitive coupling between charge degrees of free-
dom of the mesoscopic system and the superconducting reso-
nator is formally analogous to cavity quantum electrodynam-
ics (cavity QED) in atomic physics[5]. Such an interaction
may be used for controllable coupling of distant mesoscopic
qubits, thereby facilitating scalable quantum computing ar-
chitectures. Furthermore, we have recently shown[6] that by
combining the present approach with atom trapping above
the resonator, these techniques may allow coupling between
solid state and atomic qubits, thus opening a new avenue for
quantum information research.

These new opportunities for qubit manipulation using mi-
crowave photons are made possible by the excellent coher-

ence properties of high quality factor superconducting mi-
crostrip resonators originally developed for photon detection
[7]. With observedQ factors exceeding 106 at 10 GHz, such
resonators could permit on-chip storage of a microwave pho-
ton for more than 10ms. Moreover, in contrast to the micro-
wave cavities used in atomic cavity QED[8,9], these one-
dimensional transmission line resonators have mode volumes
far smaller than a cubic wavelength, allowing a significantly
stronger coupling to resonator modes. This combination of
long coherence time and strong coupling makes microstrip
resonators a promising technology for quantum manipula-
tion.

In this paper we outline several intriguing avenues for
applications of these resonators in the context of quantum
dot research. We first discuss a mechanism for strong
coupling between spatially separated charge states in a me-
soscopic system. We show, in particular, that the use of quan-
tum dots may allow construction of novel quantum devices
such as an on-chip double-dot microscopic maser[8–10].
Our discussion pertains to lithographically defined lateral
double quantum dots[11], although the resonator coupling
mechanism would apply equally to other mesoscopic sys-
tems. Indeed, similar ideas for resonator mediated interac-
tions have been developed in the context of superconducting
qubits [12]. Specifically, the strong-coupling mechanism
analogous to that presented here has been proposed indepen-
dently in Ref.[13].

Although coherence properties of charge states in quan-
tum dots are likely worse than those of superconducting sys-
tems, quantum dots have two potential advantages: they are
highly tunable and the electrons they confine are not paired,
allowing access to the electron spin. We show that the more
stable spin degree of freedom may be accessed using tech-
niques for quantum coherent manipulation initially devel-
oped in atomic physics[14,15]. In analogy to the use of
Raman transitions in cavity quantum electrodynamics, the
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electron-spin states can be coupled via a virtual charge state
transition. Since the spin decoherence rate is far slower than
the charge decoherence rate, the losses can thereby be greatly
reduced. Finally, we explicitly address the effect of the reso-
nator on radiative contributions to qubit decoherence, and
demonstrate that the latter can be greatly suppressed.

Before proceeding, we also note important earlier work
on cavity quantum electrodynamics with quantum dots in the
optical regime [16], which differs qualitatively from the
ideas discussed here.

II. CAVITY QED WITH CHARGE STATES

A. The resonator-double-dot interaction

We consider a single electron shared between two adja-
cent quantum dots whose energy eigenstates are tuned close
to resonance with the fundamental mode of a nearby super-
conducting transmission line segment. The electron can oc-
cupy the left and right dot statesuLl and uRl, respectively,
and it tunnels between the dots at rateT (see Fig. 1). A
capacitive couplingCc between the right dot and the resona-
tor causes the electron charge state to interact with excita-
tions in the transmission line. We assume that the dot is
much smaller than the wavelength of the resonator excita-
tion, so the interaction strength may be derived from the

electrostatic potential energy of the system,Ĥint=eV̂vuRlkRu,
wheree is the electron charge,V̂ is the voltage on the reso-
nator near the right dot,v=Cc/ sCc+Cdd, and Cd is the ca-
pacitance to ground of the right dot.

A more useful form of the interaction Hamiltonian is
found by rewriting this energy in a different basis. First, we
express the left and right dot statesuLl anduRl in terms of the
double-dot eigenstates. If the two dots are tunnel coupled
with matrix elementT and have a potential-energy difference
of D, then the double-dot eigenstates are given by

u + l = sinfuLl + cosfuRl, s1d

u− l = cosfuLl − sinfuRl, s2d

where tanf=−2T/ sV+Dd andV=Î4T2+D2 is the splitting
in frequency between the eigenstatesu+l and u−l. For no-
tational simplicity, we represent the electron charge state
in terms of Pauli spin matrices by defining raising and

lowering operatorsS+=S−
†= u+lk−u, so that Sx=S++S−,

and so on.
Next, we express the voltage as an operator. A transmis-

sion line segment of lengthl, capacitance per unit lengthC0,
and characteristic impedanceZ0 has allowed wave vectors
kn=fsn+1dpg / l and frequenciesvn=kn/C0Z0. Canonical
quantization of the transmission line Hamiltonian allows the
voltage to be written in terms of creation and annihilation
operatorshân

†,ânj for the modeskn of the resonator. These
excitations may be interpreted as microwave photons. With
substitution of the quantized voltage at the end of the reso-
nator,

V̂ = o
n

Î"vn

lC0
sân + ân

†d, s3d

the full Hamiltonian becomes

Ĥ =
"V

2
Sz + o

n

"vnân
†ân + "sgz

sndSz + gx
sndSxdsân

† + ând.

s4d

The coupling constants, gx
snd=g0sT/VdÎvn/v0 and

gz
snd=g0sD /2VdÎvn/v0 scale as an overall coupling

strength

g0 = v0vÎ2Z0

RQ
, s5d

whereRQ=h/e2<26 kV is the resistance quantum.
For g0!v0 (which is guaranteed for low-impedance reso-

natorsZ0!RQ) the Hamiltonian of Eq.(4) may be further
simplified by neglecting all terms which do not conserve
energy: If the dot is near resonance with the fundamental
frequency, v0=p / lZ0C0<V, we may neglect all other
modes, and in the rotating wave approximation the Hamil-
tonian reduces to

Ĥ < ĤJC =
"V

2
Sz + "v0â

†â + "g0
T

V
sâ†S− + âS+d. s6d

The Jaynes-Cummings interaction described by Eq.(6)
furnishes a direct analogy to a two-level atom coupled to a
single-mode field. A different feature of the double-dot sys-
tem is that the parametersVstd andTstd can be adjusted on
fast time scales by varying the voltage applied to the metallic
gates defining the quantum dots. Consequently, the detuning
Vstd−v0 and the effective coupling constants~Tstd /Vstd
may be controlled independently for double dots on either
end of the resonator, each of which interacts with the reso-
nator via the coupling described by Eq.(6).

To illustrate the strength of the resonator mediated inter-
action rateTg0/V, we compare it with a static interaction
achieved by capacitively coupling spatially separated double
dots through a conductor. By calculating the change in elec-
trostatic energy of an electron in one double dot due to shift-
ing the electron between dots in the second double dot, we
find that the electrostatic interaction energy isDE
<v2e2/ sC0ld. If the nonresonant conductor and the transmis-

FIG. 1. Two double dots coupled by a conductor with capaci-
tances as described in the text. Note that a transmission line reso-
nator requires a nearby ground plane(not shown) to shield the
system from radiative losses.
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sion line have the same lengthl and capacitance to ground
C0, the two interaction rates may be compared directly:

"g0 =
1

v
DEÎ RQ

2Z0
. s7d

Typically, Z0=50V!RQ and careful fabrication permits a
strong coupling capacitance, withv<0.28 f17g, so that
"g0<57DE. Hence a much stronger coupling can be
achieved using the resonant interaction. For example, a
wavelengthl<2 mm in GaAs corresponds to a frequency
of v0/2p<50 GHz,yielding an extremely large coupling
constantg0/2p<870 MHz.

In atomic systems, the photon decay ratek often limits
coherent control. In the solid state, superconducting trans-
mission line resonators developed for high-speed circuitry
and photon detection have been produced withQ factors up
to 106 [7]; the photon decay rate<v0/Q can thus be very
small. The limiting factor is the charge state dephasing rate
gc. Inelastic transition rates[18] set a lower bound of a few
hundred MHz, and initial observations of coherent charge
oscillations reveal a dephasing time near 1 ns, limited by
relatively hots100 mKd electron temperatures[19]. For our
calculations, we make the conservative estimate 1/gc<1 ns,
noting that the zero-temperature value could be an order of
magnitude slower. Regardless of the precise dephasing rate,
quantum-dot charge states would make rather poor qubits.
Consequently, for application to quantum information we
must extend the strong charge state coupling to the spin de-
gree of freedom, which decoheres on much longer time
scales.

Nevertheless, initial demonstrations of cavity quantum
electrodynamics may be possible using only the charge
states. Stimulated emission of photons by a double quantum
dot has previously been observed using external microwave
radiation to enhance tunneling rates[11]. If the external
source is replaced by the intracavity field of a microwave
resonator, stimulated emission can exponentially amplify the
field. For large enough couplingg0, the double dot can po-
tentially act as an on-chip maser.

B. The double-dot microscopic maser

A double dot operated in the high-bias regime(see Fig. 2)
can convert electronic potential energy to microwave pho-
tons. By pumping electrons through the double dot, one
might hope to induce a population inversion to amplify an
applied microwave excitation. Note that such a device is
based on a single emitter, and thus may have properties that
differ significantly from those of conventional masers. In
fact, the double-dot device corresponds to a direct analog of
the microscopic maser(micromaser) that has been exten-
sively studied in atomic physics[10]. The micromaser can be
used for unique studies of quantum phenomena including
generation of nonclassical radiation fields and their nontrivial
dynamics[8,9].

In this paper we will be interested only in the general
feasibility of the on-chip micromaser, and thus we analyze it
semiclassically within a rate equation approximation. In this
approximation, effects associated with quantum statistics of

the generated field are disregarded. Such analysis does, how-
ever, provide a reasonable estimate for the threshold condi-
tion and general power.

The double-dot system under consideration has left and
right barriers which allow tunneling from the source and to
the drain with strengthGL and GR, respectively, and one of
the dots is capacitively coupled to a resonator as in Fig. 1.
By maintaining a potential energy difference between the
two leads, a current is driven through the double dot, and
each electron passing through the dot can stimulate emission
of a photon into the resonator. To operate as a maser, how-
ever, the double dot must exhibit population inversion, which
can only be achieved if electrons preferentially flow in
through the excited state and leave via the ground state.
Since finite tunnel couplingT.0 is required in order to emit
photons into the resonator, both the excited and ground states
u± l must be partially delocalized. This allows electrons to
tunnel directly from the source to the ground state and vice
versa. Moreover, inelastic decay processes limit how effec-
tively the double dot can convert population inversion into
photons. A careful treatment of pumping and decay rates is
therefore needed to demonstrate maser action.

Our semiclassical analysis treats the double-dot quantum
mechanically, but assumes that the resonator excitations can
be described by a coherent state. We use the density-matrix
formalism in the rotating wave approximation to derive
equations governing the behavior of a double dot coupled to
a coherent state of the resonatorâual=aual. From Eq.(6),
one can show that the slowly varying components of the
density matrixr̂ in the eigenbasishu+l , u−lj evolve as

ṙ++ = ia
g0T

V
sr+− − r−+d,

s8d

ṙ+− = − idvr+− + ia
g0T

V
sr++ − r−−d,

wheredv=V−v0, ṙ−−=−ṙ++, and ṙ−+=sṙ+−d* .

FIG. 2. The double-dot configuration is illustrated in the charge
eigenbasis,u+l , u−l. Electrons tunnel from the source into the left
dot at rateGL and from the right dot to the drain at rateGR. For a
finite detuningD, this pumping can lead to a population inversion.
Decay from the excitedu+l state to the groundu−l state occurs via
photon emission into the resonator and also via phonon-mediated
inelastic decay processes.
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In addition to this coherent evolution, the density-matrix
components are affected by dephasing, decay, and coupling
to the leads. In particular, the excited-state populationr++

increases at a rateGLuk+uLlu2s1−r++−r−−d due to pumping
from the source, while it decays at rategr +GRuk+uRlu2 due to
relaxation to the ground-state at rategr and loss to the drain.
Similarly, the ground-state populationr−− increases at a rate
GLuk−uLlu2s1−r++−r−−d+grr++, while losing population at
rate GRuk−uRlu2r−−. Note that our density matrix no longer
satisfiesTrsrd=1 (since the electron can leave the double
dot), and we have accounted for the large charging energy by
allowing at most one electron to inhabit the double dot[20].

The pumping and decay rates also contribute to reduction
of the off-diagonal termsr+−,r−+. Inelastic decay contributes
gr /2 to the charge dephasing rategc. The coupling to the
leads, however, enters in an asymmetric fashion becauseGR

causes direct lifetime broadening, whereasGL only affects
dephasing through virtual processes which allow the con-
fined electron to scatter off electrons in the source. We con-
sider the regimeGR<GL, where these higher-order processes
can be neglected in comparison to lifetime broadening, and
thereby find that the off-diagonal terms decay at a rategtot

=sgr +GRd /2+gc.
Taking all terms into account, the density-matrix equa-

tions of motion are

ṙ++ = ia
g0T

V
sr+− − r−+d − Sgr + GR

V − D

2V
Dr++

+ GL
V + D

2V
s1 − r++ − r−−d,

ṙ−− = ia
g0T

V
sr−+ − r+−d − GR

V + D

2V
r−− + grr++

+ GL
V − D

2V
s1 − r++ − r−−d, s9d

ṙ+− = − sgtot + idvdr+− + ia
g0T

V
sr++ − r−−d,

where ṙ−+=sṙ+−d* . In the steady state, the time derivatives
vanish, and one may easily obtain the polarization Imsr+−d
and population inversionr++−r−−.

Simulated emission processes increase the intracavity
field. The amplitude of the coherent state,a, grows as
sg0T/VdImsr+−d while decaying at rateka due to the finite
linewidth of the resonator. Expressed in terms of the effec-
tive emission rate,G=sg0T/Vd2gtot/ sgtot

2 +dv2d, the field
growth rate is ȧ=afGsr++−r−−d−kg. Substituting the
steady-state population inversion, we find the evolution
equation for the microwave field:

ȧ = S 2GVGLsDGR − grVd
sGR + 2GLdfV2s4Ga2 + grd + 2T2GRg + DGRs2DGL + Vgrd

Da − ka. s10d

This expression allows derivation of the threshold condition
for maser operation, which corresponds to the requirement
that the initial growth rate be greater than zerosȧ /adua=0.0.
Due to saturation effects froma2 in the denominator of Eq.
s10d, the fielda grows untilȧ=0. This steady-state solution
ass determines the number of generated photons,ass

2 , which
we identify as the double-dot maser figure of merit because it
quantifies the amplitude of the microwave field attained in
the resonator.

The double-dot maser cannot be made arbitrarily power-
ful by increasing the pumping power. Although increasing
GL,R pumps more electrons through the double dot, opening
up conduction to the leads speeds up the dephasing rate,
which decreases the effective emission rateG. Consequently,
there is an optimal pumping rate which maximizes the
steady-state intracavity field.

To demonstrate the feasibility of building a double-dot
maser, we calculate the threshold current and maximum field
ass

2 for a realistic set of parameters(see Fig. 3). The threshold
conditionȧ.0 can be satisfied even for a dot-resonator cou-
pling rate of only g0/2p=30 MHz. For the calculations
shown in Fig. 3, we takeGL=GR=G, and moderate values of
G and g0 yield typical resonator excitations ofuassu2

<1000 photons. A weak coupling to a nearby transmission
line can leak these excitations at a rate 1/k,1ms without
significantly affecting theQ of the resonator, allowing emis-
sion of around 109 photons per second. The resulting power
at 30 GHz is around 20 fW. Although these fields are small,
they could be detected by photon-assisted tunneling in an-
other mesoscopic two-level system. For example, recent ex-
periments on a superconductor-insulator-superconductor
junction have shown a sub-femto-watt sensitivity to micro-
wave excitations at 25 GHz[21]. In conjunction with such
sensitive microwave detectors, this on-chip coherent micro-
wave source could provide a useful tool for high-frequency
spectroscopy of mesoscopic systems.

III. CAVITY QED WITH SPIN STATES

The spin state of an electron in a quantum dot has been
suggested as a potential solid-state qubit because it possesses
good coherence properties[4]. While a quantitative value for
the spin dephasing rategs is unknown, a number of experi-
ments indicate that it is significantly smaller than the charge
dephasing rate. Experiments in bulk two-dimensional elec-
tron gas find 1/gs=100 ns[3], though the situation will be
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different for confined electrons. Spin relaxation times of over
50 ms [18,22] indicate that the spin of an electron in a quan-
tum dot can be well protected from its environment.

The spin does not couple directly to electromagnetic ex-
citations in a resonator, but an indirect interaction is possible
by entangling spin with charge. This technique is similar to
Raman transitions in atomic systems, where long-lived hy-
perfine states interact via an intermediate short-lived excited
state. In particular, by employing the analog of a Raman
transition, which only virtually populates charge state super-
positions, we show below that quantum information can be
transferred between the stable spin and photon states.

A. Three-level systems in double dots

A technique based on Raman transitions requires a closed
three-level system incorporating both the charge and spin
degrees of freedom(see Fig. 4). We define the spin statesu↑ l
and u↓ l by applying a static in-plane magnetic fieldBz,
which splits them in energy byd=gmBBz (6.2 GHz/T for
GaAs). The electron state is then represented by its charge

and spin statesu± l ^ u↑↓l which we abbreviate tou±↑↓l.
Since an electron in the orbital ground stateu−l maintains its
spin coherence over long times<1/gs, we chooseu−↓l and
u−↑l as the two metastable states. The resonator couples
u−↑l to u+↑l; to complete the Raman transition, we need a
mechanism which simultaneously flips the charge and spin
state betweenu+↑l and u−↓l. This can be accomplished with
a local ESR(electron-spin resonance) pulse 2bstdcossntd act-
ing only on electrons in the left dot. By tuning the ESR
carrier frequencyn close to the appropriate transition,u−↓l
→ u+↑l, we need only consider the near-resonant terms of the
local ESR Hamiltonian:

ĤESR= bstd
T

V
su+ ↑lk− ↓ue−int + u− ↓lk+ ↑ueintd. s11d

Choosing the ESR detuningV−d−n=e to match the resona-
tor detuningV−v0=e, we implement a far-off-resonant Ra-
man transition.

Several conditions must be met, however, in order to ne-
glect the energy-nonconserving processes as we did in Eq.
(11). In particular, the ESR field must be sufficiently weak
and sufficiently far detuned from resonance to satisfy the
following three inequalities: b! un−du, b! uV+d−nu,
sT/Vd2g0b /e!d. Physically, this means that the transition
rates for undesired spin flips(e.g.,u+↑l andu+↓l) and the rate
for Raman transitions between the wrong levels must both be
small compared to the energy detuning associated with each
process. By going far-off-resonance, we also prevent the
transition u−↓l→ u+↓l. Consequently, the system described

FIG. 3. (a) The threshold pumping currenteG required for maser
operation is shown as a function of dot-resonator coupling strength
for three values ofk, the rate at which photons leak out of the
resonator.(b) The maximum number of photons produced in the
resonator as a function of the pumping currenteG shows saturation
due to G-induced dephasing. Note that the required coupling
strength is low:g0/2p,100 MHz The relevant parameters for
these calculations are:GL=GR=G, D /T=2, dv=0, 1/gc=1 ns,
1/gr =10 ns, and in part(b) 1/k=1ms.

FIG. 4. (a) An isolated double quantum dot has charge states
detuned byD and tunnel coupled byT; the spin states are split byd.
(b) In the double-dot eigenbasis, an ESR pulseb applied locally to
the left dot couplesu+↑l and u−↓l, while the resonator allows tran-
sitions between charge states accompanied by emission or absorp-
tion of a photon.(c) The three-level system has effective coupling
strengthsbsT/Vd and g0sT/Vd and lossesgc,gs, and k due to
charge, spin, and photon decoherence, respectively. ESR and reso-
nator frequenciesn=V−d−e and v0=V−e, respectively, allow a
resonant two-photon transition between the spin levels.
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by Eqs. (11) and (6) is truncated to three states:
hu−↑ ,1l , u−↓ ,0l , u+↑ ,0lj, where the final symbol indicates
the number of excitations in the resonator. We have thus
constructed a solid-state analog of the three-level atom of
cavity quantum electrodynamics.

B. State transfer using a far-off-resonant Raman transition

The primary goal of the coupling mechanism is to allow
interactions between spatially separated spin qubits. Since
auxiliary adjacent spin qubits can accomplish conditional dy-
namics[4], long-distance state transfer is sufficient to attain
this objective. In this section we present an analysis of the
coupling rates and the loss of coherence associated with state
transfer using a far-off-resonant Raman transition.

The two statesu−↑ ,1l and u−↓ ,0l play the role of meta-
stable atomic states. They are coupled viau+↓ ,0l, which acts
as an intermediate excited state. For constantg0 and b and
large detuninge, the metastable states are coupled at an ef-
fective transition ratex=sT/Vd2g0b /e, and state transfer is
achieved by pulsingT/V for a timet=p / s2xd.

Loss of coherence arises both from virtual population of
the intermediate state and from dephasing of the spin and
photon states. Virtual population of charge superpositions in-
duces decoherence at a rategeff<sT/Vd2sP↓b2+P↑g0

2d /e2,
whereP↓↑ denotes the probability that the system is in the
corresponding spin state. Forb andg0 of similar magnitude
we approximate this decoherence rate by a time-independent
valuesT/Vd2kb2+g0

2l /2e2. The metastable states decohere at
rate gD, which is always less than the greater ofgs and k
(strictly speaking,gD also depends onP↑↓, but the depen-
dence is weak sincegs<k). During the time required for
state transfer, t<p /2x, the error probability is
perror<tsgeff+gDd. At optimal detuning

e < T/VÎgcsb2 + g0
2d/2gD, s12d

the probability of error becomes

perror< ÎgcgD
pV

g0T
Îb2 + g0

2

2b2 . s13d

As a quantitative example of this technique, suppose
V /2p=2T/2p=50 GHz,g0/2p=870 MHz, and 1/gD is set
by the expected spin dephasing time<1 ms (requiring a
resonator quality factorQ.53104). Using an ESR field
b /2p of 1 GHz, the far-off-resonant Raman transition ac-
complishes state transfer in around 100 ns withperror,0.2
for a detuning ofe /2p<15 GHz. These numbers easily sat-
isfy the conditions onb which allow neglect of energy-
nonconserving processes. A high in-plane magnetic fieldBz
is not needed, sincen ,e@b, and x /2p=15 MHz, so we
merely requireBz@15 mT (a low magnetic field is desirable
because it presents fewer complications for the supercon-
ducting resonator design). We note that this example pro-
vides only a very rough estimate of expected error rates since
they depends sensitively on the quantity of interest, the puls-
ing mechanism, and the values ofgs andgc. Optimization of
these variables could likely lead to significant improvements
in fidelity.

C. Experimental considerations

The proposed system fits into ongoing experimental ef-
forts toward single spin initialization and readout[22]. Local
ESR, however, has not yet been experimentally demon-
strated, and will likely represent the most challenging ele-
ment in our proposal. Nevertheless, a variety of tools are
now being developed which may permit local spin manipu-
lation. Consequently, we now consider several strategies for
achieving the simultaneous charge transition and spin flip
required for our scheme.

One promising route to spin resonance isg-factor engi-
neering[23]. In our proposal, even a static ESR interaction
sn=0d could be used to flip spins, provided thatd@b.
Modulation of one component of theg-factor tensor, e.g.,
gxx, could thus turn on and off the effect of a static applied
field Bx by modulating the Zeeman termgxxmBBxsx in the
Hamiltonian. By making the electrodes small enough, this
g-factor shift could be applied to a single dot. Although
working nearn=0 will vastly reduce the heat load associated
with ESR, the system will be more sensitive to low-
frequency fluctuations in the electromagnetic environment.

Alternately, high-frequency anisotropicg-factor modula-
tion can induce spin flips using a static magnetic field and
microwave electric fields[24]. As in the case of static
g-factor engineering, the electric field could be applied lo-
cally. The resulting ESR coupling strength depends on the
voltage-induced change in anisotropicg-factor Dgxz multi-
plied by the applied static field. If one can engineerDgxz
=0.03 (static g-factor engineering can induceDgzz=0.16
[23]), a static magnetic field of 16 T would produce the de-
sired local ESR strength. Operation at such large fields, how-
ever, would necessitate using a type-II superconductor to
construct the resonator. Since the flux-pinning mechanisms
which allow high-field superconductivity also contribute to
residual surface impedance, resonators constructed of type-II
materials would likely have lower quality factors.

Other strategies combine a global ESR pulse with some
other mechanism that couples spin and charge, for example,
a spin-dependent tunneling rate. In this case, the charge
eigenstates can be made different for the two spins, so that
k−↓ u+↑l=hÞ0 (here u±sl is the charge eigenbasis for an
electron with spins). If the global ESR strength isbglobal,
the coupling betweenu+↑l and u−↓l is hbglobal whereas the
additional decoherence due to the slightly different charge
distributions ofu−↑l and u−↓l is only h2gc. Sufficiently large
bglobal and smallh permit state transfer with negligible con-
tribution to dephasing.

IV. CONTROL OF LOW-FREQUENCY DEPHASING WITH
A RESONATOR

Thus far we have assumed a single-mode resonator and
included only energy-conserving processes. A more careful
analysis incorporates the energy-nonconserving terms of Eq.
(4), which lead to corrections scaling asgx,z

2 /vn
2. If the reso-

nator has a minimum frequencyv0@g0, these terms are
small and can be neglected. However, as the minimum fre-
quency decreases, energy-nonconserving terms may become
important.
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In an experimental implementation a major concern could
be that coupling a double dot to a macroscopic resonator
(which is in turn coupled to the environment) might drasti-
cally increase the charge decoherence rate. Consequently, we
examine the resonator modes more rigorously. Following
Ref. [25], we model the environment as a transmission line
of length L→` capacitively coupled to the resonator, and
diagonalize the resonator1transmission line system[see Fig.
5(a)]. The discrete mode operatorsân

†,ân are replaced by the

creation and annihilation operatorsAk
†,Âk for the eigenmodes

of the total infinite system, which have a continuous spec-
trum of modes. Since arbitrarily low frequencies are repre-
sented, the corrections~sgx,z

skd /vkd2 may no longer be negli-
gible.

If the double dot were coupled directly to a transmission
line, the low-frequency dephasing would indeed pose a prob-
lem. However, the effect is mitigated because the resonator is
only sensitive to environmental noise withinv0/Q of the
resonant frequency. For high quality factors, the resonator
voltage spectrum at quasimode frequencies near and below
the fundamental mode approaches a Lorentzian(see Fig. 5),

uVku2 <
"vk

2C0L

Qv0
2

Q2svk − v0d2 + v0
2 , s14d

which vanishes asvk→0. The coupling strengthgx,z
skd be-

tween the quantum dot and the quasimode is proportional to
this voltage, so the problematic coupling to low-frequency
modes is strongly suppressed.

To illustrate the suppression of decoherence, consider the

dephasing effect of the termokgz
skdsÂk+Âk

†dSz in the Hamil-

tonian of Eq. (4) in two situations:(a) the double dot is
coupled directly to the environment, soAk annihilates a
mode of a semi-infinite transmission line, and(b) the double
dot is coupled to a resonator which is in turn coupled to a
transmission line environment, soAk annihilates a quasimode
of the resonator+transmission line system. To calculate
dephasing, we start in the vacuum state for electromagnetic
degrees of freedom and require that the couplinggz

skd is
gradually turned on and off with time dependencefstd
=e−`

` eivt f̃svddv. After tracing over the transmission line de-
grees of freedom, the componentu+lk−u of the reduced
charge state density matrix has decreased bye−2ka in case(a)
ande−2kb in case(b) where

ka =E
0

` LZ0C0

p
ug0f̃svdu2dv, s15d

kb =E
0

` LZ0C0

p

Qv0
2ug0f̃svdu2

Q2sv − v0d2 + v0
2dv. s16d

Assuming a slowly varyingfstd and a high-Q cavity, exami-
nation of Eqs.s15d and s16d directly yields

kb

ka
<

1

Q
, s17d

i.e., the low-frequency dephasing of the qubit is greatly sup-
pressed. This result indicates that in situations where the
double-dot dephasing is dominated by coupling to electro-
magnetic modes of the transmission line, a resonator pro-
vides good protection from low-frequency dephasing.

V. CONCLUSION

In this paper we describe how effects familiar from
atomic cavity quantum electrodynamics may be observed in
highly tunable solid-state devices. Quantum-dot charge states
are limited by a fast decoherence rate, but a solid-state maser
may nonetheless demonstrate coherent interactions between
a double dot and a resonator. For quantum information sys-
tems, lower decoherence rates are required, and we have il-
lustrated how a long-range interaction between long-lived
spin states may be implemented with only virtual population
of intermediate charge states. This system represents an op-
portunity to manipulate electron spins and charges with a
level of control usually associated with atomic physics, and
illustrates how techniques pioneered quantum optics can find
application in a solid-state context.

On a broader level, our work also demonstrates how a
high quality resonator can serve as a quantum coherent data
bus between qubits. Such a data bus could provide an inter-
action between different types of quantum systems. Cooper
pair boxes[12] or even Rydberg atoms[6] could thereby
interact with electron spins. If sufficiently strong coupling
mechanisms can be found, these artificial atoms and micro-
wave resonators could have an important role to play as tun-
able, integrable, and scalable coherent quantum systems.

FIG. 5. (a) Losses in the resonator may be modeled by a weak
coupling to a semi-infinite transmission line.(b) For a high-Q reso-
nator, the quasimode voltage spectrum atx=−l (solid) is well ap-
proximated near the fundamental mode by a Lorentzian(dashed)
with half width v0/Q. (c) A logarithmic plot of the same fit shows
that the Lorentzian approximation provides an upper bound on the
effects of dephasing due to low-frequency modes.
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