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There is a renewed interest in the uncertainty principle, reformulated from the information theoretic point of
view, called the entropic uncertainty relations. They have been studied for various integrable systems as a
function of their quantum numbers. In this work, focussing on the ground state of a nonlinear, coupled
Hamiltonian system, we show that approximate eigenstates can be constructed within the framework of adia-
batic theory. Using the adiabatic eigenstates, we estimate the information entropies and their sum as a function
of the nonlinearity parameter. We also briefly look at the information entropies for the highly excited states in
the system.
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I. INTRODUCTION

The uncertainty relations, which express the inability to
simultaneously measure the states of two noncommuting ob-
servables, form the cornerstone of quantum physics. For any

pair of operatorsÂ and B̂, in standard form[1], they are
stated as

DADB ù
1
2kCufÂ,B̂guCl, s1d

whereDA andDB represent the dispersions inÂ and B̂ and

fÂ,B̂g is the commutator. In recent years, there has been a
revival of interest in the uncertainty relations reformulated
from the standpoint of information theory, called the entropic
uncertainty relationssEURd f2g. For instance, the position-
momentum uncertainty relation is formulated as follows;

given an eigenstate of a quantum system,csqd and c̃spd, in
configuration and momentum space representations, and ifSq
and Sp represent their information entropies, then the en-
tropic uncertainty relations can be written down as

Sq + Sp ù Sqp, s2d

whereSqp is the lower bound to the entropic sum or EUR.
Here, the information entropy is defined as

Sj = −E
−`

`

rsjWdln rsjWddjW , s3d

wherersjWd= ucsjWdu2 is the probability density. The informa-
tion entropy is a measure of the spreading or localization of
the given eigenstate. Apart from its intrinsic value, the refor-
mulation also seeks to address some of the shortcomings in
the standard statement of the uncertainty principlef2g. It also
quantifies the uncertainty more accurately than the standard
statement based on dispersionsf3g. In particular, a good
amount of work has focussed on obtaining the lower bounds
Sqp in general and we mention the result obtained by
Bialynicki-Birula and Mycielskif4g,

Sq + Sp ù Ds1 + ln pd, s4d

whereD is the number of spatial dimensions of the system.
Inspired by this general result, several authors have focussed
on obtaining the lower bounds for EUR of quantum systems
whose classical limit is integrable, like the particle in an
infinite well f5g, harmonic oscillator and hydrogen atom in
one and higher dimensionsf6g, power-law wave packets and
multivariate Cauchy-Lorentz distributionf7g, and oscillating
circular membranef8g. Apart from the lower bounds, the
values of EUR as a function of quantum numbers have been
analyzed in detail in these series of papers. Recently, Dehesa
et al. have shown that for the one-dimensional power-law
potentials of the formVsxd=x2k, wherek is a positive integer,
in the region of highly excited statessn@1d, the entropic
sum goes as lns2nd for all k [9].

On the other hand, the single-particle probability density

rsjWd is also the quantity of fundamental interest in the
density-functional theory and hence its characterization us-
ing information entropy as a measure for spreading has as-
sumed special interest. In fact, treating atomic and molecular
entropic sum was considered by Gadre[10] and he derived
an approximate expression for the entropic sum within the
Thomas-Fermi framework for neutral atoms. Now it is
known from several empirical studies for atomic, molecular,
and nuclear distributions that the entropic sum can be mod-
eled as[11]

S; c1 + c2ln N, s5d

wherec1 andc2 are constants andN is the number of elec-
trons or nucleons, as the case may be. The functional form
given above seems to be fairly universal for many-fermions
in some mean interactionsf11g.

Thus, one branch of the work on EUR has focussed on
quantum systems in the classically integrable limit whose
eigenstates are analytically known. The other complementary
branch has explored the complex atomic and molecular sys-
tems using a combination of approximate analytical and em-
pirical methods. In these cases, the EURs have been obtained
as a function of increasing quantum numbers. However,
simple and chaotic model systems that bridge this divide
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between the purely integrable and the complex many-body
systems have not yet been considered. The main reason
seems to be that, as yet, no straightforward analytical tech-
nique is available to determine their eigenstates. Thus, the
main purpose of this paper is to show that using adiabatic
technique approximate eigenstates can be constructed and
further that the entropic sums can also be estimated. In con-
trast to earlier works, we study the EUR as a function of the
nonlinearity parameter in the system. Thus, we hope to un-
derstand the effect of nonlinearity using information theo-
retic measures.

In general, the nonintegrable Hamiltonian systems are ge-
neric rather than an exception and model realistic physical
systems. Their phase space presents a mixture of regular and
irregular trajectories, whose properties change with a param-
eter. The evolution of the probability density as a function of
the parameter reflects the influence of these classical objects.
Thus it is important to look at the EUR upon variation of the
nonlinearity parameter. Note that scale invariance of entropic
sums leads to EURs that are independent of scaling param-
eters in an integrable system. But, in a nonintegrable system,
the entropic sums could depend on the nonlinearity
parameter.

II. MODEL HAMILTONIAN

In this work, we will consider the model Hamiltonian,

H =
px

2

2
+

py
2

2
+

k1
2x2

2
+

k2
2y2

2
+ ax2y2, s6d

whose potential is displayed in Fig. 1 andk1,k2,a are the
parameters. The system is integrable fora=0 and corre-
sponds to a two-dimensional harmonic oscillator whose
asymptoticslarge quantum numberd entropic sum was re-
cently derivedf6g. For a choice ofa=0.05 sk1=k2=1d, the
system displays classical chaos for energyE.15 f12g.
The coupled oscillators are popular as models of chaos
since they qualitatively mimic the complex dynamics in
problems like the hydrogen atom in strong fields and gen-
eralized van der Waals potentialf13g. For a generic cha-
otic system, most of its eigenstates could be thought of as
random waves except for a small subset of “regular” states
that are influenced by the nature of local classical dynam-

ics. Hence in this work, we will only focus attention, for
most part, on the ground state and, briefly, on the regular
states. We stress that even though the system is chaotic,
we study only those eigenstates that are associated locally
with regular classical structures. Ground state is preemi-
nent because previous studies have shown that the ground
state saturates the EUR inequality in some systemsse.g.,
harmonic oscillatord and often in complex systems, the
focus is on the ground-state properties. Next, we obtain
the ground-state entropies, as a function ofa.

III. ADIABATIC THEORY

In the context of two degrees of freedom systems, if the
frequency of oscillations between both the degrees of free-
dom differ vastly, then such a classical system becomes an
ideal candidate for the adiabatic treatment. This is the well-
known Born-Oppenheimer approximation in atomic physics
[14]. The approach is to average over the “faster” degree of
freedom and incorporate it into the Hamiltonian for the
slower degree of freedom. In this adiabatic approach, the
Hamiltonian is effectively integrable and can be quantized.
This has been successfully implemented earlier to estimate
the energies of the localized states in coupled oscillator sys-
tems [12,15]. For the Hamiltonian in Eq.(6), Certain and
Moiseyev construct adiabatic eigenstates formally[12].
Prangeet al. construct adiabatic eigenstates for a class of
chaotic billiards[16]. For the ground state of Eq.(6), for
k1=k2=1, there are no clearly identifiable “faster” and
“slower” degrees of freedom and thus it might seem that the
adiabatic approach is inappropriate. However, previous stud-
ies show that the adiabatic separation of variables, rather
surprisingly, provides a good estimate for even the ground-
state spectra[15]. The results in this paper confirm these
previous findings but as yet a physical explanation is not
clear.

A. Position eigenstates

In this section, we will obtain the ground state of the
Hamiltonian in Eq.(6), for a!1, in the adiabatic approxi-
mation, closely following the technique in Refs.[12,15]. We
assume that they motion is faster and average over the fast
motion by dropping terms that depend purely onx and px.
This gives

H8sx;yd =
py

2

2
+

k2
2y2

2
+ ax2y2 = E8syd, s7d

where the variablex is treated as a parameter. This is just the
harmonic oscillator whose frequency is

Vx = Îk2
2 + 2ax2 s8d

and fora!1, such thatk2
2@2ax2, then

Vx . vx = k2 +
a

k2
x2. s9d

The ground state ofH8sx;yd for a!1 is

FIG. 1. The contours of the potential as a function ofx andy (in
arb. units) for a=0.2 andk1,k2=1. Each contour represents a par-
ticular value of energy. For large values of energy, the potential
develops “channels”, as seen in the figure.
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fsx;yd = Svx

p
D1/4

exps− vxy
2/2d. s10d

Now, the adiabatic Hamiltonian is obtained as

Had =
px

2

2
+

k1
2x2

2
+ vxJy, s11d

whereJy is the classical action corresponding to the faster
motion. In terms of action-angle coordinates, we get

Had = Jx
Îk1

2 + 2aJy/k2 + k2Jy. s12d

Note that semiclassical quantization ofHad, which is also
exact in this case, gives for the ground-state energy,

Ead =
1

2
Îk1

2 +
a

k2
+

k2

2
. s13d

The energy estimated by this formula is in good agreement
with the computed energies for smalla. Since we are inter-
ested only in the eigenstate, the last term in Eq.s12d can be
omitted since it only serves to shift the energy scale. The
ground state ofHad is

csxd = Sv

p
D1/4

exps− vx2/2d, s14d

wherev=Îk1
2+a /k2. The ground state of the Hamiltonian

in Eq. s6d, for a!1, in the adiabatic approximation, can
be written down in its characteristic form asCsx,yd
=fsx;ydcsxd, so that,

Csx,yd =
svvxd1/4

Îp
e−vxy2/2e−vx2/2. s15d

Note thatCsx,yd is a coupled eigenstate; the coupling pro-
vided byvx. It is correctly normalized. Fora=0 it reduces to
a two-dimensional harmonic oscillator wave function. The
price we pay in the adiabatic approximation is that the eigen-
state is not symmetric underx↔y as required by the
potential.

B. Momentum eigenstate

We calculate the eigenstate in the momentum representa-
tion by taking Fourier transform of the eigenstate given in
Eq. (15). We perform the following integral:

C̃spx,pyd =
1

2p
E

−`

` E
−`

`

Csx,ydeipxxeipyydx dy. s16d

By a straightforward transformation of variables, we can re-
duce it to an one-dimensional integral,

C̃spx,pyd =
v1/4

Î2p
E

−`

`

dx
e−vx2/2e−py

2/2vxeipxx

vx
1/4 . s17d

At this point, in order to be able to do the integration, we
approximate the integrand fora!1. We take

expS− py
2

2vx
D . expS− py

2f1 − sa/k2
2dgx2

2k2
D ,

vx
−1/4 .

1

k2
expS−

a

4k2
2x2D . s18d

Then, the integral reduces to a Fourier transform of a Gauss-
ian,

C̃spx,pyd =
v1/4

Î2p
expS− py

2

2k2
DE

−`

`

fsxdeipxx dx, s19d

where

fsxd = expS− x2

2
vpD, vp = b −

apy
2

k2
3 s20d

and b=v+a /2k2
2. This integral can be performed and we

obtain the momentum eigenstate as

C̃spx,pyd =
1

Îp
S v

k2
D1/4expS−

py
2

2k2
DexpS−

px
2

2vp
D

Îvp

. s21d

This eigenstate is also of the product form characteristic of

the adiabatic approximation,C̃spx,pyd=x1spx;pydx2spyd,
wherex1 and x2 represent the eigenstates of fast and slow
degrees of freedom. In contrast to the position eigenstate in
Eq. s15d, the ground state in momentum representation is
normalized only toOsad. This is due to the approximations
that were done in the course of obtaining the Fourier trans-
form. As a limiting case, fora=0, it reproduces the two-
dimensionals2Dd momentum eigenstate.

IV. GROUND-STATE ENTROPY

A. Position entropy

Now it is possible to evaluate the information entropies
with the eigenstates in Eqs.(15) and(21). The position den-
sity, from Eq.(15), is given by

rsx,yd = uCsx,ydu2 =
Îvvx

p
e−vxy2

e−vx2
. s22d

Then, the information entropy can be evaluated as

Sqsa,k1,k2d = −E
−`

` E
−`

`

rsx,ydln rsx,yddx dy

=1 + ln p − ln Îv −
I1

Îp
, s23d

whereI1 is the integral given by

I1 =E
−`

`

e−x2
lnSk2 +

a

vk2
2x2Ddx. s24d

Though this integral can be exactly done, we expand the
integrand to first order ina and arrive at the following ex-
pression for the entropy valid fora!1,
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Sqsa,k1,k2d = 1 + ln p − ln Îk1k2 −
a

4

k1 + k2

k1
2k2

2 + Osa2d.

s25d

The spatial entropy decreases linearly witha. Settinga=0,
we recover the correct two-dimensional harmonic oscillator
entropy. In Fig. 2sbd we show the spatial entropysk1=k2

=1d as a function ofa. For comparison, we numerically
estimate the entropies by diagonalizing the Hamiltonian in
Eq. s6d in harmonic-oscillator basis set and a subsequent en-
tropy calculation. There is a good agreement between the
numerical resultssdotsd obtained without any approximation
and the analytical formulassolid lined. A linear fit to the
numerical entropies gives a slope of −0.4533, not farfrom
the theoretical result −0.5. The fitted slope closely ap-
proximates −0.5 asa→0.

B. Momentum entropy

The momentum densityr̃spx,pyd from Eq. (21) is given
by

uC̃spx,pydu2 =
1

p
Îv

k2

expS−
py

2

k2
DexpS−

px
2

vp
D

vp
. s26d

Once again, an entropy integral similar to Eq.s23d can be
performed by Taylor expanding the denominator in the inte-
grand to Osad. The final, rather cumbersome, expression
turns out to be

Spsa,k1,k2d =Î v/b

s1 − cd
F1

2
− lnSÎv/k2

pb
D +

s1 − 2cd
2s1 − cd

G ,

s27d

where we use the shorthand,c=a /2bk2
2. As a limiting case,

we get fora=0, the correct momentum entropy of 2D har-
monic oscillator. To obtain an explicit expression, we ex-
pand toOsad all the terms in the above equation. The result
valid for a!1 is

Spsa,k1,k2d = 1 + ln p + ln Îk1k2 +
a

4

k1 + k2

k1
2k2

2 + Osa2d.

s28d

This expression shows that the momentum entropy increases
linearly with a. This is evident from Fig. 2sad in which a
good agreement is seen between the numerical and the ana-
lytical result. A linear fit gives the slope to be 0.4765, close
to the expected value 0.5.

C. Entropic sum

From the entropy expressions in Eqs.(25) and (28), we
obtain the sum of position and momentum entropies as

Ssad = Sq + Sp = 2s1 + ln pd + Osa2d. s29d

We point some salient features of this result. ToOsad, the
entropic sum is invariant under change ofa, but definitely
satisfies the uncertainty inequality in Eq.s4d. As expected,
due to the scale invariance, it is also independent of the
parametersk1 and k2. However, as revealed by numerical
computations in Fig. 3, the significant contribution to en-
tropic sum comes from terms ofOsa2d, which could not be
determined from the present method. The important result is
that, for a!1, the entropies and their sum depend only on
the parametera, in fact on terms ofOsa2d or higher. Since
our method does not yield information on the quadratic and
higher-ordera terms, we perform a fit to the numerical en-
tropic sum. The equation of best fit, for the range ofa con-
sidered, givesS=4.289+0.063a+0.466a2. As expected, the
fitted equation shows that the linear term ina carries less
weight and the intercept is a good approximation to 2s1
+ln pd. The ground state saturates the entropic sum only
for a=0.

The role of a, primarily, is to change the shape of the
potential which leads to other qualitative changes in the clas-
sical dynamics of the system. Asa increases, the potential
develops “channels”(see Fig. 1) but the ground state does
not occupy the channels. The potential restricts the ground
state to remain within the central region and not expand into
the channels of the potential. Hence the spatial entropy de-
creases with increase ina indicating stronger localization of
the “particle” near the origin of the potential. Correspond-
ingly, the momentum entropy increases. But they do not can-

FIG. 2. Entropy for the ground state of the Hamiltonian in Eq.
(6) with k1=k2=1 as a function ofa. (a) Momentum entropy and
(b) spatial entropy. Circles are numerical values of information en-
tropies obtained without any approximation. Solid lines are theoret-
ical curves of Eqs.(25) and (28).

FIG. 3. Entropy sum for the ground state of the Hamiltonian in
Eq. (6) with k1=k2=1 as a function ofa. Circles are numerical
values and solid line is the quadratic fit to the numerical data.
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cel one another exactly, and the increase in entropic sum is of
the orderOsa2d. Thus, it is a rather slow but definite in-
crease, as evident from Fig. 3.

V. LARGE PARAMETER

We note that the limita→` is a singular limit for the
Hamiltonian in Eq.(6). It does not seem feasible to extend
the present method to this limit. Hence we look ata@1, but
not a→`.

A. Position eigenstate

For a@1, we cannot Taylor expand as done in Eq.(9).
Hence, now the adiabatic Hamiltonian will be

Had =
px

2

2
+

k1
2x2

2
+ VxJy. s30d

Presently, exact solutions are not known for this problem. To
go further, we quantize they degree of freedom exactly and
treat thex degree of freedom using the variational method.
This leads to

Had =
px

2

2
+

k1
2x2

2
+

1

2
Îk2

2 + 2ax2, s31d

where Vx is substituted from Eq.s8d. Now, we will use a
variational method to obtain the ground state. The trial wave
function of the form

ctrsxd = S b

p
D1/4

exps− bx2/2d s32d

is assumed. Note that the trial wave function is similar to the
adiabatic ground state in Eq.s14d, except forv being re-
placed by the variational parameterb, to be determined.
Since we are applying the standard variational technique as
expounded in many quantum-physics books, we refer the
reader to, say Ref.f17g, for details of the variational method.
We first determine the energy functional,

Ev = kctrsxduHaductrsxdl s33d

=
b

4
+

k1
2

4b
+Î a

2b
Us− 1/2,0,bk2

2/2ad, s34d

whereUs, ,d is the confluent Hypergeometric function. Now,
we optimizeEv to obtainb. Hence,

dEv

db
=

1

4
−

k1
2

4b2 +
ebk2

2/4ak2
2K0sbk2

2/4ad

4Î2bpa

−
Îa

2Î2b3/2
Us− 1/2,0,bk2

2/2ad, s35d

whereK0s·d is the modified Bessel function of second kind.
Now, we solve forb by settingdEv /db=0. Once again,

solving forb in a general case does not seem feasible. How-
ever, in the limita@1, we use the asymptotic forms asz
=sbk2

2/2ad→0 [18],

US− 1

2
,0,zD ,

1
Îp
H1 +

z

2
Fln z+ CS1

2
D + 2g − 1GJ ,

K0sz/2d , − lnsz/2d, s36d

where g=0.5772... is the Euler’s constant andCs·d is the
digamma function. We use these asymptotic forms and ig-
nore terms that containa in the denominator. Then, we ob-
tain,

dEv

db
.

1

4
−

k1
2

4b2 −
Îa

2Î2pb3/2
= 0. s37d

If the terms are rearranged, this turns out to be a quartic
algebraic equation inb.

b4 − 2k1
2b2 −

2ab

p
+ k1

4 = 0. s38d

This can be exactly solved forb but leads to rather compli-
cated terms. As an aside, we also point out that using
asymptotic forms forUs·d andK0s·d asz→`, i.e.,a→0, we
can recover the position eigenstate obtained in Eq.s15d.

From this point, we specialize to our casek1=k2=1. Then,
for a@1, the second term in Eq.(38) can be neglected since
b increases monotonically with increasinga. Now, setting
dEv /db=0, we obtain fora@1,

b < S2a

p
D1/3

. s39d

In general,b is dependent onk1 andk2 as evident from the
exact solution to Eq.s38d but we have takenk1=k2=1. Plug-
ging in this b in Eq. s32d, we obtain the adiabatic ground
state valid fora@1 as

Csx,yd =
sbVxd1/4

Îp
e−Vxy2/2e−bx2/2, s40d

whereVx=Î1+2ax2 since we have takenk1=k2=1 to make
the analysis tractable. It is correctly normalized but does
not give the correct limit fora=0. It does not possess the
symmetryx↔y.

1. Position entropy foraš1

The probability density in position representation is

rsx,yd = uCsx,ydu2 =
ÎbVx

p
e−Vxy2

e−bx2
. s41d

From this, the information entropy withk1=k2=1 can be
evaluatedfsee Eq.s23dg as

Sqsad = 1 + ln p − ln Îb −
I2

Îp
, s42d

whereI2 is given by
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I2 =E
−`

`

e−x2
lnS1 +

2a

b
x2Ddx

=ÎpFg + p erfiSÎ b

2a
D + lnS a

2b
D−

b

a

32F2S1,1;
3

2
,2;

b

2a
DG s43d

and erfis·d is the imaginary error function and2F2s·d is the
generalized hypergeometric function. In this form, the in-
formation entropy in Eq.s42d is not particularly illuminat-
ing. For a@1, the contributions from second and fourth
terms in Eq.s43d are negligible. Thus, we obtain a sim-
plified form for the spatial entropy,

Sqsad = 1 + ln p − ln Îb +
g

4
−

1

4
lnS a

2b
D . s44d

Now, substituting forb from Eq. s38d, we obtain

Sqsad = 1 + ln p +
g

4
−

1

3
lnSp

2
D −

1

3
ln a. s45d

Thus, for largea, the ground-state entropy falls logarith-
mically with a slope 1/3. This is verified numerically
through exact calculations. In Fig. 4(b), we show the position
entropy plotted as a function of lnsad. A linear regression
gives the best fit line asSq=2.1368−0.3033 lna, verifying
the approximate theoretical slope in Eq.(45). The intercept is
approximately 1+lnp, the entropy of the unperturbed oscil-
lator, but we stress that we cannot recovera=0 result from
Eq. (45). We also point out a systematic difference seen in
Figs. 4(a) and 4(b) between the theoretical estimate of en-
tropy (crosses) given by Eq.(45) and the numerical result
(circles). This is due to the adiabatic approximation becom-
ing less accurate near the origin of the potential and this is
showing up in the results.

B. Momentum eigenstate and entropy

We obtain adiabatic ground state in the momentum repre-
sentation for a@1 by Fourier transforming the position

eigenstate in Eq.(40). We need to perform the integral in Eq.
(16) using the ground state in Eq.(40). Once again, by trans-
forming variables, we can reduce it to a one-dimensional
integral,

C̃spx,pyd =
b1/4

Î2p
E

−`

`

dx
e−bx2/2e−py

2/2Vxeipxx

Vx
1/4 , s46d

whereVx is given by Eq.s8d andb is the variational param-
eter determined in Eq.s38d. This integral could only be per-
formed numerically. Hence, we first determine the adiabatic
momentum eigenstate by numerically integrating Eq.s46d
from which the entropies are computed. The entropies ob-
tained numerically by the adiabatic approach, shown as
crosses in Fig. 4sad, and those obtained numerically without
any approximationfcircles in Fig. 4sadg are in fair agreement
with each other for the range ofa considered in this work. A
linear regression gives the line of best fit,

Spsad = 2.1754 + 0.3134 lna. s47d

Momentum entropy increases logarithmically witha. We
notice from our numerical calculations, exact as well as the
one based on adiabatic approach, that the slope in the equa-
tion of best fit for the momentum entropy is consistently
higher than the one for the position entropy. This difference
accounts for the behavior of the entropic sum presented in
the following section.

C. Entropic sum for large a

Finally, we put together the results to look at the entropic
sum for largea. Figure 5 shows the entropic sum for the
ground state for a range of parametersa=30, . . . ,90. The
best-fit line(solid line) is given by

S= 4.3249 + 0.007 08 lna. s48d

First, it satisfies the entropic uncertainty inequality in Eq.
s4d. The positive slope in this equation shows that the en-
tropic sum increases with the parameter but rather slowly. It
must also be pointed out that this slope in Eq.s48d corre-
sponds closely to the difference in slopes corresponding to
the best-fit equations for position and momentum entropy.

FIG. 4. (a) Entropy in momentum representation and in(b) spa-
tial representation for the Hamiltonian in Eq.(6) with k1=k2=1 as a
function of a ranging from 30 to 90. Circles are the numerical
entropies and solid line is the best fit to the numerical data. Crosses
represent the theoretical result based on the adiabatic approach.

FIG. 5. (a) Entropy sum for the ground state of the Hamiltonian
in Eq. (6) with k1=k2=1 as a function ofa. Circles are numerical
values and solid line is the best fit to the numerical data as given by
Eq. (48).
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The functional form of Eq.(48) is quite analogous to the
entropic sum in Eq.(5) conjectured for atoms, clusters, and
nuclei [10,11] on the basis of theoretical arguments and nu-
merical results. Such logarithmic increase in entropic sum is
noted earlier for 1D power-law potentials in the semiclassical
limit [9]. Thus, this result provides an approximate(semi)th-
ereotical approach to see the emergence of the functional
form in Eq. (48) in a simple coupled system.

VI. HIGHLY EXCITED STATES

In this section, we look at the gray areas that are not yet
clearly understood. We briefly discuss the EUR for the
highly excited states. Most eigenstates of chaotic systems in
the semiclassical limit are irregular or random looking states
that could be modeled by random-matrix theory[19]. Such
random-matrix averages represent a particular limit at which
the system’s entropy becomes independent of the nonlinear-
ity parameter. Hence we focus our attention on the highly
excited “regular” states which are characterized byN quanta
of excitation in one degree of freedom and 0 in the other,
often called the Born-Oppenheimer type of states[15,16].
Thus they could be approximately labeled by the quantum
number pairsN,0 ;a=a0d, whereN@1 [20]. For these states,
we will numerically explore the variation of entropies as a
function of a. In a sense, the entropies of highly excited
states have already been reported before in a different con-
text [21]. First, we choose a particular eigenstate character-
ized by sN,0 ;a0d, in our case(110,0;0.0), and then follow
the eigenstate as a function ofa. The calculations are also
somewhat cumbersome and hence we sample only a small
parametric window.

The results, obtained from exact numerical basis-set di-
agonalization and then a subsequent entropy calculation,
shown in Fig. 6 reveal that the spatial and momentum entro-
pies display similar trend as a function ofa. This is qualita-
tively different from that of the ground state. From the figure,
it is also clear that the variation witha is not monotonic. The
entropic sum evidently obeys the inequality in Eq.(4). It is
known that for Hamiltonian in Eq.(6) there are certain spe-
cial periodic orbits which are responsible for supporting
regular states in the system[22]. The probability density
structures are related to the classical phase-space structures

[23] and hence the information entropy is also intimately
connected to the properties of the local classical phase-space
structures that support such regular states. Thus the entropy
is modulated by the qualitative nature of local classical dy-
namics as a function ofa [20].

VII. CONCLUSIONS AND DISCUSSIONS

This work can be broadly divided into two parts. Focus-
sing on the ground state of a coupled system, first, we show,
within the framework of adiabatic theory, that spatial and
momentum eigenstates can be constructed. Second, using the
adiabatic eigenstates we obtain approximate results for the
entropic uncertainty relations. For the ground state, we show
that the spatial entropy decreases as a function of the cou-
pling parametera in the system while the momentum en-
tropy increases. However, the entropic sum increases with
the coupling parametera and gets saturated only fora=0.
This is reminiscent of the results reported numerically for the
entropic sums of atoms, molecules, and clusters[11]. Thus,
this work provides an approach to obtain analytical results
for the information entropies and their sums, forcoupled
nonlinear systems as a function of coupling parameter.

However, for highly excited states, the spatial and mo-
mentum entropies qualitatively look similar and seem to be
related to the qualitative nature of local classical dynamics.
In general, the relation between the classical phase-space
structures and the quantum eigenstates is not completely un-
derstood yet. In this context, one might mention the semi-
classical approaches proposed by Berry and Bogomolny[23]
based on the Gutzwiller’s trace formula. Thus, we only point
out the intricacies involved in the entropic sums for the
highly excited states. In due course, it might become possible
to relate information entropy to classical orbits through these
approaches. There are already empirical results pointing to
this connection[20].

The adiabatic theory based approach presented here is not
without demerits. Strictly speaking, the adiabatic effects take
over when there is clear separation in the time scales of
motion in the two modes that constitute the system. Thus, in
the case of Hamiltonian in Eq.(6), the potential develops
channels(see Fig. 1) for large values ofa and thus facilitates
adiabatic effects. The adiabatic theory is particularly suitable
if the probability density develops structures within these
channels, as it happens for some of the highly excited states.
Since the ground state does not enter the channel for largea,
it is likely to become less accurate for very large values ofa.
Further, this work leaves an interesting question unanswered.
What happens in the limita=`? The present method of
treatment does not seem adequate to answer this question.
We hope the results here would stimulate work on more rig-
orous approaches to entropic sums in a wide variety of
coupled systems.
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FIG. 6. Spatial(circle) and momentum(square) entropy for a
highly excited state characterized by approximate quantum number
pair (110,0) with k1=k2=1 as a function ofa.
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