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Entropic uncertainty relations for the ground state of a coupled system

M. S. Santhanam
Max Planck Institute for the Physics of Complex Systems, Néthnitzer Strasse 38, Dresden 01187, Germany
(Received 29 October 2003; published 1 April 2p04

There is a renewed interest in the uncertainty principle, reformulated from the information theoretic point of
view, called the entropic uncertainty relations. They have been studied for various integrable systems as a
function of their quantum numbers. In this work, focussing on the ground state of a nonlinear, coupled
Hamiltonian system, we show that approximate eigenstates can be constructed within the framework of adia-
batic theory. Using the adiabatic eigenstates, we estimate the information entropies and their sum as a function
of the nonlinearity parameter. We also briefly look at the information entropies for the highly excited states in

the system.
DOI: 10.1103/PhysRevA.69.042301 PACS nuniber03.67—a, 03.65-w, 05.30—-d
I. INTRODUCTION §+S=D(L+Inm), (4)

The uncertainty relations, which express the inability towhereD is the number of spatial dimensions of the system.
simultaneously measure the states of two noncommuting olnspired by this general result, several authors have focussed
servables, form the cornerstone of quantum physics. For aryn obtaining the lower bounds for EUR of quantum systems
pair of operatorsA and B, in standard form[1], they are whose classical limit is integrable, like the particle in an
stated as infinite well [5], harmonic oscillator and hydrogen atom in
one and higher dimensiof§], power-law wave packets and
multivariate Cauchy-Lorentz distributid?], and oscillating
circular membrand8]. Apart from the lower bounds, the
R R values of EUR as a function of quantum numbers have been
whereAA and AB represent the dispersions snandB and  analyzed in detail in these series of papers. Recently, Dehesa
[A,B] is the commutator. In recent years, there has been &t al. have shown that forztkhe one-dimensional power-law
revival of interest in the uncertainty relations reformulatedPotentials of the fornV(x) =x™, wherek is a positive integer,
from the standpoint of information theory, called the entropicin the region of highly excited state®> 1), the entropic
uncertainty relation§EUR) [2]. For instance, the position- Sum goes as [i2n) for all k [9].
momentum uncertainty relation is formulated as follows; On the other hand, the single-particle probability density

given an eigenstate of a quantum systeftg) and y(p), in p(d is also the quantity of fundamental interest in the

configuration and momentum space representations, &id if density-functional theory and hence its characterization us-
and S, represent their information entropies, then the ending information entropy as a measure for spreading has as-

AAAB = 3(W|[A,B]|¥), (1)

tropic uncertainty relations can be written down as sumed special interest. In fact, treating atomic and molecular
entropic sum was considered by Gadlt®] and he derived
$+$=5 2) an approximate expression for the entropic sum within the
= Syps

Thomas-Fermi framework for neutral atoms. Now it is
known from several empirical studies for atomic, molecular,
and nuclear distributions that the entropic sum can be mod-
eled ag[11]

s=- [ p@m plde @ STarent ©

where S, is the lower bound to the entropic sum or EUR.
Here, the information entropy is defined as

wherec; andc, are constants and is the number of elec-

. N trons or nucleons, as the case may be. The functional form
where p(€)=|(&)|? is the probability density. The informa- given above seems to be fairly universal for many-fermions
tion entropy is a measure of the spreading or localization ofn some mean interactioj&1].
the given eigenstate. Apart from its intrinsic value, the refor- Thus, one branch of the work on EUR has focussed on
mulation also seeks to address some of the shortcomings guantum systems in the classically integrable limit whose
the standard statement of the uncertainty prindiplelt also  eigenstates are analytically known. The other complementary
guantifies the uncertainty more accurately than the standararanch has explored the complex atomic and molecular sys-
statement based on dispersiof8. In particular, a good tems using a combination of approximate analytical and em-
amount of work has focussed on obtaining the lower boundgirical methods. In these cases, the EURs have been obtained
S;p in general and we mention the result obtained byas a function of increasing quantum numbers. However,
Bialynicki-Birula and Mycielski[4], simple and chaotic model systems that bridge this divide
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10 ics. Hence in this work, we will only focus attention, for
/ \\ most part, on the ground state and, briefly, on the regular
1 states. We stress that even though the system is chaotic,

0l we study only those eigenstates that are associated locally
with regular classical structures. Ground state is preemi-

-5 nent because previous studies have shown that the ground
state saturates the EUR inequality in some systéang.,
-10 . . harmonic oscillator and often in complex systems, the

-10-5 2 5 10 focus is on the ground-state properties. Next, we obtain
the ground-state entropies, as a functionaof

FIG. 1. The contours of the potential as a functiorxaidy (in
arb. unitg for «=0.2 andk,,k,=1. Each contour represents a par-
ticular value of energy. For large values of energy, the potential I1l. ADIABATIC THEORY

develops “channels”, as seen in the figure. .
P g In the context of two degrees of freedom systems, if the

b h i bl dth | b dfrequency of oscillations between both the degrees of free-
etween the purely Integrable and the complex many-body,, giffer vastly, then such a classical system becomes an

systems have not yet been cor_13|dered. The main réasqflag| candidate for the adiabatic treatment. This is the well-
seems to be that, as yet, no straightforward analytical tedknown Born-Oppenheimer approximation in atomic physics

nigue is available to determine their eigenstates. Thus, th 4]. The approach is to average over the “faster” degree of
main purpose of this paper is to show that using adlabatlg edom and incorporate it into the Hamiltonian for the

technique approximate eigenstates can be constructed aglver degree of freedom. In this adiabatic approach, the

b thatllthe entkrop|c sum; C?]n also be est]:matgd. Inf Cr?q%amiltonian is effectively integrable and can be quantized.
trast to earlier works, we study the EUR as a function of theryq a5 heen successfully implemented earlier to estimate

nonlinearity parameter in the system. 'Thu's, we hqpe fo ung,q energies of the localized states in coupled oscillator sys-
derstand the effect of nonlinearity using information theo-tems [12,15. For the Hamiltonian in Eq(6), Certain and
retic measures. o ’

. . . ; . Rl—kzzl, there are no clearly identifiable “faster” and
irregular trajectories, whose properties change with a paramgq, e degrees of freedom and thus it might seem that the
eter. The evolution of the probability density as a function Ofadiabatic approach is inappropriate. However, previous stud-

the parameter reflects the influence of these classical objecq.(s_)s show that the adiabatic separation of variables, rather

Thus it is important to look at the EUR upon variation of the,surprisingly, provides a good estimate for even the ground-

nonlinearity parameter. Note that scale invariance ofentroplgtate spectrd15]. The results in this paper confirm these

sumslleads. to EURs that are mdependent. of scaling para revious findings but as yet a physical explanation is not
eters in an integrable system. But, in a nonintegrable systenyq,

the entropic sums could depend on the nonlinearity
parameter.

A. Position eigenstates
Il. MODEL HAMILTONIAN In this section, we will obtain the ground state of the

. . ) o Hamiltonian in Eq.(6), for «<<1, in the adiabatic approxi-

P2 P2 KB K3y assume that thg motion is faster and average over the fast
H= 224 2y 10 4 220 4 2 (6)  motion by dropping terms that depend purely xo=nd p,.
2 2 2 7 This gives
whose potential is displayed in Fig. 1 akg,k,,« are the pz 2,2
parameters. The system is integrable to*r0 and corre- H' (x;y) = —ZY + 27 +ax?y?=E'(y), (7)

sponds to a two-dimensional harmonic oscillator whose

asymptotic(large quantum numbgrentropic sum was re- \here the variable is treated as a parameter. This is just the
cently derived[6]. For a choice ofx=0.05 (k;=k,=1), the  harmonic oscillator whose frequency is

system displays classical chaos for eneigy 15 [12]. .

The coupled oscillators are popular as models of chaos O, = \e"k§+2ax2 (8)
since they qualitatively mimic the complex dynamics in 5

problems like the hydrogen atom in strong fields and gen—and fora<1, such thak;>2ax* then

eralized van der Waals potentigl3]. For a generic cha- o

otic system, most of its eigenstates could be thought of as Q= wy=ky+ k_Xz- 9
random waves except for a small subset of “regular” states 2

that are influenced by the nature of local classical dynamThe ground state dfl’(x;y) for a<<1 is
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AR 2 a1 @ 2
dXy) = — | exp— wyT2). (10) o, = —exp - X" |. (18)
a k2 4k2
Now, the adiabatic Hamiltonian is obtained as Then, the integral reduces to a Fourier transform of a Gauss-
2 122 ian
px klx '
Hyg= =+ —— +od,, 11
ad= 5 Ty T Oy (19 . 14 —p2> o _
. . . . W(p,, py) = ——=€x f(x)eP* dx, 19
where J, is the classical action corresponding to the faster (Ppy N2 2k, f_x ®) (19
motion. In terms of action-angle coordinates, we get
- where
Had = JX\" kl + ZaJy/k2 + kZJY' (12)
— 2 2
Note that semiclassical quantization dfg, which is also f(x):exr<_xw ) o :lg_a_gY (20)
exact in this case, gives for the ground-state energy, 2 P : k
1, a k and B=w+al2k3. This integral can be performed and we
Eaa= 2 ki+ k, 5 (13) obtain the momentum eigenstate as
The energy estimated by this formula is in good agreement _sz pﬁ
with the computed energies for small Since we are inter- . PRV R s
ested only in the eigenstate, the last term in @4) can be W(py,py) = —r<—> L = (21
omitted since it only serves to shift the energy scale. The Vi ik Vap

ground state ofg is This eigenstate is also of the product form characteristic of
l//(x):< E)Mexp(— wx?2). (14) the adiabatic approximation,\lf-(px,py): Xa1(Px; Py) x2(Py),

T where y; and y, represent the eigenstates of fast and slow

o ... degrees of freedom. In contrast to the position eigenstate in

wherew= ki +a/ky. The ground state of the Hamiltonian gq"(15) the ground state in momentum representation is
in Eq. (6), for a<1, in the adiabatic approximation, can n,majized only toO(a). This is due to the approximations

be written down in its characteristic form a¥(x,y) that were done in the course of obtaining the Fourier trans-
=¢(x;y)¢(x), so that, form. As a limiting case, fora=0, it reproduces the two-

1/4 dimensional(2D) momentum eigenstate.

(wwx) e

‘I’(X,y) - —wxyZ/Ze—wXZ/Z_ (15)

v IV. GROUND-STATE ENTROPY
Note thatW(x,y) is a coupled eigenstate; the coupling pro-
vided byw,. It is correctly normalized. Fa#=0 it reduces to
a two-dimensional harmonic oscillator wave function. The Now it is possib|e to evaluate the information entropies
price we pay in the adiabatic approximation is that the eigenwith the eigenstates in Eqél5) and(21). The position den-
state is not symmetric undex—y as required by the sity, from Eq.(15), is given by
potential.

A. Position entropy

|
VWwy _ 2 _ 2

Xeroy gmex”, (22
aa

B. Momentum eigenstate p(xy) = |[P(x,y)[* =

We calculate the eigenstate in the momentum representa-
tion by taking Fourier transform of the eigenstate given inThen, the information entropy can be evaluated as
Eq. (15). We perform the following integral:

W(ppy) = %T F r W(x,y)ePePdx dy.  (16) Slakake) == L, L plxyln plxy)dx dy

— |
By a straightforward transformation of variables, we can re- =l+In7-InVo- —i (23
duce it to an one-dimensional integral, v
_ WA [* @ oRgpi2uginx wherel; is the integral given by
q’(pX!py) = s dx 1/4 . (17)
V2 - Wy £ ) a
o , _ I, = e *In| ky + —x2 |dx. (24)
At this point, in order to be able to do the integration, we — wk5

approximate the integrand far<1. We take
) ) . Though this integral can be exactly done, we expand the
—p ) - exp<_ Pyl —(alk5) Ix ) integrand to first order inx and arrive at the following ex-
2wy 2k, ' pression for the entropy valid far<1,

ex
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o FIG. 3. Entropy sum for the ground state of the Hamiltonian in
FIG. 2. Entropy for the ground state of the Hamiltonian in Eq. Eq. (6) with k;=k,=1 as a function ofa. Circles are numerical

(6) with k;=kp,=1 as a function ok. (a) Momentum entropy and values and solid line is the quadratic fit to the numerical data.
(b) spatial entropy. Circles are numerical values of information en-

tropies obtained without any approximation. Solid lines are theoret-

ical curves of Eqs(25) and(28). Sp(a,kl,kz) =1+In7+In \5’@4_ %% + O(az).
172
—  ak,+k 28
Sk k) =1+ 1n 7 =1n Vigky = S22 + O(a?). (28)
4 kiks This expression shows that the momentum entropy increases

(25) linearly with . This is evident from Fig. @& in which a

good agreement is seen between the numerical and the ana-
The spatial entropy decreases linearly withSettinga=0, lytical result. A linear fit gives the slope to be 0.4765, close
we recover the correct two-dimensional harmonic oscillatotto the expected value 0.5.
entropy. In Fig. Zb) we show the spatial entropgk; =k,
=1) as a function ofa. For comparison, we numerically
estimate the entropies by diagonalizing the Hamiltonian in . .
Eq. (6) in harmonic-oscillator basis set and a subsequent en- Fr'om the entropy EXpressions in Eqg5) and (23)’ we
tropy calculation. There is a good agreement between thgPtain the sum of position and momentum entropies as
numerical result¢dots obtained without any approximation S(@)=§,+S,=2(1+In m) + O(a?). (29)
and the analytical formuldsolid line). A linear fit to the
numerical entropies gives a slope of —0.4533, notffam  We point some salient features of this result. @), the
the theoretical result 6:5. Thefitted slope closely ap- entropic sum is invariant under change @fbut definitely
proximates —0.5 as— 0. satisfies the uncertainty inequality in E@l). As expected,
due to the scale invariance, it is also independent of the
parametersk; and k,. However, as revealed by numerical
computations in Fig. 3, the significant contribution to en-
The momentum densify(p,, py) from Eq.(21) is given  tropic sum comes from terms @(a?), which could not be

C. Entropic sum

B. Momentum entropy

by determined from the present method. The important result is
that, for «<1, the entropies and their sum depend only on
'{ Ei) p( pf) the parametet, in fact on terms ofO(a?) or higher. Since
expl — exp — — o . :
— , 1 | ko w, our method does not yield information on the quadratic and
|¥(py. py)|° = Vi o (26)  higher-ordera terms, we perform a fit to the numerical en-
P

tropic sum. The equation of best fit, for the rangeaoton-
. o >
Once again, an entropy integral similar to E83) can be sidered, give$=4.289+0.063+0.466x°. As expected, the

performed by Taylor expanding the denominator in the inte_fitt(_ad equation s_hows that_ the linear termdrparri_es less
grand to O(a). The final, rather cumbersome, expression’€ight and the intercept is a good approximation (@ 2

turns out to be +In 7). The ground state saturates the entropic sum only
for a=0.
e _ The role of @, primarily, is to change the shape of the
| l 1 |wlk 1-2 : . o )
Sola,kq, ko) = (1w 'i) [5 - In( \wﬁz) + (2(1 c;] , potential which leads to other qualitative changes in the clas-
_ o _

sical dynamics of the system. As increases, the potential
(27) develops “channels{see Fig. 1 but the ground state does

not occupy the channels. The potential restricts the ground
where we use the shorthanck a/28k3. As a limiting case,  state to remain within the central region and not expand into
we get fora=0, the correct momentum entropy of 2D har- the channels of the potential. Hence the spatial entropy de-
monic oscillator. To obtain an explicit expression, we ex-creases with increase mindicating stronger localization of
pand toO(«) all the terms in the above equation. The resultthe “particle” near the origin of the potential. Correspond-
valid for <1 is ingly, the momentum entropy increases. But they do not can-
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the orderO(a?). Thus, it is a rather slow but definite in- U ?,O,Z ~ =

cel one another exactly, and the increase in entropic sum is of -1 1 z 1
l+—-(Inz+W| - |+2y-1|7,
crease, as evident from Fig. 3. v

V. LARGE PARAMETER KO(Z/Z) In@2), (36)
where y=0.5772... is the Euler’'s constant and-) is the
digamma function. We use these asymptotic forms and ig-
nore terms that contaiar in the denominator. Then, we ob-
tain,

We note that the limita—o0 is a singular limit for the
Hamiltonian in Eq.(6). It does not seem feasible to extend
the present method to this limit. Hence we lookeét 1, but
not o — .

—

dg, 1 K Va
A. Position eigenstate db = i 4—;2 - m =0. (37)

For a>1, we cannot Taylor expand as done in E9).
Hence, now the adiabatic Hamiltonian will be If the terms are rearranged, this turns out to be a quartic
> 129 algebraic equation ii.

py kix
Had:Ex+T+QXJy. (30) 2ab
b - 2k2b? - Z= + K4 = 0. (39)
Presently, exact solutions are not known for this problem. To 77
go further, we quantize thg degree of freedom exactly and

. . Thi n xactl Ived f I rather compli-
treat thex degree of freedom using the variational method. s can be exactly solved fdr but leads to rather comp

cated terms. As an aside, we also point out that using

This leads to asymptotic forms folJ(:) andKy(:) asz—, i.e.,a—0, we
p§ kix2 ] can recover the position eigenstate obtained in(Ef).
Haa= St E\’kz + 2ax7, (3D From this point, we specialize to our cdgek,=1. Then,

for a>1, the second term in E@38) can be neglected since
where ), is substituted from Eq(8). Now, we will use a b increases monotonically with increasing Now, setting
variational method to obtain the ground state. The trial wavelE,/db=0, we obtain fora>1,
function of the form
261/)1/3

1/4 _
%(X)=<%) exp(— bx?/2) (32) b (W (39

eIn generalb is dependent ok, andk, as evident from the
exact solution to E¢(38) but we have takek;=k,=1. Plug-
ging in thisb in Eq. (32), we obtain the adiabatic ground
late valid fora>1 as

is assumed. Note that the trial wave function is similar to th
adiabatic ground state in Eql4), except forw being re-
placed by the variational parametbr to be determined.
Since we are applying the standard variational technique
expounded in many quantum-physics books, we refer the

1/4
reader to, say Ref17], for details of the variational method. P(x,y) = %e-ﬂxyzme-bxz/{ (40)
We first determine the energy functional, N
E, = (4 (¥)|Had ¥4 (X)) (33)  whereQ,=11+2ax? since we have takeky=k,=1 to make
the analysis tractable. It is correctly normalized but does
b kf @ not give the correct limit folw=0. It does not possess the
2w V2 U(- 1/2,0b5/2a), (34 symmetryx—y.
whereU(,,) is the confluent Hypergeometric function. Now, 1. Position entropy fora>1

we optimizeE, to obtainb. Hence, The probability density in position representation is

dE, _1_ K &hdKo(bigaa)

= b0y,
db 4 4p? M2bra p(x,y) =[P (x,y)[*= \Txe‘ﬂxyze‘bxz. (41)
Va
—Tbg,zU(— 1/2,00K/2a), (35  From this, the information entropy witk;=k,=1 can be
J

evaluated see Eq.(23)] as
whereKy(+) is the modified Bessel function of second kind.

Now, we solve forb by settingdE,/db=0. Once again, S@=1+In7~In \e”B—I—i (42)
solving forb in a general case does not seem feasible. How- N
ever, in the limita>1, we use the asymptotic forms as
=(bks/2a) — 0 [18], wherel, is given by
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FIG. 5. (a) Entropy sum for the ground state of the Hamiltonian
in Eq. (6) with k;=k,=1 as a function ofx. Circles are numerical

tial re_presentatlon for the Hamiltonian in E(@) with ky =kp=1 as & values and solid line is the best fit to the numerical data as given by
function of « ranging from 30 to 90. Circles are the numerical Eq. (48)

entropies and solid line is the best fit to the numerical data. Crosses

represent the theoretical result based on the adiabatic approach. ) ) )
eigenstate in Eq40). We need to perform the integral in Eq.

(16) using the ground state in EGL0). Once again, by trans-

FIG. 4. (a) Entropy in momentum representation and i spa-

|2:fc e‘len(1+2—axz)dx forming variables, we can reduce it to a one-dimensional
o b integral,
— ! b a\ b 14 (o —0x2/2 5 P2I20 mipyX
= + fil A/ — | +1 _>__ —~ b e X egTPy < ixglPx
\ 7T|: YT mw er I( za) n( 2b o \I,(lepy) = A f d)\ Ql/4 ! (46)
\277 —0 X
3. b
XZFZ(l'l;E’Z;z_)} (43)  whereQ, is given by Eq.8) andb is the variational param-
o

eter determined in E438). This integral could only be per-
and erf(-) is the imaginary error function angF,(-) is the  formed numerically. Hence, we first determine the adiabatic
generalized hypergeometric function. In this form, the in-momentum eigenstate by numerically integrating E4f)
formation entropy in Eq(42) is not particularly illuminat- ~ from which the entropies are computed. The entropies ob-
ing. For a>1, the contributions from second and fourth tained numerically by the adiabatic approach, shown as
terms in Eq.(43) are negligible. Thus, we obtain a sim- Crosses in Fig. @), and those obtained numerically without

plified form for the spatial entropy, any approximationcircles in Fig. 4a)] are in fair agreement
with each other for the range afconsidered in this work. A
— 1 . . . . .
S(@=1+Inm—In v‘b+%— Zln(z%)' (44) linear regression gives the line of best fit,
Sp(@) =2.1754 +0.3134 Inw. (47)
Now, substituting forb from Eq. (38), we obtain
Momentum entropy increases logarithmically with We
S@)=1+Inm+ Y_ 1In<7—7> _ lln o (45) notice from our numerical calculations, exact as well as the
3 \2) 3 ' one based on adiabatic approach, that the slope in the equa-

tion of best fit for the momentum entropy is consistently
higher than the one for the position entropy. This difference
accounts for the behavior of the entropic sum presented in
the following section.

Thus, for largea, the ground-state entropy falls logarith-
mically with a slope 1/3. This is verified numerically
through exact calculations. In Fig(l), we show the position
entropy plotted as a function of (a). A linear regression
gives the best fit line a§,=2.1368-0.3033 I, verifying _
the approximate theoretical slope in E45). The intercept is C. Entropic sum for large a

approximately 1+Inm, the entropy of the unperturbed oscil-  Finally, we put together the results to look at the entropic
lator, but we stress that we cannot recouerO result from  sum for largea. Figure 5 shows the entropic sum for the

Eq. (45). We also point out a systematic difference seen inground state for a range of parameters30,...,90. The
Figs. 4a) and 4b) between the theoretical estimate of en- pest-fit line(solid line) is given by
tropy (crossey given by Eq.(45) and the numerical result

(circles. This is due to the adiabatic approximation becom- S=4.3249 + 0.007 08 lrax. (48)
ing less accurate near the origin of the potential and this is ) o ) o o
showing up in the results. First, it satisfies the entropic uncertainty inequality in Eq.

(4). The positive slope in this equation shows that the en-
tropic sum increases with the parameter but rather slowly. It
must also be pointed out that this slope in E48) corre-

We obtain adiabatic ground state in the momentum represponds closely to the difference in slopes corresponding to
sentation fora>1 by Fourier transforming the position the best-fit equations for position and momentum entropy.

B. Momentum eigenstate and entropy
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[23] and hence the information entropy is also intimately
connected to the properties of the local classical phase-space
structures that support such regular states. Thus the entropy
is modulated by the qualitative nature of local classical dy-
namics as a function ok [20].

VII. CONCLUSIONS AND DISCUSSIONS

40 002 004 006 008 01 This work can be broadly divided into two parts. Focus-
o sing on the ground state of a coupled system, first, we show,

L within the framework of adiabatic theory, that spatial and
_FIG. 6. Spatial(circle) and. momentunisquarg entropy for a momentum eigenstates can be constructed. Second, using the
highly excited state characterized by approximate quantum number N . .
' . L ; adiabatic eigenstates we obtain approximate results for the

pair (110,0 with k;=k,=1 as a function ofx. . . .

entropic uncertainty relations. For the ground state, we show

] . . that the spatial entropy decreases as a function of the cou-
The functional form of Eq(48) is quite analogous to the pling parameterx in the system while the momentum en-
entropic sum in Eq(5) conjectured for atoms, clusters, and oy increases. However, the entropic sum increases with
nuclei[10,17 on the basis of theoretical arguments and nNuyye coupling parameter and gets saturated only far=0.
merical results. Such logarithmic increase in entropic sum isrpjs js reminiscent of the results reported numerically for the
noted earlier for 1D power-law potentials in the semlclassma[entropic sums of atoms, molecules, and clusfeds. Thus,
limit [9]. Thus, this result provides an approximéemith-  is work provides an approach to obtain analytical results
ereotical approach to see the emergence of the functiongh, he information entropies and their sums, fwupled
form in Eq.(48) in a simple coupled system. nonlinear systems as a function of coupling parameter.
However, for highly excited states, the spatial and mo-
mentum entropies qualitatively look similar and seem to be
VI. HIGHLY EXCITED STATES related to the qualitative nature of local classical dynamics.
In this section, we look at the gray areas that are not yein general, the relation betw_een the cl_assical phase-space
’ tructures and the quantum eigenstates is not completely un-

clearly understood. We briefly discuss the EUR for the.derstood yet. In this context, one might mention the semi-

highly excited states. Most eigenstates of chaotic systems DNassical approaches proposed by Berry and Bogori@8ly

:Egtsgﬂ'ﬂa;:'fnaéggrg daLe I:ra?ngduc!?nr-(r)nrartarli?(d&? lf Ok'g%(f‘rt]atesoased on the Gutzwiller’s trace formula. Thus, we only point
y OL]. out the intricacies involved in the entropic sums for the

excited “regular” states which are characterized\bguanta &Fi)srggrfssaio-rr{hze()r]e are already empirical results pointing to
o]ttexcnaltlmc;\ tlfr: olr31e degree Or: f.reedcz[m andf Otmeg]i other, The adiabatic theory based approach presented here is not
'Io'hﬁg '::haee couﬁj bgrg ?(F))fi%aetlenl]erlagglz dobs ?ﬁe ’ u%ntu without demerits. Strictly speaking, the adiabatic effects take
number p)z/ail(N O'azap))pwhereN>y1 [20]. For t)r/1ese sqtates Mbver when there is clear separation in the time scales of
. ! o L ; ’_motion in the two modes that constitute the system. Thus, in
we W'” numerically explore the variation of entropies as ay,q cage of Hamiltonian in Eq6), the potential develops
function of . In a sense, the entropies of hlgh_ly excited channelgsee Fig. 1 for large values ofr and thus facilitates
diabatic effects. The adiabatic theory is particularly suitable
it the probability density develops structures within these
channels, as it happens for some of the highly excited states.
ince the ground state does not enter the channel for targe
is likely to become less accurate for very large valuea.of

text [21]. First, we choose a particular eigenstate characte
ized by (N,0;ap), in our case(110,0;0.0, and then follow
the eigenstate as a function af The calculations are also
somewhat cumbersome and hence we sample only a sm

parametric window. _ _ Further, this work leaves an interesting question unanswered.
The results, obtained from exact numerical basis-set dippat happens in the limik=oc? The present method of
agonalization and then a subsequent entropy calculatiogyeaiment does not seem adequate to answer this question.

shown in Fig. 6 reveal that the spatial and momentum entrogye hope the results here would stimulate work on more rig-
pies dlgplay similar trend as a function @f This is quallfta- orous approaches to entropic sums in a wide variety of
tively different from that of the ground state. From the f'gure’coupled systems.

it is also clear that the variation witla is not monotonic. The
entropic sum evidently obeys the inequality in E4). It is
known that for Hamiltonian in Eq(6) there are certain spe-
cial periodic orbits which are responsible for supporting

regular states in the systef22]. The probability density | thank Dr. A. Buchleitner for his critical comments on the
structures are related to the classical phase-space structuraanuscript.
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